machdep.c revision 1.249 1 /* $NetBSD: machdep.c,v 1.249 2001/09/10 21:19:08 chris Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74
75 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
76
77 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.249 2001/09/10 21:19:08 chris Exp $");
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/signalvar.h>
82 #include <sys/kernel.h>
83 #include <sys/map.h>
84 #include <sys/proc.h>
85 #include <sys/sched.h>
86 #include <sys/buf.h>
87 #include <sys/reboot.h>
88 #include <sys/device.h>
89 #include <sys/file.h>
90 #include <sys/malloc.h>
91 #include <sys/mbuf.h>
92 #include <sys/mman.h>
93 #include <sys/msgbuf.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/user.h>
97 #include <sys/exec.h>
98 #include <sys/exec_ecoff.h>
99 #include <sys/core.h>
100 #include <sys/kcore.h>
101 #include <machine/kcore.h>
102 #include <machine/fpu.h>
103
104 #include <sys/mount.h>
105 #include <sys/syscallargs.h>
106
107 #include <uvm/uvm_extern.h>
108 #include <sys/sysctl.h>
109
110 #include <dev/cons.h>
111
112 #include <machine/autoconf.h>
113 #include <machine/cpu.h>
114 #include <machine/reg.h>
115 #include <machine/rpb.h>
116 #include <machine/prom.h>
117 #include <machine/conf.h>
118 #include <machine/ieeefp.h>
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 #ifdef KGDB
129 #include <sys/kgdb.h>
130 #endif
131
132 #ifdef DEBUG
133 #include <machine/sigdebug.h>
134 #endif
135
136 #include <machine/alpha.h>
137
138 struct vm_map *exec_map = NULL;
139 struct vm_map *mb_map = NULL;
140 struct vm_map *phys_map = NULL;
141
142 caddr_t msgbufaddr;
143
144 int maxmem; /* max memory per process */
145
146 int totalphysmem; /* total amount of physical memory in system */
147 int physmem; /* physical memory used by NetBSD + some rsvd */
148 int resvmem; /* amount of memory reserved for PROM */
149 int unusedmem; /* amount of memory for OS that we don't use */
150 int unknownmem; /* amount of memory with an unknown use */
151
152 int cputype; /* system type, from the RPB */
153
154 int bootdev_debug = 0; /* patchable, or from DDB */
155
156 /*
157 * XXX We need an address to which we can assign things so that they
158 * won't be optimized away because we didn't use the value.
159 */
160 u_int32_t no_optimize;
161
162 /* the following is used externally (sysctl_hw) */
163 char machine[] = MACHINE; /* from <machine/param.h> */
164 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
165 char cpu_model[128];
166
167 struct user *proc0paddr;
168
169 /* Number of machine cycles per microsecond */
170 u_int64_t cycles_per_usec;
171
172 /* number of cpus in the box. really! */
173 int ncpus;
174
175 struct bootinfo_kernel bootinfo;
176
177 /* For built-in TCDS */
178 #if defined(DEC_3000_300) || defined(DEC_3000_500)
179 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
180 #endif
181
182 struct platform platform;
183
184 #ifdef DDB
185 /* start and end of kernel symbol table */
186 void *ksym_start, *ksym_end;
187 #endif
188
189 /* for cpu_sysctl() */
190 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
191 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
192 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
193 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
194
195 /*
196 * XXX This should be dynamically sized, but we have the chicken-egg problem!
197 * XXX it should also be larger than it is, because not all of the mddt
198 * XXX clusters end up being used for VM.
199 */
200 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
201 int mem_cluster_cnt;
202
203 int cpu_dump __P((void));
204 int cpu_dumpsize __P((void));
205 u_long cpu_dump_mempagecnt __P((void));
206 void dumpsys __P((void));
207 void identifycpu __P((void));
208 void printregs __P((struct reg *));
209
210 void
211 alpha_init(pfn, ptb, bim, bip, biv)
212 u_long pfn; /* first free PFN number */
213 u_long ptb; /* PFN of current level 1 page table */
214 u_long bim; /* bootinfo magic */
215 u_long bip; /* bootinfo pointer */
216 u_long biv; /* bootinfo version */
217 {
218 extern char kernel_text[], _end[];
219 struct mddt *mddtp;
220 struct mddt_cluster *memc;
221 int i, mddtweird;
222 struct vm_physseg *vps;
223 vaddr_t kernstart, kernend;
224 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
225 vsize_t size;
226 cpuid_t cpu_id;
227 struct cpu_info *ci;
228 char *p;
229 caddr_t v;
230 const char *bootinfo_msg;
231 const struct cpuinit *c;
232
233 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
234
235 /*
236 * Turn off interrupts (not mchecks) and floating point.
237 * Make sure the instruction and data streams are consistent.
238 */
239 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
240 alpha_pal_wrfen(0);
241 ALPHA_TBIA();
242 alpha_pal_imb();
243
244 /* Initialize the SCB. */
245 scb_init();
246
247 cpu_id = cpu_number();
248
249 #if defined(MULTIPROCESSOR)
250 /*
251 * Set our SysValue to the address of our cpu_info structure.
252 * Secondary processors do this in their spinup trampoline.
253 */
254 alpha_pal_wrval((u_long)&cpu_info_primary);
255 cpu_info[cpu_id] = &cpu_info_primary;
256 #endif
257
258 ci = curcpu();
259 ci->ci_cpuid = cpu_id;
260
261 /*
262 * Get critical system information (if possible, from the
263 * information provided by the boot program).
264 */
265 bootinfo_msg = NULL;
266 if (bim == BOOTINFO_MAGIC) {
267 if (biv == 0) { /* backward compat */
268 biv = *(u_long *)bip;
269 bip += 8;
270 }
271 switch (biv) {
272 case 1: {
273 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
274
275 bootinfo.ssym = v1p->ssym;
276 bootinfo.esym = v1p->esym;
277 /* hwrpb may not be provided by boot block in v1 */
278 if (v1p->hwrpb != NULL) {
279 bootinfo.hwrpb_phys =
280 ((struct rpb *)v1p->hwrpb)->rpb_phys;
281 bootinfo.hwrpb_size = v1p->hwrpbsize;
282 } else {
283 bootinfo.hwrpb_phys =
284 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
285 bootinfo.hwrpb_size =
286 ((struct rpb *)HWRPB_ADDR)->rpb_size;
287 }
288 memcpy(bootinfo.boot_flags, v1p->boot_flags,
289 min(sizeof v1p->boot_flags,
290 sizeof bootinfo.boot_flags));
291 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
292 min(sizeof v1p->booted_kernel,
293 sizeof bootinfo.booted_kernel));
294 /* booted dev not provided in bootinfo */
295 init_prom_interface((struct rpb *)
296 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
297 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
298 sizeof bootinfo.booted_dev);
299 break;
300 }
301 default:
302 bootinfo_msg = "unknown bootinfo version";
303 goto nobootinfo;
304 }
305 } else {
306 bootinfo_msg = "boot program did not pass bootinfo";
307 nobootinfo:
308 bootinfo.ssym = (u_long)_end;
309 bootinfo.esym = (u_long)_end;
310 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
311 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
312 init_prom_interface((struct rpb *)HWRPB_ADDR);
313 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
314 sizeof bootinfo.boot_flags);
315 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
316 sizeof bootinfo.booted_kernel);
317 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
318 sizeof bootinfo.booted_dev);
319 }
320
321 /*
322 * Initialize the kernel's mapping of the RPB. It's needed for
323 * lots of things.
324 */
325 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
326
327 #if defined(DEC_3000_300) || defined(DEC_3000_500)
328 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
329 hwrpb->rpb_type == ST_DEC_3000_500) {
330 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
331 sizeof(dec_3000_scsiid));
332 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
333 sizeof(dec_3000_scsifast));
334 }
335 #endif
336
337 /*
338 * Remember how many cycles there are per microsecond,
339 * so that we can use delay(). Round up, for safety.
340 */
341 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
342
343 /*
344 * Initalize the (temporary) bootstrap console interface, so
345 * we can use printf until the VM system starts being setup.
346 * The real console is initialized before then.
347 */
348 init_bootstrap_console();
349
350 /* OUTPUT NOW ALLOWED */
351
352 /* delayed from above */
353 if (bootinfo_msg)
354 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
355 bootinfo_msg, bim, bip, biv);
356
357 /* Initialize the trap vectors on the primary processor. */
358 trap_init();
359
360 /*
361 * find out this system's page size
362 */
363 PAGE_SIZE = hwrpb->rpb_page_size;
364 if (PAGE_SIZE != 8192)
365 panic("page size %d != 8192?!", PAGE_SIZE);
366
367 /*
368 * Initialize PAGE_SIZE-dependent variables.
369 */
370 uvm_setpagesize();
371
372 /*
373 * Find out what hardware we're on, and do basic initialization.
374 */
375 cputype = hwrpb->rpb_type;
376 if (cputype < 0) {
377 /*
378 * At least some white-box systems have SRM which
379 * reports a systype that's the negative of their
380 * blue-box counterpart.
381 */
382 cputype = -cputype;
383 }
384 c = platform_lookup(cputype);
385 if (c == NULL) {
386 platform_not_supported();
387 /* NOTREACHED */
388 }
389 (*c->init)();
390 strcpy(cpu_model, platform.model);
391
392 /*
393 * Initalize the real console, so that the bootstrap console is
394 * no longer necessary.
395 */
396 (*platform.cons_init)();
397
398 #ifdef DIAGNOSTIC
399 /* Paranoid sanity checking */
400
401 /* We should always be running on the primary. */
402 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
403
404 /*
405 * On single-CPU systypes, the primary should always be CPU 0,
406 * except on Alpha 8200 systems where the CPU id is related
407 * to the VID, which is related to the Turbo Laser node id.
408 */
409 if (cputype != ST_DEC_21000)
410 assert(hwrpb->rpb_primary_cpu_id == 0);
411 #endif
412
413 /* NO MORE FIRMWARE ACCESS ALLOWED */
414 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
415 /*
416 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
417 * XXX pmap_uses_prom_console() evaluates to non-zero.)
418 */
419 #endif
420
421 /*
422 * Find the beginning and end of the kernel (and leave a
423 * bit of space before the beginning for the bootstrap
424 * stack).
425 */
426 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
427 #ifdef DDB
428 ksym_start = (void *)bootinfo.ssym;
429 ksym_end = (void *)bootinfo.esym;
430 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
431 #else
432 kernend = (vaddr_t)round_page((vaddr_t)_end);
433 #endif
434
435 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
436 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
437
438 /*
439 * Find out how much memory is available, by looking at
440 * the memory cluster descriptors. This also tries to do
441 * its best to detect things things that have never been seen
442 * before...
443 */
444 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
445
446 /* MDDT SANITY CHECKING */
447 mddtweird = 0;
448 if (mddtp->mddt_cluster_cnt < 2) {
449 mddtweird = 1;
450 printf("WARNING: weird number of mem clusters: %lu\n",
451 mddtp->mddt_cluster_cnt);
452 }
453
454 #if 0
455 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
456 #endif
457
458 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
459 memc = &mddtp->mddt_clusters[i];
460 #if 0
461 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
462 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
463 #endif
464 totalphysmem += memc->mddt_pg_cnt;
465 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
466 mem_clusters[mem_cluster_cnt].start =
467 ptoa(memc->mddt_pfn);
468 mem_clusters[mem_cluster_cnt].size =
469 ptoa(memc->mddt_pg_cnt);
470 if (memc->mddt_usage & MDDT_mbz ||
471 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
472 memc->mddt_usage & MDDT_PALCODE)
473 mem_clusters[mem_cluster_cnt].size |=
474 PROT_READ;
475 else
476 mem_clusters[mem_cluster_cnt].size |=
477 PROT_READ | PROT_WRITE | PROT_EXEC;
478 mem_cluster_cnt++;
479 }
480
481 if (memc->mddt_usage & MDDT_mbz) {
482 mddtweird = 1;
483 printf("WARNING: mem cluster %d has weird "
484 "usage 0x%lx\n", i, memc->mddt_usage);
485 unknownmem += memc->mddt_pg_cnt;
486 continue;
487 }
488 if (memc->mddt_usage & MDDT_NONVOLATILE) {
489 /* XXX should handle these... */
490 printf("WARNING: skipping non-volatile mem "
491 "cluster %d\n", i);
492 unusedmem += memc->mddt_pg_cnt;
493 continue;
494 }
495 if (memc->mddt_usage & MDDT_PALCODE) {
496 resvmem += memc->mddt_pg_cnt;
497 continue;
498 }
499
500 /*
501 * We have a memory cluster available for system
502 * software use. We must determine if this cluster
503 * holds the kernel.
504 */
505 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
506 /*
507 * XXX If the kernel uses the PROM console, we only use the
508 * XXX memory after the kernel in the first system segment,
509 * XXX to avoid clobbering prom mapping, data, etc.
510 */
511 if (!pmap_uses_prom_console() || physmem == 0) {
512 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
513 physmem += memc->mddt_pg_cnt;
514 pfn0 = memc->mddt_pfn;
515 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
516 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
517 /*
518 * Must compute the location of the kernel
519 * within the segment.
520 */
521 #if 0
522 printf("Cluster %d contains kernel\n", i);
523 #endif
524 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
525 if (!pmap_uses_prom_console()) {
526 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
527 if (pfn0 < kernstartpfn) {
528 /*
529 * There is a chunk before the kernel.
530 */
531 #if 0
532 printf("Loading chunk before kernel: "
533 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
534 #endif
535 uvm_page_physload(pfn0, kernstartpfn,
536 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
537 }
538 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
539 }
540 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
541 if (kernendpfn < pfn1) {
542 /*
543 * There is a chunk after the kernel.
544 */
545 #if 0
546 printf("Loading chunk after kernel: "
547 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
548 #endif
549 uvm_page_physload(kernendpfn, pfn1,
550 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
551 }
552 } else {
553 /*
554 * Just load this cluster as one chunk.
555 */
556 #if 0
557 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
558 pfn0, pfn1);
559 #endif
560 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
561 VM_FREELIST_DEFAULT);
562 }
563 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
564 }
565 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
566 }
567
568 /*
569 * Dump out the MDDT if it looks odd...
570 */
571 if (mddtweird) {
572 printf("\n");
573 printf("complete memory cluster information:\n");
574 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
575 printf("mddt %d:\n", i);
576 printf("\tpfn %lx\n",
577 mddtp->mddt_clusters[i].mddt_pfn);
578 printf("\tcnt %lx\n",
579 mddtp->mddt_clusters[i].mddt_pg_cnt);
580 printf("\ttest %lx\n",
581 mddtp->mddt_clusters[i].mddt_pg_test);
582 printf("\tbva %lx\n",
583 mddtp->mddt_clusters[i].mddt_v_bitaddr);
584 printf("\tbpa %lx\n",
585 mddtp->mddt_clusters[i].mddt_p_bitaddr);
586 printf("\tbcksum %lx\n",
587 mddtp->mddt_clusters[i].mddt_bit_cksum);
588 printf("\tusage %lx\n",
589 mddtp->mddt_clusters[i].mddt_usage);
590 }
591 printf("\n");
592 }
593
594 if (totalphysmem == 0)
595 panic("can't happen: system seems to have no memory!");
596 maxmem = physmem;
597 #if 0
598 printf("totalphysmem = %d\n", totalphysmem);
599 printf("physmem = %d\n", physmem);
600 printf("resvmem = %d\n", resvmem);
601 printf("unusedmem = %d\n", unusedmem);
602 printf("unknownmem = %d\n", unknownmem);
603 #endif
604
605 /*
606 * Initialize error message buffer (at end of core).
607 */
608 {
609 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
610 vsize_t reqsz = sz;
611
612 vps = &vm_physmem[vm_nphysseg - 1];
613
614 /* shrink so that it'll fit in the last segment */
615 if ((vps->avail_end - vps->avail_start) < atop(sz))
616 sz = ptoa(vps->avail_end - vps->avail_start);
617
618 vps->end -= atop(sz);
619 vps->avail_end -= atop(sz);
620 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
621 initmsgbuf(msgbufaddr, sz);
622
623 /* Remove the last segment if it now has no pages. */
624 if (vps->start == vps->end)
625 vm_nphysseg--;
626
627 /* warn if the message buffer had to be shrunk */
628 if (sz != reqsz)
629 printf("WARNING: %ld bytes not available for msgbuf "
630 "in last cluster (%ld used)\n", reqsz, sz);
631
632 }
633
634 /*
635 * NOTE: It is safe to use uvm_pageboot_alloc() before
636 * pmap_bootstrap() because our pmap_virtual_space()
637 * returns compile-time constants.
638 */
639
640 /*
641 * Init mapping for u page(s) for proc 0
642 */
643 proc0.p_addr = proc0paddr =
644 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
645
646 /*
647 * Allocate space for system data structures. These data structures
648 * are allocated here instead of cpu_startup() because physical
649 * memory is directly addressable. We don't have to map these into
650 * virtual address space.
651 */
652 size = (vsize_t)allocsys(NULL, NULL);
653 v = (caddr_t)uvm_pageboot_alloc(size);
654 if ((allocsys(v, NULL) - v) != size)
655 panic("alpha_init: table size inconsistency");
656
657 /*
658 * Initialize the virtual memory system, and set the
659 * page table base register in proc 0's PCB.
660 */
661 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
662 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
663
664 /*
665 * Initialize the rest of proc 0's PCB, and cache its physical
666 * address.
667 */
668 proc0.p_md.md_pcbpaddr =
669 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
670
671 /*
672 * Set the kernel sp, reserving space for an (empty) trapframe,
673 * and make proc0's trapframe pointer point to it for sanity.
674 */
675 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
676 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
677 proc0.p_md.md_tf =
678 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
679 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
680
681 /*
682 * Initialize the primary CPU's idle PCB to proc0's. In a
683 * MULTIPROCESSOR configuration, each CPU will later get
684 * its own idle PCB when autoconfiguration runs.
685 */
686 ci->ci_idle_pcb = &proc0paddr->u_pcb;
687 ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
688
689 /* Indicate that proc0 has a CPU. */
690 proc0.p_cpu = ci;
691
692 /*
693 * Look at arguments passed to us and compute boothowto.
694 */
695
696 boothowto = RB_SINGLE;
697 #ifdef KADB
698 boothowto |= RB_KDB;
699 #endif
700 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
701 /*
702 * Note that we'd really like to differentiate case here,
703 * but the Alpha AXP Architecture Reference Manual
704 * says that we shouldn't.
705 */
706 switch (*p) {
707 case 'a': /* autoboot */
708 case 'A':
709 boothowto &= ~RB_SINGLE;
710 break;
711
712 #ifdef DEBUG
713 case 'c': /* crash dump immediately after autoconfig */
714 case 'C':
715 boothowto |= RB_DUMP;
716 break;
717 #endif
718
719 #if defined(KGDB) || defined(DDB)
720 case 'd': /* break into the kernel debugger ASAP */
721 case 'D':
722 boothowto |= RB_KDB;
723 break;
724 #endif
725
726 case 'h': /* always halt, never reboot */
727 case 'H':
728 boothowto |= RB_HALT;
729 break;
730
731 #if 0
732 case 'm': /* mini root present in memory */
733 case 'M':
734 boothowto |= RB_MINIROOT;
735 break;
736 #endif
737
738 case 'n': /* askname */
739 case 'N':
740 boothowto |= RB_ASKNAME;
741 break;
742
743 case 's': /* single-user (default, supported for sanity) */
744 case 'S':
745 boothowto |= RB_SINGLE;
746 break;
747
748 case 'q': /* quiet boot */
749 case 'Q':
750 boothowto |= AB_QUIET;
751 break;
752
753 case 'v': /* verbose boot */
754 case 'V':
755 boothowto |= AB_VERBOSE;
756 break;
757
758 case '-':
759 /*
760 * Just ignore this. It's not required, but it's
761 * common for it to be passed regardless.
762 */
763 break;
764
765 default:
766 printf("Unrecognized boot flag '%c'.\n", *p);
767 break;
768 }
769 }
770
771
772 /*
773 * Figure out the number of cpus in the box, from RPB fields.
774 * Really. We mean it.
775 */
776 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
777 struct pcs *pcsp;
778
779 pcsp = LOCATE_PCS(hwrpb, i);
780 if ((pcsp->pcs_flags & PCS_PP) != 0)
781 ncpus++;
782 }
783
784 /*
785 * Initialize debuggers, and break into them if appropriate.
786 */
787 #ifdef DDB
788 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
789 ksym_start, ksym_end);
790 #endif
791
792 if (boothowto & RB_KDB) {
793 #if defined(KGDB)
794 kgdb_debug_init = 1;
795 kgdb_connect(1);
796 #elif defined(DDB)
797 Debugger();
798 #endif
799 }
800
801 /*
802 * Figure out our clock frequency, from RPB fields.
803 */
804 hz = hwrpb->rpb_intr_freq >> 12;
805 if (!(60 <= hz && hz <= 10240)) {
806 hz = 1024;
807 #ifdef DIAGNOSTIC
808 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
809 hwrpb->rpb_intr_freq, hz);
810 #endif
811 }
812 }
813
814 void
815 consinit()
816 {
817
818 /*
819 * Everything related to console initialization is done
820 * in alpha_init().
821 */
822 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
823 printf("consinit: %susing prom console\n",
824 pmap_uses_prom_console() ? "" : "not ");
825 #endif
826 }
827
828 #include "pckbc.h"
829 #include "pckbd.h"
830 #if (NPCKBC > 0) && (NPCKBD == 0)
831
832 #include <dev/ic/pckbcvar.h>
833
834 /*
835 * This is called by the pbkbc driver if no pckbd is configured.
836 * On the i386, it is used to glue in the old, deprecated console
837 * code. On the Alpha, it does nothing.
838 */
839 int
840 pckbc_machdep_cnattach(kbctag, kbcslot)
841 pckbc_tag_t kbctag;
842 pckbc_slot_t kbcslot;
843 {
844
845 return (ENXIO);
846 }
847 #endif /* NPCKBC > 0 && NPCKBD == 0 */
848
849 void
850 cpu_startup()
851 {
852 register unsigned i;
853 int base, residual;
854 vaddr_t minaddr, maxaddr;
855 vsize_t size;
856 char pbuf[9];
857 #if defined(DEBUG)
858 extern int pmapdebug;
859 int opmapdebug = pmapdebug;
860
861 pmapdebug = 0;
862 #endif
863
864 /*
865 * Good {morning,afternoon,evening,night}.
866 */
867 printf(version);
868 identifycpu();
869 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
870 printf("total memory = %s\n", pbuf);
871 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
872 printf("(%s reserved for PROM, ", pbuf);
873 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
874 printf("%s used by NetBSD)\n", pbuf);
875 if (unusedmem) {
876 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
877 printf("WARNING: unused memory = %s\n", pbuf);
878 }
879 if (unknownmem) {
880 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
881 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
882 }
883
884 /*
885 * Allocate virtual address space for file I/O buffers.
886 * Note they are different than the array of headers, 'buf',
887 * and usually occupy more virtual memory than physical.
888 */
889 size = MAXBSIZE * nbuf;
890 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
891 NULL, UVM_UNKNOWN_OFFSET, 0,
892 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
893 UVM_ADV_NORMAL, 0)) != 0)
894 panic("startup: cannot allocate VM for buffers");
895 base = bufpages / nbuf;
896 residual = bufpages % nbuf;
897 for (i = 0; i < nbuf; i++) {
898 vsize_t curbufsize;
899 vaddr_t curbuf;
900 struct vm_page *pg;
901
902 /*
903 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
904 * that MAXBSIZE space, we allocate and map (base+1) pages
905 * for the first "residual" buffers, and then we allocate
906 * "base" pages for the rest.
907 */
908 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
909 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
910
911 while (curbufsize) {
912 pg = uvm_pagealloc(NULL, 0, NULL, 0);
913 if (pg == NULL)
914 panic("cpu_startup: not enough memory for "
915 "buffer cache");
916 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
917 VM_PROT_READ|VM_PROT_WRITE);
918 curbuf += PAGE_SIZE;
919 curbufsize -= PAGE_SIZE;
920 }
921 }
922 pmap_update(pmap_kernel());
923
924 /*
925 * Allocate a submap for exec arguments. This map effectively
926 * limits the number of processes exec'ing at any time.
927 */
928 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
929 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
930
931 /*
932 * Allocate a submap for physio
933 */
934 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
935 VM_PHYS_SIZE, 0, FALSE, NULL);
936
937 /*
938 * No need to allocate an mbuf cluster submap. Mbuf clusters
939 * are allocated via the pool allocator, and we use K0SEG to
940 * map those pages.
941 */
942
943 #if defined(DEBUG)
944 pmapdebug = opmapdebug;
945 #endif
946 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
947 printf("avail memory = %s\n", pbuf);
948 #if 0
949 {
950 extern u_long pmap_pages_stolen;
951
952 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
953 printf("stolen memory for VM structures = %s\n", pbuf);
954 }
955 #endif
956 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
957 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
958
959 /*
960 * Set up buffers, so they can be used to read disk labels.
961 */
962 bufinit();
963
964 /*
965 * Set up the HWPCB so that it's safe to configure secondary
966 * CPUs.
967 */
968 hwrpb_primary_init();
969 }
970
971 /*
972 * Retrieve the platform name from the DSR.
973 */
974 const char *
975 alpha_dsr_sysname()
976 {
977 struct dsrdb *dsr;
978 const char *sysname;
979
980 /*
981 * DSR does not exist on early HWRPB versions.
982 */
983 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
984 return (NULL);
985
986 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
987 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
988 sizeof(u_int64_t)));
989 return (sysname);
990 }
991
992 /*
993 * Lookup the system specified system variation in the provided table,
994 * returning the model string on match.
995 */
996 const char *
997 alpha_variation_name(variation, avtp)
998 u_int64_t variation;
999 const struct alpha_variation_table *avtp;
1000 {
1001 int i;
1002
1003 for (i = 0; avtp[i].avt_model != NULL; i++)
1004 if (avtp[i].avt_variation == variation)
1005 return (avtp[i].avt_model);
1006 return (NULL);
1007 }
1008
1009 /*
1010 * Generate a default platform name based for unknown system variations.
1011 */
1012 const char *
1013 alpha_unknown_sysname()
1014 {
1015 static char s[128]; /* safe size */
1016
1017 sprintf(s, "%s family, unknown model variation 0x%lx",
1018 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1019 return ((const char *)s);
1020 }
1021
1022 void
1023 identifycpu()
1024 {
1025 char *s;
1026 int i;
1027
1028 /*
1029 * print out CPU identification information.
1030 */
1031 printf("%s", cpu_model);
1032 for(s = cpu_model; *s; ++s)
1033 if(strncasecmp(s, "MHz", 3) == 0)
1034 goto skipMHz;
1035 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1036 skipMHz:
1037 printf(", s/n ");
1038 for (i = 0; i < 10; i++)
1039 printf("%c", hwrpb->rpb_ssn[i]);
1040 printf("\n");
1041 printf("%ld byte page size, %d processor%s.\n",
1042 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1043 #if 0
1044 /* this isn't defined for any systems that we run on? */
1045 printf("serial number 0x%lx 0x%lx\n",
1046 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1047
1048 /* and these aren't particularly useful! */
1049 printf("variation: 0x%lx, revision 0x%lx\n",
1050 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1051 #endif
1052 }
1053
1054 int waittime = -1;
1055 struct pcb dumppcb;
1056
1057 void
1058 cpu_reboot(howto, bootstr)
1059 int howto;
1060 char *bootstr;
1061 {
1062 #if defined(MULTIPROCESSOR)
1063 u_long cpu_id = cpu_number();
1064 u_long wait_mask = (1UL << cpu_id) |
1065 (1UL << hwrpb->rpb_primary_cpu_id);
1066 int i;
1067 #endif
1068
1069 /* If "always halt" was specified as a boot flag, obey. */
1070 if ((boothowto & RB_HALT) != 0)
1071 howto |= RB_HALT;
1072
1073 boothowto = howto;
1074
1075 /* If system is cold, just halt. */
1076 if (cold) {
1077 boothowto |= RB_HALT;
1078 goto haltsys;
1079 }
1080
1081 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1082 waittime = 0;
1083 vfs_shutdown();
1084 /*
1085 * If we've been adjusting the clock, the todr
1086 * will be out of synch; adjust it now.
1087 */
1088 resettodr();
1089 }
1090
1091 /* Disable interrupts. */
1092 splhigh();
1093
1094 #if defined(MULTIPROCESSOR)
1095 /*
1096 * Halt all other CPUs. If we're not the primary, the
1097 * primary will spin, waiting for us to halt.
1098 */
1099 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1100
1101 for (i = 0; i < 10000; i++) {
1102 alpha_mb();
1103 if (cpus_running == wait_mask)
1104 break;
1105 delay(1000);
1106 }
1107 alpha_mb();
1108 if (cpus_running != wait_mask)
1109 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1110 cpus_running);
1111 #endif /* MULTIPROCESSOR */
1112
1113 /* If rebooting and a dump is requested do it. */
1114 #if 0
1115 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1116 #else
1117 if (boothowto & RB_DUMP)
1118 #endif
1119 dumpsys();
1120
1121 haltsys:
1122
1123 /* run any shutdown hooks */
1124 doshutdownhooks();
1125
1126 #ifdef BOOTKEY
1127 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1128 cnpollc(1); /* for proper keyboard command handling */
1129 cngetc();
1130 cnpollc(0);
1131 printf("\n");
1132 #endif
1133
1134 /* Finally, powerdown/halt/reboot the system. */
1135 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1136 platform.powerdown != NULL) {
1137 (*platform.powerdown)();
1138 printf("WARNING: powerdown failed!\n");
1139 }
1140 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1141 #if defined(MULTIPROCESSOR)
1142 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1143 cpu_halt();
1144 else
1145 #endif
1146 prom_halt(boothowto & RB_HALT);
1147 /*NOTREACHED*/
1148 }
1149
1150 /*
1151 * These variables are needed by /sbin/savecore
1152 */
1153 u_long dumpmag = 0x8fca0101; /* magic number */
1154 int dumpsize = 0; /* pages */
1155 long dumplo = 0; /* blocks */
1156
1157 /*
1158 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1159 */
1160 int
1161 cpu_dumpsize()
1162 {
1163 int size;
1164
1165 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1166 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1167 if (roundup(size, dbtob(1)) != dbtob(1))
1168 return -1;
1169
1170 return (1);
1171 }
1172
1173 /*
1174 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1175 */
1176 u_long
1177 cpu_dump_mempagecnt()
1178 {
1179 u_long i, n;
1180
1181 n = 0;
1182 for (i = 0; i < mem_cluster_cnt; i++)
1183 n += atop(mem_clusters[i].size);
1184 return (n);
1185 }
1186
1187 /*
1188 * cpu_dump: dump machine-dependent kernel core dump headers.
1189 */
1190 int
1191 cpu_dump()
1192 {
1193 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1194 char buf[dbtob(1)];
1195 kcore_seg_t *segp;
1196 cpu_kcore_hdr_t *cpuhdrp;
1197 phys_ram_seg_t *memsegp;
1198 int i;
1199
1200 dump = bdevsw[major(dumpdev)].d_dump;
1201
1202 memset(buf, 0, sizeof buf);
1203 segp = (kcore_seg_t *)buf;
1204 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1205 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1206 ALIGN(sizeof(*cpuhdrp))];
1207
1208 /*
1209 * Generate a segment header.
1210 */
1211 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1212 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1213
1214 /*
1215 * Add the machine-dependent header info.
1216 */
1217 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1218 cpuhdrp->page_size = PAGE_SIZE;
1219 cpuhdrp->nmemsegs = mem_cluster_cnt;
1220
1221 /*
1222 * Fill in the memory segment descriptors.
1223 */
1224 for (i = 0; i < mem_cluster_cnt; i++) {
1225 memsegp[i].start = mem_clusters[i].start;
1226 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1227 }
1228
1229 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1230 }
1231
1232 /*
1233 * This is called by main to set dumplo and dumpsize.
1234 * Dumps always skip the first NBPG of disk space
1235 * in case there might be a disk label stored there.
1236 * If there is extra space, put dump at the end to
1237 * reduce the chance that swapping trashes it.
1238 */
1239 void
1240 cpu_dumpconf()
1241 {
1242 int nblks, dumpblks; /* size of dump area */
1243 int maj;
1244
1245 if (dumpdev == NODEV)
1246 goto bad;
1247 maj = major(dumpdev);
1248 if (maj < 0 || maj >= nblkdev)
1249 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1250 if (bdevsw[maj].d_psize == NULL)
1251 goto bad;
1252 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1253 if (nblks <= ctod(1))
1254 goto bad;
1255
1256 dumpblks = cpu_dumpsize();
1257 if (dumpblks < 0)
1258 goto bad;
1259 dumpblks += ctod(cpu_dump_mempagecnt());
1260
1261 /* If dump won't fit (incl. room for possible label), punt. */
1262 if (dumpblks > (nblks - ctod(1)))
1263 goto bad;
1264
1265 /* Put dump at end of partition */
1266 dumplo = nblks - dumpblks;
1267
1268 /* dumpsize is in page units, and doesn't include headers. */
1269 dumpsize = cpu_dump_mempagecnt();
1270 return;
1271
1272 bad:
1273 dumpsize = 0;
1274 return;
1275 }
1276
1277 /*
1278 * Dump the kernel's image to the swap partition.
1279 */
1280 #define BYTES_PER_DUMP NBPG
1281
1282 void
1283 dumpsys()
1284 {
1285 u_long totalbytesleft, bytes, i, n, memcl;
1286 u_long maddr;
1287 int psize;
1288 daddr_t blkno;
1289 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1290 int error;
1291
1292 /* Save registers. */
1293 savectx(&dumppcb);
1294
1295 if (dumpdev == NODEV)
1296 return;
1297
1298 /*
1299 * For dumps during autoconfiguration,
1300 * if dump device has already configured...
1301 */
1302 if (dumpsize == 0)
1303 cpu_dumpconf();
1304 if (dumplo <= 0) {
1305 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1306 minor(dumpdev));
1307 return;
1308 }
1309 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1310 minor(dumpdev), dumplo);
1311
1312 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1313 printf("dump ");
1314 if (psize == -1) {
1315 printf("area unavailable\n");
1316 return;
1317 }
1318
1319 /* XXX should purge all outstanding keystrokes. */
1320
1321 if ((error = cpu_dump()) != 0)
1322 goto err;
1323
1324 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1325 blkno = dumplo + cpu_dumpsize();
1326 dump = bdevsw[major(dumpdev)].d_dump;
1327 error = 0;
1328
1329 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1330 maddr = mem_clusters[memcl].start;
1331 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1332
1333 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1334
1335 /* Print out how many MBs we to go. */
1336 if ((totalbytesleft % (1024*1024)) == 0)
1337 printf("%ld ", totalbytesleft / (1024 * 1024));
1338
1339 /* Limit size for next transfer. */
1340 n = bytes - i;
1341 if (n > BYTES_PER_DUMP)
1342 n = BYTES_PER_DUMP;
1343
1344 error = (*dump)(dumpdev, blkno,
1345 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1346 if (error)
1347 goto err;
1348 maddr += n;
1349 blkno += btodb(n); /* XXX? */
1350
1351 /* XXX should look for keystrokes, to cancel. */
1352 }
1353 }
1354
1355 err:
1356 switch (error) {
1357
1358 case ENXIO:
1359 printf("device bad\n");
1360 break;
1361
1362 case EFAULT:
1363 printf("device not ready\n");
1364 break;
1365
1366 case EINVAL:
1367 printf("area improper\n");
1368 break;
1369
1370 case EIO:
1371 printf("i/o error\n");
1372 break;
1373
1374 case EINTR:
1375 printf("aborted from console\n");
1376 break;
1377
1378 case 0:
1379 printf("succeeded\n");
1380 break;
1381
1382 default:
1383 printf("error %d\n", error);
1384 break;
1385 }
1386 printf("\n\n");
1387 delay(1000);
1388 }
1389
1390 void
1391 frametoreg(framep, regp)
1392 struct trapframe *framep;
1393 struct reg *regp;
1394 {
1395
1396 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1397 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1398 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1399 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1400 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1401 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1402 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1403 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1404 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1405 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1406 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1407 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1408 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1409 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1410 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1411 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1412 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1413 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1414 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1415 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1416 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1417 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1418 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1419 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1420 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1421 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1422 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1423 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1424 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1425 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1426 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1427 regp->r_regs[R_ZERO] = 0;
1428 }
1429
1430 void
1431 regtoframe(regp, framep)
1432 struct reg *regp;
1433 struct trapframe *framep;
1434 {
1435
1436 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1437 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1438 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1439 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1440 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1441 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1442 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1443 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1444 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1445 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1446 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1447 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1448 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1449 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1450 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1451 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1452 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1453 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1454 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1455 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1456 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1457 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1458 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1459 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1460 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1461 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1462 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1463 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1464 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1465 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1466 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1467 /* ??? = regp->r_regs[R_ZERO]; */
1468 }
1469
1470 void
1471 printregs(regp)
1472 struct reg *regp;
1473 {
1474 int i;
1475
1476 for (i = 0; i < 32; i++)
1477 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1478 i & 1 ? "\n" : "\t");
1479 }
1480
1481 void
1482 regdump(framep)
1483 struct trapframe *framep;
1484 {
1485 struct reg reg;
1486
1487 frametoreg(framep, ®);
1488 reg.r_regs[R_SP] = alpha_pal_rdusp();
1489
1490 printf("REGISTERS:\n");
1491 printregs(®);
1492 }
1493
1494
1495 /*
1496 * Send an interrupt to process.
1497 */
1498 void
1499 sendsig(catcher, sig, mask, code)
1500 sig_t catcher;
1501 int sig;
1502 sigset_t *mask;
1503 u_long code;
1504 {
1505 struct proc *p = curproc;
1506 struct sigcontext *scp, ksc;
1507 struct trapframe *frame;
1508 int onstack, fsize, rndfsize;
1509
1510 frame = p->p_md.md_tf;
1511
1512 /* Do we need to jump onto the signal stack? */
1513 onstack =
1514 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1515 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1516
1517 /* Allocate space for the signal handler context. */
1518 fsize = sizeof(ksc);
1519 rndfsize = ((fsize + 15) / 16) * 16;
1520
1521 if (onstack)
1522 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1523 p->p_sigctx.ps_sigstk.ss_size);
1524 else
1525 scp = (struct sigcontext *)(alpha_pal_rdusp());
1526 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1527
1528 #ifdef DEBUG
1529 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1530 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1531 sig, &onstack, scp);
1532 #endif
1533
1534 /* Build stack frame for signal trampoline. */
1535 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1536 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1537
1538 /* Save register context. */
1539 frametoreg(frame, (struct reg *)ksc.sc_regs);
1540 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1541 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1542
1543 /* save the floating-point state, if necessary, then copy it. */
1544 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1545 fpusave_proc(p, 1);
1546 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1547 memcpy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1548 sizeof(struct fpreg));
1549 ksc.sc_fp_control = alpha_read_fp_c(p);
1550 memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */
1551 memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */
1552
1553 /* Save signal stack. */
1554 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1555
1556 /* Save signal mask. */
1557 ksc.sc_mask = *mask;
1558
1559 #ifdef COMPAT_13
1560 /*
1561 * XXX We always have to save an old style signal mask because
1562 * XXX we might be delivering a signal to a process which will
1563 * XXX escape from the signal in a non-standard way and invoke
1564 * XXX sigreturn() directly.
1565 */
1566 {
1567 /* Note: it's a long in the stack frame. */
1568 sigset13_t mask13;
1569
1570 native_sigset_to_sigset13(mask, &mask13);
1571 ksc.__sc_mask13 = mask13;
1572 }
1573 #endif
1574
1575 #ifdef COMPAT_OSF1
1576 /*
1577 * XXX Create an OSF/1-style sigcontext and associated goo.
1578 */
1579 #endif
1580
1581 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1582 /*
1583 * Process has trashed its stack; give it an illegal
1584 * instruction to halt it in its tracks.
1585 */
1586 #ifdef DEBUG
1587 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1588 printf("sendsig(%d): copyout failed on sig %d\n",
1589 p->p_pid, sig);
1590 #endif
1591 sigexit(p, SIGILL);
1592 /* NOTREACHED */
1593 }
1594 #ifdef DEBUG
1595 if (sigdebug & SDB_FOLLOW)
1596 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1597 scp, code);
1598 #endif
1599
1600 /* Set up the registers to return to sigcode. */
1601 frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
1602 frame->tf_regs[FRAME_A0] = sig;
1603 frame->tf_regs[FRAME_A1] = code;
1604 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1605 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1606 alpha_pal_wrusp((unsigned long)scp);
1607
1608 /* Remember that we're now on the signal stack. */
1609 if (onstack)
1610 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1611
1612 #ifdef DEBUG
1613 if (sigdebug & SDB_FOLLOW)
1614 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1615 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1616 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1617 printf("sendsig(%d): sig %d returns\n",
1618 p->p_pid, sig);
1619 #endif
1620 }
1621
1622 /*
1623 * System call to cleanup state after a signal
1624 * has been taken. Reset signal mask and
1625 * stack state from context left by sendsig (above).
1626 * Return to previous pc and psl as specified by
1627 * context left by sendsig. Check carefully to
1628 * make sure that the user has not modified the
1629 * psl to gain improper privileges or to cause
1630 * a machine fault.
1631 */
1632 /* ARGSUSED */
1633 int
1634 sys___sigreturn14(p, v, retval)
1635 struct proc *p;
1636 void *v;
1637 register_t *retval;
1638 {
1639 struct sys___sigreturn14_args /* {
1640 syscallarg(struct sigcontext *) sigcntxp;
1641 } */ *uap = v;
1642 struct sigcontext *scp, ksc;
1643
1644 /*
1645 * The trampoline code hands us the context.
1646 * It is unsafe to keep track of it ourselves, in the event that a
1647 * program jumps out of a signal handler.
1648 */
1649 scp = SCARG(uap, sigcntxp);
1650 #ifdef DEBUG
1651 if (sigdebug & SDB_FOLLOW)
1652 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1653 #endif
1654 if (ALIGN(scp) != (u_int64_t)scp)
1655 return (EINVAL);
1656
1657 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1658 return (EFAULT);
1659
1660 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1661 return (EINVAL);
1662
1663 /* Restore register context. */
1664 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1665 p->p_md.md_tf->tf_regs[FRAME_PS] =
1666 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1667
1668 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1669 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1670
1671 /* XXX ksc.sc_ownedfp ? */
1672 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1673 fpusave_proc(p, 0);
1674 memcpy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1675 sizeof(struct fpreg));
1676 p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1677 p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1678
1679 /* Restore signal stack. */
1680 if (ksc.sc_onstack & SS_ONSTACK)
1681 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1682 else
1683 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1684
1685 /* Restore signal mask. */
1686 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1687
1688 #ifdef DEBUG
1689 if (sigdebug & SDB_FOLLOW)
1690 printf("sigreturn(%d): returns\n", p->p_pid);
1691 #endif
1692 return (EJUSTRETURN);
1693 }
1694
1695 /*
1696 * machine dependent system variables.
1697 */
1698 int
1699 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1700 int *name;
1701 u_int namelen;
1702 void *oldp;
1703 size_t *oldlenp;
1704 void *newp;
1705 size_t newlen;
1706 struct proc *p;
1707 {
1708 dev_t consdev;
1709
1710 /* all sysctl names at this level are terminal */
1711 if (namelen != 1)
1712 return (ENOTDIR); /* overloaded */
1713
1714 switch (name[0]) {
1715 case CPU_CONSDEV:
1716 if (cn_tab != NULL)
1717 consdev = cn_tab->cn_dev;
1718 else
1719 consdev = NODEV;
1720 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1721 sizeof consdev));
1722
1723 case CPU_ROOT_DEVICE:
1724 return (sysctl_rdstring(oldp, oldlenp, newp,
1725 root_device->dv_xname));
1726
1727 case CPU_UNALIGNED_PRINT:
1728 return (sysctl_int(oldp, oldlenp, newp, newlen,
1729 &alpha_unaligned_print));
1730
1731 case CPU_UNALIGNED_FIX:
1732 return (sysctl_int(oldp, oldlenp, newp, newlen,
1733 &alpha_unaligned_fix));
1734
1735 case CPU_UNALIGNED_SIGBUS:
1736 return (sysctl_int(oldp, oldlenp, newp, newlen,
1737 &alpha_unaligned_sigbus));
1738
1739 case CPU_BOOTED_KERNEL:
1740 return (sysctl_rdstring(oldp, oldlenp, newp,
1741 bootinfo.booted_kernel));
1742
1743 case CPU_FP_SYNC_COMPLETE:
1744 return (sysctl_int(oldp, oldlenp, newp, newlen,
1745 &alpha_fp_sync_complete));
1746
1747 default:
1748 return (EOPNOTSUPP);
1749 }
1750 /* NOTREACHED */
1751 }
1752
1753 /*
1754 * Set registers on exec.
1755 */
1756 void
1757 setregs(p, pack, stack)
1758 register struct proc *p;
1759 struct exec_package *pack;
1760 u_long stack;
1761 {
1762 struct trapframe *tfp = p->p_md.md_tf;
1763 #ifdef DEBUG
1764 int i;
1765 #endif
1766
1767 #ifdef DEBUG
1768 /*
1769 * Crash and dump, if the user requested it.
1770 */
1771 if (boothowto & RB_DUMP)
1772 panic("crash requested by boot flags");
1773 #endif
1774
1775 #ifdef DEBUG
1776 for (i = 0; i < FRAME_SIZE; i++)
1777 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1778 #else
1779 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1780 #endif
1781 memset(&p->p_addr->u_pcb.pcb_fp, 0, sizeof p->p_addr->u_pcb.pcb_fp);
1782 alpha_pal_wrusp(stack);
1783 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1784 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1785
1786 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1787 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1788 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1789 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1790 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1791
1792 p->p_md.md_flags &= ~MDP_FPUSED;
1793 if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
1794 p->p_md.md_flags &= ~MDP_FP_C;
1795 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1796 }
1797 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1798 fpusave_proc(p, 0);
1799 }
1800
1801 /*
1802 * Release the FPU.
1803 */
1804 void
1805 fpusave_cpu(struct cpu_info *ci, int save)
1806 {
1807 struct proc *p;
1808 #if defined(MULTIPROCESSOR)
1809 int s;
1810 #endif
1811
1812 KDASSERT(ci == curcpu());
1813
1814 #if defined(MULTIPROCESSOR)
1815 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1816 #endif
1817
1818 p = ci->ci_fpcurproc;
1819 if (p == NULL)
1820 goto out;
1821
1822 if (save) {
1823 alpha_pal_wrfen(1);
1824 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1825 }
1826
1827 alpha_pal_wrfen(0);
1828
1829 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1830
1831 p->p_addr->u_pcb.pcb_fpcpu = NULL;
1832 ci->ci_fpcurproc = NULL;
1833
1834 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1835
1836 out:
1837 #if defined(MULTIPROCESSOR)
1838 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1839 #endif
1840 return;
1841 }
1842
1843 /*
1844 * Synchronize FP state for this process.
1845 */
1846 void
1847 fpusave_proc(struct proc *p, int save)
1848 {
1849 struct cpu_info *ci = curcpu();
1850 struct cpu_info *oci;
1851 #if defined(MULTIPROCESSOR)
1852 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1853 int s, spincount;
1854 #endif
1855
1856 KDASSERT(p->p_addr != NULL);
1857 KDASSERT(p->p_flag & P_INMEM);
1858
1859 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1860
1861 oci = p->p_addr->u_pcb.pcb_fpcpu;
1862 if (oci == NULL) {
1863 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1864 return;
1865 }
1866
1867 #if defined(MULTIPROCESSOR)
1868 if (oci == ci) {
1869 KASSERT(ci->ci_fpcurproc == p);
1870 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1871 fpusave_cpu(ci, save);
1872 return;
1873 }
1874
1875 KASSERT(oci->ci_fpcurproc == p);
1876 alpha_send_ipi(oci->ci_cpuid, ipi);
1877 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1878
1879 spincount = 0;
1880 while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
1881 spincount++;
1882 delay(1000); /* XXX */
1883 if (spincount > 10000)
1884 panic("fpsave ipi didn't");
1885 }
1886 #else
1887 KASSERT(ci->ci_fpcurproc == p);
1888 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1889 fpusave_cpu(ci, save);
1890 #endif /* MULTIPROCESSOR */
1891 }
1892
1893 /*
1894 * The following primitives manipulate the run queues. _whichqs tells which
1895 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1896 * into queues, Remrunqueue removes them from queues. The running process is
1897 * on no queue, other processes are on a queue related to p->p_priority,
1898 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1899 * available queues.
1900 */
1901 /*
1902 * setrunqueue(p)
1903 * proc *p;
1904 *
1905 * Call should be made at splclock(), and p->p_stat should be SRUN.
1906 */
1907
1908 void
1909 setrunqueue(p)
1910 struct proc *p;
1911 {
1912 int bit;
1913
1914 /* firewall: p->p_back must be NULL */
1915 if (p->p_back != NULL)
1916 panic("setrunqueue");
1917
1918 bit = p->p_priority >> 2;
1919 sched_whichqs |= (1 << bit);
1920 p->p_forw = (struct proc *)&sched_qs[bit];
1921 p->p_back = sched_qs[bit].ph_rlink;
1922 p->p_back->p_forw = p;
1923 sched_qs[bit].ph_rlink = p;
1924 }
1925
1926 /*
1927 * remrunqueue(p)
1928 *
1929 * Call should be made at splclock().
1930 */
1931 void
1932 remrunqueue(p)
1933 struct proc *p;
1934 {
1935 int bit;
1936
1937 bit = p->p_priority >> 2;
1938 if ((sched_whichqs & (1 << bit)) == 0)
1939 panic("remrunqueue");
1940
1941 p->p_back->p_forw = p->p_forw;
1942 p->p_forw->p_back = p->p_back;
1943 p->p_back = NULL; /* for firewall checking. */
1944
1945 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1946 sched_whichqs &= ~(1 << bit);
1947 }
1948
1949 /*
1950 * Wait "n" microseconds.
1951 */
1952 void
1953 delay(n)
1954 unsigned long n;
1955 {
1956 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1957
1958 if (n == 0)
1959 return;
1960
1961 pcc0 = alpha_rpcc() & 0xffffffffUL;
1962 cycles = 0;
1963 usec = 0;
1964
1965 while (usec <= n) {
1966 /*
1967 * Get the next CPU cycle count- assumes that we cannot
1968 * have had more than one 32 bit overflow.
1969 */
1970 pcc1 = alpha_rpcc() & 0xffffffffUL;
1971 if (pcc1 < pcc0)
1972 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1973 else
1974 curcycle = pcc1 - pcc0;
1975
1976 /*
1977 * We now have the number of processor cycles since we
1978 * last checked. Add the current cycle count to the
1979 * running total. If it's over cycles_per_usec, increment
1980 * the usec counter.
1981 */
1982 cycles += curcycle;
1983 while (cycles > cycles_per_usec) {
1984 usec++;
1985 cycles -= cycles_per_usec;
1986 }
1987 pcc0 = pcc1;
1988 }
1989 }
1990
1991 #if defined(COMPAT_OSF1) || 1 /* XXX */
1992 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1993 u_long));
1994 #endif
1995
1996 #if 1 /* XXX */
1997 void
1998 cpu_exec_ecoff_setregs(p, epp, stack)
1999 struct proc *p;
2000 struct exec_package *epp;
2001 u_long stack;
2002 {
2003 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2004
2005 setregs(p, epp, stack);
2006 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2007 }
2008
2009 /*
2010 * cpu_exec_ecoff_hook():
2011 * cpu-dependent ECOFF format hook for execve().
2012 *
2013 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2014 *
2015 */
2016 int
2017 cpu_exec_ecoff_probe(p, epp)
2018 struct proc *p;
2019 struct exec_package *epp;
2020 {
2021 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2022 int error;
2023
2024 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2025 error = 0;
2026 else
2027 error = ENOEXEC;
2028
2029 return (error);
2030 }
2031 #endif
2032
2033 int
2034 alpha_pa_access(pa)
2035 u_long pa;
2036 {
2037 int i;
2038
2039 for (i = 0; i < mem_cluster_cnt; i++) {
2040 if (pa < mem_clusters[i].start)
2041 continue;
2042 if ((pa - mem_clusters[i].start) >=
2043 (mem_clusters[i].size & ~PAGE_MASK))
2044 continue;
2045 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2046 }
2047
2048 /*
2049 * Address is not a memory address. If we're secure, disallow
2050 * access. Otherwise, grant read/write.
2051 */
2052 if (securelevel > 0)
2053 return (PROT_NONE);
2054 else
2055 return (PROT_READ | PROT_WRITE);
2056 }
2057
2058 /* XXX XXX BEGIN XXX XXX */
2059 paddr_t alpha_XXX_dmamap_or; /* XXX */
2060 /* XXX */
2061 paddr_t /* XXX */
2062 alpha_XXX_dmamap(v) /* XXX */
2063 vaddr_t v; /* XXX */
2064 { /* XXX */
2065 /* XXX */
2066 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2067 } /* XXX */
2068 /* XXX XXX END XXX XXX */
2069
2070 char *
2071 dot_conv(x)
2072 unsigned long x;
2073 {
2074 int i;
2075 char *xc;
2076 static int next;
2077 static char space[2][20];
2078
2079 xc = space[next ^= 1] + sizeof space[0];
2080 *--xc = '\0';
2081 for (i = 0;; ++i) {
2082 if (i && (i & 3) == 0)
2083 *--xc = '.';
2084 *--xc = "0123456789abcdef"[x & 0xf];
2085 x >>= 4;
2086 if (x == 0)
2087 break;
2088 }
2089 return xc;
2090 }
2091