machdep.c revision 1.251 1 /* $NetBSD: machdep.c,v 1.251 2001/09/18 18:15:50 wiz Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.251 2001/09/18 18:15:50 wiz Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/map.h>
85 #include <sys/proc.h>
86 #include <sys/sched.h>
87 #include <sys/buf.h>
88 #include <sys/reboot.h>
89 #include <sys/device.h>
90 #include <sys/file.h>
91 #include <sys/malloc.h>
92 #include <sys/mbuf.h>
93 #include <sys/mman.h>
94 #include <sys/msgbuf.h>
95 #include <sys/ioctl.h>
96 #include <sys/tty.h>
97 #include <sys/user.h>
98 #include <sys/exec.h>
99 #include <sys/exec_ecoff.h>
100 #include <sys/core.h>
101 #include <sys/kcore.h>
102 #include <machine/kcore.h>
103 #include <machine/fpu.h>
104
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107
108 #include <uvm/uvm_extern.h>
109 #include <sys/sysctl.h>
110
111 #include <dev/cons.h>
112
113 #include <machine/autoconf.h>
114 #include <machine/cpu.h>
115 #include <machine/reg.h>
116 #include <machine/rpb.h>
117 #include <machine/prom.h>
118 #include <machine/conf.h>
119 #include <machine/ieeefp.h>
120
121 #ifdef DDB
122 #include <machine/db_machdep.h>
123 #include <ddb/db_access.h>
124 #include <ddb/db_sym.h>
125 #include <ddb/db_extern.h>
126 #include <ddb/db_interface.h>
127 #endif
128
129 #ifdef KGDB
130 #include <sys/kgdb.h>
131 #endif
132
133 #ifdef DEBUG
134 #include <machine/sigdebug.h>
135 #endif
136
137 #include <machine/alpha.h>
138
139 struct vm_map *exec_map = NULL;
140 struct vm_map *mb_map = NULL;
141 struct vm_map *phys_map = NULL;
142
143 caddr_t msgbufaddr;
144
145 int maxmem; /* max memory per process */
146
147 int totalphysmem; /* total amount of physical memory in system */
148 int physmem; /* physical memory used by NetBSD + some rsvd */
149 int resvmem; /* amount of memory reserved for PROM */
150 int unusedmem; /* amount of memory for OS that we don't use */
151 int unknownmem; /* amount of memory with an unknown use */
152
153 int cputype; /* system type, from the RPB */
154
155 int bootdev_debug = 0; /* patchable, or from DDB */
156
157 /*
158 * XXX We need an address to which we can assign things so that they
159 * won't be optimized away because we didn't use the value.
160 */
161 u_int32_t no_optimize;
162
163 /* the following is used externally (sysctl_hw) */
164 char machine[] = MACHINE; /* from <machine/param.h> */
165 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
166 char cpu_model[128];
167
168 struct user *proc0paddr;
169
170 /* Number of machine cycles per microsecond */
171 u_int64_t cycles_per_usec;
172
173 /* number of cpus in the box. really! */
174 int ncpus;
175
176 struct bootinfo_kernel bootinfo;
177
178 /* For built-in TCDS */
179 #if defined(DEC_3000_300) || defined(DEC_3000_500)
180 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
181 #endif
182
183 struct platform platform;
184
185 #ifdef DDB
186 /* start and end of kernel symbol table */
187 void *ksym_start, *ksym_end;
188 #endif
189
190 /* for cpu_sysctl() */
191 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
192 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
193 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
194 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
195
196 /*
197 * XXX This should be dynamically sized, but we have the chicken-egg problem!
198 * XXX it should also be larger than it is, because not all of the mddt
199 * XXX clusters end up being used for VM.
200 */
201 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
202 int mem_cluster_cnt;
203
204 int cpu_dump __P((void));
205 int cpu_dumpsize __P((void));
206 u_long cpu_dump_mempagecnt __P((void));
207 void dumpsys __P((void));
208 void identifycpu __P((void));
209 void printregs __P((struct reg *));
210
211 void
212 alpha_init(pfn, ptb, bim, bip, biv)
213 u_long pfn; /* first free PFN number */
214 u_long ptb; /* PFN of current level 1 page table */
215 u_long bim; /* bootinfo magic */
216 u_long bip; /* bootinfo pointer */
217 u_long biv; /* bootinfo version */
218 {
219 extern char kernel_text[], _end[];
220 struct mddt *mddtp;
221 struct mddt_cluster *memc;
222 int i, mddtweird;
223 struct vm_physseg *vps;
224 vaddr_t kernstart, kernend;
225 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
226 vsize_t size;
227 cpuid_t cpu_id;
228 struct cpu_info *ci;
229 char *p;
230 caddr_t v;
231 const char *bootinfo_msg;
232 const struct cpuinit *c;
233
234 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
235
236 /*
237 * Turn off interrupts (not mchecks) and floating point.
238 * Make sure the instruction and data streams are consistent.
239 */
240 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
241 alpha_pal_wrfen(0);
242 ALPHA_TBIA();
243 alpha_pal_imb();
244
245 /* Initialize the SCB. */
246 scb_init();
247
248 cpu_id = cpu_number();
249
250 #if defined(MULTIPROCESSOR)
251 /*
252 * Set our SysValue to the address of our cpu_info structure.
253 * Secondary processors do this in their spinup trampoline.
254 */
255 alpha_pal_wrval((u_long)&cpu_info_primary);
256 cpu_info[cpu_id] = &cpu_info_primary;
257 #endif
258
259 ci = curcpu();
260 ci->ci_cpuid = cpu_id;
261
262 /*
263 * Get critical system information (if possible, from the
264 * information provided by the boot program).
265 */
266 bootinfo_msg = NULL;
267 if (bim == BOOTINFO_MAGIC) {
268 if (biv == 0) { /* backward compat */
269 biv = *(u_long *)bip;
270 bip += 8;
271 }
272 switch (biv) {
273 case 1: {
274 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
275
276 bootinfo.ssym = v1p->ssym;
277 bootinfo.esym = v1p->esym;
278 /* hwrpb may not be provided by boot block in v1 */
279 if (v1p->hwrpb != NULL) {
280 bootinfo.hwrpb_phys =
281 ((struct rpb *)v1p->hwrpb)->rpb_phys;
282 bootinfo.hwrpb_size = v1p->hwrpbsize;
283 } else {
284 bootinfo.hwrpb_phys =
285 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
286 bootinfo.hwrpb_size =
287 ((struct rpb *)HWRPB_ADDR)->rpb_size;
288 }
289 memcpy(bootinfo.boot_flags, v1p->boot_flags,
290 min(sizeof v1p->boot_flags,
291 sizeof bootinfo.boot_flags));
292 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
293 min(sizeof v1p->booted_kernel,
294 sizeof bootinfo.booted_kernel));
295 /* booted dev not provided in bootinfo */
296 init_prom_interface((struct rpb *)
297 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
298 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
299 sizeof bootinfo.booted_dev);
300 break;
301 }
302 default:
303 bootinfo_msg = "unknown bootinfo version";
304 goto nobootinfo;
305 }
306 } else {
307 bootinfo_msg = "boot program did not pass bootinfo";
308 nobootinfo:
309 bootinfo.ssym = (u_long)_end;
310 bootinfo.esym = (u_long)_end;
311 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
312 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
313 init_prom_interface((struct rpb *)HWRPB_ADDR);
314 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
315 sizeof bootinfo.boot_flags);
316 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
317 sizeof bootinfo.booted_kernel);
318 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
319 sizeof bootinfo.booted_dev);
320 }
321
322 /*
323 * Initialize the kernel's mapping of the RPB. It's needed for
324 * lots of things.
325 */
326 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
327
328 #if defined(DEC_3000_300) || defined(DEC_3000_500)
329 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
330 hwrpb->rpb_type == ST_DEC_3000_500) {
331 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
332 sizeof(dec_3000_scsiid));
333 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
334 sizeof(dec_3000_scsifast));
335 }
336 #endif
337
338 /*
339 * Remember how many cycles there are per microsecond,
340 * so that we can use delay(). Round up, for safety.
341 */
342 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
343
344 /*
345 * Initialize the (temporary) bootstrap console interface, so
346 * we can use printf until the VM system starts being setup.
347 * The real console is initialized before then.
348 */
349 init_bootstrap_console();
350
351 /* OUTPUT NOW ALLOWED */
352
353 /* delayed from above */
354 if (bootinfo_msg)
355 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
356 bootinfo_msg, bim, bip, biv);
357
358 /* Initialize the trap vectors on the primary processor. */
359 trap_init();
360
361 /*
362 * find out this system's page size
363 */
364 PAGE_SIZE = hwrpb->rpb_page_size;
365 if (PAGE_SIZE != 8192)
366 panic("page size %d != 8192?!", PAGE_SIZE);
367
368 /*
369 * Initialize PAGE_SIZE-dependent variables.
370 */
371 uvm_setpagesize();
372
373 /*
374 * Find out what hardware we're on, and do basic initialization.
375 */
376 cputype = hwrpb->rpb_type;
377 if (cputype < 0) {
378 /*
379 * At least some white-box systems have SRM which
380 * reports a systype that's the negative of their
381 * blue-box counterpart.
382 */
383 cputype = -cputype;
384 }
385 c = platform_lookup(cputype);
386 if (c == NULL) {
387 platform_not_supported();
388 /* NOTREACHED */
389 }
390 (*c->init)();
391 strcpy(cpu_model, platform.model);
392
393 /*
394 * Initialize the real console, so that the bootstrap console is
395 * no longer necessary.
396 */
397 (*platform.cons_init)();
398
399 #ifdef DIAGNOSTIC
400 /* Paranoid sanity checking */
401
402 /* We should always be running on the primary. */
403 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
404
405 /*
406 * On single-CPU systypes, the primary should always be CPU 0,
407 * except on Alpha 8200 systems where the CPU id is related
408 * to the VID, which is related to the Turbo Laser node id.
409 */
410 if (cputype != ST_DEC_21000)
411 assert(hwrpb->rpb_primary_cpu_id == 0);
412 #endif
413
414 /* NO MORE FIRMWARE ACCESS ALLOWED */
415 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
416 /*
417 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
418 * XXX pmap_uses_prom_console() evaluates to non-zero.)
419 */
420 #endif
421
422 /*
423 * Find the beginning and end of the kernel (and leave a
424 * bit of space before the beginning for the bootstrap
425 * stack).
426 */
427 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
428 #ifdef DDB
429 ksym_start = (void *)bootinfo.ssym;
430 ksym_end = (void *)bootinfo.esym;
431 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
432 #else
433 kernend = (vaddr_t)round_page((vaddr_t)_end);
434 #endif
435
436 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
437 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
438
439 /*
440 * Find out how much memory is available, by looking at
441 * the memory cluster descriptors. This also tries to do
442 * its best to detect things things that have never been seen
443 * before...
444 */
445 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
446
447 /* MDDT SANITY CHECKING */
448 mddtweird = 0;
449 if (mddtp->mddt_cluster_cnt < 2) {
450 mddtweird = 1;
451 printf("WARNING: weird number of mem clusters: %lu\n",
452 mddtp->mddt_cluster_cnt);
453 }
454
455 #if 0
456 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
457 #endif
458
459 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
460 memc = &mddtp->mddt_clusters[i];
461 #if 0
462 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
463 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
464 #endif
465 totalphysmem += memc->mddt_pg_cnt;
466 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
467 mem_clusters[mem_cluster_cnt].start =
468 ptoa(memc->mddt_pfn);
469 mem_clusters[mem_cluster_cnt].size =
470 ptoa(memc->mddt_pg_cnt);
471 if (memc->mddt_usage & MDDT_mbz ||
472 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
473 memc->mddt_usage & MDDT_PALCODE)
474 mem_clusters[mem_cluster_cnt].size |=
475 PROT_READ;
476 else
477 mem_clusters[mem_cluster_cnt].size |=
478 PROT_READ | PROT_WRITE | PROT_EXEC;
479 mem_cluster_cnt++;
480 }
481
482 if (memc->mddt_usage & MDDT_mbz) {
483 mddtweird = 1;
484 printf("WARNING: mem cluster %d has weird "
485 "usage 0x%lx\n", i, memc->mddt_usage);
486 unknownmem += memc->mddt_pg_cnt;
487 continue;
488 }
489 if (memc->mddt_usage & MDDT_NONVOLATILE) {
490 /* XXX should handle these... */
491 printf("WARNING: skipping non-volatile mem "
492 "cluster %d\n", i);
493 unusedmem += memc->mddt_pg_cnt;
494 continue;
495 }
496 if (memc->mddt_usage & MDDT_PALCODE) {
497 resvmem += memc->mddt_pg_cnt;
498 continue;
499 }
500
501 /*
502 * We have a memory cluster available for system
503 * software use. We must determine if this cluster
504 * holds the kernel.
505 */
506 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
507 /*
508 * XXX If the kernel uses the PROM console, we only use the
509 * XXX memory after the kernel in the first system segment,
510 * XXX to avoid clobbering prom mapping, data, etc.
511 */
512 if (!pmap_uses_prom_console() || physmem == 0) {
513 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
514 physmem += memc->mddt_pg_cnt;
515 pfn0 = memc->mddt_pfn;
516 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
517 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
518 /*
519 * Must compute the location of the kernel
520 * within the segment.
521 */
522 #if 0
523 printf("Cluster %d contains kernel\n", i);
524 #endif
525 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
526 if (!pmap_uses_prom_console()) {
527 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
528 if (pfn0 < kernstartpfn) {
529 /*
530 * There is a chunk before the kernel.
531 */
532 #if 0
533 printf("Loading chunk before kernel: "
534 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
535 #endif
536 uvm_page_physload(pfn0, kernstartpfn,
537 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
538 }
539 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
540 }
541 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
542 if (kernendpfn < pfn1) {
543 /*
544 * There is a chunk after the kernel.
545 */
546 #if 0
547 printf("Loading chunk after kernel: "
548 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
549 #endif
550 uvm_page_physload(kernendpfn, pfn1,
551 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
552 }
553 } else {
554 /*
555 * Just load this cluster as one chunk.
556 */
557 #if 0
558 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
559 pfn0, pfn1);
560 #endif
561 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
562 VM_FREELIST_DEFAULT);
563 }
564 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
565 }
566 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
567 }
568
569 /*
570 * Dump out the MDDT if it looks odd...
571 */
572 if (mddtweird) {
573 printf("\n");
574 printf("complete memory cluster information:\n");
575 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
576 printf("mddt %d:\n", i);
577 printf("\tpfn %lx\n",
578 mddtp->mddt_clusters[i].mddt_pfn);
579 printf("\tcnt %lx\n",
580 mddtp->mddt_clusters[i].mddt_pg_cnt);
581 printf("\ttest %lx\n",
582 mddtp->mddt_clusters[i].mddt_pg_test);
583 printf("\tbva %lx\n",
584 mddtp->mddt_clusters[i].mddt_v_bitaddr);
585 printf("\tbpa %lx\n",
586 mddtp->mddt_clusters[i].mddt_p_bitaddr);
587 printf("\tbcksum %lx\n",
588 mddtp->mddt_clusters[i].mddt_bit_cksum);
589 printf("\tusage %lx\n",
590 mddtp->mddt_clusters[i].mddt_usage);
591 }
592 printf("\n");
593 }
594
595 if (totalphysmem == 0)
596 panic("can't happen: system seems to have no memory!");
597 maxmem = physmem;
598 #if 0
599 printf("totalphysmem = %d\n", totalphysmem);
600 printf("physmem = %d\n", physmem);
601 printf("resvmem = %d\n", resvmem);
602 printf("unusedmem = %d\n", unusedmem);
603 printf("unknownmem = %d\n", unknownmem);
604 #endif
605
606 /*
607 * Initialize error message buffer (at end of core).
608 */
609 {
610 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
611 vsize_t reqsz = sz;
612
613 vps = &vm_physmem[vm_nphysseg - 1];
614
615 /* shrink so that it'll fit in the last segment */
616 if ((vps->avail_end - vps->avail_start) < atop(sz))
617 sz = ptoa(vps->avail_end - vps->avail_start);
618
619 vps->end -= atop(sz);
620 vps->avail_end -= atop(sz);
621 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
622 initmsgbuf(msgbufaddr, sz);
623
624 /* Remove the last segment if it now has no pages. */
625 if (vps->start == vps->end)
626 vm_nphysseg--;
627
628 /* warn if the message buffer had to be shrunk */
629 if (sz != reqsz)
630 printf("WARNING: %ld bytes not available for msgbuf "
631 "in last cluster (%ld used)\n", reqsz, sz);
632
633 }
634
635 /*
636 * NOTE: It is safe to use uvm_pageboot_alloc() before
637 * pmap_bootstrap() because our pmap_virtual_space()
638 * returns compile-time constants.
639 */
640
641 /*
642 * Init mapping for u page(s) for proc 0
643 */
644 proc0.p_addr = proc0paddr =
645 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
646
647 /*
648 * Allocate space for system data structures. These data structures
649 * are allocated here instead of cpu_startup() because physical
650 * memory is directly addressable. We don't have to map these into
651 * virtual address space.
652 */
653 size = (vsize_t)allocsys(NULL, NULL);
654 v = (caddr_t)uvm_pageboot_alloc(size);
655 if ((allocsys(v, NULL) - v) != size)
656 panic("alpha_init: table size inconsistency");
657
658 /*
659 * Initialize the virtual memory system, and set the
660 * page table base register in proc 0's PCB.
661 */
662 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
663 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
664
665 /*
666 * Initialize the rest of proc 0's PCB, and cache its physical
667 * address.
668 */
669 proc0.p_md.md_pcbpaddr =
670 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
671
672 /*
673 * Set the kernel sp, reserving space for an (empty) trapframe,
674 * and make proc0's trapframe pointer point to it for sanity.
675 */
676 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
677 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
678 proc0.p_md.md_tf =
679 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
680 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
681
682 /*
683 * Initialize the primary CPU's idle PCB to proc0's. In a
684 * MULTIPROCESSOR configuration, each CPU will later get
685 * its own idle PCB when autoconfiguration runs.
686 */
687 ci->ci_idle_pcb = &proc0paddr->u_pcb;
688 ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
689
690 /* Indicate that proc0 has a CPU. */
691 proc0.p_cpu = ci;
692
693 /*
694 * Look at arguments passed to us and compute boothowto.
695 */
696
697 boothowto = RB_SINGLE;
698 #ifdef KADB
699 boothowto |= RB_KDB;
700 #endif
701 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
702 /*
703 * Note that we'd really like to differentiate case here,
704 * but the Alpha AXP Architecture Reference Manual
705 * says that we shouldn't.
706 */
707 switch (*p) {
708 case 'a': /* autoboot */
709 case 'A':
710 boothowto &= ~RB_SINGLE;
711 break;
712
713 #ifdef DEBUG
714 case 'c': /* crash dump immediately after autoconfig */
715 case 'C':
716 boothowto |= RB_DUMP;
717 break;
718 #endif
719
720 #if defined(KGDB) || defined(DDB)
721 case 'd': /* break into the kernel debugger ASAP */
722 case 'D':
723 boothowto |= RB_KDB;
724 break;
725 #endif
726
727 case 'h': /* always halt, never reboot */
728 case 'H':
729 boothowto |= RB_HALT;
730 break;
731
732 #if 0
733 case 'm': /* mini root present in memory */
734 case 'M':
735 boothowto |= RB_MINIROOT;
736 break;
737 #endif
738
739 case 'n': /* askname */
740 case 'N':
741 boothowto |= RB_ASKNAME;
742 break;
743
744 case 's': /* single-user (default, supported for sanity) */
745 case 'S':
746 boothowto |= RB_SINGLE;
747 break;
748
749 case 'q': /* quiet boot */
750 case 'Q':
751 boothowto |= AB_QUIET;
752 break;
753
754 case 'v': /* verbose boot */
755 case 'V':
756 boothowto |= AB_VERBOSE;
757 break;
758
759 case '-':
760 /*
761 * Just ignore this. It's not required, but it's
762 * common for it to be passed regardless.
763 */
764 break;
765
766 default:
767 printf("Unrecognized boot flag '%c'.\n", *p);
768 break;
769 }
770 }
771
772
773 /*
774 * Figure out the number of cpus in the box, from RPB fields.
775 * Really. We mean it.
776 */
777 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
778 struct pcs *pcsp;
779
780 pcsp = LOCATE_PCS(hwrpb, i);
781 if ((pcsp->pcs_flags & PCS_PP) != 0)
782 ncpus++;
783 }
784
785 /*
786 * Initialize debuggers, and break into them if appropriate.
787 */
788 #ifdef DDB
789 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
790 ksym_start, ksym_end);
791 #endif
792
793 if (boothowto & RB_KDB) {
794 #if defined(KGDB)
795 kgdb_debug_init = 1;
796 kgdb_connect(1);
797 #elif defined(DDB)
798 Debugger();
799 #endif
800 }
801
802 /*
803 * Figure out our clock frequency, from RPB fields.
804 */
805 hz = hwrpb->rpb_intr_freq >> 12;
806 if (!(60 <= hz && hz <= 10240)) {
807 hz = 1024;
808 #ifdef DIAGNOSTIC
809 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
810 hwrpb->rpb_intr_freq, hz);
811 #endif
812 }
813 }
814
815 void
816 consinit()
817 {
818
819 /*
820 * Everything related to console initialization is done
821 * in alpha_init().
822 */
823 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
824 printf("consinit: %susing prom console\n",
825 pmap_uses_prom_console() ? "" : "not ");
826 #endif
827 }
828
829 #include "pckbc.h"
830 #include "pckbd.h"
831 #if (NPCKBC > 0) && (NPCKBD == 0)
832
833 #include <dev/ic/pckbcvar.h>
834
835 /*
836 * This is called by the pbkbc driver if no pckbd is configured.
837 * On the i386, it is used to glue in the old, deprecated console
838 * code. On the Alpha, it does nothing.
839 */
840 int
841 pckbc_machdep_cnattach(kbctag, kbcslot)
842 pckbc_tag_t kbctag;
843 pckbc_slot_t kbcslot;
844 {
845
846 return (ENXIO);
847 }
848 #endif /* NPCKBC > 0 && NPCKBD == 0 */
849
850 void
851 cpu_startup()
852 {
853 register unsigned i;
854 int base, residual;
855 vaddr_t minaddr, maxaddr;
856 vsize_t size;
857 char pbuf[9];
858 #if defined(DEBUG)
859 extern int pmapdebug;
860 int opmapdebug = pmapdebug;
861
862 pmapdebug = 0;
863 #endif
864
865 /*
866 * Good {morning,afternoon,evening,night}.
867 */
868 printf(version);
869 identifycpu();
870 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
871 printf("total memory = %s\n", pbuf);
872 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
873 printf("(%s reserved for PROM, ", pbuf);
874 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
875 printf("%s used by NetBSD)\n", pbuf);
876 if (unusedmem) {
877 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
878 printf("WARNING: unused memory = %s\n", pbuf);
879 }
880 if (unknownmem) {
881 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
882 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
883 }
884
885 /*
886 * Allocate virtual address space for file I/O buffers.
887 * Note they are different than the array of headers, 'buf',
888 * and usually occupy more virtual memory than physical.
889 */
890 size = MAXBSIZE * nbuf;
891 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
892 NULL, UVM_UNKNOWN_OFFSET, 0,
893 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
894 UVM_ADV_NORMAL, 0)) != 0)
895 panic("startup: cannot allocate VM for buffers");
896 base = bufpages / nbuf;
897 residual = bufpages % nbuf;
898 for (i = 0; i < nbuf; i++) {
899 vsize_t curbufsize;
900 vaddr_t curbuf;
901 struct vm_page *pg;
902
903 /*
904 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
905 * that MAXBSIZE space, we allocate and map (base+1) pages
906 * for the first "residual" buffers, and then we allocate
907 * "base" pages for the rest.
908 */
909 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
910 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
911
912 while (curbufsize) {
913 pg = uvm_pagealloc(NULL, 0, NULL, 0);
914 if (pg == NULL)
915 panic("cpu_startup: not enough memory for "
916 "buffer cache");
917 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
918 VM_PROT_READ|VM_PROT_WRITE);
919 curbuf += PAGE_SIZE;
920 curbufsize -= PAGE_SIZE;
921 }
922 }
923 pmap_update(pmap_kernel());
924
925 /*
926 * Allocate a submap for exec arguments. This map effectively
927 * limits the number of processes exec'ing at any time.
928 */
929 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
930 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
931
932 /*
933 * Allocate a submap for physio
934 */
935 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
936 VM_PHYS_SIZE, 0, FALSE, NULL);
937
938 /*
939 * No need to allocate an mbuf cluster submap. Mbuf clusters
940 * are allocated via the pool allocator, and we use K0SEG to
941 * map those pages.
942 */
943
944 #if defined(DEBUG)
945 pmapdebug = opmapdebug;
946 #endif
947 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
948 printf("avail memory = %s\n", pbuf);
949 #if 0
950 {
951 extern u_long pmap_pages_stolen;
952
953 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
954 printf("stolen memory for VM structures = %s\n", pbuf);
955 }
956 #endif
957 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
958 printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
959
960 /*
961 * Set up buffers, so they can be used to read disk labels.
962 */
963 bufinit();
964
965 /*
966 * Set up the HWPCB so that it's safe to configure secondary
967 * CPUs.
968 */
969 hwrpb_primary_init();
970 }
971
972 /*
973 * Retrieve the platform name from the DSR.
974 */
975 const char *
976 alpha_dsr_sysname()
977 {
978 struct dsrdb *dsr;
979 const char *sysname;
980
981 /*
982 * DSR does not exist on early HWRPB versions.
983 */
984 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
985 return (NULL);
986
987 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
988 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
989 sizeof(u_int64_t)));
990 return (sysname);
991 }
992
993 /*
994 * Lookup the system specified system variation in the provided table,
995 * returning the model string on match.
996 */
997 const char *
998 alpha_variation_name(variation, avtp)
999 u_int64_t variation;
1000 const struct alpha_variation_table *avtp;
1001 {
1002 int i;
1003
1004 for (i = 0; avtp[i].avt_model != NULL; i++)
1005 if (avtp[i].avt_variation == variation)
1006 return (avtp[i].avt_model);
1007 return (NULL);
1008 }
1009
1010 /*
1011 * Generate a default platform name based for unknown system variations.
1012 */
1013 const char *
1014 alpha_unknown_sysname()
1015 {
1016 static char s[128]; /* safe size */
1017
1018 sprintf(s, "%s family, unknown model variation 0x%lx",
1019 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1020 return ((const char *)s);
1021 }
1022
1023 void
1024 identifycpu()
1025 {
1026 char *s;
1027 int i;
1028
1029 /*
1030 * print out CPU identification information.
1031 */
1032 printf("%s", cpu_model);
1033 for(s = cpu_model; *s; ++s)
1034 if(strncasecmp(s, "MHz", 3) == 0)
1035 goto skipMHz;
1036 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1037 skipMHz:
1038 printf(", s/n ");
1039 for (i = 0; i < 10; i++)
1040 printf("%c", hwrpb->rpb_ssn[i]);
1041 printf("\n");
1042 printf("%ld byte page size, %d processor%s.\n",
1043 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1044 #if 0
1045 /* this isn't defined for any systems that we run on? */
1046 printf("serial number 0x%lx 0x%lx\n",
1047 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1048
1049 /* and these aren't particularly useful! */
1050 printf("variation: 0x%lx, revision 0x%lx\n",
1051 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1052 #endif
1053 }
1054
1055 int waittime = -1;
1056 struct pcb dumppcb;
1057
1058 void
1059 cpu_reboot(howto, bootstr)
1060 int howto;
1061 char *bootstr;
1062 {
1063 #if defined(MULTIPROCESSOR)
1064 u_long cpu_id = cpu_number();
1065 u_long wait_mask = (1UL << cpu_id) |
1066 (1UL << hwrpb->rpb_primary_cpu_id);
1067 int i;
1068 #endif
1069
1070 /* If "always halt" was specified as a boot flag, obey. */
1071 if ((boothowto & RB_HALT) != 0)
1072 howto |= RB_HALT;
1073
1074 boothowto = howto;
1075
1076 /* If system is cold, just halt. */
1077 if (cold) {
1078 boothowto |= RB_HALT;
1079 goto haltsys;
1080 }
1081
1082 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1083 waittime = 0;
1084 vfs_shutdown();
1085 /*
1086 * If we've been adjusting the clock, the todr
1087 * will be out of synch; adjust it now.
1088 */
1089 resettodr();
1090 }
1091
1092 /* Disable interrupts. */
1093 splhigh();
1094
1095 #if defined(MULTIPROCESSOR)
1096 /*
1097 * Halt all other CPUs. If we're not the primary, the
1098 * primary will spin, waiting for us to halt.
1099 */
1100 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1101
1102 for (i = 0; i < 10000; i++) {
1103 alpha_mb();
1104 if (cpus_running == wait_mask)
1105 break;
1106 delay(1000);
1107 }
1108 alpha_mb();
1109 if (cpus_running != wait_mask)
1110 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1111 cpus_running);
1112 #endif /* MULTIPROCESSOR */
1113
1114 /* If rebooting and a dump is requested do it. */
1115 #if 0
1116 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1117 #else
1118 if (boothowto & RB_DUMP)
1119 #endif
1120 dumpsys();
1121
1122 haltsys:
1123
1124 /* run any shutdown hooks */
1125 doshutdownhooks();
1126
1127 #ifdef BOOTKEY
1128 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1129 cnpollc(1); /* for proper keyboard command handling */
1130 cngetc();
1131 cnpollc(0);
1132 printf("\n");
1133 #endif
1134
1135 /* Finally, powerdown/halt/reboot the system. */
1136 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1137 platform.powerdown != NULL) {
1138 (*platform.powerdown)();
1139 printf("WARNING: powerdown failed!\n");
1140 }
1141 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1142 #if defined(MULTIPROCESSOR)
1143 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1144 cpu_halt();
1145 else
1146 #endif
1147 prom_halt(boothowto & RB_HALT);
1148 /*NOTREACHED*/
1149 }
1150
1151 /*
1152 * These variables are needed by /sbin/savecore
1153 */
1154 u_long dumpmag = 0x8fca0101; /* magic number */
1155 int dumpsize = 0; /* pages */
1156 long dumplo = 0; /* blocks */
1157
1158 /*
1159 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1160 */
1161 int
1162 cpu_dumpsize()
1163 {
1164 int size;
1165
1166 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1167 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1168 if (roundup(size, dbtob(1)) != dbtob(1))
1169 return -1;
1170
1171 return (1);
1172 }
1173
1174 /*
1175 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1176 */
1177 u_long
1178 cpu_dump_mempagecnt()
1179 {
1180 u_long i, n;
1181
1182 n = 0;
1183 for (i = 0; i < mem_cluster_cnt; i++)
1184 n += atop(mem_clusters[i].size);
1185 return (n);
1186 }
1187
1188 /*
1189 * cpu_dump: dump machine-dependent kernel core dump headers.
1190 */
1191 int
1192 cpu_dump()
1193 {
1194 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1195 char buf[dbtob(1)];
1196 kcore_seg_t *segp;
1197 cpu_kcore_hdr_t *cpuhdrp;
1198 phys_ram_seg_t *memsegp;
1199 int i;
1200
1201 dump = bdevsw[major(dumpdev)].d_dump;
1202
1203 memset(buf, 0, sizeof buf);
1204 segp = (kcore_seg_t *)buf;
1205 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1206 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1207 ALIGN(sizeof(*cpuhdrp))];
1208
1209 /*
1210 * Generate a segment header.
1211 */
1212 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1213 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1214
1215 /*
1216 * Add the machine-dependent header info.
1217 */
1218 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1219 cpuhdrp->page_size = PAGE_SIZE;
1220 cpuhdrp->nmemsegs = mem_cluster_cnt;
1221
1222 /*
1223 * Fill in the memory segment descriptors.
1224 */
1225 for (i = 0; i < mem_cluster_cnt; i++) {
1226 memsegp[i].start = mem_clusters[i].start;
1227 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1228 }
1229
1230 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1231 }
1232
1233 /*
1234 * This is called by main to set dumplo and dumpsize.
1235 * Dumps always skip the first NBPG of disk space
1236 * in case there might be a disk label stored there.
1237 * If there is extra space, put dump at the end to
1238 * reduce the chance that swapping trashes it.
1239 */
1240 void
1241 cpu_dumpconf()
1242 {
1243 int nblks, dumpblks; /* size of dump area */
1244 int maj;
1245
1246 if (dumpdev == NODEV)
1247 goto bad;
1248 maj = major(dumpdev);
1249 if (maj < 0 || maj >= nblkdev)
1250 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1251 if (bdevsw[maj].d_psize == NULL)
1252 goto bad;
1253 nblks = (*bdevsw[maj].d_psize)(dumpdev);
1254 if (nblks <= ctod(1))
1255 goto bad;
1256
1257 dumpblks = cpu_dumpsize();
1258 if (dumpblks < 0)
1259 goto bad;
1260 dumpblks += ctod(cpu_dump_mempagecnt());
1261
1262 /* If dump won't fit (incl. room for possible label), punt. */
1263 if (dumpblks > (nblks - ctod(1)))
1264 goto bad;
1265
1266 /* Put dump at end of partition */
1267 dumplo = nblks - dumpblks;
1268
1269 /* dumpsize is in page units, and doesn't include headers. */
1270 dumpsize = cpu_dump_mempagecnt();
1271 return;
1272
1273 bad:
1274 dumpsize = 0;
1275 return;
1276 }
1277
1278 /*
1279 * Dump the kernel's image to the swap partition.
1280 */
1281 #define BYTES_PER_DUMP NBPG
1282
1283 void
1284 dumpsys()
1285 {
1286 u_long totalbytesleft, bytes, i, n, memcl;
1287 u_long maddr;
1288 int psize;
1289 daddr_t blkno;
1290 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1291 int error;
1292
1293 /* Save registers. */
1294 savectx(&dumppcb);
1295
1296 if (dumpdev == NODEV)
1297 return;
1298
1299 /*
1300 * For dumps during autoconfiguration,
1301 * if dump device has already configured...
1302 */
1303 if (dumpsize == 0)
1304 cpu_dumpconf();
1305 if (dumplo <= 0) {
1306 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1307 minor(dumpdev));
1308 return;
1309 }
1310 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1311 minor(dumpdev), dumplo);
1312
1313 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1314 printf("dump ");
1315 if (psize == -1) {
1316 printf("area unavailable\n");
1317 return;
1318 }
1319
1320 /* XXX should purge all outstanding keystrokes. */
1321
1322 if ((error = cpu_dump()) != 0)
1323 goto err;
1324
1325 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1326 blkno = dumplo + cpu_dumpsize();
1327 dump = bdevsw[major(dumpdev)].d_dump;
1328 error = 0;
1329
1330 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1331 maddr = mem_clusters[memcl].start;
1332 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1333
1334 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1335
1336 /* Print out how many MBs we to go. */
1337 if ((totalbytesleft % (1024*1024)) == 0)
1338 printf("%ld ", totalbytesleft / (1024 * 1024));
1339
1340 /* Limit size for next transfer. */
1341 n = bytes - i;
1342 if (n > BYTES_PER_DUMP)
1343 n = BYTES_PER_DUMP;
1344
1345 error = (*dump)(dumpdev, blkno,
1346 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1347 if (error)
1348 goto err;
1349 maddr += n;
1350 blkno += btodb(n); /* XXX? */
1351
1352 /* XXX should look for keystrokes, to cancel. */
1353 }
1354 }
1355
1356 err:
1357 switch (error) {
1358
1359 case ENXIO:
1360 printf("device bad\n");
1361 break;
1362
1363 case EFAULT:
1364 printf("device not ready\n");
1365 break;
1366
1367 case EINVAL:
1368 printf("area improper\n");
1369 break;
1370
1371 case EIO:
1372 printf("i/o error\n");
1373 break;
1374
1375 case EINTR:
1376 printf("aborted from console\n");
1377 break;
1378
1379 case 0:
1380 printf("succeeded\n");
1381 break;
1382
1383 default:
1384 printf("error %d\n", error);
1385 break;
1386 }
1387 printf("\n\n");
1388 delay(1000);
1389 }
1390
1391 void
1392 frametoreg(framep, regp)
1393 struct trapframe *framep;
1394 struct reg *regp;
1395 {
1396
1397 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1398 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1399 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1400 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1401 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1402 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1403 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1404 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1405 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1406 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1407 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1408 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1409 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1410 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1411 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1412 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1413 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1414 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1415 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1416 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1417 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1418 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1419 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1420 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1421 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1422 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1423 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1424 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1425 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1426 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1427 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1428 regp->r_regs[R_ZERO] = 0;
1429 }
1430
1431 void
1432 regtoframe(regp, framep)
1433 struct reg *regp;
1434 struct trapframe *framep;
1435 {
1436
1437 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1438 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1439 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1440 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1441 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1442 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1443 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1444 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1445 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1446 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1447 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1448 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1449 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1450 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1451 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1452 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1453 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1454 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1455 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1456 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1457 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1458 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1459 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1460 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1461 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1462 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1463 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1464 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1465 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1466 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1467 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1468 /* ??? = regp->r_regs[R_ZERO]; */
1469 }
1470
1471 void
1472 printregs(regp)
1473 struct reg *regp;
1474 {
1475 int i;
1476
1477 for (i = 0; i < 32; i++)
1478 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1479 i & 1 ? "\n" : "\t");
1480 }
1481
1482 void
1483 regdump(framep)
1484 struct trapframe *framep;
1485 {
1486 struct reg reg;
1487
1488 frametoreg(framep, ®);
1489 reg.r_regs[R_SP] = alpha_pal_rdusp();
1490
1491 printf("REGISTERS:\n");
1492 printregs(®);
1493 }
1494
1495
1496 /*
1497 * Send an interrupt to process.
1498 */
1499 void
1500 sendsig(catcher, sig, mask, code)
1501 sig_t catcher;
1502 int sig;
1503 sigset_t *mask;
1504 u_long code;
1505 {
1506 struct proc *p = curproc;
1507 struct sigcontext *scp, ksc;
1508 struct trapframe *frame;
1509 int onstack, fsize, rndfsize;
1510
1511 frame = p->p_md.md_tf;
1512
1513 /* Do we need to jump onto the signal stack? */
1514 onstack =
1515 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1516 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1517
1518 /* Allocate space for the signal handler context. */
1519 fsize = sizeof(ksc);
1520 rndfsize = ((fsize + 15) / 16) * 16;
1521
1522 if (onstack)
1523 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1524 p->p_sigctx.ps_sigstk.ss_size);
1525 else
1526 scp = (struct sigcontext *)(alpha_pal_rdusp());
1527 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1528
1529 #ifdef DEBUG
1530 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1531 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1532 sig, &onstack, scp);
1533 #endif
1534
1535 /* Build stack frame for signal trampoline. */
1536 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1537 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1538
1539 /* Save register context. */
1540 frametoreg(frame, (struct reg *)ksc.sc_regs);
1541 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1542 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1543
1544 /* save the floating-point state, if necessary, then copy it. */
1545 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1546 fpusave_proc(p, 1);
1547 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1548 memcpy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1549 sizeof(struct fpreg));
1550 ksc.sc_fp_control = alpha_read_fp_c(p);
1551 memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */
1552 memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */
1553
1554 /* Save signal stack. */
1555 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1556
1557 /* Save signal mask. */
1558 ksc.sc_mask = *mask;
1559
1560 #ifdef COMPAT_13
1561 /*
1562 * XXX We always have to save an old style signal mask because
1563 * XXX we might be delivering a signal to a process which will
1564 * XXX escape from the signal in a non-standard way and invoke
1565 * XXX sigreturn() directly.
1566 */
1567 {
1568 /* Note: it's a long in the stack frame. */
1569 sigset13_t mask13;
1570
1571 native_sigset_to_sigset13(mask, &mask13);
1572 ksc.__sc_mask13 = mask13;
1573 }
1574 #endif
1575
1576 #ifdef COMPAT_OSF1
1577 /*
1578 * XXX Create an OSF/1-style sigcontext and associated goo.
1579 */
1580 #endif
1581
1582 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1583 /*
1584 * Process has trashed its stack; give it an illegal
1585 * instruction to halt it in its tracks.
1586 */
1587 #ifdef DEBUG
1588 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1589 printf("sendsig(%d): copyout failed on sig %d\n",
1590 p->p_pid, sig);
1591 #endif
1592 sigexit(p, SIGILL);
1593 /* NOTREACHED */
1594 }
1595 #ifdef DEBUG
1596 if (sigdebug & SDB_FOLLOW)
1597 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1598 scp, code);
1599 #endif
1600
1601 /* Set up the registers to return to sigcode. */
1602 frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
1603 frame->tf_regs[FRAME_A0] = sig;
1604 frame->tf_regs[FRAME_A1] = code;
1605 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1606 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1607 alpha_pal_wrusp((unsigned long)scp);
1608
1609 /* Remember that we're now on the signal stack. */
1610 if (onstack)
1611 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1612
1613 #ifdef DEBUG
1614 if (sigdebug & SDB_FOLLOW)
1615 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1616 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1617 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1618 printf("sendsig(%d): sig %d returns\n",
1619 p->p_pid, sig);
1620 #endif
1621 }
1622
1623 /*
1624 * System call to cleanup state after a signal
1625 * has been taken. Reset signal mask and
1626 * stack state from context left by sendsig (above).
1627 * Return to previous pc and psl as specified by
1628 * context left by sendsig. Check carefully to
1629 * make sure that the user has not modified the
1630 * psl to gain improper privileges or to cause
1631 * a machine fault.
1632 */
1633 /* ARGSUSED */
1634 int
1635 sys___sigreturn14(p, v, retval)
1636 struct proc *p;
1637 void *v;
1638 register_t *retval;
1639 {
1640 struct sys___sigreturn14_args /* {
1641 syscallarg(struct sigcontext *) sigcntxp;
1642 } */ *uap = v;
1643 struct sigcontext *scp, ksc;
1644
1645 /*
1646 * The trampoline code hands us the context.
1647 * It is unsafe to keep track of it ourselves, in the event that a
1648 * program jumps out of a signal handler.
1649 */
1650 scp = SCARG(uap, sigcntxp);
1651 #ifdef DEBUG
1652 if (sigdebug & SDB_FOLLOW)
1653 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1654 #endif
1655 if (ALIGN(scp) != (u_int64_t)scp)
1656 return (EINVAL);
1657
1658 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1659 return (EFAULT);
1660
1661 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1662 return (EINVAL);
1663
1664 /* Restore register context. */
1665 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1666 p->p_md.md_tf->tf_regs[FRAME_PS] =
1667 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1668
1669 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1670 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1671
1672 /* XXX ksc.sc_ownedfp ? */
1673 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1674 fpusave_proc(p, 0);
1675 memcpy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1676 sizeof(struct fpreg));
1677 p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1678 p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1679
1680 /* Restore signal stack. */
1681 if (ksc.sc_onstack & SS_ONSTACK)
1682 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1683 else
1684 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1685
1686 /* Restore signal mask. */
1687 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1688
1689 #ifdef DEBUG
1690 if (sigdebug & SDB_FOLLOW)
1691 printf("sigreturn(%d): returns\n", p->p_pid);
1692 #endif
1693 return (EJUSTRETURN);
1694 }
1695
1696 /*
1697 * machine dependent system variables.
1698 */
1699 int
1700 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1701 int *name;
1702 u_int namelen;
1703 void *oldp;
1704 size_t *oldlenp;
1705 void *newp;
1706 size_t newlen;
1707 struct proc *p;
1708 {
1709 dev_t consdev;
1710
1711 /* all sysctl names at this level are terminal */
1712 if (namelen != 1)
1713 return (ENOTDIR); /* overloaded */
1714
1715 switch (name[0]) {
1716 case CPU_CONSDEV:
1717 if (cn_tab != NULL)
1718 consdev = cn_tab->cn_dev;
1719 else
1720 consdev = NODEV;
1721 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1722 sizeof consdev));
1723
1724 case CPU_ROOT_DEVICE:
1725 return (sysctl_rdstring(oldp, oldlenp, newp,
1726 root_device->dv_xname));
1727
1728 case CPU_UNALIGNED_PRINT:
1729 return (sysctl_int(oldp, oldlenp, newp, newlen,
1730 &alpha_unaligned_print));
1731
1732 case CPU_UNALIGNED_FIX:
1733 return (sysctl_int(oldp, oldlenp, newp, newlen,
1734 &alpha_unaligned_fix));
1735
1736 case CPU_UNALIGNED_SIGBUS:
1737 return (sysctl_int(oldp, oldlenp, newp, newlen,
1738 &alpha_unaligned_sigbus));
1739
1740 case CPU_BOOTED_KERNEL:
1741 return (sysctl_rdstring(oldp, oldlenp, newp,
1742 bootinfo.booted_kernel));
1743
1744 case CPU_FP_SYNC_COMPLETE:
1745 return (sysctl_int(oldp, oldlenp, newp, newlen,
1746 &alpha_fp_sync_complete));
1747
1748 default:
1749 return (EOPNOTSUPP);
1750 }
1751 /* NOTREACHED */
1752 }
1753
1754 /*
1755 * Set registers on exec.
1756 */
1757 void
1758 setregs(p, pack, stack)
1759 register struct proc *p;
1760 struct exec_package *pack;
1761 u_long stack;
1762 {
1763 struct trapframe *tfp = p->p_md.md_tf;
1764 #ifdef DEBUG
1765 int i;
1766 #endif
1767
1768 #ifdef DEBUG
1769 /*
1770 * Crash and dump, if the user requested it.
1771 */
1772 if (boothowto & RB_DUMP)
1773 panic("crash requested by boot flags");
1774 #endif
1775
1776 #ifdef DEBUG
1777 for (i = 0; i < FRAME_SIZE; i++)
1778 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1779 #else
1780 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1781 #endif
1782 memset(&p->p_addr->u_pcb.pcb_fp, 0, sizeof p->p_addr->u_pcb.pcb_fp);
1783 alpha_pal_wrusp(stack);
1784 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1785 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1786
1787 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1788 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1789 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1790 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1791 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1792
1793 p->p_md.md_flags &= ~MDP_FPUSED;
1794 if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
1795 p->p_md.md_flags &= ~MDP_FP_C;
1796 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1797 }
1798 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1799 fpusave_proc(p, 0);
1800 }
1801
1802 /*
1803 * Release the FPU.
1804 */
1805 void
1806 fpusave_cpu(struct cpu_info *ci, int save)
1807 {
1808 struct proc *p;
1809 #if defined(MULTIPROCESSOR)
1810 int s;
1811 #endif
1812
1813 KDASSERT(ci == curcpu());
1814
1815 #if defined(MULTIPROCESSOR)
1816 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1817 #endif
1818
1819 p = ci->ci_fpcurproc;
1820 if (p == NULL)
1821 goto out;
1822
1823 if (save) {
1824 alpha_pal_wrfen(1);
1825 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1826 }
1827
1828 alpha_pal_wrfen(0);
1829
1830 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1831
1832 p->p_addr->u_pcb.pcb_fpcpu = NULL;
1833 ci->ci_fpcurproc = NULL;
1834
1835 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1836
1837 out:
1838 #if defined(MULTIPROCESSOR)
1839 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1840 #endif
1841 return;
1842 }
1843
1844 /*
1845 * Synchronize FP state for this process.
1846 */
1847 void
1848 fpusave_proc(struct proc *p, int save)
1849 {
1850 struct cpu_info *ci = curcpu();
1851 struct cpu_info *oci;
1852 #if defined(MULTIPROCESSOR)
1853 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1854 int s, spincount;
1855 #endif
1856
1857 KDASSERT(p->p_addr != NULL);
1858 KDASSERT(p->p_flag & P_INMEM);
1859
1860 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1861
1862 oci = p->p_addr->u_pcb.pcb_fpcpu;
1863 if (oci == NULL) {
1864 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1865 return;
1866 }
1867
1868 #if defined(MULTIPROCESSOR)
1869 if (oci == ci) {
1870 KASSERT(ci->ci_fpcurproc == p);
1871 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1872 fpusave_cpu(ci, save);
1873 return;
1874 }
1875
1876 KASSERT(oci->ci_fpcurproc == p);
1877 alpha_send_ipi(oci->ci_cpuid, ipi);
1878 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1879
1880 spincount = 0;
1881 while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
1882 spincount++;
1883 delay(1000); /* XXX */
1884 if (spincount > 10000)
1885 panic("fpsave ipi didn't");
1886 }
1887 #else
1888 KASSERT(ci->ci_fpcurproc == p);
1889 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1890 fpusave_cpu(ci, save);
1891 #endif /* MULTIPROCESSOR */
1892 }
1893
1894 /*
1895 * The following primitives manipulate the run queues. _whichqs tells which
1896 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1897 * into queues, Remrunqueue removes them from queues. The running process is
1898 * on no queue, other processes are on a queue related to p->p_priority,
1899 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1900 * available queues.
1901 */
1902 /*
1903 * setrunqueue(p)
1904 * proc *p;
1905 *
1906 * Call should be made at splclock(), and p->p_stat should be SRUN.
1907 */
1908
1909 void
1910 setrunqueue(p)
1911 struct proc *p;
1912 {
1913 int bit;
1914
1915 /* firewall: p->p_back must be NULL */
1916 if (p->p_back != NULL)
1917 panic("setrunqueue");
1918
1919 bit = p->p_priority >> 2;
1920 sched_whichqs |= (1 << bit);
1921 p->p_forw = (struct proc *)&sched_qs[bit];
1922 p->p_back = sched_qs[bit].ph_rlink;
1923 p->p_back->p_forw = p;
1924 sched_qs[bit].ph_rlink = p;
1925 }
1926
1927 /*
1928 * remrunqueue(p)
1929 *
1930 * Call should be made at splclock().
1931 */
1932 void
1933 remrunqueue(p)
1934 struct proc *p;
1935 {
1936 int bit;
1937
1938 bit = p->p_priority >> 2;
1939 if ((sched_whichqs & (1 << bit)) == 0)
1940 panic("remrunqueue");
1941
1942 p->p_back->p_forw = p->p_forw;
1943 p->p_forw->p_back = p->p_back;
1944 p->p_back = NULL; /* for firewall checking. */
1945
1946 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1947 sched_whichqs &= ~(1 << bit);
1948 }
1949
1950 /*
1951 * Wait "n" microseconds.
1952 */
1953 void
1954 delay(n)
1955 unsigned long n;
1956 {
1957 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1958
1959 if (n == 0)
1960 return;
1961
1962 pcc0 = alpha_rpcc() & 0xffffffffUL;
1963 cycles = 0;
1964 usec = 0;
1965
1966 while (usec <= n) {
1967 /*
1968 * Get the next CPU cycle count- assumes that we cannot
1969 * have had more than one 32 bit overflow.
1970 */
1971 pcc1 = alpha_rpcc() & 0xffffffffUL;
1972 if (pcc1 < pcc0)
1973 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1974 else
1975 curcycle = pcc1 - pcc0;
1976
1977 /*
1978 * We now have the number of processor cycles since we
1979 * last checked. Add the current cycle count to the
1980 * running total. If it's over cycles_per_usec, increment
1981 * the usec counter.
1982 */
1983 cycles += curcycle;
1984 while (cycles > cycles_per_usec) {
1985 usec++;
1986 cycles -= cycles_per_usec;
1987 }
1988 pcc0 = pcc1;
1989 }
1990 }
1991
1992 #ifdef EXEC_ECOFF
1993 void
1994 cpu_exec_ecoff_setregs(p, epp, stack)
1995 struct proc *p;
1996 struct exec_package *epp;
1997 u_long stack;
1998 {
1999 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2000
2001 setregs(p, epp, stack);
2002 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2003 }
2004
2005 /*
2006 * cpu_exec_ecoff_hook():
2007 * cpu-dependent ECOFF format hook for execve().
2008 *
2009 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2010 *
2011 */
2012 int
2013 cpu_exec_ecoff_probe(p, epp)
2014 struct proc *p;
2015 struct exec_package *epp;
2016 {
2017 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2018 int error;
2019
2020 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2021 error = 0;
2022 else
2023 error = ENOEXEC;
2024
2025 return (error);
2026 }
2027 #endif /* EXEC_ECOFF */
2028
2029 int
2030 alpha_pa_access(pa)
2031 u_long pa;
2032 {
2033 int i;
2034
2035 for (i = 0; i < mem_cluster_cnt; i++) {
2036 if (pa < mem_clusters[i].start)
2037 continue;
2038 if ((pa - mem_clusters[i].start) >=
2039 (mem_clusters[i].size & ~PAGE_MASK))
2040 continue;
2041 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2042 }
2043
2044 /*
2045 * Address is not a memory address. If we're secure, disallow
2046 * access. Otherwise, grant read/write.
2047 */
2048 if (securelevel > 0)
2049 return (PROT_NONE);
2050 else
2051 return (PROT_READ | PROT_WRITE);
2052 }
2053
2054 /* XXX XXX BEGIN XXX XXX */
2055 paddr_t alpha_XXX_dmamap_or; /* XXX */
2056 /* XXX */
2057 paddr_t /* XXX */
2058 alpha_XXX_dmamap(v) /* XXX */
2059 vaddr_t v; /* XXX */
2060 { /* XXX */
2061 /* XXX */
2062 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2063 } /* XXX */
2064 /* XXX XXX END XXX XXX */
2065
2066 char *
2067 dot_conv(x)
2068 unsigned long x;
2069 {
2070 int i;
2071 char *xc;
2072 static int next;
2073 static char space[2][20];
2074
2075 xc = space[next ^= 1] + sizeof space[0];
2076 *--xc = '\0';
2077 for (i = 0;; ++i) {
2078 if (i && (i & 3) == 0)
2079 *--xc = '.';
2080 *--xc = "0123456789abcdef"[x & 0xf];
2081 x >>= 4;
2082 if (x == 0)
2083 break;
2084 }
2085 return xc;
2086 }
2087