machdep.c revision 1.240 1 /* $NetBSD: machdep.c,v 1.240 2001/04/24 04:30:50 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73
74 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
75
76 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.240 2001/04/24 04:30:50 thorpej Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/signalvar.h>
81 #include <sys/kernel.h>
82 #include <sys/map.h>
83 #include <sys/proc.h>
84 #include <sys/sched.h>
85 #include <sys/buf.h>
86 #include <sys/reboot.h>
87 #include <sys/device.h>
88 #include <sys/file.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/mman.h>
92 #include <sys/msgbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/user.h>
96 #include <sys/exec.h>
97 #include <sys/exec_ecoff.h>
98 #include <sys/core.h>
99 #include <sys/kcore.h>
100 #include <machine/kcore.h>
101
102 #include <sys/mount.h>
103 #include <sys/syscallargs.h>
104
105 #include <uvm/uvm_extern.h>
106 #include <sys/sysctl.h>
107
108 #include <dev/cons.h>
109
110 #include <machine/autoconf.h>
111 #include <machine/cpu.h>
112 #include <machine/reg.h>
113 #include <machine/rpb.h>
114 #include <machine/prom.h>
115 #include <machine/conf.h>
116 #include <machine/ieeefp.h>
117
118 #ifdef DDB
119 #include <machine/db_machdep.h>
120 #include <ddb/db_access.h>
121 #include <ddb/db_sym.h>
122 #include <ddb/db_extern.h>
123 #include <ddb/db_interface.h>
124 #endif
125
126 #ifdef KGDB
127 #include <sys/kgdb.h>
128 #endif
129
130 #ifdef DEBUG
131 #include <machine/sigdebug.h>
132 #endif
133
134 #include <machine/alpha.h>
135
136 vm_map_t exec_map = NULL;
137 vm_map_t mb_map = NULL;
138 vm_map_t phys_map = NULL;
139
140 caddr_t msgbufaddr;
141
142 int maxmem; /* max memory per process */
143
144 int totalphysmem; /* total amount of physical memory in system */
145 int physmem; /* physical memory used by NetBSD + some rsvd */
146 int resvmem; /* amount of memory reserved for PROM */
147 int unusedmem; /* amount of memory for OS that we don't use */
148 int unknownmem; /* amount of memory with an unknown use */
149
150 int cputype; /* system type, from the RPB */
151
152 int bootdev_debug = 0; /* patchable, or from DDB */
153
154 /*
155 * XXX We need an address to which we can assign things so that they
156 * won't be optimized away because we didn't use the value.
157 */
158 u_int32_t no_optimize;
159
160 /* the following is used externally (sysctl_hw) */
161 char machine[] = MACHINE; /* from <machine/param.h> */
162 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
163 char cpu_model[128];
164
165 struct user *proc0paddr;
166
167 /* Number of machine cycles per microsecond */
168 u_int64_t cycles_per_usec;
169
170 /* number of cpus in the box. really! */
171 int ncpus;
172
173 struct bootinfo_kernel bootinfo;
174
175 /* For built-in TCDS */
176 #if defined(DEC_3000_300) || defined(DEC_3000_500)
177 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
178 #endif
179
180 struct platform platform;
181
182 #ifdef DDB
183 /* start and end of kernel symbol table */
184 void *ksym_start, *ksym_end;
185 #endif
186
187 /* for cpu_sysctl() */
188 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
189 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
190 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
191
192 /*
193 * XXX This should be dynamically sized, but we have the chicken-egg problem!
194 * XXX it should also be larger than it is, because not all of the mddt
195 * XXX clusters end up being used for VM.
196 */
197 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
198 int mem_cluster_cnt;
199
200 int cpu_dump __P((void));
201 int cpu_dumpsize __P((void));
202 u_long cpu_dump_mempagecnt __P((void));
203 void dumpsys __P((void));
204 void identifycpu __P((void));
205 void printregs __P((struct reg *));
206
207 void
208 alpha_init(pfn, ptb, bim, bip, biv)
209 u_long pfn; /* first free PFN number */
210 u_long ptb; /* PFN of current level 1 page table */
211 u_long bim; /* bootinfo magic */
212 u_long bip; /* bootinfo pointer */
213 u_long biv; /* bootinfo version */
214 {
215 extern char kernel_text[], _end[];
216 struct mddt *mddtp;
217 struct mddt_cluster *memc;
218 int i, mddtweird;
219 struct vm_physseg *vps;
220 vaddr_t kernstart, kernend;
221 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
222 vsize_t size;
223 cpuid_t cpu_id;
224 struct cpu_info *ci;
225 char *p;
226 caddr_t v;
227 const char *bootinfo_msg;
228 const struct cpuinit *c;
229
230 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
231
232 /*
233 * Turn off interrupts (not mchecks) and floating point.
234 * Make sure the instruction and data streams are consistent.
235 */
236 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
237 alpha_pal_wrfen(0);
238 ALPHA_TBIA();
239 alpha_pal_imb();
240
241 cpu_id = cpu_number();
242
243 #if defined(MULTIPROCESSOR)
244 /*
245 * Set our SysValue to the address of our cpu_info structure.
246 * Secondary processors do this in their spinup trampoline.
247 */
248 alpha_pal_wrval((u_long)&cpu_info_primary);
249 cpu_info[cpu_id] = &cpu_info_primary;
250 #endif
251
252 ci = curcpu();
253 ci->ci_cpuid = cpu_id;
254
255 /*
256 * Get critical system information (if possible, from the
257 * information provided by the boot program).
258 */
259 bootinfo_msg = NULL;
260 if (bim == BOOTINFO_MAGIC) {
261 if (biv == 0) { /* backward compat */
262 biv = *(u_long *)bip;
263 bip += 8;
264 }
265 switch (biv) {
266 case 1: {
267 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
268
269 bootinfo.ssym = v1p->ssym;
270 bootinfo.esym = v1p->esym;
271 /* hwrpb may not be provided by boot block in v1 */
272 if (v1p->hwrpb != NULL) {
273 bootinfo.hwrpb_phys =
274 ((struct rpb *)v1p->hwrpb)->rpb_phys;
275 bootinfo.hwrpb_size = v1p->hwrpbsize;
276 } else {
277 bootinfo.hwrpb_phys =
278 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
279 bootinfo.hwrpb_size =
280 ((struct rpb *)HWRPB_ADDR)->rpb_size;
281 }
282 bcopy(v1p->boot_flags, bootinfo.boot_flags,
283 min(sizeof v1p->boot_flags,
284 sizeof bootinfo.boot_flags));
285 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
286 min(sizeof v1p->booted_kernel,
287 sizeof bootinfo.booted_kernel));
288 /* booted dev not provided in bootinfo */
289 init_prom_interface((struct rpb *)
290 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
291 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
292 sizeof bootinfo.booted_dev);
293 break;
294 }
295 default:
296 bootinfo_msg = "unknown bootinfo version";
297 goto nobootinfo;
298 }
299 } else {
300 bootinfo_msg = "boot program did not pass bootinfo";
301 nobootinfo:
302 bootinfo.ssym = (u_long)_end;
303 bootinfo.esym = (u_long)_end;
304 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
305 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
306 init_prom_interface((struct rpb *)HWRPB_ADDR);
307 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
308 sizeof bootinfo.boot_flags);
309 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
310 sizeof bootinfo.booted_kernel);
311 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
312 sizeof bootinfo.booted_dev);
313 }
314
315 /*
316 * Initialize the kernel's mapping of the RPB. It's needed for
317 * lots of things.
318 */
319 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
320
321 #if defined(DEC_3000_300) || defined(DEC_3000_500)
322 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
323 hwrpb->rpb_type == ST_DEC_3000_500) {
324 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
325 sizeof(dec_3000_scsiid));
326 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
327 sizeof(dec_3000_scsifast));
328 }
329 #endif
330
331 /*
332 * Remember how many cycles there are per microsecond,
333 * so that we can use delay(). Round up, for safety.
334 */
335 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
336
337 /*
338 * Initalize the (temporary) bootstrap console interface, so
339 * we can use printf until the VM system starts being setup.
340 * The real console is initialized before then.
341 */
342 init_bootstrap_console();
343
344 /* OUTPUT NOW ALLOWED */
345
346 /* delayed from above */
347 if (bootinfo_msg)
348 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
349 bootinfo_msg, bim, bip, biv);
350
351 /* Initialize the trap vectors on the primary processor. */
352 trap_init();
353
354 /*
355 * Find out what hardware we're on, and do basic initialization.
356 */
357 cputype = hwrpb->rpb_type;
358 if (cputype < 0) {
359 /*
360 * At least some white-box systems have SRM which
361 * reports a systype that's the negative of their
362 * blue-box counterpart.
363 */
364 cputype = -cputype;
365 }
366 c = platform_lookup(cputype);
367 if (c == NULL) {
368 platform_not_supported();
369 /* NOTREACHED */
370 }
371 (*c->init)();
372 strcpy(cpu_model, platform.model);
373
374 /*
375 * Initalize the real console, so that the bootstrap console is
376 * no longer necessary.
377 */
378 (*platform.cons_init)();
379
380 #ifdef DIAGNOSTIC
381 /* Paranoid sanity checking */
382
383 /* We should always be running on the primary. */
384 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
385
386 /*
387 * On single-CPU systypes, the primary should always be CPU 0,
388 * except on Alpha 8200 systems where the CPU id is related
389 * to the VID, which is related to the Turbo Laser node id.
390 */
391 if (cputype != ST_DEC_21000)
392 assert(hwrpb->rpb_primary_cpu_id == 0);
393 #endif
394
395 /* NO MORE FIRMWARE ACCESS ALLOWED */
396 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
397 /*
398 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
399 * XXX pmap_uses_prom_console() evaluates to non-zero.)
400 */
401 #endif
402
403 /*
404 * find out this system's page size
405 */
406 PAGE_SIZE = hwrpb->rpb_page_size;
407 if (PAGE_SIZE != 8192)
408 panic("page size %d != 8192?!", PAGE_SIZE);
409
410 /*
411 * Initialize PAGE_SIZE-dependent variables.
412 */
413 uvm_setpagesize();
414
415 /*
416 * Find the beginning and end of the kernel (and leave a
417 * bit of space before the beginning for the bootstrap
418 * stack).
419 */
420 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
421 #ifdef DDB
422 ksym_start = (void *)bootinfo.ssym;
423 ksym_end = (void *)bootinfo.esym;
424 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
425 #else
426 kernend = (vaddr_t)round_page((vaddr_t)_end);
427 #endif
428
429 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
430 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
431
432 /*
433 * Find out how much memory is available, by looking at
434 * the memory cluster descriptors. This also tries to do
435 * its best to detect things things that have never been seen
436 * before...
437 */
438 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
439
440 /* MDDT SANITY CHECKING */
441 mddtweird = 0;
442 if (mddtp->mddt_cluster_cnt < 2) {
443 mddtweird = 1;
444 printf("WARNING: weird number of mem clusters: %lu\n",
445 mddtp->mddt_cluster_cnt);
446 }
447
448 #if 0
449 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
450 #endif
451
452 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
453 memc = &mddtp->mddt_clusters[i];
454 #if 0
455 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
456 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
457 #endif
458 totalphysmem += memc->mddt_pg_cnt;
459 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
460 mem_clusters[mem_cluster_cnt].start =
461 ptoa(memc->mddt_pfn);
462 mem_clusters[mem_cluster_cnt].size =
463 ptoa(memc->mddt_pg_cnt);
464 if (memc->mddt_usage & MDDT_mbz ||
465 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
466 memc->mddt_usage & MDDT_PALCODE)
467 mem_clusters[mem_cluster_cnt].size |=
468 PROT_READ;
469 else
470 mem_clusters[mem_cluster_cnt].size |=
471 PROT_READ | PROT_WRITE | PROT_EXEC;
472 mem_cluster_cnt++;
473 }
474
475 if (memc->mddt_usage & MDDT_mbz) {
476 mddtweird = 1;
477 printf("WARNING: mem cluster %d has weird "
478 "usage 0x%lx\n", i, memc->mddt_usage);
479 unknownmem += memc->mddt_pg_cnt;
480 continue;
481 }
482 if (memc->mddt_usage & MDDT_NONVOLATILE) {
483 /* XXX should handle these... */
484 printf("WARNING: skipping non-volatile mem "
485 "cluster %d\n", i);
486 unusedmem += memc->mddt_pg_cnt;
487 continue;
488 }
489 if (memc->mddt_usage & MDDT_PALCODE) {
490 resvmem += memc->mddt_pg_cnt;
491 continue;
492 }
493
494 /*
495 * We have a memory cluster available for system
496 * software use. We must determine if this cluster
497 * holds the kernel.
498 */
499 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
500 /*
501 * XXX If the kernel uses the PROM console, we only use the
502 * XXX memory after the kernel in the first system segment,
503 * XXX to avoid clobbering prom mapping, data, etc.
504 */
505 if (!pmap_uses_prom_console() || physmem == 0) {
506 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
507 physmem += memc->mddt_pg_cnt;
508 pfn0 = memc->mddt_pfn;
509 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
510 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
511 /*
512 * Must compute the location of the kernel
513 * within the segment.
514 */
515 #if 0
516 printf("Cluster %d contains kernel\n", i);
517 #endif
518 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
519 if (!pmap_uses_prom_console()) {
520 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
521 if (pfn0 < kernstartpfn) {
522 /*
523 * There is a chunk before the kernel.
524 */
525 #if 0
526 printf("Loading chunk before kernel: "
527 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
528 #endif
529 uvm_page_physload(pfn0, kernstartpfn,
530 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
531 }
532 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
533 }
534 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
535 if (kernendpfn < pfn1) {
536 /*
537 * There is a chunk after the kernel.
538 */
539 #if 0
540 printf("Loading chunk after kernel: "
541 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
542 #endif
543 uvm_page_physload(kernendpfn, pfn1,
544 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
545 }
546 } else {
547 /*
548 * Just load this cluster as one chunk.
549 */
550 #if 0
551 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
552 pfn0, pfn1);
553 #endif
554 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
555 VM_FREELIST_DEFAULT);
556 }
557 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
558 }
559 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
560 }
561
562 /*
563 * Dump out the MDDT if it looks odd...
564 */
565 if (mddtweird) {
566 printf("\n");
567 printf("complete memory cluster information:\n");
568 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
569 printf("mddt %d:\n", i);
570 printf("\tpfn %lx\n",
571 mddtp->mddt_clusters[i].mddt_pfn);
572 printf("\tcnt %lx\n",
573 mddtp->mddt_clusters[i].mddt_pg_cnt);
574 printf("\ttest %lx\n",
575 mddtp->mddt_clusters[i].mddt_pg_test);
576 printf("\tbva %lx\n",
577 mddtp->mddt_clusters[i].mddt_v_bitaddr);
578 printf("\tbpa %lx\n",
579 mddtp->mddt_clusters[i].mddt_p_bitaddr);
580 printf("\tbcksum %lx\n",
581 mddtp->mddt_clusters[i].mddt_bit_cksum);
582 printf("\tusage %lx\n",
583 mddtp->mddt_clusters[i].mddt_usage);
584 }
585 printf("\n");
586 }
587
588 if (totalphysmem == 0)
589 panic("can't happen: system seems to have no memory!");
590 maxmem = physmem;
591 #if 0
592 printf("totalphysmem = %d\n", totalphysmem);
593 printf("physmem = %d\n", physmem);
594 printf("resvmem = %d\n", resvmem);
595 printf("unusedmem = %d\n", unusedmem);
596 printf("unknownmem = %d\n", unknownmem);
597 #endif
598
599 /*
600 * Initialize error message buffer (at end of core).
601 */
602 {
603 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
604 vsize_t reqsz = sz;
605
606 vps = &vm_physmem[vm_nphysseg - 1];
607
608 /* shrink so that it'll fit in the last segment */
609 if ((vps->avail_end - vps->avail_start) < atop(sz))
610 sz = ptoa(vps->avail_end - vps->avail_start);
611
612 vps->end -= atop(sz);
613 vps->avail_end -= atop(sz);
614 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
615 initmsgbuf(msgbufaddr, sz);
616
617 /* Remove the last segment if it now has no pages. */
618 if (vps->start == vps->end)
619 vm_nphysseg--;
620
621 /* warn if the message buffer had to be shrunk */
622 if (sz != reqsz)
623 printf("WARNING: %ld bytes not available for msgbuf "
624 "in last cluster (%ld used)\n", reqsz, sz);
625
626 }
627
628 /*
629 * NOTE: It is safe to use uvm_pageboot_alloc() before
630 * pmap_bootstrap() because our pmap_virtual_space()
631 * returns compile-time constants.
632 */
633
634 /*
635 * Init mapping for u page(s) for proc 0
636 */
637 proc0.p_addr = proc0paddr =
638 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
639
640 /*
641 * Allocate space for system data structures. These data structures
642 * are allocated here instead of cpu_startup() because physical
643 * memory is directly addressable. We don't have to map these into
644 * virtual address space.
645 */
646 size = (vsize_t)allocsys(NULL, NULL);
647 v = (caddr_t)uvm_pageboot_alloc(size);
648 if ((allocsys(v, NULL) - v) != size)
649 panic("alpha_init: table size inconsistency");
650
651 /*
652 * Initialize the virtual memory system, and set the
653 * page table base register in proc 0's PCB.
654 */
655 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
656 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
657
658 /*
659 * Initialize the rest of proc 0's PCB, and cache its physical
660 * address.
661 */
662 proc0.p_md.md_pcbpaddr =
663 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
664
665 /*
666 * Set the kernel sp, reserving space for an (empty) trapframe,
667 * and make proc0's trapframe pointer point to it for sanity.
668 */
669 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
670 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
671 proc0.p_md.md_tf =
672 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
673 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
674
675 /*
676 * Initialize the primary CPU's idle PCB to proc0's. In a
677 * MULTIPROCESSOR configuration, each CPU will later get
678 * its own idle PCB when autoconfiguration runs.
679 */
680 ci->ci_idle_pcb = &proc0paddr->u_pcb;
681 ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
682
683 /* Indicate that proc0 has a CPU. */
684 proc0.p_cpu = ci;
685
686 /*
687 * Look at arguments passed to us and compute boothowto.
688 */
689
690 boothowto = RB_SINGLE;
691 #ifdef KADB
692 boothowto |= RB_KDB;
693 #endif
694 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
695 /*
696 * Note that we'd really like to differentiate case here,
697 * but the Alpha AXP Architecture Reference Manual
698 * says that we shouldn't.
699 */
700 switch (*p) {
701 case 'a': /* autoboot */
702 case 'A':
703 boothowto &= ~RB_SINGLE;
704 break;
705
706 #ifdef DEBUG
707 case 'c': /* crash dump immediately after autoconfig */
708 case 'C':
709 boothowto |= RB_DUMP;
710 break;
711 #endif
712
713 #if defined(KGDB) || defined(DDB)
714 case 'd': /* break into the kernel debugger ASAP */
715 case 'D':
716 boothowto |= RB_KDB;
717 break;
718 #endif
719
720 case 'h': /* always halt, never reboot */
721 case 'H':
722 boothowto |= RB_HALT;
723 break;
724
725 #if 0
726 case 'm': /* mini root present in memory */
727 case 'M':
728 boothowto |= RB_MINIROOT;
729 break;
730 #endif
731
732 case 'n': /* askname */
733 case 'N':
734 boothowto |= RB_ASKNAME;
735 break;
736
737 case 's': /* single-user (default, supported for sanity) */
738 case 'S':
739 boothowto |= RB_SINGLE;
740 break;
741
742 case 'q': /* quiet boot */
743 case 'Q':
744 boothowto |= AB_QUIET;
745 break;
746
747 case 'v': /* verbose boot */
748 case 'V':
749 boothowto |= AB_VERBOSE;
750 break;
751
752 case '-':
753 /*
754 * Just ignore this. It's not required, but it's
755 * common for it to be passed regardless.
756 */
757 break;
758
759 default:
760 printf("Unrecognized boot flag '%c'.\n", *p);
761 break;
762 }
763 }
764
765
766 /*
767 * Figure out the number of cpus in the box, from RPB fields.
768 * Really. We mean it.
769 */
770 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
771 struct pcs *pcsp;
772
773 pcsp = LOCATE_PCS(hwrpb, i);
774 if ((pcsp->pcs_flags & PCS_PP) != 0)
775 ncpus++;
776 }
777
778 /*
779 * Initialize debuggers, and break into them if appropriate.
780 */
781 #ifdef DDB
782 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
783 ksym_start, ksym_end);
784 #endif
785
786 if (boothowto & RB_KDB) {
787 #if defined(KGDB)
788 kgdb_debug_init = 1;
789 kgdb_connect(1);
790 #elif defined(DDB)
791 Debugger();
792 #endif
793 }
794
795 /*
796 * Figure out our clock frequency, from RPB fields.
797 */
798 hz = hwrpb->rpb_intr_freq >> 12;
799 if (!(60 <= hz && hz <= 10240)) {
800 hz = 1024;
801 #ifdef DIAGNOSTIC
802 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
803 hwrpb->rpb_intr_freq, hz);
804 #endif
805 }
806 }
807
808 void
809 consinit()
810 {
811
812 /*
813 * Everything related to console initialization is done
814 * in alpha_init().
815 */
816 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
817 printf("consinit: %susing prom console\n",
818 pmap_uses_prom_console() ? "" : "not ");
819 #endif
820 }
821
822 #include "pckbc.h"
823 #include "pckbd.h"
824 #if (NPCKBC > 0) && (NPCKBD == 0)
825
826 #include <dev/ic/pckbcvar.h>
827
828 /*
829 * This is called by the pbkbc driver if no pckbd is configured.
830 * On the i386, it is used to glue in the old, deprecated console
831 * code. On the Alpha, it does nothing.
832 */
833 int
834 pckbc_machdep_cnattach(kbctag, kbcslot)
835 pckbc_tag_t kbctag;
836 pckbc_slot_t kbcslot;
837 {
838
839 return (ENXIO);
840 }
841 #endif /* NPCKBC > 0 && NPCKBD == 0 */
842
843 void
844 cpu_startup()
845 {
846 register unsigned i;
847 int base, residual;
848 vaddr_t minaddr, maxaddr;
849 vsize_t size;
850 char pbuf[9];
851 #if defined(DEBUG)
852 extern int pmapdebug;
853 int opmapdebug = pmapdebug;
854
855 pmapdebug = 0;
856 #endif
857
858 /*
859 * Good {morning,afternoon,evening,night}.
860 */
861 printf(version);
862 identifycpu();
863 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
864 printf("total memory = %s\n", pbuf);
865 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
866 printf("(%s reserved for PROM, ", pbuf);
867 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
868 printf("%s used by NetBSD)\n", pbuf);
869 if (unusedmem) {
870 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
871 printf("WARNING: unused memory = %s\n", pbuf);
872 }
873 if (unknownmem) {
874 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
875 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
876 }
877
878 /*
879 * Allocate virtual address space for file I/O buffers.
880 * Note they are different than the array of headers, 'buf',
881 * and usually occupy more virtual memory than physical.
882 */
883 size = MAXBSIZE * nbuf;
884 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
885 NULL, UVM_UNKNOWN_OFFSET, 0,
886 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
887 UVM_ADV_NORMAL, 0)) != 0)
888 panic("startup: cannot allocate VM for buffers");
889 base = bufpages / nbuf;
890 residual = bufpages % nbuf;
891 for (i = 0; i < nbuf; i++) {
892 vsize_t curbufsize;
893 vaddr_t curbuf;
894 struct vm_page *pg;
895
896 /*
897 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
898 * that MAXBSIZE space, we allocate and map (base+1) pages
899 * for the first "residual" buffers, and then we allocate
900 * "base" pages for the rest.
901 */
902 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
903 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
904
905 while (curbufsize) {
906 pg = uvm_pagealloc(NULL, 0, NULL, 0);
907 if (pg == NULL)
908 panic("cpu_startup: not enough memory for "
909 "buffer cache");
910 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
911 VM_PROT_READ|VM_PROT_WRITE);
912 curbuf += PAGE_SIZE;
913 curbufsize -= PAGE_SIZE;
914 }
915 }
916 pmap_update();
917
918 /*
919 * Allocate a submap for exec arguments. This map effectively
920 * limits the number of processes exec'ing at any time.
921 */
922 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
923 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
924
925 /*
926 * Allocate a submap for physio
927 */
928 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
929 VM_PHYS_SIZE, 0, FALSE, NULL);
930
931 /*
932 * No need to allocate an mbuf cluster submap. Mbuf clusters
933 * are allocated via the pool allocator, and we use K0SEG to
934 * map those pages.
935 */
936
937 #if defined(DEBUG)
938 pmapdebug = opmapdebug;
939 #endif
940 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
941 printf("avail memory = %s\n", pbuf);
942 #if 0
943 {
944 extern u_long pmap_pages_stolen;
945
946 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
947 printf("stolen memory for VM structures = %s\n", pbuf);
948 }
949 #endif
950 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
951 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
952
953 /*
954 * Set up buffers, so they can be used to read disk labels.
955 */
956 bufinit();
957
958 /*
959 * Set up the HWPCB so that it's safe to configure secondary
960 * CPUs.
961 */
962 hwrpb_primary_init();
963 }
964
965 /*
966 * Retrieve the platform name from the DSR.
967 */
968 const char *
969 alpha_dsr_sysname()
970 {
971 struct dsrdb *dsr;
972 const char *sysname;
973
974 /*
975 * DSR does not exist on early HWRPB versions.
976 */
977 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
978 return (NULL);
979
980 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
981 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
982 sizeof(u_int64_t)));
983 return (sysname);
984 }
985
986 /*
987 * Lookup the system specified system variation in the provided table,
988 * returning the model string on match.
989 */
990 const char *
991 alpha_variation_name(variation, avtp)
992 u_int64_t variation;
993 const struct alpha_variation_table *avtp;
994 {
995 int i;
996
997 for (i = 0; avtp[i].avt_model != NULL; i++)
998 if (avtp[i].avt_variation == variation)
999 return (avtp[i].avt_model);
1000 return (NULL);
1001 }
1002
1003 /*
1004 * Generate a default platform name based for unknown system variations.
1005 */
1006 const char *
1007 alpha_unknown_sysname()
1008 {
1009 static char s[128]; /* safe size */
1010
1011 sprintf(s, "%s family, unknown model variation 0x%lx",
1012 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1013 return ((const char *)s);
1014 }
1015
1016 void
1017 identifycpu()
1018 {
1019 char *s;
1020 int i;
1021
1022 /*
1023 * print out CPU identification information.
1024 */
1025 printf("%s", cpu_model);
1026 for(s = cpu_model; *s; ++s)
1027 if(strncasecmp(s, "MHz", 3) == 0)
1028 goto skipMHz;
1029 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1030 skipMHz:
1031 printf(", s/n ");
1032 for (i = 0; i < 10; i++)
1033 printf("%c", hwrpb->rpb_ssn[i]);
1034 printf("\n");
1035 printf("%ld byte page size, %d processor%s.\n",
1036 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1037 #if 0
1038 /* this isn't defined for any systems that we run on? */
1039 printf("serial number 0x%lx 0x%lx\n",
1040 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1041
1042 /* and these aren't particularly useful! */
1043 printf("variation: 0x%lx, revision 0x%lx\n",
1044 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1045 #endif
1046 }
1047
1048 int waittime = -1;
1049 struct pcb dumppcb;
1050
1051 void
1052 cpu_reboot(howto, bootstr)
1053 int howto;
1054 char *bootstr;
1055 {
1056 #if defined(MULTIPROCESSOR)
1057 u_long cpu_id = cpu_number();
1058 u_long wait_mask = (1UL << cpu_id) |
1059 (1UL << hwrpb->rpb_primary_cpu_id);
1060 int i;
1061 #endif
1062
1063 /* If "always halt" was specified as a boot flag, obey. */
1064 if ((boothowto & RB_HALT) != 0)
1065 howto |= RB_HALT;
1066
1067 boothowto = howto;
1068
1069 /* If system is cold, just halt. */
1070 if (cold) {
1071 boothowto |= RB_HALT;
1072 goto haltsys;
1073 }
1074
1075 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1076 waittime = 0;
1077 vfs_shutdown();
1078 /*
1079 * If we've been adjusting the clock, the todr
1080 * will be out of synch; adjust it now.
1081 */
1082 resettodr();
1083 }
1084
1085 /* Disable interrupts. */
1086 splhigh();
1087
1088 #if defined(MULTIPROCESSOR)
1089 /*
1090 * Halt all other CPUs. If we're not the primary, the
1091 * primary will spin, waiting for us to halt.
1092 */
1093 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1094
1095 for (i = 0; i < 10000; i++) {
1096 alpha_mb();
1097 if (cpus_running == wait_mask)
1098 break;
1099 delay(1000);
1100 }
1101 alpha_mb();
1102 if (cpus_running != wait_mask)
1103 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1104 cpus_running);
1105 #endif /* MULTIPROCESSOR */
1106
1107 /* If rebooting and a dump is requested do it. */
1108 #if 0
1109 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1110 #else
1111 if (boothowto & RB_DUMP)
1112 #endif
1113 dumpsys();
1114
1115 haltsys:
1116
1117 /* run any shutdown hooks */
1118 doshutdownhooks();
1119
1120 #ifdef BOOTKEY
1121 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1122 cnpollc(1); /* for proper keyboard command handling */
1123 cngetc();
1124 cnpollc(0);
1125 printf("\n");
1126 #endif
1127
1128 /* Finally, powerdown/halt/reboot the system. */
1129 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1130 platform.powerdown != NULL) {
1131 (*platform.powerdown)();
1132 printf("WARNING: powerdown failed!\n");
1133 }
1134 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1135 #if defined(MULTIPROCESSOR)
1136 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1137 cpu_halt();
1138 else
1139 #endif
1140 prom_halt(boothowto & RB_HALT);
1141 /*NOTREACHED*/
1142 }
1143
1144 /*
1145 * These variables are needed by /sbin/savecore
1146 */
1147 u_long dumpmag = 0x8fca0101; /* magic number */
1148 int dumpsize = 0; /* pages */
1149 long dumplo = 0; /* blocks */
1150
1151 /*
1152 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1153 */
1154 int
1155 cpu_dumpsize()
1156 {
1157 int size;
1158
1159 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1160 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1161 if (roundup(size, dbtob(1)) != dbtob(1))
1162 return -1;
1163
1164 return (1);
1165 }
1166
1167 /*
1168 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1169 */
1170 u_long
1171 cpu_dump_mempagecnt()
1172 {
1173 u_long i, n;
1174
1175 n = 0;
1176 for (i = 0; i < mem_cluster_cnt; i++)
1177 n += atop(mem_clusters[i].size);
1178 return (n);
1179 }
1180
1181 /*
1182 * cpu_dump: dump machine-dependent kernel core dump headers.
1183 */
1184 int
1185 cpu_dump()
1186 {
1187 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1188 char buf[dbtob(1)];
1189 kcore_seg_t *segp;
1190 cpu_kcore_hdr_t *cpuhdrp;
1191 phys_ram_seg_t *memsegp;
1192 int i;
1193
1194 dump = bdevsw[major(dumpdev)].d_dump;
1195
1196 bzero(buf, sizeof buf);
1197 segp = (kcore_seg_t *)buf;
1198 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1199 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1200 ALIGN(sizeof(*cpuhdrp))];
1201
1202 /*
1203 * Generate a segment header.
1204 */
1205 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1206 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1207
1208 /*
1209 * Add the machine-dependent header info.
1210 */
1211 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1212 cpuhdrp->page_size = PAGE_SIZE;
1213 cpuhdrp->nmemsegs = mem_cluster_cnt;
1214
1215 /*
1216 * Fill in the memory segment descriptors.
1217 */
1218 for (i = 0; i < mem_cluster_cnt; i++) {
1219 memsegp[i].start = mem_clusters[i].start;
1220 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1221 }
1222
1223 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1224 }
1225
1226 /*
1227 * This is called by main to set dumplo and dumpsize.
1228 * Dumps always skip the first NBPG of disk space
1229 * in case there might be a disk label stored there.
1230 * If there is extra space, put dump at the end to
1231 * reduce the chance that swapping trashes it.
1232 */
1233 void
1234 cpu_dumpconf()
1235 {
1236 int nblks, dumpblks; /* size of dump area */
1237 int maj;
1238
1239 if (dumpdev == NODEV)
1240 goto bad;
1241 maj = major(dumpdev);
1242 if (maj < 0 || maj >= nblkdev)
1243 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1244 if (bdevsw[maj].d_psize == NULL)
1245 goto bad;
1246 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1247 if (nblks <= ctod(1))
1248 goto bad;
1249
1250 dumpblks = cpu_dumpsize();
1251 if (dumpblks < 0)
1252 goto bad;
1253 dumpblks += ctod(cpu_dump_mempagecnt());
1254
1255 /* If dump won't fit (incl. room for possible label), punt. */
1256 if (dumpblks > (nblks - ctod(1)))
1257 goto bad;
1258
1259 /* Put dump at end of partition */
1260 dumplo = nblks - dumpblks;
1261
1262 /* dumpsize is in page units, and doesn't include headers. */
1263 dumpsize = cpu_dump_mempagecnt();
1264 return;
1265
1266 bad:
1267 dumpsize = 0;
1268 return;
1269 }
1270
1271 /*
1272 * Dump the kernel's image to the swap partition.
1273 */
1274 #define BYTES_PER_DUMP NBPG
1275
1276 void
1277 dumpsys()
1278 {
1279 u_long totalbytesleft, bytes, i, n, memcl;
1280 u_long maddr;
1281 int psize;
1282 daddr_t blkno;
1283 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1284 int error;
1285
1286 /* Save registers. */
1287 savectx(&dumppcb);
1288
1289 if (dumpdev == NODEV)
1290 return;
1291
1292 /*
1293 * For dumps during autoconfiguration,
1294 * if dump device has already configured...
1295 */
1296 if (dumpsize == 0)
1297 cpu_dumpconf();
1298 if (dumplo <= 0) {
1299 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1300 minor(dumpdev));
1301 return;
1302 }
1303 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1304 minor(dumpdev), dumplo);
1305
1306 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1307 printf("dump ");
1308 if (psize == -1) {
1309 printf("area unavailable\n");
1310 return;
1311 }
1312
1313 /* XXX should purge all outstanding keystrokes. */
1314
1315 if ((error = cpu_dump()) != 0)
1316 goto err;
1317
1318 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1319 blkno = dumplo + cpu_dumpsize();
1320 dump = bdevsw[major(dumpdev)].d_dump;
1321 error = 0;
1322
1323 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1324 maddr = mem_clusters[memcl].start;
1325 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1326
1327 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1328
1329 /* Print out how many MBs we to go. */
1330 if ((totalbytesleft % (1024*1024)) == 0)
1331 printf("%ld ", totalbytesleft / (1024 * 1024));
1332
1333 /* Limit size for next transfer. */
1334 n = bytes - i;
1335 if (n > BYTES_PER_DUMP)
1336 n = BYTES_PER_DUMP;
1337
1338 error = (*dump)(dumpdev, blkno,
1339 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1340 if (error)
1341 goto err;
1342 maddr += n;
1343 blkno += btodb(n); /* XXX? */
1344
1345 /* XXX should look for keystrokes, to cancel. */
1346 }
1347 }
1348
1349 err:
1350 switch (error) {
1351
1352 case ENXIO:
1353 printf("device bad\n");
1354 break;
1355
1356 case EFAULT:
1357 printf("device not ready\n");
1358 break;
1359
1360 case EINVAL:
1361 printf("area improper\n");
1362 break;
1363
1364 case EIO:
1365 printf("i/o error\n");
1366 break;
1367
1368 case EINTR:
1369 printf("aborted from console\n");
1370 break;
1371
1372 case 0:
1373 printf("succeeded\n");
1374 break;
1375
1376 default:
1377 printf("error %d\n", error);
1378 break;
1379 }
1380 printf("\n\n");
1381 delay(1000);
1382 }
1383
1384 void
1385 frametoreg(framep, regp)
1386 struct trapframe *framep;
1387 struct reg *regp;
1388 {
1389
1390 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1391 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1392 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1393 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1394 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1395 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1396 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1397 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1398 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1399 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1400 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1401 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1402 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1403 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1404 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1405 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1406 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1407 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1408 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1409 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1410 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1411 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1412 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1413 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1414 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1415 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1416 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1417 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1418 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1419 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1420 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1421 regp->r_regs[R_ZERO] = 0;
1422 }
1423
1424 void
1425 regtoframe(regp, framep)
1426 struct reg *regp;
1427 struct trapframe *framep;
1428 {
1429
1430 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1431 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1432 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1433 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1434 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1435 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1436 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1437 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1438 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1439 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1440 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1441 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1442 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1443 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1444 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1445 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1446 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1447 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1448 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1449 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1450 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1451 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1452 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1453 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1454 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1455 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1456 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1457 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1458 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1459 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1460 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1461 /* ??? = regp->r_regs[R_ZERO]; */
1462 }
1463
1464 void
1465 printregs(regp)
1466 struct reg *regp;
1467 {
1468 int i;
1469
1470 for (i = 0; i < 32; i++)
1471 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1472 i & 1 ? "\n" : "\t");
1473 }
1474
1475 void
1476 regdump(framep)
1477 struct trapframe *framep;
1478 {
1479 struct reg reg;
1480
1481 frametoreg(framep, ®);
1482 reg.r_regs[R_SP] = alpha_pal_rdusp();
1483
1484 printf("REGISTERS:\n");
1485 printregs(®);
1486 }
1487
1488
1489 /*
1490 * Send an interrupt to process.
1491 */
1492 void
1493 sendsig(catcher, sig, mask, code)
1494 sig_t catcher;
1495 int sig;
1496 sigset_t *mask;
1497 u_long code;
1498 {
1499 struct proc *p = curproc;
1500 struct sigcontext *scp, ksc;
1501 struct trapframe *frame;
1502 int onstack, fsize, rndfsize;
1503
1504 frame = p->p_md.md_tf;
1505
1506 /* Do we need to jump onto the signal stack? */
1507 onstack =
1508 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1509 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1510
1511 /* Allocate space for the signal handler context. */
1512 fsize = sizeof(ksc);
1513 rndfsize = ((fsize + 15) / 16) * 16;
1514
1515 if (onstack)
1516 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1517 p->p_sigctx.ps_sigstk.ss_size);
1518 else
1519 scp = (struct sigcontext *)(alpha_pal_rdusp());
1520 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1521
1522 #ifdef DEBUG
1523 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1524 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1525 sig, &onstack, scp);
1526 #endif
1527
1528 /* Build stack frame for signal trampoline. */
1529 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1530 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1531
1532 /* Save register context. */
1533 frametoreg(frame, (struct reg *)ksc.sc_regs);
1534 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1535 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1536
1537 /* save the floating-point state, if necessary, then copy it. */
1538 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1539 fpusave_proc(p, 1);
1540 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1541 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1542 sizeof(struct fpreg));
1543 ksc.sc_fp_control = 0; /* XXX ? */
1544 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1545 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1546
1547 /* Save signal stack. */
1548 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1549
1550 /* Save signal mask. */
1551 ksc.sc_mask = *mask;
1552
1553 #ifdef COMPAT_13
1554 /*
1555 * XXX We always have to save an old style signal mask because
1556 * XXX we might be delivering a signal to a process which will
1557 * XXX escape from the signal in a non-standard way and invoke
1558 * XXX sigreturn() directly.
1559 */
1560 {
1561 /* Note: it's a long in the stack frame. */
1562 sigset13_t mask13;
1563
1564 native_sigset_to_sigset13(mask, &mask13);
1565 ksc.__sc_mask13 = mask13;
1566 }
1567 #endif
1568
1569 #ifdef COMPAT_OSF1
1570 /*
1571 * XXX Create an OSF/1-style sigcontext and associated goo.
1572 */
1573 #endif
1574
1575 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1576 /*
1577 * Process has trashed its stack; give it an illegal
1578 * instruction to halt it in its tracks.
1579 */
1580 #ifdef DEBUG
1581 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1582 printf("sendsig(%d): copyout failed on sig %d\n",
1583 p->p_pid, sig);
1584 #endif
1585 sigexit(p, SIGILL);
1586 /* NOTREACHED */
1587 }
1588 #ifdef DEBUG
1589 if (sigdebug & SDB_FOLLOW)
1590 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1591 scp, code);
1592 #endif
1593
1594 /* Set up the registers to return to sigcode. */
1595 frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
1596 frame->tf_regs[FRAME_A0] = sig;
1597 frame->tf_regs[FRAME_A1] = code;
1598 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1599 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1600 alpha_pal_wrusp((unsigned long)scp);
1601
1602 /* Remember that we're now on the signal stack. */
1603 if (onstack)
1604 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1605
1606 #ifdef DEBUG
1607 if (sigdebug & SDB_FOLLOW)
1608 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1609 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1610 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1611 printf("sendsig(%d): sig %d returns\n",
1612 p->p_pid, sig);
1613 #endif
1614 }
1615
1616 /*
1617 * System call to cleanup state after a signal
1618 * has been taken. Reset signal mask and
1619 * stack state from context left by sendsig (above).
1620 * Return to previous pc and psl as specified by
1621 * context left by sendsig. Check carefully to
1622 * make sure that the user has not modified the
1623 * psl to gain improper privileges or to cause
1624 * a machine fault.
1625 */
1626 /* ARGSUSED */
1627 int
1628 sys___sigreturn14(p, v, retval)
1629 struct proc *p;
1630 void *v;
1631 register_t *retval;
1632 {
1633 struct sys___sigreturn14_args /* {
1634 syscallarg(struct sigcontext *) sigcntxp;
1635 } */ *uap = v;
1636 struct sigcontext *scp, ksc;
1637
1638 /*
1639 * The trampoline code hands us the context.
1640 * It is unsafe to keep track of it ourselves, in the event that a
1641 * program jumps out of a signal handler.
1642 */
1643 scp = SCARG(uap, sigcntxp);
1644 #ifdef DEBUG
1645 if (sigdebug & SDB_FOLLOW)
1646 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1647 #endif
1648 if (ALIGN(scp) != (u_int64_t)scp)
1649 return (EINVAL);
1650
1651 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1652 return (EFAULT);
1653
1654 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1655 return (EINVAL);
1656
1657 /* Restore register context. */
1658 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1659 p->p_md.md_tf->tf_regs[FRAME_PS] =
1660 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1661
1662 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1663 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1664
1665 /* XXX ksc.sc_ownedfp ? */
1666 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1667 fpusave_proc(p, 0);
1668 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1669 sizeof(struct fpreg));
1670 /* XXX ksc.sc_fp_control ? */
1671
1672 /* Restore signal stack. */
1673 if (ksc.sc_onstack & SS_ONSTACK)
1674 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1675 else
1676 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1677
1678 /* Restore signal mask. */
1679 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1680
1681 #ifdef DEBUG
1682 if (sigdebug & SDB_FOLLOW)
1683 printf("sigreturn(%d): returns\n", p->p_pid);
1684 #endif
1685 return (EJUSTRETURN);
1686 }
1687
1688 /*
1689 * machine dependent system variables.
1690 */
1691 int
1692 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1693 int *name;
1694 u_int namelen;
1695 void *oldp;
1696 size_t *oldlenp;
1697 void *newp;
1698 size_t newlen;
1699 struct proc *p;
1700 {
1701 dev_t consdev;
1702
1703 /* all sysctl names at this level are terminal */
1704 if (namelen != 1)
1705 return (ENOTDIR); /* overloaded */
1706
1707 switch (name[0]) {
1708 case CPU_CONSDEV:
1709 if (cn_tab != NULL)
1710 consdev = cn_tab->cn_dev;
1711 else
1712 consdev = NODEV;
1713 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1714 sizeof consdev));
1715
1716 case CPU_ROOT_DEVICE:
1717 return (sysctl_rdstring(oldp, oldlenp, newp,
1718 root_device->dv_xname));
1719
1720 case CPU_UNALIGNED_PRINT:
1721 return (sysctl_int(oldp, oldlenp, newp, newlen,
1722 &alpha_unaligned_print));
1723
1724 case CPU_UNALIGNED_FIX:
1725 return (sysctl_int(oldp, oldlenp, newp, newlen,
1726 &alpha_unaligned_fix));
1727
1728 case CPU_UNALIGNED_SIGBUS:
1729 return (sysctl_int(oldp, oldlenp, newp, newlen,
1730 &alpha_unaligned_sigbus));
1731
1732 case CPU_BOOTED_KERNEL:
1733 return (sysctl_rdstring(oldp, oldlenp, newp,
1734 bootinfo.booted_kernel));
1735
1736 default:
1737 return (EOPNOTSUPP);
1738 }
1739 /* NOTREACHED */
1740 }
1741
1742 /*
1743 * Set registers on exec.
1744 */
1745 void
1746 setregs(p, pack, stack)
1747 register struct proc *p;
1748 struct exec_package *pack;
1749 u_long stack;
1750 {
1751 struct trapframe *tfp = p->p_md.md_tf;
1752 #ifdef DEBUG
1753 int i;
1754 #endif
1755
1756 #ifdef DEBUG
1757 /*
1758 * Crash and dump, if the user requested it.
1759 */
1760 if (boothowto & RB_DUMP)
1761 panic("crash requested by boot flags");
1762 #endif
1763
1764 #ifdef DEBUG
1765 for (i = 0; i < FRAME_SIZE; i++)
1766 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1767 #else
1768 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1769 #endif
1770 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1771 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1772 | FPCR_UNFD
1773 | FPCR_UNDZ
1774 | FPCR_DYN(FP_RN)
1775 | FPCR_OVFD
1776 | FPCR_DZED
1777 | FPCR_INVD
1778 | FPCR_DNZ;
1779 alpha_pal_wrusp(stack);
1780 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1781 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1782
1783 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1784 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1785 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1786 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1787 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1788
1789 p->p_md.md_flags &= ~MDP_FPUSED;
1790 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1791 fpusave_proc(p, 0);
1792 }
1793
1794 /*
1795 * Release the FPU.
1796 */
1797 void
1798 fpusave_cpu(struct cpu_info *ci, int save)
1799 {
1800 struct proc *p;
1801 #if defined(MULTIPROCESSOR)
1802 int s;
1803 #endif
1804
1805 KDASSERT(ci == curcpu());
1806
1807 #if defined(MULTIPROCESSOR)
1808 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1809 #endif
1810
1811 p = ci->ci_fpcurproc;
1812 if (p == NULL)
1813 goto out;
1814
1815 if (save) {
1816 alpha_pal_wrfen(1);
1817 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1818 }
1819
1820 alpha_pal_wrfen(0);
1821
1822 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1823
1824 p->p_addr->u_pcb.pcb_fpcpu = NULL;
1825 ci->ci_fpcurproc = NULL;
1826
1827 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1828
1829 out:
1830 #if defined(MULTIPROCESSOR)
1831 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1832 #endif
1833 return;
1834 }
1835
1836 /*
1837 * Synchronize FP state for this process.
1838 */
1839 void
1840 fpusave_proc(struct proc *p, int save)
1841 {
1842 struct cpu_info *ci = curcpu();
1843 struct cpu_info *oci;
1844 #if defined(MULTIPROCESSOR)
1845 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1846 int s, spincount;
1847 #endif
1848
1849 KDASSERT(p->p_addr != NULL);
1850 KDASSERT(p->p_flag & P_INMEM);
1851
1852 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1853
1854 oci = p->p_addr->u_pcb.pcb_fpcpu;
1855 if (oci == NULL) {
1856 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1857 return;
1858 }
1859
1860 #if defined(MULTIPROCESSOR)
1861 if (oci == ci) {
1862 KASSERT(ci->ci_fpcurproc == p);
1863 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1864 fpusave_cpu(ci, save);
1865 return;
1866 }
1867
1868 KASSERT(oci->ci_fpcurproc == p);
1869 alpha_send_ipi(oci->ci_cpuid, ipi);
1870 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1871
1872 spincount = 0;
1873 while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
1874 spincount++;
1875 delay(1000); /* XXX */
1876 if (spincount > 10000)
1877 panic("fpsave ipi didn't");
1878 }
1879 #else
1880 KASSERT(ci->ci_fpcurproc == p);
1881 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1882 fpusave_cpu(ci, save);
1883 #endif /* MULTIPROCESSOR */
1884 }
1885
1886 /*
1887 * The following primitives manipulate the run queues. _whichqs tells which
1888 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1889 * into queues, Remrunqueue removes them from queues. The running process is
1890 * on no queue, other processes are on a queue related to p->p_priority,
1891 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1892 * available queues.
1893 */
1894 /*
1895 * setrunqueue(p)
1896 * proc *p;
1897 *
1898 * Call should be made at splclock(), and p->p_stat should be SRUN.
1899 */
1900
1901 void
1902 setrunqueue(p)
1903 struct proc *p;
1904 {
1905 int bit;
1906
1907 /* firewall: p->p_back must be NULL */
1908 if (p->p_back != NULL)
1909 panic("setrunqueue");
1910
1911 bit = p->p_priority >> 2;
1912 sched_whichqs |= (1 << bit);
1913 p->p_forw = (struct proc *)&sched_qs[bit];
1914 p->p_back = sched_qs[bit].ph_rlink;
1915 p->p_back->p_forw = p;
1916 sched_qs[bit].ph_rlink = p;
1917 }
1918
1919 /*
1920 * remrunqueue(p)
1921 *
1922 * Call should be made at splclock().
1923 */
1924 void
1925 remrunqueue(p)
1926 struct proc *p;
1927 {
1928 int bit;
1929
1930 bit = p->p_priority >> 2;
1931 if ((sched_whichqs & (1 << bit)) == 0)
1932 panic("remrunqueue");
1933
1934 p->p_back->p_forw = p->p_forw;
1935 p->p_forw->p_back = p->p_back;
1936 p->p_back = NULL; /* for firewall checking. */
1937
1938 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1939 sched_whichqs &= ~(1 << bit);
1940 }
1941
1942 /*
1943 * Return the best possible estimate of the time in the timeval
1944 * to which tvp points. Unfortunately, we can't read the hardware registers.
1945 * We guarantee that the time will be greater than the value obtained by a
1946 * previous call.
1947 *
1948 * XXX PLEASE REWRITE ME TO USE THE CYCLE COUNTER AND DEAL WITH
1949 * XXX MULTIPLE CPUs IN A SANE WAY!
1950 */
1951 void
1952 microtime(tvp)
1953 register struct timeval *tvp;
1954 {
1955 static struct timeval lasttime;
1956 static struct simplelock microtime_slock = SIMPLELOCK_INITIALIZER;
1957 int s;
1958
1959 s = splclock();
1960 simple_lock(µtime_slock);
1961
1962 *tvp = time;
1963 #ifdef notdef
1964 tvp->tv_usec += clkread();
1965 while (tvp->tv_usec >= 1000000) {
1966 tvp->tv_sec++;
1967 tvp->tv_usec -= 1000000;
1968 }
1969 #endif
1970 if (tvp->tv_sec == lasttime.tv_sec &&
1971 tvp->tv_usec <= lasttime.tv_usec &&
1972 (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1973 tvp->tv_sec++;
1974 tvp->tv_usec -= 1000000;
1975 }
1976 lasttime = *tvp;
1977
1978 simple_unlock(µtime_slock);
1979 splx(s);
1980 }
1981
1982 /*
1983 * Wait "n" microseconds.
1984 */
1985 void
1986 delay(n)
1987 unsigned long n;
1988 {
1989 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1990
1991 if (n == 0)
1992 return;
1993
1994 pcc0 = alpha_rpcc() & 0xffffffffUL;
1995 cycles = 0;
1996 usec = 0;
1997
1998 while (usec <= n) {
1999 /*
2000 * Get the next CPU cycle count- assumes that we cannot
2001 * have had more than one 32 bit overflow.
2002 */
2003 pcc1 = alpha_rpcc() & 0xffffffffUL;
2004 if (pcc1 < pcc0)
2005 curcycle = (pcc1 + 0x100000000UL) - pcc0;
2006 else
2007 curcycle = pcc1 - pcc0;
2008
2009 /*
2010 * We now have the number of processor cycles since we
2011 * last checked. Add the current cycle count to the
2012 * running total. If it's over cycles_per_usec, increment
2013 * the usec counter.
2014 */
2015 cycles += curcycle;
2016 while (cycles > cycles_per_usec) {
2017 usec++;
2018 cycles -= cycles_per_usec;
2019 }
2020 pcc0 = pcc1;
2021 }
2022 }
2023
2024 #if defined(COMPAT_OSF1) || 1 /* XXX */
2025 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2026 u_long));
2027 #endif
2028
2029 #if 1 /* XXX */
2030 void
2031 cpu_exec_ecoff_setregs(p, epp, stack)
2032 struct proc *p;
2033 struct exec_package *epp;
2034 u_long stack;
2035 {
2036 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2037
2038 setregs(p, epp, stack);
2039 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2040 }
2041
2042 /*
2043 * cpu_exec_ecoff_hook():
2044 * cpu-dependent ECOFF format hook for execve().
2045 *
2046 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2047 *
2048 */
2049 int
2050 cpu_exec_ecoff_probe(p, epp)
2051 struct proc *p;
2052 struct exec_package *epp;
2053 {
2054 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2055 int error;
2056
2057 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2058 error = 0;
2059 else
2060 error = ENOEXEC;
2061
2062 return (error);
2063 }
2064 #endif
2065
2066 int
2067 alpha_pa_access(pa)
2068 u_long pa;
2069 {
2070 int i;
2071
2072 for (i = 0; i < mem_cluster_cnt; i++) {
2073 if (pa < mem_clusters[i].start)
2074 continue;
2075 if ((pa - mem_clusters[i].start) >=
2076 (mem_clusters[i].size & ~PAGE_MASK))
2077 continue;
2078 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2079 }
2080
2081 /*
2082 * Address is not a memory address. If we're secure, disallow
2083 * access. Otherwise, grant read/write.
2084 */
2085 if (securelevel > 0)
2086 return (PROT_NONE);
2087 else
2088 return (PROT_READ | PROT_WRITE);
2089 }
2090
2091 /* XXX XXX BEGIN XXX XXX */
2092 paddr_t alpha_XXX_dmamap_or; /* XXX */
2093 /* XXX */
2094 paddr_t /* XXX */
2095 alpha_XXX_dmamap(v) /* XXX */
2096 vaddr_t v; /* XXX */
2097 { /* XXX */
2098 /* XXX */
2099 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2100 } /* XXX */
2101 /* XXX XXX END XXX XXX */
2102
2103 char *
2104 dot_conv(x)
2105 unsigned long x;
2106 {
2107 int i;
2108 char *xc;
2109 static int next;
2110 static char space[2][20];
2111
2112 xc = space[next ^= 1] + sizeof space[0];
2113 *--xc = '\0';
2114 for (i = 0;; ++i) {
2115 if (i && (i & 3) == 0)
2116 *--xc = '.';
2117 *--xc = "0123456789abcdef"[x & 0xf];
2118 x >>= 4;
2119 if (x == 0)
2120 break;
2121 }
2122 return xc;
2123 }
2124