machdep.c revision 1.244 1 /* $NetBSD: machdep.c,v 1.244 2001/05/30 15:24:27 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74
75 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
76
77 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.244 2001/05/30 15:24:27 lukem Exp $");
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/signalvar.h>
82 #include <sys/kernel.h>
83 #include <sys/map.h>
84 #include <sys/proc.h>
85 #include <sys/sched.h>
86 #include <sys/buf.h>
87 #include <sys/reboot.h>
88 #include <sys/device.h>
89 #include <sys/file.h>
90 #include <sys/malloc.h>
91 #include <sys/mbuf.h>
92 #include <sys/mman.h>
93 #include <sys/msgbuf.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/user.h>
97 #include <sys/exec.h>
98 #include <sys/exec_ecoff.h>
99 #include <sys/core.h>
100 #include <sys/kcore.h>
101 #include <machine/kcore.h>
102 #include <machine/fpu.h>
103
104 #include <sys/mount.h>
105 #include <sys/syscallargs.h>
106
107 #include <uvm/uvm_extern.h>
108 #include <sys/sysctl.h>
109
110 #include <dev/cons.h>
111
112 #include <machine/autoconf.h>
113 #include <machine/cpu.h>
114 #include <machine/reg.h>
115 #include <machine/rpb.h>
116 #include <machine/prom.h>
117 #include <machine/conf.h>
118 #include <machine/ieeefp.h>
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 #ifdef KGDB
129 #include <sys/kgdb.h>
130 #endif
131
132 #ifdef DEBUG
133 #include <machine/sigdebug.h>
134 #endif
135
136 #include <machine/alpha.h>
137
138 vm_map_t exec_map = NULL;
139 vm_map_t mb_map = NULL;
140 vm_map_t phys_map = NULL;
141
142 caddr_t msgbufaddr;
143
144 int maxmem; /* max memory per process */
145
146 int totalphysmem; /* total amount of physical memory in system */
147 int physmem; /* physical memory used by NetBSD + some rsvd */
148 int resvmem; /* amount of memory reserved for PROM */
149 int unusedmem; /* amount of memory for OS that we don't use */
150 int unknownmem; /* amount of memory with an unknown use */
151
152 int cputype; /* system type, from the RPB */
153
154 int bootdev_debug = 0; /* patchable, or from DDB */
155
156 /*
157 * XXX We need an address to which we can assign things so that they
158 * won't be optimized away because we didn't use the value.
159 */
160 u_int32_t no_optimize;
161
162 /* the following is used externally (sysctl_hw) */
163 char machine[] = MACHINE; /* from <machine/param.h> */
164 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
165 char cpu_model[128];
166
167 struct user *proc0paddr;
168
169 /* Number of machine cycles per microsecond */
170 u_int64_t cycles_per_usec;
171
172 /* number of cpus in the box. really! */
173 int ncpus;
174
175 struct bootinfo_kernel bootinfo;
176
177 /* For built-in TCDS */
178 #if defined(DEC_3000_300) || defined(DEC_3000_500)
179 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
180 #endif
181
182 struct platform platform;
183
184 #ifdef DDB
185 /* start and end of kernel symbol table */
186 void *ksym_start, *ksym_end;
187 #endif
188
189 /* for cpu_sysctl() */
190 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
191 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
192 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
193 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
194
195 /*
196 * XXX This should be dynamically sized, but we have the chicken-egg problem!
197 * XXX it should also be larger than it is, because not all of the mddt
198 * XXX clusters end up being used for VM.
199 */
200 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
201 int mem_cluster_cnt;
202
203 int cpu_dump __P((void));
204 int cpu_dumpsize __P((void));
205 u_long cpu_dump_mempagecnt __P((void));
206 void dumpsys __P((void));
207 void identifycpu __P((void));
208 void printregs __P((struct reg *));
209
210 void
211 alpha_init(pfn, ptb, bim, bip, biv)
212 u_long pfn; /* first free PFN number */
213 u_long ptb; /* PFN of current level 1 page table */
214 u_long bim; /* bootinfo magic */
215 u_long bip; /* bootinfo pointer */
216 u_long biv; /* bootinfo version */
217 {
218 extern char kernel_text[], _end[];
219 struct mddt *mddtp;
220 struct mddt_cluster *memc;
221 int i, mddtweird;
222 struct vm_physseg *vps;
223 vaddr_t kernstart, kernend;
224 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
225 vsize_t size;
226 cpuid_t cpu_id;
227 struct cpu_info *ci;
228 char *p;
229 caddr_t v;
230 const char *bootinfo_msg;
231 const struct cpuinit *c;
232
233 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
234
235 /*
236 * Turn off interrupts (not mchecks) and floating point.
237 * Make sure the instruction and data streams are consistent.
238 */
239 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
240 alpha_pal_wrfen(0);
241 ALPHA_TBIA();
242 alpha_pal_imb();
243
244 cpu_id = cpu_number();
245
246 #if defined(MULTIPROCESSOR)
247 /*
248 * Set our SysValue to the address of our cpu_info structure.
249 * Secondary processors do this in their spinup trampoline.
250 */
251 alpha_pal_wrval((u_long)&cpu_info_primary);
252 cpu_info[cpu_id] = &cpu_info_primary;
253 #endif
254
255 ci = curcpu();
256 ci->ci_cpuid = cpu_id;
257
258 /*
259 * Get critical system information (if possible, from the
260 * information provided by the boot program).
261 */
262 bootinfo_msg = NULL;
263 if (bim == BOOTINFO_MAGIC) {
264 if (biv == 0) { /* backward compat */
265 biv = *(u_long *)bip;
266 bip += 8;
267 }
268 switch (biv) {
269 case 1: {
270 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
271
272 bootinfo.ssym = v1p->ssym;
273 bootinfo.esym = v1p->esym;
274 /* hwrpb may not be provided by boot block in v1 */
275 if (v1p->hwrpb != NULL) {
276 bootinfo.hwrpb_phys =
277 ((struct rpb *)v1p->hwrpb)->rpb_phys;
278 bootinfo.hwrpb_size = v1p->hwrpbsize;
279 } else {
280 bootinfo.hwrpb_phys =
281 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
282 bootinfo.hwrpb_size =
283 ((struct rpb *)HWRPB_ADDR)->rpb_size;
284 }
285 bcopy(v1p->boot_flags, bootinfo.boot_flags,
286 min(sizeof v1p->boot_flags,
287 sizeof bootinfo.boot_flags));
288 bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
289 min(sizeof v1p->booted_kernel,
290 sizeof bootinfo.booted_kernel));
291 /* booted dev not provided in bootinfo */
292 init_prom_interface((struct rpb *)
293 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
294 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
295 sizeof bootinfo.booted_dev);
296 break;
297 }
298 default:
299 bootinfo_msg = "unknown bootinfo version";
300 goto nobootinfo;
301 }
302 } else {
303 bootinfo_msg = "boot program did not pass bootinfo";
304 nobootinfo:
305 bootinfo.ssym = (u_long)_end;
306 bootinfo.esym = (u_long)_end;
307 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
308 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
309 init_prom_interface((struct rpb *)HWRPB_ADDR);
310 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
311 sizeof bootinfo.boot_flags);
312 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
313 sizeof bootinfo.booted_kernel);
314 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
315 sizeof bootinfo.booted_dev);
316 }
317
318 /*
319 * Initialize the kernel's mapping of the RPB. It's needed for
320 * lots of things.
321 */
322 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
323
324 #if defined(DEC_3000_300) || defined(DEC_3000_500)
325 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
326 hwrpb->rpb_type == ST_DEC_3000_500) {
327 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
328 sizeof(dec_3000_scsiid));
329 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
330 sizeof(dec_3000_scsifast));
331 }
332 #endif
333
334 /*
335 * Remember how many cycles there are per microsecond,
336 * so that we can use delay(). Round up, for safety.
337 */
338 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
339
340 /*
341 * Initalize the (temporary) bootstrap console interface, so
342 * we can use printf until the VM system starts being setup.
343 * The real console is initialized before then.
344 */
345 init_bootstrap_console();
346
347 /* OUTPUT NOW ALLOWED */
348
349 /* delayed from above */
350 if (bootinfo_msg)
351 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
352 bootinfo_msg, bim, bip, biv);
353
354 /* Initialize the trap vectors on the primary processor. */
355 trap_init();
356
357 /*
358 * find out this system's page size
359 */
360 PAGE_SIZE = hwrpb->rpb_page_size;
361 if (PAGE_SIZE != 8192)
362 panic("page size %d != 8192?!", PAGE_SIZE);
363
364 /*
365 * Initialize PAGE_SIZE-dependent variables.
366 */
367 uvm_setpagesize();
368
369 /*
370 * Find out what hardware we're on, and do basic initialization.
371 */
372 cputype = hwrpb->rpb_type;
373 if (cputype < 0) {
374 /*
375 * At least some white-box systems have SRM which
376 * reports a systype that's the negative of their
377 * blue-box counterpart.
378 */
379 cputype = -cputype;
380 }
381 c = platform_lookup(cputype);
382 if (c == NULL) {
383 platform_not_supported();
384 /* NOTREACHED */
385 }
386 (*c->init)();
387 strcpy(cpu_model, platform.model);
388
389 /*
390 * Initalize the real console, so that the bootstrap console is
391 * no longer necessary.
392 */
393 (*platform.cons_init)();
394
395 #ifdef DIAGNOSTIC
396 /* Paranoid sanity checking */
397
398 /* We should always be running on the primary. */
399 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
400
401 /*
402 * On single-CPU systypes, the primary should always be CPU 0,
403 * except on Alpha 8200 systems where the CPU id is related
404 * to the VID, which is related to the Turbo Laser node id.
405 */
406 if (cputype != ST_DEC_21000)
407 assert(hwrpb->rpb_primary_cpu_id == 0);
408 #endif
409
410 /* NO MORE FIRMWARE ACCESS ALLOWED */
411 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
412 /*
413 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
414 * XXX pmap_uses_prom_console() evaluates to non-zero.)
415 */
416 #endif
417
418 /*
419 * Find the beginning and end of the kernel (and leave a
420 * bit of space before the beginning for the bootstrap
421 * stack).
422 */
423 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
424 #ifdef DDB
425 ksym_start = (void *)bootinfo.ssym;
426 ksym_end = (void *)bootinfo.esym;
427 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
428 #else
429 kernend = (vaddr_t)round_page((vaddr_t)_end);
430 #endif
431
432 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
433 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
434
435 /*
436 * Find out how much memory is available, by looking at
437 * the memory cluster descriptors. This also tries to do
438 * its best to detect things things that have never been seen
439 * before...
440 */
441 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
442
443 /* MDDT SANITY CHECKING */
444 mddtweird = 0;
445 if (mddtp->mddt_cluster_cnt < 2) {
446 mddtweird = 1;
447 printf("WARNING: weird number of mem clusters: %lu\n",
448 mddtp->mddt_cluster_cnt);
449 }
450
451 #if 0
452 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
453 #endif
454
455 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
456 memc = &mddtp->mddt_clusters[i];
457 #if 0
458 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
459 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
460 #endif
461 totalphysmem += memc->mddt_pg_cnt;
462 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
463 mem_clusters[mem_cluster_cnt].start =
464 ptoa(memc->mddt_pfn);
465 mem_clusters[mem_cluster_cnt].size =
466 ptoa(memc->mddt_pg_cnt);
467 if (memc->mddt_usage & MDDT_mbz ||
468 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
469 memc->mddt_usage & MDDT_PALCODE)
470 mem_clusters[mem_cluster_cnt].size |=
471 PROT_READ;
472 else
473 mem_clusters[mem_cluster_cnt].size |=
474 PROT_READ | PROT_WRITE | PROT_EXEC;
475 mem_cluster_cnt++;
476 }
477
478 if (memc->mddt_usage & MDDT_mbz) {
479 mddtweird = 1;
480 printf("WARNING: mem cluster %d has weird "
481 "usage 0x%lx\n", i, memc->mddt_usage);
482 unknownmem += memc->mddt_pg_cnt;
483 continue;
484 }
485 if (memc->mddt_usage & MDDT_NONVOLATILE) {
486 /* XXX should handle these... */
487 printf("WARNING: skipping non-volatile mem "
488 "cluster %d\n", i);
489 unusedmem += memc->mddt_pg_cnt;
490 continue;
491 }
492 if (memc->mddt_usage & MDDT_PALCODE) {
493 resvmem += memc->mddt_pg_cnt;
494 continue;
495 }
496
497 /*
498 * We have a memory cluster available for system
499 * software use. We must determine if this cluster
500 * holds the kernel.
501 */
502 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
503 /*
504 * XXX If the kernel uses the PROM console, we only use the
505 * XXX memory after the kernel in the first system segment,
506 * XXX to avoid clobbering prom mapping, data, etc.
507 */
508 if (!pmap_uses_prom_console() || physmem == 0) {
509 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
510 physmem += memc->mddt_pg_cnt;
511 pfn0 = memc->mddt_pfn;
512 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
513 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
514 /*
515 * Must compute the location of the kernel
516 * within the segment.
517 */
518 #if 0
519 printf("Cluster %d contains kernel\n", i);
520 #endif
521 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
522 if (!pmap_uses_prom_console()) {
523 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
524 if (pfn0 < kernstartpfn) {
525 /*
526 * There is a chunk before the kernel.
527 */
528 #if 0
529 printf("Loading chunk before kernel: "
530 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
531 #endif
532 uvm_page_physload(pfn0, kernstartpfn,
533 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
534 }
535 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
536 }
537 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
538 if (kernendpfn < pfn1) {
539 /*
540 * There is a chunk after the kernel.
541 */
542 #if 0
543 printf("Loading chunk after kernel: "
544 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
545 #endif
546 uvm_page_physload(kernendpfn, pfn1,
547 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
548 }
549 } else {
550 /*
551 * Just load this cluster as one chunk.
552 */
553 #if 0
554 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
555 pfn0, pfn1);
556 #endif
557 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
558 VM_FREELIST_DEFAULT);
559 }
560 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
561 }
562 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
563 }
564
565 /*
566 * Dump out the MDDT if it looks odd...
567 */
568 if (mddtweird) {
569 printf("\n");
570 printf("complete memory cluster information:\n");
571 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
572 printf("mddt %d:\n", i);
573 printf("\tpfn %lx\n",
574 mddtp->mddt_clusters[i].mddt_pfn);
575 printf("\tcnt %lx\n",
576 mddtp->mddt_clusters[i].mddt_pg_cnt);
577 printf("\ttest %lx\n",
578 mddtp->mddt_clusters[i].mddt_pg_test);
579 printf("\tbva %lx\n",
580 mddtp->mddt_clusters[i].mddt_v_bitaddr);
581 printf("\tbpa %lx\n",
582 mddtp->mddt_clusters[i].mddt_p_bitaddr);
583 printf("\tbcksum %lx\n",
584 mddtp->mddt_clusters[i].mddt_bit_cksum);
585 printf("\tusage %lx\n",
586 mddtp->mddt_clusters[i].mddt_usage);
587 }
588 printf("\n");
589 }
590
591 if (totalphysmem == 0)
592 panic("can't happen: system seems to have no memory!");
593 maxmem = physmem;
594 #if 0
595 printf("totalphysmem = %d\n", totalphysmem);
596 printf("physmem = %d\n", physmem);
597 printf("resvmem = %d\n", resvmem);
598 printf("unusedmem = %d\n", unusedmem);
599 printf("unknownmem = %d\n", unknownmem);
600 #endif
601
602 /*
603 * Initialize error message buffer (at end of core).
604 */
605 {
606 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
607 vsize_t reqsz = sz;
608
609 vps = &vm_physmem[vm_nphysseg - 1];
610
611 /* shrink so that it'll fit in the last segment */
612 if ((vps->avail_end - vps->avail_start) < atop(sz))
613 sz = ptoa(vps->avail_end - vps->avail_start);
614
615 vps->end -= atop(sz);
616 vps->avail_end -= atop(sz);
617 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
618 initmsgbuf(msgbufaddr, sz);
619
620 /* Remove the last segment if it now has no pages. */
621 if (vps->start == vps->end)
622 vm_nphysseg--;
623
624 /* warn if the message buffer had to be shrunk */
625 if (sz != reqsz)
626 printf("WARNING: %ld bytes not available for msgbuf "
627 "in last cluster (%ld used)\n", reqsz, sz);
628
629 }
630
631 /*
632 * NOTE: It is safe to use uvm_pageboot_alloc() before
633 * pmap_bootstrap() because our pmap_virtual_space()
634 * returns compile-time constants.
635 */
636
637 /*
638 * Init mapping for u page(s) for proc 0
639 */
640 proc0.p_addr = proc0paddr =
641 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
642
643 /*
644 * Allocate space for system data structures. These data structures
645 * are allocated here instead of cpu_startup() because physical
646 * memory is directly addressable. We don't have to map these into
647 * virtual address space.
648 */
649 size = (vsize_t)allocsys(NULL, NULL);
650 v = (caddr_t)uvm_pageboot_alloc(size);
651 if ((allocsys(v, NULL) - v) != size)
652 panic("alpha_init: table size inconsistency");
653
654 /*
655 * Initialize the virtual memory system, and set the
656 * page table base register in proc 0's PCB.
657 */
658 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
659 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
660
661 /*
662 * Initialize the rest of proc 0's PCB, and cache its physical
663 * address.
664 */
665 proc0.p_md.md_pcbpaddr =
666 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
667
668 /*
669 * Set the kernel sp, reserving space for an (empty) trapframe,
670 * and make proc0's trapframe pointer point to it for sanity.
671 */
672 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
673 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
674 proc0.p_md.md_tf =
675 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
676 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
677
678 /*
679 * Initialize the primary CPU's idle PCB to proc0's. In a
680 * MULTIPROCESSOR configuration, each CPU will later get
681 * its own idle PCB when autoconfiguration runs.
682 */
683 ci->ci_idle_pcb = &proc0paddr->u_pcb;
684 ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
685
686 /* Indicate that proc0 has a CPU. */
687 proc0.p_cpu = ci;
688
689 /*
690 * Look at arguments passed to us and compute boothowto.
691 */
692
693 boothowto = RB_SINGLE;
694 #ifdef KADB
695 boothowto |= RB_KDB;
696 #endif
697 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
698 /*
699 * Note that we'd really like to differentiate case here,
700 * but the Alpha AXP Architecture Reference Manual
701 * says that we shouldn't.
702 */
703 switch (*p) {
704 case 'a': /* autoboot */
705 case 'A':
706 boothowto &= ~RB_SINGLE;
707 break;
708
709 #ifdef DEBUG
710 case 'c': /* crash dump immediately after autoconfig */
711 case 'C':
712 boothowto |= RB_DUMP;
713 break;
714 #endif
715
716 #if defined(KGDB) || defined(DDB)
717 case 'd': /* break into the kernel debugger ASAP */
718 case 'D':
719 boothowto |= RB_KDB;
720 break;
721 #endif
722
723 case 'h': /* always halt, never reboot */
724 case 'H':
725 boothowto |= RB_HALT;
726 break;
727
728 #if 0
729 case 'm': /* mini root present in memory */
730 case 'M':
731 boothowto |= RB_MINIROOT;
732 break;
733 #endif
734
735 case 'n': /* askname */
736 case 'N':
737 boothowto |= RB_ASKNAME;
738 break;
739
740 case 's': /* single-user (default, supported for sanity) */
741 case 'S':
742 boothowto |= RB_SINGLE;
743 break;
744
745 case 'q': /* quiet boot */
746 case 'Q':
747 boothowto |= AB_QUIET;
748 break;
749
750 case 'v': /* verbose boot */
751 case 'V':
752 boothowto |= AB_VERBOSE;
753 break;
754
755 case '-':
756 /*
757 * Just ignore this. It's not required, but it's
758 * common for it to be passed regardless.
759 */
760 break;
761
762 default:
763 printf("Unrecognized boot flag '%c'.\n", *p);
764 break;
765 }
766 }
767
768
769 /*
770 * Figure out the number of cpus in the box, from RPB fields.
771 * Really. We mean it.
772 */
773 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
774 struct pcs *pcsp;
775
776 pcsp = LOCATE_PCS(hwrpb, i);
777 if ((pcsp->pcs_flags & PCS_PP) != 0)
778 ncpus++;
779 }
780
781 /*
782 * Initialize debuggers, and break into them if appropriate.
783 */
784 #ifdef DDB
785 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
786 ksym_start, ksym_end);
787 #endif
788
789 if (boothowto & RB_KDB) {
790 #if defined(KGDB)
791 kgdb_debug_init = 1;
792 kgdb_connect(1);
793 #elif defined(DDB)
794 Debugger();
795 #endif
796 }
797
798 /*
799 * Figure out our clock frequency, from RPB fields.
800 */
801 hz = hwrpb->rpb_intr_freq >> 12;
802 if (!(60 <= hz && hz <= 10240)) {
803 hz = 1024;
804 #ifdef DIAGNOSTIC
805 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
806 hwrpb->rpb_intr_freq, hz);
807 #endif
808 }
809 }
810
811 void
812 consinit()
813 {
814
815 /*
816 * Everything related to console initialization is done
817 * in alpha_init().
818 */
819 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
820 printf("consinit: %susing prom console\n",
821 pmap_uses_prom_console() ? "" : "not ");
822 #endif
823 }
824
825 #include "pckbc.h"
826 #include "pckbd.h"
827 #if (NPCKBC > 0) && (NPCKBD == 0)
828
829 #include <dev/ic/pckbcvar.h>
830
831 /*
832 * This is called by the pbkbc driver if no pckbd is configured.
833 * On the i386, it is used to glue in the old, deprecated console
834 * code. On the Alpha, it does nothing.
835 */
836 int
837 pckbc_machdep_cnattach(kbctag, kbcslot)
838 pckbc_tag_t kbctag;
839 pckbc_slot_t kbcslot;
840 {
841
842 return (ENXIO);
843 }
844 #endif /* NPCKBC > 0 && NPCKBD == 0 */
845
846 void
847 cpu_startup()
848 {
849 register unsigned i;
850 int base, residual;
851 vaddr_t minaddr, maxaddr;
852 vsize_t size;
853 char pbuf[9];
854 #if defined(DEBUG)
855 extern int pmapdebug;
856 int opmapdebug = pmapdebug;
857
858 pmapdebug = 0;
859 #endif
860
861 /*
862 * Good {morning,afternoon,evening,night}.
863 */
864 printf(version);
865 identifycpu();
866 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
867 printf("total memory = %s\n", pbuf);
868 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
869 printf("(%s reserved for PROM, ", pbuf);
870 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
871 printf("%s used by NetBSD)\n", pbuf);
872 if (unusedmem) {
873 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
874 printf("WARNING: unused memory = %s\n", pbuf);
875 }
876 if (unknownmem) {
877 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
878 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
879 }
880
881 /*
882 * Allocate virtual address space for file I/O buffers.
883 * Note they are different than the array of headers, 'buf',
884 * and usually occupy more virtual memory than physical.
885 */
886 size = MAXBSIZE * nbuf;
887 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
888 NULL, UVM_UNKNOWN_OFFSET, 0,
889 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
890 UVM_ADV_NORMAL, 0)) != 0)
891 panic("startup: cannot allocate VM for buffers");
892 base = bufpages / nbuf;
893 residual = bufpages % nbuf;
894 for (i = 0; i < nbuf; i++) {
895 vsize_t curbufsize;
896 vaddr_t curbuf;
897 struct vm_page *pg;
898
899 /*
900 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
901 * that MAXBSIZE space, we allocate and map (base+1) pages
902 * for the first "residual" buffers, and then we allocate
903 * "base" pages for the rest.
904 */
905 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
906 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
907
908 while (curbufsize) {
909 pg = uvm_pagealloc(NULL, 0, NULL, 0);
910 if (pg == NULL)
911 panic("cpu_startup: not enough memory for "
912 "buffer cache");
913 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
914 VM_PROT_READ|VM_PROT_WRITE);
915 curbuf += PAGE_SIZE;
916 curbufsize -= PAGE_SIZE;
917 }
918 }
919 pmap_update();
920
921 /*
922 * Allocate a submap for exec arguments. This map effectively
923 * limits the number of processes exec'ing at any time.
924 */
925 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
926 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
927
928 /*
929 * Allocate a submap for physio
930 */
931 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
932 VM_PHYS_SIZE, 0, FALSE, NULL);
933
934 /*
935 * No need to allocate an mbuf cluster submap. Mbuf clusters
936 * are allocated via the pool allocator, and we use K0SEG to
937 * map those pages.
938 */
939
940 #if defined(DEBUG)
941 pmapdebug = opmapdebug;
942 #endif
943 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
944 printf("avail memory = %s\n", pbuf);
945 #if 0
946 {
947 extern u_long pmap_pages_stolen;
948
949 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
950 printf("stolen memory for VM structures = %s\n", pbuf);
951 }
952 #endif
953 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
954 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
955
956 /*
957 * Set up buffers, so they can be used to read disk labels.
958 */
959 bufinit();
960
961 /*
962 * Set up the HWPCB so that it's safe to configure secondary
963 * CPUs.
964 */
965 hwrpb_primary_init();
966 }
967
968 /*
969 * Retrieve the platform name from the DSR.
970 */
971 const char *
972 alpha_dsr_sysname()
973 {
974 struct dsrdb *dsr;
975 const char *sysname;
976
977 /*
978 * DSR does not exist on early HWRPB versions.
979 */
980 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
981 return (NULL);
982
983 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
984 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
985 sizeof(u_int64_t)));
986 return (sysname);
987 }
988
989 /*
990 * Lookup the system specified system variation in the provided table,
991 * returning the model string on match.
992 */
993 const char *
994 alpha_variation_name(variation, avtp)
995 u_int64_t variation;
996 const struct alpha_variation_table *avtp;
997 {
998 int i;
999
1000 for (i = 0; avtp[i].avt_model != NULL; i++)
1001 if (avtp[i].avt_variation == variation)
1002 return (avtp[i].avt_model);
1003 return (NULL);
1004 }
1005
1006 /*
1007 * Generate a default platform name based for unknown system variations.
1008 */
1009 const char *
1010 alpha_unknown_sysname()
1011 {
1012 static char s[128]; /* safe size */
1013
1014 sprintf(s, "%s family, unknown model variation 0x%lx",
1015 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1016 return ((const char *)s);
1017 }
1018
1019 void
1020 identifycpu()
1021 {
1022 char *s;
1023 int i;
1024
1025 /*
1026 * print out CPU identification information.
1027 */
1028 printf("%s", cpu_model);
1029 for(s = cpu_model; *s; ++s)
1030 if(strncasecmp(s, "MHz", 3) == 0)
1031 goto skipMHz;
1032 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1033 skipMHz:
1034 printf(", s/n ");
1035 for (i = 0; i < 10; i++)
1036 printf("%c", hwrpb->rpb_ssn[i]);
1037 printf("\n");
1038 printf("%ld byte page size, %d processor%s.\n",
1039 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1040 #if 0
1041 /* this isn't defined for any systems that we run on? */
1042 printf("serial number 0x%lx 0x%lx\n",
1043 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1044
1045 /* and these aren't particularly useful! */
1046 printf("variation: 0x%lx, revision 0x%lx\n",
1047 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1048 #endif
1049 }
1050
1051 int waittime = -1;
1052 struct pcb dumppcb;
1053
1054 void
1055 cpu_reboot(howto, bootstr)
1056 int howto;
1057 char *bootstr;
1058 {
1059 #if defined(MULTIPROCESSOR)
1060 u_long cpu_id = cpu_number();
1061 u_long wait_mask = (1UL << cpu_id) |
1062 (1UL << hwrpb->rpb_primary_cpu_id);
1063 int i;
1064 #endif
1065
1066 /* If "always halt" was specified as a boot flag, obey. */
1067 if ((boothowto & RB_HALT) != 0)
1068 howto |= RB_HALT;
1069
1070 boothowto = howto;
1071
1072 /* If system is cold, just halt. */
1073 if (cold) {
1074 boothowto |= RB_HALT;
1075 goto haltsys;
1076 }
1077
1078 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1079 waittime = 0;
1080 vfs_shutdown();
1081 /*
1082 * If we've been adjusting the clock, the todr
1083 * will be out of synch; adjust it now.
1084 */
1085 resettodr();
1086 }
1087
1088 /* Disable interrupts. */
1089 splhigh();
1090
1091 #if defined(MULTIPROCESSOR)
1092 /*
1093 * Halt all other CPUs. If we're not the primary, the
1094 * primary will spin, waiting for us to halt.
1095 */
1096 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1097
1098 for (i = 0; i < 10000; i++) {
1099 alpha_mb();
1100 if (cpus_running == wait_mask)
1101 break;
1102 delay(1000);
1103 }
1104 alpha_mb();
1105 if (cpus_running != wait_mask)
1106 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1107 cpus_running);
1108 #endif /* MULTIPROCESSOR */
1109
1110 /* If rebooting and a dump is requested do it. */
1111 #if 0
1112 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1113 #else
1114 if (boothowto & RB_DUMP)
1115 #endif
1116 dumpsys();
1117
1118 haltsys:
1119
1120 /* run any shutdown hooks */
1121 doshutdownhooks();
1122
1123 #ifdef BOOTKEY
1124 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1125 cnpollc(1); /* for proper keyboard command handling */
1126 cngetc();
1127 cnpollc(0);
1128 printf("\n");
1129 #endif
1130
1131 /* Finally, powerdown/halt/reboot the system. */
1132 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1133 platform.powerdown != NULL) {
1134 (*platform.powerdown)();
1135 printf("WARNING: powerdown failed!\n");
1136 }
1137 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1138 #if defined(MULTIPROCESSOR)
1139 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1140 cpu_halt();
1141 else
1142 #endif
1143 prom_halt(boothowto & RB_HALT);
1144 /*NOTREACHED*/
1145 }
1146
1147 /*
1148 * These variables are needed by /sbin/savecore
1149 */
1150 u_long dumpmag = 0x8fca0101; /* magic number */
1151 int dumpsize = 0; /* pages */
1152 long dumplo = 0; /* blocks */
1153
1154 /*
1155 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1156 */
1157 int
1158 cpu_dumpsize()
1159 {
1160 int size;
1161
1162 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1163 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1164 if (roundup(size, dbtob(1)) != dbtob(1))
1165 return -1;
1166
1167 return (1);
1168 }
1169
1170 /*
1171 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1172 */
1173 u_long
1174 cpu_dump_mempagecnt()
1175 {
1176 u_long i, n;
1177
1178 n = 0;
1179 for (i = 0; i < mem_cluster_cnt; i++)
1180 n += atop(mem_clusters[i].size);
1181 return (n);
1182 }
1183
1184 /*
1185 * cpu_dump: dump machine-dependent kernel core dump headers.
1186 */
1187 int
1188 cpu_dump()
1189 {
1190 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1191 char buf[dbtob(1)];
1192 kcore_seg_t *segp;
1193 cpu_kcore_hdr_t *cpuhdrp;
1194 phys_ram_seg_t *memsegp;
1195 int i;
1196
1197 dump = bdevsw[major(dumpdev)].d_dump;
1198
1199 bzero(buf, sizeof buf);
1200 segp = (kcore_seg_t *)buf;
1201 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1202 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1203 ALIGN(sizeof(*cpuhdrp))];
1204
1205 /*
1206 * Generate a segment header.
1207 */
1208 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1209 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1210
1211 /*
1212 * Add the machine-dependent header info.
1213 */
1214 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1215 cpuhdrp->page_size = PAGE_SIZE;
1216 cpuhdrp->nmemsegs = mem_cluster_cnt;
1217
1218 /*
1219 * Fill in the memory segment descriptors.
1220 */
1221 for (i = 0; i < mem_cluster_cnt; i++) {
1222 memsegp[i].start = mem_clusters[i].start;
1223 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1224 }
1225
1226 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1227 }
1228
1229 /*
1230 * This is called by main to set dumplo and dumpsize.
1231 * Dumps always skip the first NBPG of disk space
1232 * in case there might be a disk label stored there.
1233 * If there is extra space, put dump at the end to
1234 * reduce the chance that swapping trashes it.
1235 */
1236 void
1237 cpu_dumpconf()
1238 {
1239 int nblks, dumpblks; /* size of dump area */
1240 int maj;
1241
1242 if (dumpdev == NODEV)
1243 goto bad;
1244 maj = major(dumpdev);
1245 if (maj < 0 || maj >= nblkdev)
1246 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1247 if (bdevsw[maj].d_psize == NULL)
1248 goto bad;
1249 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1250 if (nblks <= ctod(1))
1251 goto bad;
1252
1253 dumpblks = cpu_dumpsize();
1254 if (dumpblks < 0)
1255 goto bad;
1256 dumpblks += ctod(cpu_dump_mempagecnt());
1257
1258 /* If dump won't fit (incl. room for possible label), punt. */
1259 if (dumpblks > (nblks - ctod(1)))
1260 goto bad;
1261
1262 /* Put dump at end of partition */
1263 dumplo = nblks - dumpblks;
1264
1265 /* dumpsize is in page units, and doesn't include headers. */
1266 dumpsize = cpu_dump_mempagecnt();
1267 return;
1268
1269 bad:
1270 dumpsize = 0;
1271 return;
1272 }
1273
1274 /*
1275 * Dump the kernel's image to the swap partition.
1276 */
1277 #define BYTES_PER_DUMP NBPG
1278
1279 void
1280 dumpsys()
1281 {
1282 u_long totalbytesleft, bytes, i, n, memcl;
1283 u_long maddr;
1284 int psize;
1285 daddr_t blkno;
1286 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1287 int error;
1288
1289 /* Save registers. */
1290 savectx(&dumppcb);
1291
1292 if (dumpdev == NODEV)
1293 return;
1294
1295 /*
1296 * For dumps during autoconfiguration,
1297 * if dump device has already configured...
1298 */
1299 if (dumpsize == 0)
1300 cpu_dumpconf();
1301 if (dumplo <= 0) {
1302 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1303 minor(dumpdev));
1304 return;
1305 }
1306 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1307 minor(dumpdev), dumplo);
1308
1309 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1310 printf("dump ");
1311 if (psize == -1) {
1312 printf("area unavailable\n");
1313 return;
1314 }
1315
1316 /* XXX should purge all outstanding keystrokes. */
1317
1318 if ((error = cpu_dump()) != 0)
1319 goto err;
1320
1321 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1322 blkno = dumplo + cpu_dumpsize();
1323 dump = bdevsw[major(dumpdev)].d_dump;
1324 error = 0;
1325
1326 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1327 maddr = mem_clusters[memcl].start;
1328 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1329
1330 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1331
1332 /* Print out how many MBs we to go. */
1333 if ((totalbytesleft % (1024*1024)) == 0)
1334 printf("%ld ", totalbytesleft / (1024 * 1024));
1335
1336 /* Limit size for next transfer. */
1337 n = bytes - i;
1338 if (n > BYTES_PER_DUMP)
1339 n = BYTES_PER_DUMP;
1340
1341 error = (*dump)(dumpdev, blkno,
1342 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1343 if (error)
1344 goto err;
1345 maddr += n;
1346 blkno += btodb(n); /* XXX? */
1347
1348 /* XXX should look for keystrokes, to cancel. */
1349 }
1350 }
1351
1352 err:
1353 switch (error) {
1354
1355 case ENXIO:
1356 printf("device bad\n");
1357 break;
1358
1359 case EFAULT:
1360 printf("device not ready\n");
1361 break;
1362
1363 case EINVAL:
1364 printf("area improper\n");
1365 break;
1366
1367 case EIO:
1368 printf("i/o error\n");
1369 break;
1370
1371 case EINTR:
1372 printf("aborted from console\n");
1373 break;
1374
1375 case 0:
1376 printf("succeeded\n");
1377 break;
1378
1379 default:
1380 printf("error %d\n", error);
1381 break;
1382 }
1383 printf("\n\n");
1384 delay(1000);
1385 }
1386
1387 void
1388 frametoreg(framep, regp)
1389 struct trapframe *framep;
1390 struct reg *regp;
1391 {
1392
1393 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1394 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1395 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1396 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1397 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1398 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1399 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1400 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1401 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1402 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1403 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1404 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1405 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1406 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1407 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1408 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1409 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1410 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1411 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1412 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1413 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1414 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1415 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1416 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1417 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1418 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1419 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1420 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1421 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1422 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1423 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1424 regp->r_regs[R_ZERO] = 0;
1425 }
1426
1427 void
1428 regtoframe(regp, framep)
1429 struct reg *regp;
1430 struct trapframe *framep;
1431 {
1432
1433 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1434 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1435 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1436 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1437 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1438 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1439 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1440 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1441 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1442 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1443 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1444 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1445 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1446 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1447 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1448 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1449 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1450 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1451 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1452 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1453 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1454 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1455 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1456 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1457 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1458 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1459 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1460 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1461 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1462 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1463 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1464 /* ??? = regp->r_regs[R_ZERO]; */
1465 }
1466
1467 void
1468 printregs(regp)
1469 struct reg *regp;
1470 {
1471 int i;
1472
1473 for (i = 0; i < 32; i++)
1474 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1475 i & 1 ? "\n" : "\t");
1476 }
1477
1478 void
1479 regdump(framep)
1480 struct trapframe *framep;
1481 {
1482 struct reg reg;
1483
1484 frametoreg(framep, ®);
1485 reg.r_regs[R_SP] = alpha_pal_rdusp();
1486
1487 printf("REGISTERS:\n");
1488 printregs(®);
1489 }
1490
1491
1492 /*
1493 * Send an interrupt to process.
1494 */
1495 void
1496 sendsig(catcher, sig, mask, code)
1497 sig_t catcher;
1498 int sig;
1499 sigset_t *mask;
1500 u_long code;
1501 {
1502 struct proc *p = curproc;
1503 struct sigcontext *scp, ksc;
1504 struct trapframe *frame;
1505 int onstack, fsize, rndfsize;
1506
1507 frame = p->p_md.md_tf;
1508
1509 /* Do we need to jump onto the signal stack? */
1510 onstack =
1511 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1512 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1513
1514 /* Allocate space for the signal handler context. */
1515 fsize = sizeof(ksc);
1516 rndfsize = ((fsize + 15) / 16) * 16;
1517
1518 if (onstack)
1519 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1520 p->p_sigctx.ps_sigstk.ss_size);
1521 else
1522 scp = (struct sigcontext *)(alpha_pal_rdusp());
1523 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1524
1525 #ifdef DEBUG
1526 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1527 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1528 sig, &onstack, scp);
1529 #endif
1530
1531 /* Build stack frame for signal trampoline. */
1532 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1533 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1534
1535 /* Save register context. */
1536 frametoreg(frame, (struct reg *)ksc.sc_regs);
1537 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1538 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1539
1540 /* save the floating-point state, if necessary, then copy it. */
1541 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1542 fpusave_proc(p, 1);
1543 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1544 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1545 sizeof(struct fpreg));
1546 ksc.sc_fp_control = alpha_read_fp_c(p);
1547 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1548 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1549
1550 /* Save signal stack. */
1551 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1552
1553 /* Save signal mask. */
1554 ksc.sc_mask = *mask;
1555
1556 #ifdef COMPAT_13
1557 /*
1558 * XXX We always have to save an old style signal mask because
1559 * XXX we might be delivering a signal to a process which will
1560 * XXX escape from the signal in a non-standard way and invoke
1561 * XXX sigreturn() directly.
1562 */
1563 {
1564 /* Note: it's a long in the stack frame. */
1565 sigset13_t mask13;
1566
1567 native_sigset_to_sigset13(mask, &mask13);
1568 ksc.__sc_mask13 = mask13;
1569 }
1570 #endif
1571
1572 #ifdef COMPAT_OSF1
1573 /*
1574 * XXX Create an OSF/1-style sigcontext and associated goo.
1575 */
1576 #endif
1577
1578 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1579 /*
1580 * Process has trashed its stack; give it an illegal
1581 * instruction to halt it in its tracks.
1582 */
1583 #ifdef DEBUG
1584 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1585 printf("sendsig(%d): copyout failed on sig %d\n",
1586 p->p_pid, sig);
1587 #endif
1588 sigexit(p, SIGILL);
1589 /* NOTREACHED */
1590 }
1591 #ifdef DEBUG
1592 if (sigdebug & SDB_FOLLOW)
1593 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1594 scp, code);
1595 #endif
1596
1597 /* Set up the registers to return to sigcode. */
1598 frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
1599 frame->tf_regs[FRAME_A0] = sig;
1600 frame->tf_regs[FRAME_A1] = code;
1601 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1602 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1603 alpha_pal_wrusp((unsigned long)scp);
1604
1605 /* Remember that we're now on the signal stack. */
1606 if (onstack)
1607 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1608
1609 #ifdef DEBUG
1610 if (sigdebug & SDB_FOLLOW)
1611 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1612 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1613 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1614 printf("sendsig(%d): sig %d returns\n",
1615 p->p_pid, sig);
1616 #endif
1617 }
1618
1619 /*
1620 * System call to cleanup state after a signal
1621 * has been taken. Reset signal mask and
1622 * stack state from context left by sendsig (above).
1623 * Return to previous pc and psl as specified by
1624 * context left by sendsig. Check carefully to
1625 * make sure that the user has not modified the
1626 * psl to gain improper privileges or to cause
1627 * a machine fault.
1628 */
1629 /* ARGSUSED */
1630 int
1631 sys___sigreturn14(p, v, retval)
1632 struct proc *p;
1633 void *v;
1634 register_t *retval;
1635 {
1636 struct sys___sigreturn14_args /* {
1637 syscallarg(struct sigcontext *) sigcntxp;
1638 } */ *uap = v;
1639 struct sigcontext *scp, ksc;
1640
1641 /*
1642 * The trampoline code hands us the context.
1643 * It is unsafe to keep track of it ourselves, in the event that a
1644 * program jumps out of a signal handler.
1645 */
1646 scp = SCARG(uap, sigcntxp);
1647 #ifdef DEBUG
1648 if (sigdebug & SDB_FOLLOW)
1649 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1650 #endif
1651 if (ALIGN(scp) != (u_int64_t)scp)
1652 return (EINVAL);
1653
1654 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1655 return (EFAULT);
1656
1657 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1658 return (EINVAL);
1659
1660 /* Restore register context. */
1661 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1662 p->p_md.md_tf->tf_regs[FRAME_PS] =
1663 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1664
1665 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1666 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1667
1668 /* XXX ksc.sc_ownedfp ? */
1669 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1670 fpusave_proc(p, 0);
1671 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1672 sizeof(struct fpreg));
1673 p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1674 p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1675
1676 /* Restore signal stack. */
1677 if (ksc.sc_onstack & SS_ONSTACK)
1678 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1679 else
1680 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1681
1682 /* Restore signal mask. */
1683 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1684
1685 #ifdef DEBUG
1686 if (sigdebug & SDB_FOLLOW)
1687 printf("sigreturn(%d): returns\n", p->p_pid);
1688 #endif
1689 return (EJUSTRETURN);
1690 }
1691
1692 /*
1693 * machine dependent system variables.
1694 */
1695 int
1696 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1697 int *name;
1698 u_int namelen;
1699 void *oldp;
1700 size_t *oldlenp;
1701 void *newp;
1702 size_t newlen;
1703 struct proc *p;
1704 {
1705 dev_t consdev;
1706
1707 /* all sysctl names at this level are terminal */
1708 if (namelen != 1)
1709 return (ENOTDIR); /* overloaded */
1710
1711 switch (name[0]) {
1712 case CPU_CONSDEV:
1713 if (cn_tab != NULL)
1714 consdev = cn_tab->cn_dev;
1715 else
1716 consdev = NODEV;
1717 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1718 sizeof consdev));
1719
1720 case CPU_ROOT_DEVICE:
1721 return (sysctl_rdstring(oldp, oldlenp, newp,
1722 root_device->dv_xname));
1723
1724 case CPU_UNALIGNED_PRINT:
1725 return (sysctl_int(oldp, oldlenp, newp, newlen,
1726 &alpha_unaligned_print));
1727
1728 case CPU_UNALIGNED_FIX:
1729 return (sysctl_int(oldp, oldlenp, newp, newlen,
1730 &alpha_unaligned_fix));
1731
1732 case CPU_UNALIGNED_SIGBUS:
1733 return (sysctl_int(oldp, oldlenp, newp, newlen,
1734 &alpha_unaligned_sigbus));
1735
1736 case CPU_BOOTED_KERNEL:
1737 return (sysctl_rdstring(oldp, oldlenp, newp,
1738 bootinfo.booted_kernel));
1739
1740 case CPU_FP_SYNC_COMPLETE:
1741 return (sysctl_int(oldp, oldlenp, newp, newlen,
1742 &alpha_fp_sync_complete));
1743
1744 default:
1745 return (EOPNOTSUPP);
1746 }
1747 /* NOTREACHED */
1748 }
1749
1750 /*
1751 * Set registers on exec.
1752 */
1753 void
1754 setregs(p, pack, stack)
1755 register struct proc *p;
1756 struct exec_package *pack;
1757 u_long stack;
1758 {
1759 struct trapframe *tfp = p->p_md.md_tf;
1760 #ifdef DEBUG
1761 int i;
1762 #endif
1763
1764 #ifdef DEBUG
1765 /*
1766 * Crash and dump, if the user requested it.
1767 */
1768 if (boothowto & RB_DUMP)
1769 panic("crash requested by boot flags");
1770 #endif
1771
1772 #ifdef DEBUG
1773 for (i = 0; i < FRAME_SIZE; i++)
1774 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1775 #else
1776 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1777 #endif
1778 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1779 alpha_pal_wrusp(stack);
1780 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1781 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1782
1783 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1784 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1785 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1786 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1787 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1788
1789 p->p_md.md_flags &= ~MDP_FPUSED;
1790 if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
1791 p->p_md.md_flags &= ~MDP_FP_C;
1792 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1793 }
1794 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1795 fpusave_proc(p, 0);
1796 }
1797
1798 /*
1799 * Release the FPU.
1800 */
1801 void
1802 fpusave_cpu(struct cpu_info *ci, int save)
1803 {
1804 struct proc *p;
1805 #if defined(MULTIPROCESSOR)
1806 int s;
1807 #endif
1808
1809 KDASSERT(ci == curcpu());
1810
1811 #if defined(MULTIPROCESSOR)
1812 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1813 #endif
1814
1815 p = ci->ci_fpcurproc;
1816 if (p == NULL)
1817 goto out;
1818
1819 if (save) {
1820 alpha_pal_wrfen(1);
1821 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1822 }
1823
1824 alpha_pal_wrfen(0);
1825
1826 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1827
1828 p->p_addr->u_pcb.pcb_fpcpu = NULL;
1829 ci->ci_fpcurproc = NULL;
1830
1831 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1832
1833 out:
1834 #if defined(MULTIPROCESSOR)
1835 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1836 #endif
1837 return;
1838 }
1839
1840 /*
1841 * Synchronize FP state for this process.
1842 */
1843 void
1844 fpusave_proc(struct proc *p, int save)
1845 {
1846 struct cpu_info *ci = curcpu();
1847 struct cpu_info *oci;
1848 #if defined(MULTIPROCESSOR)
1849 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1850 int s, spincount;
1851 #endif
1852
1853 KDASSERT(p->p_addr != NULL);
1854 KDASSERT(p->p_flag & P_INMEM);
1855
1856 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1857
1858 oci = p->p_addr->u_pcb.pcb_fpcpu;
1859 if (oci == NULL) {
1860 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1861 return;
1862 }
1863
1864 #if defined(MULTIPROCESSOR)
1865 if (oci == ci) {
1866 KASSERT(ci->ci_fpcurproc == p);
1867 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1868 fpusave_cpu(ci, save);
1869 return;
1870 }
1871
1872 KASSERT(oci->ci_fpcurproc == p);
1873 alpha_send_ipi(oci->ci_cpuid, ipi);
1874 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1875
1876 spincount = 0;
1877 while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
1878 spincount++;
1879 delay(1000); /* XXX */
1880 if (spincount > 10000)
1881 panic("fpsave ipi didn't");
1882 }
1883 #else
1884 KASSERT(ci->ci_fpcurproc == p);
1885 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1886 fpusave_cpu(ci, save);
1887 #endif /* MULTIPROCESSOR */
1888 }
1889
1890 /*
1891 * The following primitives manipulate the run queues. _whichqs tells which
1892 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1893 * into queues, Remrunqueue removes them from queues. The running process is
1894 * on no queue, other processes are on a queue related to p->p_priority,
1895 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1896 * available queues.
1897 */
1898 /*
1899 * setrunqueue(p)
1900 * proc *p;
1901 *
1902 * Call should be made at splclock(), and p->p_stat should be SRUN.
1903 */
1904
1905 void
1906 setrunqueue(p)
1907 struct proc *p;
1908 {
1909 int bit;
1910
1911 /* firewall: p->p_back must be NULL */
1912 if (p->p_back != NULL)
1913 panic("setrunqueue");
1914
1915 bit = p->p_priority >> 2;
1916 sched_whichqs |= (1 << bit);
1917 p->p_forw = (struct proc *)&sched_qs[bit];
1918 p->p_back = sched_qs[bit].ph_rlink;
1919 p->p_back->p_forw = p;
1920 sched_qs[bit].ph_rlink = p;
1921 }
1922
1923 /*
1924 * remrunqueue(p)
1925 *
1926 * Call should be made at splclock().
1927 */
1928 void
1929 remrunqueue(p)
1930 struct proc *p;
1931 {
1932 int bit;
1933
1934 bit = p->p_priority >> 2;
1935 if ((sched_whichqs & (1 << bit)) == 0)
1936 panic("remrunqueue");
1937
1938 p->p_back->p_forw = p->p_forw;
1939 p->p_forw->p_back = p->p_back;
1940 p->p_back = NULL; /* for firewall checking. */
1941
1942 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1943 sched_whichqs &= ~(1 << bit);
1944 }
1945
1946 /*
1947 * Wait "n" microseconds.
1948 */
1949 void
1950 delay(n)
1951 unsigned long n;
1952 {
1953 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1954
1955 if (n == 0)
1956 return;
1957
1958 pcc0 = alpha_rpcc() & 0xffffffffUL;
1959 cycles = 0;
1960 usec = 0;
1961
1962 while (usec <= n) {
1963 /*
1964 * Get the next CPU cycle count- assumes that we cannot
1965 * have had more than one 32 bit overflow.
1966 */
1967 pcc1 = alpha_rpcc() & 0xffffffffUL;
1968 if (pcc1 < pcc0)
1969 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1970 else
1971 curcycle = pcc1 - pcc0;
1972
1973 /*
1974 * We now have the number of processor cycles since we
1975 * last checked. Add the current cycle count to the
1976 * running total. If it's over cycles_per_usec, increment
1977 * the usec counter.
1978 */
1979 cycles += curcycle;
1980 while (cycles > cycles_per_usec) {
1981 usec++;
1982 cycles -= cycles_per_usec;
1983 }
1984 pcc0 = pcc1;
1985 }
1986 }
1987
1988 #if defined(COMPAT_OSF1) || 1 /* XXX */
1989 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1990 u_long));
1991 #endif
1992
1993 #if 1 /* XXX */
1994 void
1995 cpu_exec_ecoff_setregs(p, epp, stack)
1996 struct proc *p;
1997 struct exec_package *epp;
1998 u_long stack;
1999 {
2000 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2001
2002 setregs(p, epp, stack);
2003 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2004 }
2005
2006 /*
2007 * cpu_exec_ecoff_hook():
2008 * cpu-dependent ECOFF format hook for execve().
2009 *
2010 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2011 *
2012 */
2013 int
2014 cpu_exec_ecoff_probe(p, epp)
2015 struct proc *p;
2016 struct exec_package *epp;
2017 {
2018 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2019 int error;
2020
2021 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2022 error = 0;
2023 else
2024 error = ENOEXEC;
2025
2026 return (error);
2027 }
2028 #endif
2029
2030 int
2031 alpha_pa_access(pa)
2032 u_long pa;
2033 {
2034 int i;
2035
2036 for (i = 0; i < mem_cluster_cnt; i++) {
2037 if (pa < mem_clusters[i].start)
2038 continue;
2039 if ((pa - mem_clusters[i].start) >=
2040 (mem_clusters[i].size & ~PAGE_MASK))
2041 continue;
2042 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2043 }
2044
2045 /*
2046 * Address is not a memory address. If we're secure, disallow
2047 * access. Otherwise, grant read/write.
2048 */
2049 if (securelevel > 0)
2050 return (PROT_NONE);
2051 else
2052 return (PROT_READ | PROT_WRITE);
2053 }
2054
2055 /* XXX XXX BEGIN XXX XXX */
2056 paddr_t alpha_XXX_dmamap_or; /* XXX */
2057 /* XXX */
2058 paddr_t /* XXX */
2059 alpha_XXX_dmamap(v) /* XXX */
2060 vaddr_t v; /* XXX */
2061 { /* XXX */
2062 /* XXX */
2063 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2064 } /* XXX */
2065 /* XXX XXX END XXX XXX */
2066
2067 char *
2068 dot_conv(x)
2069 unsigned long x;
2070 {
2071 int i;
2072 char *xc;
2073 static int next;
2074 static char space[2][20];
2075
2076 xc = space[next ^= 1] + sizeof space[0];
2077 *--xc = '\0';
2078 for (i = 0;; ++i) {
2079 if (i && (i & 3) == 0)
2080 *--xc = '.';
2081 *--xc = "0123456789abcdef"[x & 0xf];
2082 x >>= 4;
2083 if (x == 0)
2084 break;
2085 }
2086 return xc;
2087 }
2088