machdep.c revision 1.243 1 /* $NetBSD: machdep.c,v 1.243 2001/05/02 01:05:16 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_multiprocessor.h"
69 #include "opt_dec_3000_300.h"
70 #include "opt_dec_3000_500.h"
71 #include "opt_compat_osf1.h"
72 #include "opt_compat_netbsd.h"
73
74 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
75
76 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.243 2001/05/02 01:05:16 thorpej Exp $");
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/signalvar.h>
81 #include <sys/kernel.h>
82 #include <sys/map.h>
83 #include <sys/proc.h>
84 #include <sys/sched.h>
85 #include <sys/buf.h>
86 #include <sys/reboot.h>
87 #include <sys/device.h>
88 #include <sys/file.h>
89 #include <sys/malloc.h>
90 #include <sys/mbuf.h>
91 #include <sys/mman.h>
92 #include <sys/msgbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/user.h>
96 #include <sys/exec.h>
97 #include <sys/exec_ecoff.h>
98 #include <sys/core.h>
99 #include <sys/kcore.h>
100 #include <machine/kcore.h>
101 #include <machine/fpu.h>
102
103 #include <sys/mount.h>
104 #include <sys/syscallargs.h>
105
106 #include <uvm/uvm_extern.h>
107 #include <sys/sysctl.h>
108
109 #include <dev/cons.h>
110
111 #include <machine/autoconf.h>
112 #include <machine/cpu.h>
113 #include <machine/reg.h>
114 #include <machine/rpb.h>
115 #include <machine/prom.h>
116 #include <machine/conf.h>
117 #include <machine/ieeefp.h>
118
119 #ifdef DDB
120 #include <machine/db_machdep.h>
121 #include <ddb/db_access.h>
122 #include <ddb/db_sym.h>
123 #include <ddb/db_extern.h>
124 #include <ddb/db_interface.h>
125 #endif
126
127 #ifdef KGDB
128 #include <sys/kgdb.h>
129 #endif
130
131 #ifdef DEBUG
132 #include <machine/sigdebug.h>
133 #endif
134
135 #include <machine/alpha.h>
136
137 vm_map_t exec_map = NULL;
138 vm_map_t mb_map = NULL;
139 vm_map_t phys_map = NULL;
140
141 caddr_t msgbufaddr;
142
143 int maxmem; /* max memory per process */
144
145 int totalphysmem; /* total amount of physical memory in system */
146 int physmem; /* physical memory used by NetBSD + some rsvd */
147 int resvmem; /* amount of memory reserved for PROM */
148 int unusedmem; /* amount of memory for OS that we don't use */
149 int unknownmem; /* amount of memory with an unknown use */
150
151 int cputype; /* system type, from the RPB */
152
153 int bootdev_debug = 0; /* patchable, or from DDB */
154
155 /*
156 * XXX We need an address to which we can assign things so that they
157 * won't be optimized away because we didn't use the value.
158 */
159 u_int32_t no_optimize;
160
161 /* the following is used externally (sysctl_hw) */
162 char machine[] = MACHINE; /* from <machine/param.h> */
163 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
164 char cpu_model[128];
165
166 struct user *proc0paddr;
167
168 /* Number of machine cycles per microsecond */
169 u_int64_t cycles_per_usec;
170
171 /* number of cpus in the box. really! */
172 int ncpus;
173
174 struct bootinfo_kernel bootinfo;
175
176 /* For built-in TCDS */
177 #if defined(DEC_3000_300) || defined(DEC_3000_500)
178 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
179 #endif
180
181 struct platform platform;
182
183 #ifdef DDB
184 /* start and end of kernel symbol table */
185 void *ksym_start, *ksym_end;
186 #endif
187
188 /* for cpu_sysctl() */
189 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
190 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
191 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
192 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
193
194 /*
195 * XXX This should be dynamically sized, but we have the chicken-egg problem!
196 * XXX it should also be larger than it is, because not all of the mddt
197 * XXX clusters end up being used for VM.
198 */
199 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
200 int mem_cluster_cnt;
201
202 int cpu_dump __P((void));
203 int cpu_dumpsize __P((void));
204 u_long cpu_dump_mempagecnt __P((void));
205 void dumpsys __P((void));
206 void identifycpu __P((void));
207 void printregs __P((struct reg *));
208
209 void
210 alpha_init(pfn, ptb, bim, bip, biv)
211 u_long pfn; /* first free PFN number */
212 u_long ptb; /* PFN of current level 1 page table */
213 u_long bim; /* bootinfo magic */
214 u_long bip; /* bootinfo pointer */
215 u_long biv; /* bootinfo version */
216 {
217 extern char kernel_text[], _end[];
218 struct mddt *mddtp;
219 struct mddt_cluster *memc;
220 int i, mddtweird;
221 struct vm_physseg *vps;
222 vaddr_t kernstart, kernend;
223 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
224 vsize_t size;
225 cpuid_t cpu_id;
226 struct cpu_info *ci;
227 char *p;
228 caddr_t v;
229 const char *bootinfo_msg;
230 const struct cpuinit *c;
231
232 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
233
234 /*
235 * Turn off interrupts (not mchecks) and floating point.
236 * Make sure the instruction and data streams are consistent.
237 */
238 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
239 alpha_pal_wrfen(0);
240 ALPHA_TBIA();
241 alpha_pal_imb();
242
243 cpu_id = cpu_number();
244
245 #if defined(MULTIPROCESSOR)
246 /*
247 * Set our SysValue to the address of our cpu_info structure.
248 * Secondary processors do this in their spinup trampoline.
249 */
250 alpha_pal_wrval((u_long)&cpu_info_primary);
251 cpu_info[cpu_id] = &cpu_info_primary;
252 #endif
253
254 ci = curcpu();
255 ci->ci_cpuid = cpu_id;
256
257 /*
258 * Get critical system information (if possible, from the
259 * information provided by the boot program).
260 */
261 bootinfo_msg = NULL;
262 if (bim == BOOTINFO_MAGIC) {
263 if (biv == 0) { /* backward compat */
264 biv = *(u_long *)bip;
265 bip += 8;
266 }
267 switch (biv) {
268 case 1: {
269 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
270
271 bootinfo.ssym = v1p->ssym;
272 bootinfo.esym = v1p->esym;
273 /* hwrpb may not be provided by boot block in v1 */
274 if (v1p->hwrpb != NULL) {
275 bootinfo.hwrpb_phys =
276 ((struct rpb *)v1p->hwrpb)->rpb_phys;
277 bootinfo.hwrpb_size = v1p->hwrpbsize;
278 } else {
279 bootinfo.hwrpb_phys =
280 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
281 bootinfo.hwrpb_size =
282 ((struct rpb *)HWRPB_ADDR)->rpb_size;
283 }
284 bcopy(v1p->boot_flags, bootinfo.boot_flags,
285 min(sizeof v1p->boot_flags,
286 sizeof bootinfo.boot_flags));
287 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
288 min(sizeof v1p->booted_kernel,
289 sizeof bootinfo.booted_kernel));
290 /* booted dev not provided in bootinfo */
291 init_prom_interface((struct rpb *)
292 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
293 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
294 sizeof bootinfo.booted_dev);
295 break;
296 }
297 default:
298 bootinfo_msg = "unknown bootinfo version";
299 goto nobootinfo;
300 }
301 } else {
302 bootinfo_msg = "boot program did not pass bootinfo";
303 nobootinfo:
304 bootinfo.ssym = (u_long)_end;
305 bootinfo.esym = (u_long)_end;
306 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
307 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
308 init_prom_interface((struct rpb *)HWRPB_ADDR);
309 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
310 sizeof bootinfo.boot_flags);
311 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
312 sizeof bootinfo.booted_kernel);
313 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
314 sizeof bootinfo.booted_dev);
315 }
316
317 /*
318 * Initialize the kernel's mapping of the RPB. It's needed for
319 * lots of things.
320 */
321 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
322
323 #if defined(DEC_3000_300) || defined(DEC_3000_500)
324 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
325 hwrpb->rpb_type == ST_DEC_3000_500) {
326 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
327 sizeof(dec_3000_scsiid));
328 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
329 sizeof(dec_3000_scsifast));
330 }
331 #endif
332
333 /*
334 * Remember how many cycles there are per microsecond,
335 * so that we can use delay(). Round up, for safety.
336 */
337 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
338
339 /*
340 * Initalize the (temporary) bootstrap console interface, so
341 * we can use printf until the VM system starts being setup.
342 * The real console is initialized before then.
343 */
344 init_bootstrap_console();
345
346 /* OUTPUT NOW ALLOWED */
347
348 /* delayed from above */
349 if (bootinfo_msg)
350 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
351 bootinfo_msg, bim, bip, biv);
352
353 /* Initialize the trap vectors on the primary processor. */
354 trap_init();
355
356 /*
357 * find out this system's page size
358 */
359 PAGE_SIZE = hwrpb->rpb_page_size;
360 if (PAGE_SIZE != 8192)
361 panic("page size %d != 8192?!", PAGE_SIZE);
362
363 /*
364 * Initialize PAGE_SIZE-dependent variables.
365 */
366 uvm_setpagesize();
367
368 /*
369 * Find out what hardware we're on, and do basic initialization.
370 */
371 cputype = hwrpb->rpb_type;
372 if (cputype < 0) {
373 /*
374 * At least some white-box systems have SRM which
375 * reports a systype that's the negative of their
376 * blue-box counterpart.
377 */
378 cputype = -cputype;
379 }
380 c = platform_lookup(cputype);
381 if (c == NULL) {
382 platform_not_supported();
383 /* NOTREACHED */
384 }
385 (*c->init)();
386 strcpy(cpu_model, platform.model);
387
388 /*
389 * Initalize the real console, so that the bootstrap console is
390 * no longer necessary.
391 */
392 (*platform.cons_init)();
393
394 #ifdef DIAGNOSTIC
395 /* Paranoid sanity checking */
396
397 /* We should always be running on the primary. */
398 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
399
400 /*
401 * On single-CPU systypes, the primary should always be CPU 0,
402 * except on Alpha 8200 systems where the CPU id is related
403 * to the VID, which is related to the Turbo Laser node id.
404 */
405 if (cputype != ST_DEC_21000)
406 assert(hwrpb->rpb_primary_cpu_id == 0);
407 #endif
408
409 /* NO MORE FIRMWARE ACCESS ALLOWED */
410 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
411 /*
412 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
413 * XXX pmap_uses_prom_console() evaluates to non-zero.)
414 */
415 #endif
416
417 /*
418 * Find the beginning and end of the kernel (and leave a
419 * bit of space before the beginning for the bootstrap
420 * stack).
421 */
422 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
423 #ifdef DDB
424 ksym_start = (void *)bootinfo.ssym;
425 ksym_end = (void *)bootinfo.esym;
426 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
427 #else
428 kernend = (vaddr_t)round_page((vaddr_t)_end);
429 #endif
430
431 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
432 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
433
434 /*
435 * Find out how much memory is available, by looking at
436 * the memory cluster descriptors. This also tries to do
437 * its best to detect things things that have never been seen
438 * before...
439 */
440 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
441
442 /* MDDT SANITY CHECKING */
443 mddtweird = 0;
444 if (mddtp->mddt_cluster_cnt < 2) {
445 mddtweird = 1;
446 printf("WARNING: weird number of mem clusters: %lu\n",
447 mddtp->mddt_cluster_cnt);
448 }
449
450 #if 0
451 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
452 #endif
453
454 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
455 memc = &mddtp->mddt_clusters[i];
456 #if 0
457 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
458 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
459 #endif
460 totalphysmem += memc->mddt_pg_cnt;
461 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
462 mem_clusters[mem_cluster_cnt].start =
463 ptoa(memc->mddt_pfn);
464 mem_clusters[mem_cluster_cnt].size =
465 ptoa(memc->mddt_pg_cnt);
466 if (memc->mddt_usage & MDDT_mbz ||
467 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
468 memc->mddt_usage & MDDT_PALCODE)
469 mem_clusters[mem_cluster_cnt].size |=
470 PROT_READ;
471 else
472 mem_clusters[mem_cluster_cnt].size |=
473 PROT_READ | PROT_WRITE | PROT_EXEC;
474 mem_cluster_cnt++;
475 }
476
477 if (memc->mddt_usage & MDDT_mbz) {
478 mddtweird = 1;
479 printf("WARNING: mem cluster %d has weird "
480 "usage 0x%lx\n", i, memc->mddt_usage);
481 unknownmem += memc->mddt_pg_cnt;
482 continue;
483 }
484 if (memc->mddt_usage & MDDT_NONVOLATILE) {
485 /* XXX should handle these... */
486 printf("WARNING: skipping non-volatile mem "
487 "cluster %d\n", i);
488 unusedmem += memc->mddt_pg_cnt;
489 continue;
490 }
491 if (memc->mddt_usage & MDDT_PALCODE) {
492 resvmem += memc->mddt_pg_cnt;
493 continue;
494 }
495
496 /*
497 * We have a memory cluster available for system
498 * software use. We must determine if this cluster
499 * holds the kernel.
500 */
501 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
502 /*
503 * XXX If the kernel uses the PROM console, we only use the
504 * XXX memory after the kernel in the first system segment,
505 * XXX to avoid clobbering prom mapping, data, etc.
506 */
507 if (!pmap_uses_prom_console() || physmem == 0) {
508 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
509 physmem += memc->mddt_pg_cnt;
510 pfn0 = memc->mddt_pfn;
511 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
512 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
513 /*
514 * Must compute the location of the kernel
515 * within the segment.
516 */
517 #if 0
518 printf("Cluster %d contains kernel\n", i);
519 #endif
520 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
521 if (!pmap_uses_prom_console()) {
522 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
523 if (pfn0 < kernstartpfn) {
524 /*
525 * There is a chunk before the kernel.
526 */
527 #if 0
528 printf("Loading chunk before kernel: "
529 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
530 #endif
531 uvm_page_physload(pfn0, kernstartpfn,
532 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
533 }
534 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
535 }
536 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
537 if (kernendpfn < pfn1) {
538 /*
539 * There is a chunk after the kernel.
540 */
541 #if 0
542 printf("Loading chunk after kernel: "
543 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
544 #endif
545 uvm_page_physload(kernendpfn, pfn1,
546 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
547 }
548 } else {
549 /*
550 * Just load this cluster as one chunk.
551 */
552 #if 0
553 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
554 pfn0, pfn1);
555 #endif
556 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
557 VM_FREELIST_DEFAULT);
558 }
559 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
560 }
561 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
562 }
563
564 /*
565 * Dump out the MDDT if it looks odd...
566 */
567 if (mddtweird) {
568 printf("\n");
569 printf("complete memory cluster information:\n");
570 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
571 printf("mddt %d:\n", i);
572 printf("\tpfn %lx\n",
573 mddtp->mddt_clusters[i].mddt_pfn);
574 printf("\tcnt %lx\n",
575 mddtp->mddt_clusters[i].mddt_pg_cnt);
576 printf("\ttest %lx\n",
577 mddtp->mddt_clusters[i].mddt_pg_test);
578 printf("\tbva %lx\n",
579 mddtp->mddt_clusters[i].mddt_v_bitaddr);
580 printf("\tbpa %lx\n",
581 mddtp->mddt_clusters[i].mddt_p_bitaddr);
582 printf("\tbcksum %lx\n",
583 mddtp->mddt_clusters[i].mddt_bit_cksum);
584 printf("\tusage %lx\n",
585 mddtp->mddt_clusters[i].mddt_usage);
586 }
587 printf("\n");
588 }
589
590 if (totalphysmem == 0)
591 panic("can't happen: system seems to have no memory!");
592 maxmem = physmem;
593 #if 0
594 printf("totalphysmem = %d\n", totalphysmem);
595 printf("physmem = %d\n", physmem);
596 printf("resvmem = %d\n", resvmem);
597 printf("unusedmem = %d\n", unusedmem);
598 printf("unknownmem = %d\n", unknownmem);
599 #endif
600
601 /*
602 * Initialize error message buffer (at end of core).
603 */
604 {
605 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
606 vsize_t reqsz = sz;
607
608 vps = &vm_physmem[vm_nphysseg - 1];
609
610 /* shrink so that it'll fit in the last segment */
611 if ((vps->avail_end - vps->avail_start) < atop(sz))
612 sz = ptoa(vps->avail_end - vps->avail_start);
613
614 vps->end -= atop(sz);
615 vps->avail_end -= atop(sz);
616 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
617 initmsgbuf(msgbufaddr, sz);
618
619 /* Remove the last segment if it now has no pages. */
620 if (vps->start == vps->end)
621 vm_nphysseg--;
622
623 /* warn if the message buffer had to be shrunk */
624 if (sz != reqsz)
625 printf("WARNING: %ld bytes not available for msgbuf "
626 "in last cluster (%ld used)\n", reqsz, sz);
627
628 }
629
630 /*
631 * NOTE: It is safe to use uvm_pageboot_alloc() before
632 * pmap_bootstrap() because our pmap_virtual_space()
633 * returns compile-time constants.
634 */
635
636 /*
637 * Init mapping for u page(s) for proc 0
638 */
639 proc0.p_addr = proc0paddr =
640 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
641
642 /*
643 * Allocate space for system data structures. These data structures
644 * are allocated here instead of cpu_startup() because physical
645 * memory is directly addressable. We don't have to map these into
646 * virtual address space.
647 */
648 size = (vsize_t)allocsys(NULL, NULL);
649 v = (caddr_t)uvm_pageboot_alloc(size);
650 if ((allocsys(v, NULL) - v) != size)
651 panic("alpha_init: table size inconsistency");
652
653 /*
654 * Initialize the virtual memory system, and set the
655 * page table base register in proc 0's PCB.
656 */
657 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
658 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
659
660 /*
661 * Initialize the rest of proc 0's PCB, and cache its physical
662 * address.
663 */
664 proc0.p_md.md_pcbpaddr =
665 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
666
667 /*
668 * Set the kernel sp, reserving space for an (empty) trapframe,
669 * and make proc0's trapframe pointer point to it for sanity.
670 */
671 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
672 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
673 proc0.p_md.md_tf =
674 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
675 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
676
677 /*
678 * Initialize the primary CPU's idle PCB to proc0's. In a
679 * MULTIPROCESSOR configuration, each CPU will later get
680 * its own idle PCB when autoconfiguration runs.
681 */
682 ci->ci_idle_pcb = &proc0paddr->u_pcb;
683 ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
684
685 /* Indicate that proc0 has a CPU. */
686 proc0.p_cpu = ci;
687
688 /*
689 * Look at arguments passed to us and compute boothowto.
690 */
691
692 boothowto = RB_SINGLE;
693 #ifdef KADB
694 boothowto |= RB_KDB;
695 #endif
696 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
697 /*
698 * Note that we'd really like to differentiate case here,
699 * but the Alpha AXP Architecture Reference Manual
700 * says that we shouldn't.
701 */
702 switch (*p) {
703 case 'a': /* autoboot */
704 case 'A':
705 boothowto &= ~RB_SINGLE;
706 break;
707
708 #ifdef DEBUG
709 case 'c': /* crash dump immediately after autoconfig */
710 case 'C':
711 boothowto |= RB_DUMP;
712 break;
713 #endif
714
715 #if defined(KGDB) || defined(DDB)
716 case 'd': /* break into the kernel debugger ASAP */
717 case 'D':
718 boothowto |= RB_KDB;
719 break;
720 #endif
721
722 case 'h': /* always halt, never reboot */
723 case 'H':
724 boothowto |= RB_HALT;
725 break;
726
727 #if 0
728 case 'm': /* mini root present in memory */
729 case 'M':
730 boothowto |= RB_MINIROOT;
731 break;
732 #endif
733
734 case 'n': /* askname */
735 case 'N':
736 boothowto |= RB_ASKNAME;
737 break;
738
739 case 's': /* single-user (default, supported for sanity) */
740 case 'S':
741 boothowto |= RB_SINGLE;
742 break;
743
744 case 'q': /* quiet boot */
745 case 'Q':
746 boothowto |= AB_QUIET;
747 break;
748
749 case 'v': /* verbose boot */
750 case 'V':
751 boothowto |= AB_VERBOSE;
752 break;
753
754 case '-':
755 /*
756 * Just ignore this. It's not required, but it's
757 * common for it to be passed regardless.
758 */
759 break;
760
761 default:
762 printf("Unrecognized boot flag '%c'.\n", *p);
763 break;
764 }
765 }
766
767
768 /*
769 * Figure out the number of cpus in the box, from RPB fields.
770 * Really. We mean it.
771 */
772 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
773 struct pcs *pcsp;
774
775 pcsp = LOCATE_PCS(hwrpb, i);
776 if ((pcsp->pcs_flags & PCS_PP) != 0)
777 ncpus++;
778 }
779
780 /*
781 * Initialize debuggers, and break into them if appropriate.
782 */
783 #ifdef DDB
784 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
785 ksym_start, ksym_end);
786 #endif
787
788 if (boothowto & RB_KDB) {
789 #if defined(KGDB)
790 kgdb_debug_init = 1;
791 kgdb_connect(1);
792 #elif defined(DDB)
793 Debugger();
794 #endif
795 }
796
797 /*
798 * Figure out our clock frequency, from RPB fields.
799 */
800 hz = hwrpb->rpb_intr_freq >> 12;
801 if (!(60 <= hz && hz <= 10240)) {
802 hz = 1024;
803 #ifdef DIAGNOSTIC
804 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
805 hwrpb->rpb_intr_freq, hz);
806 #endif
807 }
808 }
809
810 void
811 consinit()
812 {
813
814 /*
815 * Everything related to console initialization is done
816 * in alpha_init().
817 */
818 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
819 printf("consinit: %susing prom console\n",
820 pmap_uses_prom_console() ? "" : "not ");
821 #endif
822 }
823
824 #include "pckbc.h"
825 #include "pckbd.h"
826 #if (NPCKBC > 0) && (NPCKBD == 0)
827
828 #include <dev/ic/pckbcvar.h>
829
830 /*
831 * This is called by the pbkbc driver if no pckbd is configured.
832 * On the i386, it is used to glue in the old, deprecated console
833 * code. On the Alpha, it does nothing.
834 */
835 int
836 pckbc_machdep_cnattach(kbctag, kbcslot)
837 pckbc_tag_t kbctag;
838 pckbc_slot_t kbcslot;
839 {
840
841 return (ENXIO);
842 }
843 #endif /* NPCKBC > 0 && NPCKBD == 0 */
844
845 void
846 cpu_startup()
847 {
848 register unsigned i;
849 int base, residual;
850 vaddr_t minaddr, maxaddr;
851 vsize_t size;
852 char pbuf[9];
853 #if defined(DEBUG)
854 extern int pmapdebug;
855 int opmapdebug = pmapdebug;
856
857 pmapdebug = 0;
858 #endif
859
860 /*
861 * Good {morning,afternoon,evening,night}.
862 */
863 printf(version);
864 identifycpu();
865 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
866 printf("total memory = %s\n", pbuf);
867 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
868 printf("(%s reserved for PROM, ", pbuf);
869 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
870 printf("%s used by NetBSD)\n", pbuf);
871 if (unusedmem) {
872 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
873 printf("WARNING: unused memory = %s\n", pbuf);
874 }
875 if (unknownmem) {
876 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
877 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
878 }
879
880 /*
881 * Allocate virtual address space for file I/O buffers.
882 * Note they are different than the array of headers, 'buf',
883 * and usually occupy more virtual memory than physical.
884 */
885 size = MAXBSIZE * nbuf;
886 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
887 NULL, UVM_UNKNOWN_OFFSET, 0,
888 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
889 UVM_ADV_NORMAL, 0)) != 0)
890 panic("startup: cannot allocate VM for buffers");
891 base = bufpages / nbuf;
892 residual = bufpages % nbuf;
893 for (i = 0; i < nbuf; i++) {
894 vsize_t curbufsize;
895 vaddr_t curbuf;
896 struct vm_page *pg;
897
898 /*
899 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
900 * that MAXBSIZE space, we allocate and map (base+1) pages
901 * for the first "residual" buffers, and then we allocate
902 * "base" pages for the rest.
903 */
904 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
905 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
906
907 while (curbufsize) {
908 pg = uvm_pagealloc(NULL, 0, NULL, 0);
909 if (pg == NULL)
910 panic("cpu_startup: not enough memory for "
911 "buffer cache");
912 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
913 VM_PROT_READ|VM_PROT_WRITE);
914 curbuf += PAGE_SIZE;
915 curbufsize -= PAGE_SIZE;
916 }
917 }
918 pmap_update();
919
920 /*
921 * Allocate a submap for exec arguments. This map effectively
922 * limits the number of processes exec'ing at any time.
923 */
924 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
925 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
926
927 /*
928 * Allocate a submap for physio
929 */
930 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
931 VM_PHYS_SIZE, 0, FALSE, NULL);
932
933 /*
934 * No need to allocate an mbuf cluster submap. Mbuf clusters
935 * are allocated via the pool allocator, and we use K0SEG to
936 * map those pages.
937 */
938
939 #if defined(DEBUG)
940 pmapdebug = opmapdebug;
941 #endif
942 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
943 printf("avail memory = %s\n", pbuf);
944 #if 0
945 {
946 extern u_long pmap_pages_stolen;
947
948 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
949 printf("stolen memory for VM structures = %s\n", pbuf);
950 }
951 #endif
952 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
953 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
954
955 /*
956 * Set up buffers, so they can be used to read disk labels.
957 */
958 bufinit();
959
960 /*
961 * Set up the HWPCB so that it's safe to configure secondary
962 * CPUs.
963 */
964 hwrpb_primary_init();
965 }
966
967 /*
968 * Retrieve the platform name from the DSR.
969 */
970 const char *
971 alpha_dsr_sysname()
972 {
973 struct dsrdb *dsr;
974 const char *sysname;
975
976 /*
977 * DSR does not exist on early HWRPB versions.
978 */
979 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
980 return (NULL);
981
982 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
983 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
984 sizeof(u_int64_t)));
985 return (sysname);
986 }
987
988 /*
989 * Lookup the system specified system variation in the provided table,
990 * returning the model string on match.
991 */
992 const char *
993 alpha_variation_name(variation, avtp)
994 u_int64_t variation;
995 const struct alpha_variation_table *avtp;
996 {
997 int i;
998
999 for (i = 0; avtp[i].avt_model != NULL; i++)
1000 if (avtp[i].avt_variation == variation)
1001 return (avtp[i].avt_model);
1002 return (NULL);
1003 }
1004
1005 /*
1006 * Generate a default platform name based for unknown system variations.
1007 */
1008 const char *
1009 alpha_unknown_sysname()
1010 {
1011 static char s[128]; /* safe size */
1012
1013 sprintf(s, "%s family, unknown model variation 0x%lx",
1014 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1015 return ((const char *)s);
1016 }
1017
1018 void
1019 identifycpu()
1020 {
1021 char *s;
1022 int i;
1023
1024 /*
1025 * print out CPU identification information.
1026 */
1027 printf("%s", cpu_model);
1028 for(s = cpu_model; *s; ++s)
1029 if(strncasecmp(s, "MHz", 3) == 0)
1030 goto skipMHz;
1031 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1032 skipMHz:
1033 printf(", s/n ");
1034 for (i = 0; i < 10; i++)
1035 printf("%c", hwrpb->rpb_ssn[i]);
1036 printf("\n");
1037 printf("%ld byte page size, %d processor%s.\n",
1038 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1039 #if 0
1040 /* this isn't defined for any systems that we run on? */
1041 printf("serial number 0x%lx 0x%lx\n",
1042 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1043
1044 /* and these aren't particularly useful! */
1045 printf("variation: 0x%lx, revision 0x%lx\n",
1046 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1047 #endif
1048 }
1049
1050 int waittime = -1;
1051 struct pcb dumppcb;
1052
1053 void
1054 cpu_reboot(howto, bootstr)
1055 int howto;
1056 char *bootstr;
1057 {
1058 #if defined(MULTIPROCESSOR)
1059 u_long cpu_id = cpu_number();
1060 u_long wait_mask = (1UL << cpu_id) |
1061 (1UL << hwrpb->rpb_primary_cpu_id);
1062 int i;
1063 #endif
1064
1065 /* If "always halt" was specified as a boot flag, obey. */
1066 if ((boothowto & RB_HALT) != 0)
1067 howto |= RB_HALT;
1068
1069 boothowto = howto;
1070
1071 /* If system is cold, just halt. */
1072 if (cold) {
1073 boothowto |= RB_HALT;
1074 goto haltsys;
1075 }
1076
1077 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1078 waittime = 0;
1079 vfs_shutdown();
1080 /*
1081 * If we've been adjusting the clock, the todr
1082 * will be out of synch; adjust it now.
1083 */
1084 resettodr();
1085 }
1086
1087 /* Disable interrupts. */
1088 splhigh();
1089
1090 #if defined(MULTIPROCESSOR)
1091 /*
1092 * Halt all other CPUs. If we're not the primary, the
1093 * primary will spin, waiting for us to halt.
1094 */
1095 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1096
1097 for (i = 0; i < 10000; i++) {
1098 alpha_mb();
1099 if (cpus_running == wait_mask)
1100 break;
1101 delay(1000);
1102 }
1103 alpha_mb();
1104 if (cpus_running != wait_mask)
1105 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1106 cpus_running);
1107 #endif /* MULTIPROCESSOR */
1108
1109 /* If rebooting and a dump is requested do it. */
1110 #if 0
1111 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1112 #else
1113 if (boothowto & RB_DUMP)
1114 #endif
1115 dumpsys();
1116
1117 haltsys:
1118
1119 /* run any shutdown hooks */
1120 doshutdownhooks();
1121
1122 #ifdef BOOTKEY
1123 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1124 cnpollc(1); /* for proper keyboard command handling */
1125 cngetc();
1126 cnpollc(0);
1127 printf("\n");
1128 #endif
1129
1130 /* Finally, powerdown/halt/reboot the system. */
1131 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1132 platform.powerdown != NULL) {
1133 (*platform.powerdown)();
1134 printf("WARNING: powerdown failed!\n");
1135 }
1136 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1137 #if defined(MULTIPROCESSOR)
1138 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1139 cpu_halt();
1140 else
1141 #endif
1142 prom_halt(boothowto & RB_HALT);
1143 /*NOTREACHED*/
1144 }
1145
1146 /*
1147 * These variables are needed by /sbin/savecore
1148 */
1149 u_long dumpmag = 0x8fca0101; /* magic number */
1150 int dumpsize = 0; /* pages */
1151 long dumplo = 0; /* blocks */
1152
1153 /*
1154 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1155 */
1156 int
1157 cpu_dumpsize()
1158 {
1159 int size;
1160
1161 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1162 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1163 if (roundup(size, dbtob(1)) != dbtob(1))
1164 return -1;
1165
1166 return (1);
1167 }
1168
1169 /*
1170 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1171 */
1172 u_long
1173 cpu_dump_mempagecnt()
1174 {
1175 u_long i, n;
1176
1177 n = 0;
1178 for (i = 0; i < mem_cluster_cnt; i++)
1179 n += atop(mem_clusters[i].size);
1180 return (n);
1181 }
1182
1183 /*
1184 * cpu_dump: dump machine-dependent kernel core dump headers.
1185 */
1186 int
1187 cpu_dump()
1188 {
1189 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1190 char buf[dbtob(1)];
1191 kcore_seg_t *segp;
1192 cpu_kcore_hdr_t *cpuhdrp;
1193 phys_ram_seg_t *memsegp;
1194 int i;
1195
1196 dump = bdevsw[major(dumpdev)].d_dump;
1197
1198 bzero(buf, sizeof buf);
1199 segp = (kcore_seg_t *)buf;
1200 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1201 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1202 ALIGN(sizeof(*cpuhdrp))];
1203
1204 /*
1205 * Generate a segment header.
1206 */
1207 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1208 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1209
1210 /*
1211 * Add the machine-dependent header info.
1212 */
1213 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1214 cpuhdrp->page_size = PAGE_SIZE;
1215 cpuhdrp->nmemsegs = mem_cluster_cnt;
1216
1217 /*
1218 * Fill in the memory segment descriptors.
1219 */
1220 for (i = 0; i < mem_cluster_cnt; i++) {
1221 memsegp[i].start = mem_clusters[i].start;
1222 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1223 }
1224
1225 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1226 }
1227
1228 /*
1229 * This is called by main to set dumplo and dumpsize.
1230 * Dumps always skip the first NBPG of disk space
1231 * in case there might be a disk label stored there.
1232 * If there is extra space, put dump at the end to
1233 * reduce the chance that swapping trashes it.
1234 */
1235 void
1236 cpu_dumpconf()
1237 {
1238 int nblks, dumpblks; /* size of dump area */
1239 int maj;
1240
1241 if (dumpdev == NODEV)
1242 goto bad;
1243 maj = major(dumpdev);
1244 if (maj < 0 || maj >= nblkdev)
1245 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1246 if (bdevsw[maj].d_psize == NULL)
1247 goto bad;
1248 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1249 if (nblks <= ctod(1))
1250 goto bad;
1251
1252 dumpblks = cpu_dumpsize();
1253 if (dumpblks < 0)
1254 goto bad;
1255 dumpblks += ctod(cpu_dump_mempagecnt());
1256
1257 /* If dump won't fit (incl. room for possible label), punt. */
1258 if (dumpblks > (nblks - ctod(1)))
1259 goto bad;
1260
1261 /* Put dump at end of partition */
1262 dumplo = nblks - dumpblks;
1263
1264 /* dumpsize is in page units, and doesn't include headers. */
1265 dumpsize = cpu_dump_mempagecnt();
1266 return;
1267
1268 bad:
1269 dumpsize = 0;
1270 return;
1271 }
1272
1273 /*
1274 * Dump the kernel's image to the swap partition.
1275 */
1276 #define BYTES_PER_DUMP NBPG
1277
1278 void
1279 dumpsys()
1280 {
1281 u_long totalbytesleft, bytes, i, n, memcl;
1282 u_long maddr;
1283 int psize;
1284 daddr_t blkno;
1285 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1286 int error;
1287
1288 /* Save registers. */
1289 savectx(&dumppcb);
1290
1291 if (dumpdev == NODEV)
1292 return;
1293
1294 /*
1295 * For dumps during autoconfiguration,
1296 * if dump device has already configured...
1297 */
1298 if (dumpsize == 0)
1299 cpu_dumpconf();
1300 if (dumplo <= 0) {
1301 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1302 minor(dumpdev));
1303 return;
1304 }
1305 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1306 minor(dumpdev), dumplo);
1307
1308 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1309 printf("dump ");
1310 if (psize == -1) {
1311 printf("area unavailable\n");
1312 return;
1313 }
1314
1315 /* XXX should purge all outstanding keystrokes. */
1316
1317 if ((error = cpu_dump()) != 0)
1318 goto err;
1319
1320 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1321 blkno = dumplo + cpu_dumpsize();
1322 dump = bdevsw[major(dumpdev)].d_dump;
1323 error = 0;
1324
1325 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1326 maddr = mem_clusters[memcl].start;
1327 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1328
1329 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1330
1331 /* Print out how many MBs we to go. */
1332 if ((totalbytesleft % (1024*1024)) == 0)
1333 printf("%ld ", totalbytesleft / (1024 * 1024));
1334
1335 /* Limit size for next transfer. */
1336 n = bytes - i;
1337 if (n > BYTES_PER_DUMP)
1338 n = BYTES_PER_DUMP;
1339
1340 error = (*dump)(dumpdev, blkno,
1341 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1342 if (error)
1343 goto err;
1344 maddr += n;
1345 blkno += btodb(n); /* XXX? */
1346
1347 /* XXX should look for keystrokes, to cancel. */
1348 }
1349 }
1350
1351 err:
1352 switch (error) {
1353
1354 case ENXIO:
1355 printf("device bad\n");
1356 break;
1357
1358 case EFAULT:
1359 printf("device not ready\n");
1360 break;
1361
1362 case EINVAL:
1363 printf("area improper\n");
1364 break;
1365
1366 case EIO:
1367 printf("i/o error\n");
1368 break;
1369
1370 case EINTR:
1371 printf("aborted from console\n");
1372 break;
1373
1374 case 0:
1375 printf("succeeded\n");
1376 break;
1377
1378 default:
1379 printf("error %d\n", error);
1380 break;
1381 }
1382 printf("\n\n");
1383 delay(1000);
1384 }
1385
1386 void
1387 frametoreg(framep, regp)
1388 struct trapframe *framep;
1389 struct reg *regp;
1390 {
1391
1392 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1393 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1394 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1395 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1396 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1397 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1398 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1399 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1400 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1401 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1402 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1403 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1404 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1405 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1406 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1407 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1408 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1409 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1410 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1411 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1412 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1413 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1414 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1415 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1416 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1417 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1418 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1419 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1420 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1421 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1422 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1423 regp->r_regs[R_ZERO] = 0;
1424 }
1425
1426 void
1427 regtoframe(regp, framep)
1428 struct reg *regp;
1429 struct trapframe *framep;
1430 {
1431
1432 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1433 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1434 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1435 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1436 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1437 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1438 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1439 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1440 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1441 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1442 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1443 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1444 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1445 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1446 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1447 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1448 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1449 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1450 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1451 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1452 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1453 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1454 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1455 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1456 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1457 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1458 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1459 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1460 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1461 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1462 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1463 /* ??? = regp->r_regs[R_ZERO]; */
1464 }
1465
1466 void
1467 printregs(regp)
1468 struct reg *regp;
1469 {
1470 int i;
1471
1472 for (i = 0; i < 32; i++)
1473 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1474 i & 1 ? "\n" : "\t");
1475 }
1476
1477 void
1478 regdump(framep)
1479 struct trapframe *framep;
1480 {
1481 struct reg reg;
1482
1483 frametoreg(framep, ®);
1484 reg.r_regs[R_SP] = alpha_pal_rdusp();
1485
1486 printf("REGISTERS:\n");
1487 printregs(®);
1488 }
1489
1490
1491 /*
1492 * Send an interrupt to process.
1493 */
1494 void
1495 sendsig(catcher, sig, mask, code)
1496 sig_t catcher;
1497 int sig;
1498 sigset_t *mask;
1499 u_long code;
1500 {
1501 struct proc *p = curproc;
1502 struct sigcontext *scp, ksc;
1503 struct trapframe *frame;
1504 int onstack, fsize, rndfsize;
1505
1506 frame = p->p_md.md_tf;
1507
1508 /* Do we need to jump onto the signal stack? */
1509 onstack =
1510 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1511 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1512
1513 /* Allocate space for the signal handler context. */
1514 fsize = sizeof(ksc);
1515 rndfsize = ((fsize + 15) / 16) * 16;
1516
1517 if (onstack)
1518 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1519 p->p_sigctx.ps_sigstk.ss_size);
1520 else
1521 scp = (struct sigcontext *)(alpha_pal_rdusp());
1522 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1523
1524 #ifdef DEBUG
1525 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1526 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1527 sig, &onstack, scp);
1528 #endif
1529
1530 /* Build stack frame for signal trampoline. */
1531 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1532 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1533
1534 /* Save register context. */
1535 frametoreg(frame, (struct reg *)ksc.sc_regs);
1536 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1537 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1538
1539 /* save the floating-point state, if necessary, then copy it. */
1540 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1541 fpusave_proc(p, 1);
1542 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1543 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1544 sizeof(struct fpreg));
1545 ksc.sc_fp_control = alpha_read_fp_c(p);
1546 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1547 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1548
1549 /* Save signal stack. */
1550 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1551
1552 /* Save signal mask. */
1553 ksc.sc_mask = *mask;
1554
1555 #ifdef COMPAT_13
1556 /*
1557 * XXX We always have to save an old style signal mask because
1558 * XXX we might be delivering a signal to a process which will
1559 * XXX escape from the signal in a non-standard way and invoke
1560 * XXX sigreturn() directly.
1561 */
1562 {
1563 /* Note: it's a long in the stack frame. */
1564 sigset13_t mask13;
1565
1566 native_sigset_to_sigset13(mask, &mask13);
1567 ksc.__sc_mask13 = mask13;
1568 }
1569 #endif
1570
1571 #ifdef COMPAT_OSF1
1572 /*
1573 * XXX Create an OSF/1-style sigcontext and associated goo.
1574 */
1575 #endif
1576
1577 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1578 /*
1579 * Process has trashed its stack; give it an illegal
1580 * instruction to halt it in its tracks.
1581 */
1582 #ifdef DEBUG
1583 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1584 printf("sendsig(%d): copyout failed on sig %d\n",
1585 p->p_pid, sig);
1586 #endif
1587 sigexit(p, SIGILL);
1588 /* NOTREACHED */
1589 }
1590 #ifdef DEBUG
1591 if (sigdebug & SDB_FOLLOW)
1592 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1593 scp, code);
1594 #endif
1595
1596 /* Set up the registers to return to sigcode. */
1597 frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
1598 frame->tf_regs[FRAME_A0] = sig;
1599 frame->tf_regs[FRAME_A1] = code;
1600 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1601 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1602 alpha_pal_wrusp((unsigned long)scp);
1603
1604 /* Remember that we're now on the signal stack. */
1605 if (onstack)
1606 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1607
1608 #ifdef DEBUG
1609 if (sigdebug & SDB_FOLLOW)
1610 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1611 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1612 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1613 printf("sendsig(%d): sig %d returns\n",
1614 p->p_pid, sig);
1615 #endif
1616 }
1617
1618 /*
1619 * System call to cleanup state after a signal
1620 * has been taken. Reset signal mask and
1621 * stack state from context left by sendsig (above).
1622 * Return to previous pc and psl as specified by
1623 * context left by sendsig. Check carefully to
1624 * make sure that the user has not modified the
1625 * psl to gain improper privileges or to cause
1626 * a machine fault.
1627 */
1628 /* ARGSUSED */
1629 int
1630 sys___sigreturn14(p, v, retval)
1631 struct proc *p;
1632 void *v;
1633 register_t *retval;
1634 {
1635 struct sys___sigreturn14_args /* {
1636 syscallarg(struct sigcontext *) sigcntxp;
1637 } */ *uap = v;
1638 struct sigcontext *scp, ksc;
1639
1640 /*
1641 * The trampoline code hands us the context.
1642 * It is unsafe to keep track of it ourselves, in the event that a
1643 * program jumps out of a signal handler.
1644 */
1645 scp = SCARG(uap, sigcntxp);
1646 #ifdef DEBUG
1647 if (sigdebug & SDB_FOLLOW)
1648 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1649 #endif
1650 if (ALIGN(scp) != (u_int64_t)scp)
1651 return (EINVAL);
1652
1653 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1654 return (EFAULT);
1655
1656 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1657 return (EINVAL);
1658
1659 /* Restore register context. */
1660 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1661 p->p_md.md_tf->tf_regs[FRAME_PS] =
1662 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1663
1664 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1665 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1666
1667 /* XXX ksc.sc_ownedfp ? */
1668 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1669 fpusave_proc(p, 0);
1670 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1671 sizeof(struct fpreg));
1672 p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1673 p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1674
1675 /* Restore signal stack. */
1676 if (ksc.sc_onstack & SS_ONSTACK)
1677 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1678 else
1679 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1680
1681 /* Restore signal mask. */
1682 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1683
1684 #ifdef DEBUG
1685 if (sigdebug & SDB_FOLLOW)
1686 printf("sigreturn(%d): returns\n", p->p_pid);
1687 #endif
1688 return (EJUSTRETURN);
1689 }
1690
1691 /*
1692 * machine dependent system variables.
1693 */
1694 int
1695 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1696 int *name;
1697 u_int namelen;
1698 void *oldp;
1699 size_t *oldlenp;
1700 void *newp;
1701 size_t newlen;
1702 struct proc *p;
1703 {
1704 dev_t consdev;
1705
1706 /* all sysctl names at this level are terminal */
1707 if (namelen != 1)
1708 return (ENOTDIR); /* overloaded */
1709
1710 switch (name[0]) {
1711 case CPU_CONSDEV:
1712 if (cn_tab != NULL)
1713 consdev = cn_tab->cn_dev;
1714 else
1715 consdev = NODEV;
1716 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1717 sizeof consdev));
1718
1719 case CPU_ROOT_DEVICE:
1720 return (sysctl_rdstring(oldp, oldlenp, newp,
1721 root_device->dv_xname));
1722
1723 case CPU_UNALIGNED_PRINT:
1724 return (sysctl_int(oldp, oldlenp, newp, newlen,
1725 &alpha_unaligned_print));
1726
1727 case CPU_UNALIGNED_FIX:
1728 return (sysctl_int(oldp, oldlenp, newp, newlen,
1729 &alpha_unaligned_fix));
1730
1731 case CPU_UNALIGNED_SIGBUS:
1732 return (sysctl_int(oldp, oldlenp, newp, newlen,
1733 &alpha_unaligned_sigbus));
1734
1735 case CPU_BOOTED_KERNEL:
1736 return (sysctl_rdstring(oldp, oldlenp, newp,
1737 bootinfo.booted_kernel));
1738
1739 case CPU_FP_SYNC_COMPLETE:
1740 return (sysctl_int(oldp, oldlenp, newp, newlen,
1741 &alpha_fp_sync_complete));
1742
1743 default:
1744 return (EOPNOTSUPP);
1745 }
1746 /* NOTREACHED */
1747 }
1748
1749 /*
1750 * Set registers on exec.
1751 */
1752 void
1753 setregs(p, pack, stack)
1754 register struct proc *p;
1755 struct exec_package *pack;
1756 u_long stack;
1757 {
1758 struct trapframe *tfp = p->p_md.md_tf;
1759 #ifdef DEBUG
1760 int i;
1761 #endif
1762
1763 #ifdef DEBUG
1764 /*
1765 * Crash and dump, if the user requested it.
1766 */
1767 if (boothowto & RB_DUMP)
1768 panic("crash requested by boot flags");
1769 #endif
1770
1771 #ifdef DEBUG
1772 for (i = 0; i < FRAME_SIZE; i++)
1773 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1774 #else
1775 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1776 #endif
1777 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1778 alpha_pal_wrusp(stack);
1779 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1780 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1781
1782 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1783 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1784 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1785 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1786 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1787
1788 p->p_md.md_flags &= ~MDP_FPUSED;
1789 if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
1790 p->p_md.md_flags &= ~MDP_FP_C;
1791 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1792 }
1793 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1794 fpusave_proc(p, 0);
1795 }
1796
1797 /*
1798 * Release the FPU.
1799 */
1800 void
1801 fpusave_cpu(struct cpu_info *ci, int save)
1802 {
1803 struct proc *p;
1804 #if defined(MULTIPROCESSOR)
1805 int s;
1806 #endif
1807
1808 KDASSERT(ci == curcpu());
1809
1810 #if defined(MULTIPROCESSOR)
1811 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1812 #endif
1813
1814 p = ci->ci_fpcurproc;
1815 if (p == NULL)
1816 goto out;
1817
1818 if (save) {
1819 alpha_pal_wrfen(1);
1820 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1821 }
1822
1823 alpha_pal_wrfen(0);
1824
1825 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1826
1827 p->p_addr->u_pcb.pcb_fpcpu = NULL;
1828 ci->ci_fpcurproc = NULL;
1829
1830 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1831
1832 out:
1833 #if defined(MULTIPROCESSOR)
1834 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1835 #endif
1836 return;
1837 }
1838
1839 /*
1840 * Synchronize FP state for this process.
1841 */
1842 void
1843 fpusave_proc(struct proc *p, int save)
1844 {
1845 struct cpu_info *ci = curcpu();
1846 struct cpu_info *oci;
1847 #if defined(MULTIPROCESSOR)
1848 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1849 int s, spincount;
1850 #endif
1851
1852 KDASSERT(p->p_addr != NULL);
1853 KDASSERT(p->p_flag & P_INMEM);
1854
1855 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1856
1857 oci = p->p_addr->u_pcb.pcb_fpcpu;
1858 if (oci == NULL) {
1859 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1860 return;
1861 }
1862
1863 #if defined(MULTIPROCESSOR)
1864 if (oci == ci) {
1865 KASSERT(ci->ci_fpcurproc == p);
1866 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1867 fpusave_cpu(ci, save);
1868 return;
1869 }
1870
1871 KASSERT(oci->ci_fpcurproc == p);
1872 alpha_send_ipi(oci->ci_cpuid, ipi);
1873 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1874
1875 spincount = 0;
1876 while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
1877 spincount++;
1878 delay(1000); /* XXX */
1879 if (spincount > 10000)
1880 panic("fpsave ipi didn't");
1881 }
1882 #else
1883 KASSERT(ci->ci_fpcurproc == p);
1884 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1885 fpusave_cpu(ci, save);
1886 #endif /* MULTIPROCESSOR */
1887 }
1888
1889 /*
1890 * The following primitives manipulate the run queues. _whichqs tells which
1891 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1892 * into queues, Remrunqueue removes them from queues. The running process is
1893 * on no queue, other processes are on a queue related to p->p_priority,
1894 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1895 * available queues.
1896 */
1897 /*
1898 * setrunqueue(p)
1899 * proc *p;
1900 *
1901 * Call should be made at splclock(), and p->p_stat should be SRUN.
1902 */
1903
1904 void
1905 setrunqueue(p)
1906 struct proc *p;
1907 {
1908 int bit;
1909
1910 /* firewall: p->p_back must be NULL */
1911 if (p->p_back != NULL)
1912 panic("setrunqueue");
1913
1914 bit = p->p_priority >> 2;
1915 sched_whichqs |= (1 << bit);
1916 p->p_forw = (struct proc *)&sched_qs[bit];
1917 p->p_back = sched_qs[bit].ph_rlink;
1918 p->p_back->p_forw = p;
1919 sched_qs[bit].ph_rlink = p;
1920 }
1921
1922 /*
1923 * remrunqueue(p)
1924 *
1925 * Call should be made at splclock().
1926 */
1927 void
1928 remrunqueue(p)
1929 struct proc *p;
1930 {
1931 int bit;
1932
1933 bit = p->p_priority >> 2;
1934 if ((sched_whichqs & (1 << bit)) == 0)
1935 panic("remrunqueue");
1936
1937 p->p_back->p_forw = p->p_forw;
1938 p->p_forw->p_back = p->p_back;
1939 p->p_back = NULL; /* for firewall checking. */
1940
1941 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1942 sched_whichqs &= ~(1 << bit);
1943 }
1944
1945 /*
1946 * Wait "n" microseconds.
1947 */
1948 void
1949 delay(n)
1950 unsigned long n;
1951 {
1952 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1953
1954 if (n == 0)
1955 return;
1956
1957 pcc0 = alpha_rpcc() & 0xffffffffUL;
1958 cycles = 0;
1959 usec = 0;
1960
1961 while (usec <= n) {
1962 /*
1963 * Get the next CPU cycle count- assumes that we cannot
1964 * have had more than one 32 bit overflow.
1965 */
1966 pcc1 = alpha_rpcc() & 0xffffffffUL;
1967 if (pcc1 < pcc0)
1968 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1969 else
1970 curcycle = pcc1 - pcc0;
1971
1972 /*
1973 * We now have the number of processor cycles since we
1974 * last checked. Add the current cycle count to the
1975 * running total. If it's over cycles_per_usec, increment
1976 * the usec counter.
1977 */
1978 cycles += curcycle;
1979 while (cycles > cycles_per_usec) {
1980 usec++;
1981 cycles -= cycles_per_usec;
1982 }
1983 pcc0 = pcc1;
1984 }
1985 }
1986
1987 #if defined(COMPAT_OSF1) || 1 /* XXX */
1988 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1989 u_long));
1990 #endif
1991
1992 #if 1 /* XXX */
1993 void
1994 cpu_exec_ecoff_setregs(p, epp, stack)
1995 struct proc *p;
1996 struct exec_package *epp;
1997 u_long stack;
1998 {
1999 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2000
2001 setregs(p, epp, stack);
2002 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2003 }
2004
2005 /*
2006 * cpu_exec_ecoff_hook():
2007 * cpu-dependent ECOFF format hook for execve().
2008 *
2009 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2010 *
2011 */
2012 int
2013 cpu_exec_ecoff_probe(p, epp)
2014 struct proc *p;
2015 struct exec_package *epp;
2016 {
2017 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2018 int error;
2019
2020 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2021 error = 0;
2022 else
2023 error = ENOEXEC;
2024
2025 return (error);
2026 }
2027 #endif
2028
2029 int
2030 alpha_pa_access(pa)
2031 u_long pa;
2032 {
2033 int i;
2034
2035 for (i = 0; i < mem_cluster_cnt; i++) {
2036 if (pa < mem_clusters[i].start)
2037 continue;
2038 if ((pa - mem_clusters[i].start) >=
2039 (mem_clusters[i].size & ~PAGE_MASK))
2040 continue;
2041 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2042 }
2043
2044 /*
2045 * Address is not a memory address. If we're secure, disallow
2046 * access. Otherwise, grant read/write.
2047 */
2048 if (securelevel > 0)
2049 return (PROT_NONE);
2050 else
2051 return (PROT_READ | PROT_WRITE);
2052 }
2053
2054 /* XXX XXX BEGIN XXX XXX */
2055 paddr_t alpha_XXX_dmamap_or; /* XXX */
2056 /* XXX */
2057 paddr_t /* XXX */
2058 alpha_XXX_dmamap(v) /* XXX */
2059 vaddr_t v; /* XXX */
2060 { /* XXX */
2061 /* XXX */
2062 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2063 } /* XXX */
2064 /* XXX XXX END XXX XXX */
2065
2066 char *
2067 dot_conv(x)
2068 unsigned long x;
2069 {
2070 int i;
2071 char *xc;
2072 static int next;
2073 static char space[2][20];
2074
2075 xc = space[next ^= 1] + sizeof space[0];
2076 *--xc = '\0';
2077 for (i = 0;; ++i) {
2078 if (i && (i & 3) == 0)
2079 *--xc = '.';
2080 *--xc = "0123456789abcdef"[x & 0xf];
2081 x >>= 4;
2082 if (x == 0)
2083 break;
2084 }
2085 return xc;
2086 }
2087