Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.251
      1 /* $NetBSD: machdep.c,v 1.251 2001/09/18 18:15:50 wiz Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42  * All rights reserved.
     43  *
     44  * Author: Chris G. Demetriou
     45  *
     46  * Permission to use, copy, modify and distribute this software and
     47  * its documentation is hereby granted, provided that both the copyright
     48  * notice and this permission notice appear in all copies of the
     49  * software, derivative works or modified versions, and any portions
     50  * thereof, and that both notices appear in supporting documentation.
     51  *
     52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55  *
     56  * Carnegie Mellon requests users of this software to return to
     57  *
     58  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59  *  School of Computer Science
     60  *  Carnegie Mellon University
     61  *  Pittsburgh PA 15213-3890
     62  *
     63  * any improvements or extensions that they make and grant Carnegie the
     64  * rights to redistribute these changes.
     65  */
     66 
     67 #include "opt_ddb.h"
     68 #include "opt_kgdb.h"
     69 #include "opt_multiprocessor.h"
     70 #include "opt_dec_3000_300.h"
     71 #include "opt_dec_3000_500.h"
     72 #include "opt_compat_osf1.h"
     73 #include "opt_compat_netbsd.h"
     74 #include "opt_execfmt.h"
     75 
     76 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     77 
     78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.251 2001/09/18 18:15:50 wiz Exp $");
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/signalvar.h>
     83 #include <sys/kernel.h>
     84 #include <sys/map.h>
     85 #include <sys/proc.h>
     86 #include <sys/sched.h>
     87 #include <sys/buf.h>
     88 #include <sys/reboot.h>
     89 #include <sys/device.h>
     90 #include <sys/file.h>
     91 #include <sys/malloc.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/mman.h>
     94 #include <sys/msgbuf.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/tty.h>
     97 #include <sys/user.h>
     98 #include <sys/exec.h>
     99 #include <sys/exec_ecoff.h>
    100 #include <sys/core.h>
    101 #include <sys/kcore.h>
    102 #include <machine/kcore.h>
    103 #include <machine/fpu.h>
    104 
    105 #include <sys/mount.h>
    106 #include <sys/syscallargs.h>
    107 
    108 #include <uvm/uvm_extern.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <dev/cons.h>
    112 
    113 #include <machine/autoconf.h>
    114 #include <machine/cpu.h>
    115 #include <machine/reg.h>
    116 #include <machine/rpb.h>
    117 #include <machine/prom.h>
    118 #include <machine/conf.h>
    119 #include <machine/ieeefp.h>
    120 
    121 #ifdef DDB
    122 #include <machine/db_machdep.h>
    123 #include <ddb/db_access.h>
    124 #include <ddb/db_sym.h>
    125 #include <ddb/db_extern.h>
    126 #include <ddb/db_interface.h>
    127 #endif
    128 
    129 #ifdef KGDB
    130 #include <sys/kgdb.h>
    131 #endif
    132 
    133 #ifdef DEBUG
    134 #include <machine/sigdebug.h>
    135 #endif
    136 
    137 #include <machine/alpha.h>
    138 
    139 struct vm_map *exec_map = NULL;
    140 struct vm_map *mb_map = NULL;
    141 struct vm_map *phys_map = NULL;
    142 
    143 caddr_t msgbufaddr;
    144 
    145 int	maxmem;			/* max memory per process */
    146 
    147 int	totalphysmem;		/* total amount of physical memory in system */
    148 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    149 int	resvmem;		/* amount of memory reserved for PROM */
    150 int	unusedmem;		/* amount of memory for OS that we don't use */
    151 int	unknownmem;		/* amount of memory with an unknown use */
    152 
    153 int	cputype;		/* system type, from the RPB */
    154 
    155 int	bootdev_debug = 0;	/* patchable, or from DDB */
    156 
    157 /*
    158  * XXX We need an address to which we can assign things so that they
    159  * won't be optimized away because we didn't use the value.
    160  */
    161 u_int32_t no_optimize;
    162 
    163 /* the following is used externally (sysctl_hw) */
    164 char	machine[] = MACHINE;		/* from <machine/param.h> */
    165 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    166 char	cpu_model[128];
    167 
    168 struct	user *proc0paddr;
    169 
    170 /* Number of machine cycles per microsecond */
    171 u_int64_t	cycles_per_usec;
    172 
    173 /* number of cpus in the box.  really! */
    174 int		ncpus;
    175 
    176 struct bootinfo_kernel bootinfo;
    177 
    178 /* For built-in TCDS */
    179 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    180 u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    181 #endif
    182 
    183 struct platform platform;
    184 
    185 #ifdef DDB
    186 /* start and end of kernel symbol table */
    187 void	*ksym_start, *ksym_end;
    188 #endif
    189 
    190 /* for cpu_sysctl() */
    191 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    192 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    193 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    194 int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    195 
    196 /*
    197  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    198  * XXX it should also be larger than it is, because not all of the mddt
    199  * XXX clusters end up being used for VM.
    200  */
    201 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    202 int	mem_cluster_cnt;
    203 
    204 int	cpu_dump __P((void));
    205 int	cpu_dumpsize __P((void));
    206 u_long	cpu_dump_mempagecnt __P((void));
    207 void	dumpsys __P((void));
    208 void	identifycpu __P((void));
    209 void	printregs __P((struct reg *));
    210 
    211 void
    212 alpha_init(pfn, ptb, bim, bip, biv)
    213 	u_long pfn;		/* first free PFN number */
    214 	u_long ptb;		/* PFN of current level 1 page table */
    215 	u_long bim;		/* bootinfo magic */
    216 	u_long bip;		/* bootinfo pointer */
    217 	u_long biv;		/* bootinfo version */
    218 {
    219 	extern char kernel_text[], _end[];
    220 	struct mddt *mddtp;
    221 	struct mddt_cluster *memc;
    222 	int i, mddtweird;
    223 	struct vm_physseg *vps;
    224 	vaddr_t kernstart, kernend;
    225 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    226 	vsize_t size;
    227 	cpuid_t cpu_id;
    228 	struct cpu_info *ci;
    229 	char *p;
    230 	caddr_t v;
    231 	const char *bootinfo_msg;
    232 	const struct cpuinit *c;
    233 
    234 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    235 
    236 	/*
    237 	 * Turn off interrupts (not mchecks) and floating point.
    238 	 * Make sure the instruction and data streams are consistent.
    239 	 */
    240 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    241 	alpha_pal_wrfen(0);
    242 	ALPHA_TBIA();
    243 	alpha_pal_imb();
    244 
    245 	/* Initialize the SCB. */
    246 	scb_init();
    247 
    248 	cpu_id = cpu_number();
    249 
    250 #if defined(MULTIPROCESSOR)
    251 	/*
    252 	 * Set our SysValue to the address of our cpu_info structure.
    253 	 * Secondary processors do this in their spinup trampoline.
    254 	 */
    255 	alpha_pal_wrval((u_long)&cpu_info_primary);
    256 	cpu_info[cpu_id] = &cpu_info_primary;
    257 #endif
    258 
    259 	ci = curcpu();
    260 	ci->ci_cpuid = cpu_id;
    261 
    262 	/*
    263 	 * Get critical system information (if possible, from the
    264 	 * information provided by the boot program).
    265 	 */
    266 	bootinfo_msg = NULL;
    267 	if (bim == BOOTINFO_MAGIC) {
    268 		if (biv == 0) {		/* backward compat */
    269 			biv = *(u_long *)bip;
    270 			bip += 8;
    271 		}
    272 		switch (biv) {
    273 		case 1: {
    274 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    275 
    276 			bootinfo.ssym = v1p->ssym;
    277 			bootinfo.esym = v1p->esym;
    278 			/* hwrpb may not be provided by boot block in v1 */
    279 			if (v1p->hwrpb != NULL) {
    280 				bootinfo.hwrpb_phys =
    281 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    282 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    283 			} else {
    284 				bootinfo.hwrpb_phys =
    285 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    286 				bootinfo.hwrpb_size =
    287 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    288 			}
    289 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    290 			    min(sizeof v1p->boot_flags,
    291 			      sizeof bootinfo.boot_flags));
    292 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    293 			    min(sizeof v1p->booted_kernel,
    294 			      sizeof bootinfo.booted_kernel));
    295 			/* booted dev not provided in bootinfo */
    296 			init_prom_interface((struct rpb *)
    297 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    298                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    299 			    sizeof bootinfo.booted_dev);
    300 			break;
    301 		}
    302 		default:
    303 			bootinfo_msg = "unknown bootinfo version";
    304 			goto nobootinfo;
    305 		}
    306 	} else {
    307 		bootinfo_msg = "boot program did not pass bootinfo";
    308 nobootinfo:
    309 		bootinfo.ssym = (u_long)_end;
    310 		bootinfo.esym = (u_long)_end;
    311 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    312 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    313 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    314 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    315 		    sizeof bootinfo.boot_flags);
    316 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    317 		    sizeof bootinfo.booted_kernel);
    318 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    319 		    sizeof bootinfo.booted_dev);
    320 	}
    321 
    322 	/*
    323 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    324 	 * lots of things.
    325 	 */
    326 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    327 
    328 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    329 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    330 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    331 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    332 		    sizeof(dec_3000_scsiid));
    333 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    334 		    sizeof(dec_3000_scsifast));
    335 	}
    336 #endif
    337 
    338 	/*
    339 	 * Remember how many cycles there are per microsecond,
    340 	 * so that we can use delay().  Round up, for safety.
    341 	 */
    342 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    343 
    344 	/*
    345 	 * Initialize the (temporary) bootstrap console interface, so
    346 	 * we can use printf until the VM system starts being setup.
    347 	 * The real console is initialized before then.
    348 	 */
    349 	init_bootstrap_console();
    350 
    351 	/* OUTPUT NOW ALLOWED */
    352 
    353 	/* delayed from above */
    354 	if (bootinfo_msg)
    355 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    356 		    bootinfo_msg, bim, bip, biv);
    357 
    358 	/* Initialize the trap vectors on the primary processor. */
    359 	trap_init();
    360 
    361 	/*
    362 	 * find out this system's page size
    363 	 */
    364 	PAGE_SIZE = hwrpb->rpb_page_size;
    365 	if (PAGE_SIZE != 8192)
    366 		panic("page size %d != 8192?!", PAGE_SIZE);
    367 
    368 	/*
    369 	 * Initialize PAGE_SIZE-dependent variables.
    370 	 */
    371 	uvm_setpagesize();
    372 
    373 	/*
    374 	 * Find out what hardware we're on, and do basic initialization.
    375 	 */
    376 	cputype = hwrpb->rpb_type;
    377 	if (cputype < 0) {
    378 		/*
    379 		 * At least some white-box systems have SRM which
    380 		 * reports a systype that's the negative of their
    381 		 * blue-box counterpart.
    382 		 */
    383 		cputype = -cputype;
    384 	}
    385 	c = platform_lookup(cputype);
    386 	if (c == NULL) {
    387 		platform_not_supported();
    388 		/* NOTREACHED */
    389 	}
    390 	(*c->init)();
    391 	strcpy(cpu_model, platform.model);
    392 
    393 	/*
    394 	 * Initialize the real console, so that the bootstrap console is
    395 	 * no longer necessary.
    396 	 */
    397 	(*platform.cons_init)();
    398 
    399 #ifdef DIAGNOSTIC
    400 	/* Paranoid sanity checking */
    401 
    402 	/* We should always be running on the primary. */
    403 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    404 
    405 	/*
    406 	 * On single-CPU systypes, the primary should always be CPU 0,
    407 	 * except on Alpha 8200 systems where the CPU id is related
    408 	 * to the VID, which is related to the Turbo Laser node id.
    409 	 */
    410 	if (cputype != ST_DEC_21000)
    411 		assert(hwrpb->rpb_primary_cpu_id == 0);
    412 #endif
    413 
    414 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    415 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    416 	/*
    417 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    418 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    419 	 */
    420 #endif
    421 
    422 	/*
    423 	 * Find the beginning and end of the kernel (and leave a
    424 	 * bit of space before the beginning for the bootstrap
    425 	 * stack).
    426 	 */
    427 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    428 #ifdef DDB
    429 	ksym_start = (void *)bootinfo.ssym;
    430 	ksym_end   = (void *)bootinfo.esym;
    431 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    432 #else
    433 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    434 #endif
    435 
    436 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    437 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    438 
    439 	/*
    440 	 * Find out how much memory is available, by looking at
    441 	 * the memory cluster descriptors.  This also tries to do
    442 	 * its best to detect things things that have never been seen
    443 	 * before...
    444 	 */
    445 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    446 
    447 	/* MDDT SANITY CHECKING */
    448 	mddtweird = 0;
    449 	if (mddtp->mddt_cluster_cnt < 2) {
    450 		mddtweird = 1;
    451 		printf("WARNING: weird number of mem clusters: %lu\n",
    452 		    mddtp->mddt_cluster_cnt);
    453 	}
    454 
    455 #if 0
    456 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    457 #endif
    458 
    459 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    460 		memc = &mddtp->mddt_clusters[i];
    461 #if 0
    462 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    463 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    464 #endif
    465 		totalphysmem += memc->mddt_pg_cnt;
    466 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    467 			mem_clusters[mem_cluster_cnt].start =
    468 			    ptoa(memc->mddt_pfn);
    469 			mem_clusters[mem_cluster_cnt].size =
    470 			    ptoa(memc->mddt_pg_cnt);
    471 			if (memc->mddt_usage & MDDT_mbz ||
    472 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    473 			    memc->mddt_usage & MDDT_PALCODE)
    474 				mem_clusters[mem_cluster_cnt].size |=
    475 				    PROT_READ;
    476 			else
    477 				mem_clusters[mem_cluster_cnt].size |=
    478 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    479 			mem_cluster_cnt++;
    480 		}
    481 
    482 		if (memc->mddt_usage & MDDT_mbz) {
    483 			mddtweird = 1;
    484 			printf("WARNING: mem cluster %d has weird "
    485 			    "usage 0x%lx\n", i, memc->mddt_usage);
    486 			unknownmem += memc->mddt_pg_cnt;
    487 			continue;
    488 		}
    489 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    490 			/* XXX should handle these... */
    491 			printf("WARNING: skipping non-volatile mem "
    492 			    "cluster %d\n", i);
    493 			unusedmem += memc->mddt_pg_cnt;
    494 			continue;
    495 		}
    496 		if (memc->mddt_usage & MDDT_PALCODE) {
    497 			resvmem += memc->mddt_pg_cnt;
    498 			continue;
    499 		}
    500 
    501 		/*
    502 		 * We have a memory cluster available for system
    503 		 * software use.  We must determine if this cluster
    504 		 * holds the kernel.
    505 		 */
    506 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    507 		/*
    508 		 * XXX If the kernel uses the PROM console, we only use the
    509 		 * XXX memory after the kernel in the first system segment,
    510 		 * XXX to avoid clobbering prom mapping, data, etc.
    511 		 */
    512 	    if (!pmap_uses_prom_console() || physmem == 0) {
    513 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    514 		physmem += memc->mddt_pg_cnt;
    515 		pfn0 = memc->mddt_pfn;
    516 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    517 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    518 			/*
    519 			 * Must compute the location of the kernel
    520 			 * within the segment.
    521 			 */
    522 #if 0
    523 			printf("Cluster %d contains kernel\n", i);
    524 #endif
    525 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    526 		    if (!pmap_uses_prom_console()) {
    527 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    528 			if (pfn0 < kernstartpfn) {
    529 				/*
    530 				 * There is a chunk before the kernel.
    531 				 */
    532 #if 0
    533 				printf("Loading chunk before kernel: "
    534 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    535 #endif
    536 				uvm_page_physload(pfn0, kernstartpfn,
    537 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    538 			}
    539 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    540 		    }
    541 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    542 			if (kernendpfn < pfn1) {
    543 				/*
    544 				 * There is a chunk after the kernel.
    545 				 */
    546 #if 0
    547 				printf("Loading chunk after kernel: "
    548 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    549 #endif
    550 				uvm_page_physload(kernendpfn, pfn1,
    551 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    552 			}
    553 		} else {
    554 			/*
    555 			 * Just load this cluster as one chunk.
    556 			 */
    557 #if 0
    558 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    559 			    pfn0, pfn1);
    560 #endif
    561 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    562 			    VM_FREELIST_DEFAULT);
    563 		}
    564 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    565 	    }
    566 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    567 	}
    568 
    569 	/*
    570 	 * Dump out the MDDT if it looks odd...
    571 	 */
    572 	if (mddtweird) {
    573 		printf("\n");
    574 		printf("complete memory cluster information:\n");
    575 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    576 			printf("mddt %d:\n", i);
    577 			printf("\tpfn %lx\n",
    578 			    mddtp->mddt_clusters[i].mddt_pfn);
    579 			printf("\tcnt %lx\n",
    580 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    581 			printf("\ttest %lx\n",
    582 			    mddtp->mddt_clusters[i].mddt_pg_test);
    583 			printf("\tbva %lx\n",
    584 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    585 			printf("\tbpa %lx\n",
    586 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    587 			printf("\tbcksum %lx\n",
    588 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    589 			printf("\tusage %lx\n",
    590 			    mddtp->mddt_clusters[i].mddt_usage);
    591 		}
    592 		printf("\n");
    593 	}
    594 
    595 	if (totalphysmem == 0)
    596 		panic("can't happen: system seems to have no memory!");
    597 	maxmem = physmem;
    598 #if 0
    599 	printf("totalphysmem = %d\n", totalphysmem);
    600 	printf("physmem = %d\n", physmem);
    601 	printf("resvmem = %d\n", resvmem);
    602 	printf("unusedmem = %d\n", unusedmem);
    603 	printf("unknownmem = %d\n", unknownmem);
    604 #endif
    605 
    606 	/*
    607 	 * Initialize error message buffer (at end of core).
    608 	 */
    609 	{
    610 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    611 		vsize_t reqsz = sz;
    612 
    613 		vps = &vm_physmem[vm_nphysseg - 1];
    614 
    615 		/* shrink so that it'll fit in the last segment */
    616 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    617 			sz = ptoa(vps->avail_end - vps->avail_start);
    618 
    619 		vps->end -= atop(sz);
    620 		vps->avail_end -= atop(sz);
    621 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    622 		initmsgbuf(msgbufaddr, sz);
    623 
    624 		/* Remove the last segment if it now has no pages. */
    625 		if (vps->start == vps->end)
    626 			vm_nphysseg--;
    627 
    628 		/* warn if the message buffer had to be shrunk */
    629 		if (sz != reqsz)
    630 			printf("WARNING: %ld bytes not available for msgbuf "
    631 			    "in last cluster (%ld used)\n", reqsz, sz);
    632 
    633 	}
    634 
    635 	/*
    636 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    637 	 * pmap_bootstrap() because our pmap_virtual_space()
    638 	 * returns compile-time constants.
    639 	 */
    640 
    641 	/*
    642 	 * Init mapping for u page(s) for proc 0
    643 	 */
    644 	proc0.p_addr = proc0paddr =
    645 	    (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    646 
    647 	/*
    648 	 * Allocate space for system data structures.  These data structures
    649 	 * are allocated here instead of cpu_startup() because physical
    650 	 * memory is directly addressable.  We don't have to map these into
    651 	 * virtual address space.
    652 	 */
    653 	size = (vsize_t)allocsys(NULL, NULL);
    654 	v = (caddr_t)uvm_pageboot_alloc(size);
    655 	if ((allocsys(v, NULL) - v) != size)
    656 		panic("alpha_init: table size inconsistency");
    657 
    658 	/*
    659 	 * Initialize the virtual memory system, and set the
    660 	 * page table base register in proc 0's PCB.
    661 	 */
    662 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    663 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    664 
    665 	/*
    666 	 * Initialize the rest of proc 0's PCB, and cache its physical
    667 	 * address.
    668 	 */
    669 	proc0.p_md.md_pcbpaddr =
    670 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    671 
    672 	/*
    673 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    674 	 * and make proc0's trapframe pointer point to it for sanity.
    675 	 */
    676 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    677 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    678 	proc0.p_md.md_tf =
    679 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    680 	simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
    681 
    682 	/*
    683 	 * Initialize the primary CPU's idle PCB to proc0's.  In a
    684 	 * MULTIPROCESSOR configuration, each CPU will later get
    685 	 * its own idle PCB when autoconfiguration runs.
    686 	 */
    687 	ci->ci_idle_pcb = &proc0paddr->u_pcb;
    688 	ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
    689 
    690 	/* Indicate that proc0 has a CPU. */
    691 	proc0.p_cpu = ci;
    692 
    693 	/*
    694 	 * Look at arguments passed to us and compute boothowto.
    695 	 */
    696 
    697 	boothowto = RB_SINGLE;
    698 #ifdef KADB
    699 	boothowto |= RB_KDB;
    700 #endif
    701 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    702 		/*
    703 		 * Note that we'd really like to differentiate case here,
    704 		 * but the Alpha AXP Architecture Reference Manual
    705 		 * says that we shouldn't.
    706 		 */
    707 		switch (*p) {
    708 		case 'a': /* autoboot */
    709 		case 'A':
    710 			boothowto &= ~RB_SINGLE;
    711 			break;
    712 
    713 #ifdef DEBUG
    714 		case 'c': /* crash dump immediately after autoconfig */
    715 		case 'C':
    716 			boothowto |= RB_DUMP;
    717 			break;
    718 #endif
    719 
    720 #if defined(KGDB) || defined(DDB)
    721 		case 'd': /* break into the kernel debugger ASAP */
    722 		case 'D':
    723 			boothowto |= RB_KDB;
    724 			break;
    725 #endif
    726 
    727 		case 'h': /* always halt, never reboot */
    728 		case 'H':
    729 			boothowto |= RB_HALT;
    730 			break;
    731 
    732 #if 0
    733 		case 'm': /* mini root present in memory */
    734 		case 'M':
    735 			boothowto |= RB_MINIROOT;
    736 			break;
    737 #endif
    738 
    739 		case 'n': /* askname */
    740 		case 'N':
    741 			boothowto |= RB_ASKNAME;
    742 			break;
    743 
    744 		case 's': /* single-user (default, supported for sanity) */
    745 		case 'S':
    746 			boothowto |= RB_SINGLE;
    747 			break;
    748 
    749 		case 'q': /* quiet boot */
    750 		case 'Q':
    751 			boothowto |= AB_QUIET;
    752 			break;
    753 
    754 		case 'v': /* verbose boot */
    755 		case 'V':
    756 			boothowto |= AB_VERBOSE;
    757 			break;
    758 
    759 		case '-':
    760 			/*
    761 			 * Just ignore this.  It's not required, but it's
    762 			 * common for it to be passed regardless.
    763 			 */
    764 			break;
    765 
    766 		default:
    767 			printf("Unrecognized boot flag '%c'.\n", *p);
    768 			break;
    769 		}
    770 	}
    771 
    772 
    773 	/*
    774 	 * Figure out the number of cpus in the box, from RPB fields.
    775 	 * Really.  We mean it.
    776 	 */
    777 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    778 		struct pcs *pcsp;
    779 
    780 		pcsp = LOCATE_PCS(hwrpb, i);
    781 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    782 			ncpus++;
    783 	}
    784 
    785 	/*
    786 	 * Initialize debuggers, and break into them if appropriate.
    787 	 */
    788 #ifdef DDB
    789 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    790 	    ksym_start, ksym_end);
    791 #endif
    792 
    793 	if (boothowto & RB_KDB) {
    794 #if defined(KGDB)
    795 		kgdb_debug_init = 1;
    796 		kgdb_connect(1);
    797 #elif defined(DDB)
    798 		Debugger();
    799 #endif
    800 	}
    801 
    802 	/*
    803 	 * Figure out our clock frequency, from RPB fields.
    804 	 */
    805 	hz = hwrpb->rpb_intr_freq >> 12;
    806 	if (!(60 <= hz && hz <= 10240)) {
    807 		hz = 1024;
    808 #ifdef DIAGNOSTIC
    809 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    810 			hwrpb->rpb_intr_freq, hz);
    811 #endif
    812 	}
    813 }
    814 
    815 void
    816 consinit()
    817 {
    818 
    819 	/*
    820 	 * Everything related to console initialization is done
    821 	 * in alpha_init().
    822 	 */
    823 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    824 	printf("consinit: %susing prom console\n",
    825 	    pmap_uses_prom_console() ? "" : "not ");
    826 #endif
    827 }
    828 
    829 #include "pckbc.h"
    830 #include "pckbd.h"
    831 #if (NPCKBC > 0) && (NPCKBD == 0)
    832 
    833 #include <dev/ic/pckbcvar.h>
    834 
    835 /*
    836  * This is called by the pbkbc driver if no pckbd is configured.
    837  * On the i386, it is used to glue in the old, deprecated console
    838  * code.  On the Alpha, it does nothing.
    839  */
    840 int
    841 pckbc_machdep_cnattach(kbctag, kbcslot)
    842 	pckbc_tag_t kbctag;
    843 	pckbc_slot_t kbcslot;
    844 {
    845 
    846 	return (ENXIO);
    847 }
    848 #endif /* NPCKBC > 0 && NPCKBD == 0 */
    849 
    850 void
    851 cpu_startup()
    852 {
    853 	register unsigned i;
    854 	int base, residual;
    855 	vaddr_t minaddr, maxaddr;
    856 	vsize_t size;
    857 	char pbuf[9];
    858 #if defined(DEBUG)
    859 	extern int pmapdebug;
    860 	int opmapdebug = pmapdebug;
    861 
    862 	pmapdebug = 0;
    863 #endif
    864 
    865 	/*
    866 	 * Good {morning,afternoon,evening,night}.
    867 	 */
    868 	printf(version);
    869 	identifycpu();
    870 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    871 	printf("total memory = %s\n", pbuf);
    872 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    873 	printf("(%s reserved for PROM, ", pbuf);
    874 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    875 	printf("%s used by NetBSD)\n", pbuf);
    876 	if (unusedmem) {
    877 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    878 		printf("WARNING: unused memory = %s\n", pbuf);
    879 	}
    880 	if (unknownmem) {
    881 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    882 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    883 	}
    884 
    885 	/*
    886 	 * Allocate virtual address space for file I/O buffers.
    887 	 * Note they are different than the array of headers, 'buf',
    888 	 * and usually occupy more virtual memory than physical.
    889 	 */
    890 	size = MAXBSIZE * nbuf;
    891 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
    892 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    893 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    894 				UVM_ADV_NORMAL, 0)) != 0)
    895 		panic("startup: cannot allocate VM for buffers");
    896 	base = bufpages / nbuf;
    897 	residual = bufpages % nbuf;
    898 	for (i = 0; i < nbuf; i++) {
    899 		vsize_t curbufsize;
    900 		vaddr_t curbuf;
    901 		struct vm_page *pg;
    902 
    903 		/*
    904 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
    905 		 * that MAXBSIZE space, we allocate and map (base+1) pages
    906 		 * for the first "residual" buffers, and then we allocate
    907 		 * "base" pages for the rest.
    908 		 */
    909 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
    910 		curbufsize = NBPG * ((i < residual) ? (base+1) : base);
    911 
    912 		while (curbufsize) {
    913 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
    914 			if (pg == NULL)
    915 				panic("cpu_startup: not enough memory for "
    916 				    "buffer cache");
    917 			pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
    918 					VM_PROT_READ|VM_PROT_WRITE);
    919 			curbuf += PAGE_SIZE;
    920 			curbufsize -= PAGE_SIZE;
    921 		}
    922 	}
    923 	pmap_update(pmap_kernel());
    924 
    925 	/*
    926 	 * Allocate a submap for exec arguments.  This map effectively
    927 	 * limits the number of processes exec'ing at any time.
    928 	 */
    929 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    930 				   16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
    931 
    932 	/*
    933 	 * Allocate a submap for physio
    934 	 */
    935 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    936 				   VM_PHYS_SIZE, 0, FALSE, NULL);
    937 
    938 	/*
    939 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    940 	 * are allocated via the pool allocator, and we use K0SEG to
    941 	 * map those pages.
    942 	 */
    943 
    944 #if defined(DEBUG)
    945 	pmapdebug = opmapdebug;
    946 #endif
    947 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    948 	printf("avail memory = %s\n", pbuf);
    949 #if 0
    950 	{
    951 		extern u_long pmap_pages_stolen;
    952 
    953 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    954 		printf("stolen memory for VM structures = %s\n", pbuf);
    955 	}
    956 #endif
    957 	format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
    958 	printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
    959 
    960 	/*
    961 	 * Set up buffers, so they can be used to read disk labels.
    962 	 */
    963 	bufinit();
    964 
    965 	/*
    966 	 * Set up the HWPCB so that it's safe to configure secondary
    967 	 * CPUs.
    968 	 */
    969 	hwrpb_primary_init();
    970 }
    971 
    972 /*
    973  * Retrieve the platform name from the DSR.
    974  */
    975 const char *
    976 alpha_dsr_sysname()
    977 {
    978 	struct dsrdb *dsr;
    979 	const char *sysname;
    980 
    981 	/*
    982 	 * DSR does not exist on early HWRPB versions.
    983 	 */
    984 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    985 		return (NULL);
    986 
    987 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
    988 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
    989 	    sizeof(u_int64_t)));
    990 	return (sysname);
    991 }
    992 
    993 /*
    994  * Lookup the system specified system variation in the provided table,
    995  * returning the model string on match.
    996  */
    997 const char *
    998 alpha_variation_name(variation, avtp)
    999 	u_int64_t variation;
   1000 	const struct alpha_variation_table *avtp;
   1001 {
   1002 	int i;
   1003 
   1004 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1005 		if (avtp[i].avt_variation == variation)
   1006 			return (avtp[i].avt_model);
   1007 	return (NULL);
   1008 }
   1009 
   1010 /*
   1011  * Generate a default platform name based for unknown system variations.
   1012  */
   1013 const char *
   1014 alpha_unknown_sysname()
   1015 {
   1016 	static char s[128];		/* safe size */
   1017 
   1018 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1019 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1020 	return ((const char *)s);
   1021 }
   1022 
   1023 void
   1024 identifycpu()
   1025 {
   1026 	char *s;
   1027 	int i;
   1028 
   1029 	/*
   1030 	 * print out CPU identification information.
   1031 	 */
   1032 	printf("%s", cpu_model);
   1033 	for(s = cpu_model; *s; ++s)
   1034 		if(strncasecmp(s, "MHz", 3) == 0)
   1035 			goto skipMHz;
   1036 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
   1037 skipMHz:
   1038 	printf(", s/n ");
   1039 	for (i = 0; i < 10; i++)
   1040 		printf("%c", hwrpb->rpb_ssn[i]);
   1041 	printf("\n");
   1042 	printf("%ld byte page size, %d processor%s.\n",
   1043 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1044 #if 0
   1045 	/* this isn't defined for any systems that we run on? */
   1046 	printf("serial number 0x%lx 0x%lx\n",
   1047 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1048 
   1049 	/* and these aren't particularly useful! */
   1050 	printf("variation: 0x%lx, revision 0x%lx\n",
   1051 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1052 #endif
   1053 }
   1054 
   1055 int	waittime = -1;
   1056 struct pcb dumppcb;
   1057 
   1058 void
   1059 cpu_reboot(howto, bootstr)
   1060 	int howto;
   1061 	char *bootstr;
   1062 {
   1063 #if defined(MULTIPROCESSOR)
   1064 	u_long cpu_id = cpu_number();
   1065 	u_long wait_mask = (1UL << cpu_id) |
   1066 			   (1UL << hwrpb->rpb_primary_cpu_id);
   1067 	int i;
   1068 #endif
   1069 
   1070 	/* If "always halt" was specified as a boot flag, obey. */
   1071 	if ((boothowto & RB_HALT) != 0)
   1072 		howto |= RB_HALT;
   1073 
   1074 	boothowto = howto;
   1075 
   1076 	/* If system is cold, just halt. */
   1077 	if (cold) {
   1078 		boothowto |= RB_HALT;
   1079 		goto haltsys;
   1080 	}
   1081 
   1082 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
   1083 		waittime = 0;
   1084 		vfs_shutdown();
   1085 		/*
   1086 		 * If we've been adjusting the clock, the todr
   1087 		 * will be out of synch; adjust it now.
   1088 		 */
   1089 		resettodr();
   1090 	}
   1091 
   1092 	/* Disable interrupts. */
   1093 	splhigh();
   1094 
   1095 #if defined(MULTIPROCESSOR)
   1096 	/*
   1097 	 * Halt all other CPUs.  If we're not the primary, the
   1098 	 * primary will spin, waiting for us to halt.
   1099 	 */
   1100 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1101 
   1102 	for (i = 0; i < 10000; i++) {
   1103 		alpha_mb();
   1104 		if (cpus_running == wait_mask)
   1105 			break;
   1106 		delay(1000);
   1107 	}
   1108 	alpha_mb();
   1109 	if (cpus_running != wait_mask)
   1110 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1111 		    cpus_running);
   1112 #endif /* MULTIPROCESSOR */
   1113 
   1114 	/* If rebooting and a dump is requested do it. */
   1115 #if 0
   1116 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1117 #else
   1118 	if (boothowto & RB_DUMP)
   1119 #endif
   1120 		dumpsys();
   1121 
   1122 haltsys:
   1123 
   1124 	/* run any shutdown hooks */
   1125 	doshutdownhooks();
   1126 
   1127 #ifdef BOOTKEY
   1128 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1129 	cnpollc(1);	/* for proper keyboard command handling */
   1130 	cngetc();
   1131 	cnpollc(0);
   1132 	printf("\n");
   1133 #endif
   1134 
   1135 	/* Finally, powerdown/halt/reboot the system. */
   1136 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1137 	    platform.powerdown != NULL) {
   1138 		(*platform.powerdown)();
   1139 		printf("WARNING: powerdown failed!\n");
   1140 	}
   1141 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1142 #if defined(MULTIPROCESSOR)
   1143 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1144 		cpu_halt();
   1145 	else
   1146 #endif
   1147 		prom_halt(boothowto & RB_HALT);
   1148 	/*NOTREACHED*/
   1149 }
   1150 
   1151 /*
   1152  * These variables are needed by /sbin/savecore
   1153  */
   1154 u_long	dumpmag = 0x8fca0101;	/* magic number */
   1155 int 	dumpsize = 0;		/* pages */
   1156 long	dumplo = 0; 		/* blocks */
   1157 
   1158 /*
   1159  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1160  */
   1161 int
   1162 cpu_dumpsize()
   1163 {
   1164 	int size;
   1165 
   1166 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1167 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1168 	if (roundup(size, dbtob(1)) != dbtob(1))
   1169 		return -1;
   1170 
   1171 	return (1);
   1172 }
   1173 
   1174 /*
   1175  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1176  */
   1177 u_long
   1178 cpu_dump_mempagecnt()
   1179 {
   1180 	u_long i, n;
   1181 
   1182 	n = 0;
   1183 	for (i = 0; i < mem_cluster_cnt; i++)
   1184 		n += atop(mem_clusters[i].size);
   1185 	return (n);
   1186 }
   1187 
   1188 /*
   1189  * cpu_dump: dump machine-dependent kernel core dump headers.
   1190  */
   1191 int
   1192 cpu_dump()
   1193 {
   1194 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1195 	char buf[dbtob(1)];
   1196 	kcore_seg_t *segp;
   1197 	cpu_kcore_hdr_t *cpuhdrp;
   1198 	phys_ram_seg_t *memsegp;
   1199 	int i;
   1200 
   1201 	dump = bdevsw[major(dumpdev)].d_dump;
   1202 
   1203 	memset(buf, 0, sizeof buf);
   1204 	segp = (kcore_seg_t *)buf;
   1205 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1206 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1207 	    ALIGN(sizeof(*cpuhdrp))];
   1208 
   1209 	/*
   1210 	 * Generate a segment header.
   1211 	 */
   1212 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1213 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1214 
   1215 	/*
   1216 	 * Add the machine-dependent header info.
   1217 	 */
   1218 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1219 	cpuhdrp->page_size = PAGE_SIZE;
   1220 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1221 
   1222 	/*
   1223 	 * Fill in the memory segment descriptors.
   1224 	 */
   1225 	for (i = 0; i < mem_cluster_cnt; i++) {
   1226 		memsegp[i].start = mem_clusters[i].start;
   1227 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1228 	}
   1229 
   1230 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1231 }
   1232 
   1233 /*
   1234  * This is called by main to set dumplo and dumpsize.
   1235  * Dumps always skip the first NBPG of disk space
   1236  * in case there might be a disk label stored there.
   1237  * If there is extra space, put dump at the end to
   1238  * reduce the chance that swapping trashes it.
   1239  */
   1240 void
   1241 cpu_dumpconf()
   1242 {
   1243 	int nblks, dumpblks;	/* size of dump area */
   1244 	int maj;
   1245 
   1246 	if (dumpdev == NODEV)
   1247 		goto bad;
   1248 	maj = major(dumpdev);
   1249 	if (maj < 0 || maj >= nblkdev)
   1250 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1251 	if (bdevsw[maj].d_psize == NULL)
   1252 		goto bad;
   1253 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1254 	if (nblks <= ctod(1))
   1255 		goto bad;
   1256 
   1257 	dumpblks = cpu_dumpsize();
   1258 	if (dumpblks < 0)
   1259 		goto bad;
   1260 	dumpblks += ctod(cpu_dump_mempagecnt());
   1261 
   1262 	/* If dump won't fit (incl. room for possible label), punt. */
   1263 	if (dumpblks > (nblks - ctod(1)))
   1264 		goto bad;
   1265 
   1266 	/* Put dump at end of partition */
   1267 	dumplo = nblks - dumpblks;
   1268 
   1269 	/* dumpsize is in page units, and doesn't include headers. */
   1270 	dumpsize = cpu_dump_mempagecnt();
   1271 	return;
   1272 
   1273 bad:
   1274 	dumpsize = 0;
   1275 	return;
   1276 }
   1277 
   1278 /*
   1279  * Dump the kernel's image to the swap partition.
   1280  */
   1281 #define	BYTES_PER_DUMP	NBPG
   1282 
   1283 void
   1284 dumpsys()
   1285 {
   1286 	u_long totalbytesleft, bytes, i, n, memcl;
   1287 	u_long maddr;
   1288 	int psize;
   1289 	daddr_t blkno;
   1290 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1291 	int error;
   1292 
   1293 	/* Save registers. */
   1294 	savectx(&dumppcb);
   1295 
   1296 	if (dumpdev == NODEV)
   1297 		return;
   1298 
   1299 	/*
   1300 	 * For dumps during autoconfiguration,
   1301 	 * if dump device has already configured...
   1302 	 */
   1303 	if (dumpsize == 0)
   1304 		cpu_dumpconf();
   1305 	if (dumplo <= 0) {
   1306 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1307 		    minor(dumpdev));
   1308 		return;
   1309 	}
   1310 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1311 	    minor(dumpdev), dumplo);
   1312 
   1313 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1314 	printf("dump ");
   1315 	if (psize == -1) {
   1316 		printf("area unavailable\n");
   1317 		return;
   1318 	}
   1319 
   1320 	/* XXX should purge all outstanding keystrokes. */
   1321 
   1322 	if ((error = cpu_dump()) != 0)
   1323 		goto err;
   1324 
   1325 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1326 	blkno = dumplo + cpu_dumpsize();
   1327 	dump = bdevsw[major(dumpdev)].d_dump;
   1328 	error = 0;
   1329 
   1330 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1331 		maddr = mem_clusters[memcl].start;
   1332 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1333 
   1334 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1335 
   1336 			/* Print out how many MBs we to go. */
   1337 			if ((totalbytesleft % (1024*1024)) == 0)
   1338 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1339 
   1340 			/* Limit size for next transfer. */
   1341 			n = bytes - i;
   1342 			if (n > BYTES_PER_DUMP)
   1343 				n =  BYTES_PER_DUMP;
   1344 
   1345 			error = (*dump)(dumpdev, blkno,
   1346 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1347 			if (error)
   1348 				goto err;
   1349 			maddr += n;
   1350 			blkno += btodb(n);			/* XXX? */
   1351 
   1352 			/* XXX should look for keystrokes, to cancel. */
   1353 		}
   1354 	}
   1355 
   1356 err:
   1357 	switch (error) {
   1358 
   1359 	case ENXIO:
   1360 		printf("device bad\n");
   1361 		break;
   1362 
   1363 	case EFAULT:
   1364 		printf("device not ready\n");
   1365 		break;
   1366 
   1367 	case EINVAL:
   1368 		printf("area improper\n");
   1369 		break;
   1370 
   1371 	case EIO:
   1372 		printf("i/o error\n");
   1373 		break;
   1374 
   1375 	case EINTR:
   1376 		printf("aborted from console\n");
   1377 		break;
   1378 
   1379 	case 0:
   1380 		printf("succeeded\n");
   1381 		break;
   1382 
   1383 	default:
   1384 		printf("error %d\n", error);
   1385 		break;
   1386 	}
   1387 	printf("\n\n");
   1388 	delay(1000);
   1389 }
   1390 
   1391 void
   1392 frametoreg(framep, regp)
   1393 	struct trapframe *framep;
   1394 	struct reg *regp;
   1395 {
   1396 
   1397 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1398 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1399 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1400 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1401 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1402 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1403 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1404 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1405 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1406 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1407 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1408 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1409 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1410 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1411 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1412 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1413 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1414 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1415 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1416 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1417 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1418 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1419 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1420 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1421 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1422 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1423 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1424 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1425 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1426 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1427 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1428 	regp->r_regs[R_ZERO] = 0;
   1429 }
   1430 
   1431 void
   1432 regtoframe(regp, framep)
   1433 	struct reg *regp;
   1434 	struct trapframe *framep;
   1435 {
   1436 
   1437 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1438 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1439 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1440 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1441 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1442 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1443 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1444 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1445 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1446 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1447 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1448 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1449 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1450 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1451 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1452 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1453 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1454 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1455 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1456 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1457 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1458 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1459 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1460 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1461 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1462 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1463 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1464 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1465 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1466 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1467 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1468 	/* ??? = regp->r_regs[R_ZERO]; */
   1469 }
   1470 
   1471 void
   1472 printregs(regp)
   1473 	struct reg *regp;
   1474 {
   1475 	int i;
   1476 
   1477 	for (i = 0; i < 32; i++)
   1478 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1479 		   i & 1 ? "\n" : "\t");
   1480 }
   1481 
   1482 void
   1483 regdump(framep)
   1484 	struct trapframe *framep;
   1485 {
   1486 	struct reg reg;
   1487 
   1488 	frametoreg(framep, &reg);
   1489 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1490 
   1491 	printf("REGISTERS:\n");
   1492 	printregs(&reg);
   1493 }
   1494 
   1495 
   1496 /*
   1497  * Send an interrupt to process.
   1498  */
   1499 void
   1500 sendsig(catcher, sig, mask, code)
   1501 	sig_t catcher;
   1502 	int sig;
   1503 	sigset_t *mask;
   1504 	u_long code;
   1505 {
   1506 	struct proc *p = curproc;
   1507 	struct sigcontext *scp, ksc;
   1508 	struct trapframe *frame;
   1509 	int onstack, fsize, rndfsize;
   1510 
   1511 	frame = p->p_md.md_tf;
   1512 
   1513 	/* Do we need to jump onto the signal stack? */
   1514 	onstack =
   1515 	    (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1516 	    (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
   1517 
   1518 	/* Allocate space for the signal handler context. */
   1519 	fsize = sizeof(ksc);
   1520 	rndfsize = ((fsize + 15) / 16) * 16;
   1521 
   1522 	if (onstack)
   1523 		scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
   1524 					p->p_sigctx.ps_sigstk.ss_size);
   1525 	else
   1526 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1527 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1528 
   1529 #ifdef DEBUG
   1530 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1531 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1532 		    sig, &onstack, scp);
   1533 #endif
   1534 
   1535 	/* Build stack frame for signal trampoline. */
   1536 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1537 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1538 
   1539 	/* Save register context. */
   1540 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1541 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1542 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1543 
   1544 	/* save the floating-point state, if necessary, then copy it. */
   1545 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1546 		fpusave_proc(p, 1);
   1547 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1548 	memcpy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1549 	    sizeof(struct fpreg));
   1550 	ksc.sc_fp_control = alpha_read_fp_c(p);
   1551 	memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved);	/* XXX */
   1552 	memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx);		/* XXX */
   1553 
   1554 	/* Save signal stack. */
   1555 	ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
   1556 
   1557 	/* Save signal mask. */
   1558 	ksc.sc_mask = *mask;
   1559 
   1560 #ifdef COMPAT_13
   1561 	/*
   1562 	 * XXX We always have to save an old style signal mask because
   1563 	 * XXX we might be delivering a signal to a process which will
   1564 	 * XXX escape from the signal in a non-standard way and invoke
   1565 	 * XXX sigreturn() directly.
   1566 	 */
   1567 	{
   1568 		/* Note: it's a long in the stack frame. */
   1569 		sigset13_t mask13;
   1570 
   1571 		native_sigset_to_sigset13(mask, &mask13);
   1572 		ksc.__sc_mask13 = mask13;
   1573 	}
   1574 #endif
   1575 
   1576 #ifdef COMPAT_OSF1
   1577 	/*
   1578 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1579 	 */
   1580 #endif
   1581 
   1582 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1583 		/*
   1584 		 * Process has trashed its stack; give it an illegal
   1585 		 * instruction to halt it in its tracks.
   1586 		 */
   1587 #ifdef DEBUG
   1588 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1589 			printf("sendsig(%d): copyout failed on sig %d\n",
   1590 			    p->p_pid, sig);
   1591 #endif
   1592 		sigexit(p, SIGILL);
   1593 		/* NOTREACHED */
   1594 	}
   1595 #ifdef DEBUG
   1596 	if (sigdebug & SDB_FOLLOW)
   1597 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1598 		    scp, code);
   1599 #endif
   1600 
   1601 	/* Set up the registers to return to sigcode. */
   1602 	frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
   1603 	frame->tf_regs[FRAME_A0] = sig;
   1604 	frame->tf_regs[FRAME_A1] = code;
   1605 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1606 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1607 	alpha_pal_wrusp((unsigned long)scp);
   1608 
   1609 	/* Remember that we're now on the signal stack. */
   1610 	if (onstack)
   1611 		p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   1612 
   1613 #ifdef DEBUG
   1614 	if (sigdebug & SDB_FOLLOW)
   1615 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1616 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1617 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1618 		printf("sendsig(%d): sig %d returns\n",
   1619 		    p->p_pid, sig);
   1620 #endif
   1621 }
   1622 
   1623 /*
   1624  * System call to cleanup state after a signal
   1625  * has been taken.  Reset signal mask and
   1626  * stack state from context left by sendsig (above).
   1627  * Return to previous pc and psl as specified by
   1628  * context left by sendsig. Check carefully to
   1629  * make sure that the user has not modified the
   1630  * psl to gain improper privileges or to cause
   1631  * a machine fault.
   1632  */
   1633 /* ARGSUSED */
   1634 int
   1635 sys___sigreturn14(p, v, retval)
   1636 	struct proc *p;
   1637 	void *v;
   1638 	register_t *retval;
   1639 {
   1640 	struct sys___sigreturn14_args /* {
   1641 		syscallarg(struct sigcontext *) sigcntxp;
   1642 	} */ *uap = v;
   1643 	struct sigcontext *scp, ksc;
   1644 
   1645 	/*
   1646 	 * The trampoline code hands us the context.
   1647 	 * It is unsafe to keep track of it ourselves, in the event that a
   1648 	 * program jumps out of a signal handler.
   1649 	 */
   1650 	scp = SCARG(uap, sigcntxp);
   1651 #ifdef DEBUG
   1652 	if (sigdebug & SDB_FOLLOW)
   1653 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1654 #endif
   1655 	if (ALIGN(scp) != (u_int64_t)scp)
   1656 		return (EINVAL);
   1657 
   1658 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1659 		return (EFAULT);
   1660 
   1661 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1662 		return (EINVAL);
   1663 
   1664 	/* Restore register context. */
   1665 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1666 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1667 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1668 
   1669 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1670 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1671 
   1672 	/* XXX ksc.sc_ownedfp ? */
   1673 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1674 		fpusave_proc(p, 0);
   1675 	memcpy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1676 	    sizeof(struct fpreg));
   1677 	p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
   1678 	p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
   1679 
   1680 	/* Restore signal stack. */
   1681 	if (ksc.sc_onstack & SS_ONSTACK)
   1682 		p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   1683 	else
   1684 		p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1685 
   1686 	/* Restore signal mask. */
   1687 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1688 
   1689 #ifdef DEBUG
   1690 	if (sigdebug & SDB_FOLLOW)
   1691 		printf("sigreturn(%d): returns\n", p->p_pid);
   1692 #endif
   1693 	return (EJUSTRETURN);
   1694 }
   1695 
   1696 /*
   1697  * machine dependent system variables.
   1698  */
   1699 int
   1700 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1701 	int *name;
   1702 	u_int namelen;
   1703 	void *oldp;
   1704 	size_t *oldlenp;
   1705 	void *newp;
   1706 	size_t newlen;
   1707 	struct proc *p;
   1708 {
   1709 	dev_t consdev;
   1710 
   1711 	/* all sysctl names at this level are terminal */
   1712 	if (namelen != 1)
   1713 		return (ENOTDIR);		/* overloaded */
   1714 
   1715 	switch (name[0]) {
   1716 	case CPU_CONSDEV:
   1717 		if (cn_tab != NULL)
   1718 			consdev = cn_tab->cn_dev;
   1719 		else
   1720 			consdev = NODEV;
   1721 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1722 			sizeof consdev));
   1723 
   1724 	case CPU_ROOT_DEVICE:
   1725 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1726 		    root_device->dv_xname));
   1727 
   1728 	case CPU_UNALIGNED_PRINT:
   1729 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1730 		    &alpha_unaligned_print));
   1731 
   1732 	case CPU_UNALIGNED_FIX:
   1733 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1734 		    &alpha_unaligned_fix));
   1735 
   1736 	case CPU_UNALIGNED_SIGBUS:
   1737 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1738 		    &alpha_unaligned_sigbus));
   1739 
   1740 	case CPU_BOOTED_KERNEL:
   1741 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1742 		    bootinfo.booted_kernel));
   1743 
   1744 	case CPU_FP_SYNC_COMPLETE:
   1745 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1746 		    &alpha_fp_sync_complete));
   1747 
   1748 	default:
   1749 		return (EOPNOTSUPP);
   1750 	}
   1751 	/* NOTREACHED */
   1752 }
   1753 
   1754 /*
   1755  * Set registers on exec.
   1756  */
   1757 void
   1758 setregs(p, pack, stack)
   1759 	register struct proc *p;
   1760 	struct exec_package *pack;
   1761 	u_long stack;
   1762 {
   1763 	struct trapframe *tfp = p->p_md.md_tf;
   1764 #ifdef DEBUG
   1765 	int i;
   1766 #endif
   1767 
   1768 #ifdef DEBUG
   1769 	/*
   1770 	 * Crash and dump, if the user requested it.
   1771 	 */
   1772 	if (boothowto & RB_DUMP)
   1773 		panic("crash requested by boot flags");
   1774 #endif
   1775 
   1776 #ifdef DEBUG
   1777 	for (i = 0; i < FRAME_SIZE; i++)
   1778 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1779 #else
   1780 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1781 #endif
   1782 	memset(&p->p_addr->u_pcb.pcb_fp, 0, sizeof p->p_addr->u_pcb.pcb_fp);
   1783 	alpha_pal_wrusp(stack);
   1784 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1785 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1786 
   1787 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1788 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1789 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1790 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1791 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1792 
   1793 	p->p_md.md_flags &= ~MDP_FPUSED;
   1794 	if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
   1795 		p->p_md.md_flags &= ~MDP_FP_C;
   1796 		p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
   1797 	}
   1798 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1799 		fpusave_proc(p, 0);
   1800 }
   1801 
   1802 /*
   1803  * Release the FPU.
   1804  */
   1805 void
   1806 fpusave_cpu(struct cpu_info *ci, int save)
   1807 {
   1808 	struct proc *p;
   1809 #if defined(MULTIPROCESSOR)
   1810 	int s;
   1811 #endif
   1812 
   1813 	KDASSERT(ci == curcpu());
   1814 
   1815 #if defined(MULTIPROCESSOR)
   1816 	atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
   1817 #endif
   1818 
   1819 	p = ci->ci_fpcurproc;
   1820 	if (p == NULL)
   1821 		goto out;
   1822 
   1823 	if (save) {
   1824 		alpha_pal_wrfen(1);
   1825 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1826 	}
   1827 
   1828 	alpha_pal_wrfen(0);
   1829 
   1830 	FPCPU_LOCK(&p->p_addr->u_pcb, s);
   1831 
   1832 	p->p_addr->u_pcb.pcb_fpcpu = NULL;
   1833 	ci->ci_fpcurproc = NULL;
   1834 
   1835 	FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1836 
   1837  out:
   1838 #if defined(MULTIPROCESSOR)
   1839 	atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
   1840 #endif
   1841 	return;
   1842 }
   1843 
   1844 /*
   1845  * Synchronize FP state for this process.
   1846  */
   1847 void
   1848 fpusave_proc(struct proc *p, int save)
   1849 {
   1850 	struct cpu_info *ci = curcpu();
   1851 	struct cpu_info *oci;
   1852 #if defined(MULTIPROCESSOR)
   1853 	u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
   1854 	int s, spincount;
   1855 #endif
   1856 
   1857 	KDASSERT(p->p_addr != NULL);
   1858 	KDASSERT(p->p_flag & P_INMEM);
   1859 
   1860 	FPCPU_LOCK(&p->p_addr->u_pcb, s);
   1861 
   1862 	oci = p->p_addr->u_pcb.pcb_fpcpu;
   1863 	if (oci == NULL) {
   1864 		FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1865 		return;
   1866 	}
   1867 
   1868 #if defined(MULTIPROCESSOR)
   1869 	if (oci == ci) {
   1870 		KASSERT(ci->ci_fpcurproc == p);
   1871 		FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1872 		fpusave_cpu(ci, save);
   1873 		return;
   1874 	}
   1875 
   1876 	KASSERT(oci->ci_fpcurproc == p);
   1877 	alpha_send_ipi(oci->ci_cpuid, ipi);
   1878 	FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1879 
   1880 	spincount = 0;
   1881 	while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
   1882 		spincount++;
   1883 		delay(1000);	/* XXX */
   1884 		if (spincount > 10000)
   1885 			panic("fpsave ipi didn't");
   1886 	}
   1887 #else
   1888 	KASSERT(ci->ci_fpcurproc == p);
   1889 	FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1890 	fpusave_cpu(ci, save);
   1891 #endif /* MULTIPROCESSOR */
   1892 }
   1893 
   1894 /*
   1895  * The following primitives manipulate the run queues.  _whichqs tells which
   1896  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1897  * into queues, Remrunqueue removes them from queues.  The running process is
   1898  * on no queue, other processes are on a queue related to p->p_priority,
   1899  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1900  * available queues.
   1901  */
   1902 /*
   1903  * setrunqueue(p)
   1904  *	proc *p;
   1905  *
   1906  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1907  */
   1908 
   1909 void
   1910 setrunqueue(p)
   1911 	struct proc *p;
   1912 {
   1913 	int bit;
   1914 
   1915 	/* firewall: p->p_back must be NULL */
   1916 	if (p->p_back != NULL)
   1917 		panic("setrunqueue");
   1918 
   1919 	bit = p->p_priority >> 2;
   1920 	sched_whichqs |= (1 << bit);
   1921 	p->p_forw = (struct proc *)&sched_qs[bit];
   1922 	p->p_back = sched_qs[bit].ph_rlink;
   1923 	p->p_back->p_forw = p;
   1924 	sched_qs[bit].ph_rlink = p;
   1925 }
   1926 
   1927 /*
   1928  * remrunqueue(p)
   1929  *
   1930  * Call should be made at splclock().
   1931  */
   1932 void
   1933 remrunqueue(p)
   1934 	struct proc *p;
   1935 {
   1936 	int bit;
   1937 
   1938 	bit = p->p_priority >> 2;
   1939 	if ((sched_whichqs & (1 << bit)) == 0)
   1940 		panic("remrunqueue");
   1941 
   1942 	p->p_back->p_forw = p->p_forw;
   1943 	p->p_forw->p_back = p->p_back;
   1944 	p->p_back = NULL;	/* for firewall checking. */
   1945 
   1946 	if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
   1947 		sched_whichqs &= ~(1 << bit);
   1948 }
   1949 
   1950 /*
   1951  * Wait "n" microseconds.
   1952  */
   1953 void
   1954 delay(n)
   1955 	unsigned long n;
   1956 {
   1957 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1958 
   1959 	if (n == 0)
   1960 		return;
   1961 
   1962 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1963 	cycles = 0;
   1964 	usec = 0;
   1965 
   1966 	while (usec <= n) {
   1967 		/*
   1968 		 * Get the next CPU cycle count- assumes that we cannot
   1969 		 * have had more than one 32 bit overflow.
   1970 		 */
   1971 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1972 		if (pcc1 < pcc0)
   1973 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1974 		else
   1975 			curcycle = pcc1 - pcc0;
   1976 
   1977 		/*
   1978 		 * We now have the number of processor cycles since we
   1979 		 * last checked. Add the current cycle count to the
   1980 		 * running total. If it's over cycles_per_usec, increment
   1981 		 * the usec counter.
   1982 		 */
   1983 		cycles += curcycle;
   1984 		while (cycles > cycles_per_usec) {
   1985 			usec++;
   1986 			cycles -= cycles_per_usec;
   1987 		}
   1988 		pcc0 = pcc1;
   1989 	}
   1990 }
   1991 
   1992 #ifdef EXEC_ECOFF
   1993 void
   1994 cpu_exec_ecoff_setregs(p, epp, stack)
   1995 	struct proc *p;
   1996 	struct exec_package *epp;
   1997 	u_long stack;
   1998 {
   1999 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2000 
   2001 	setregs(p, epp, stack);
   2002 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2003 }
   2004 
   2005 /*
   2006  * cpu_exec_ecoff_hook():
   2007  *	cpu-dependent ECOFF format hook for execve().
   2008  *
   2009  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2010  *
   2011  */
   2012 int
   2013 cpu_exec_ecoff_probe(p, epp)
   2014 	struct proc *p;
   2015 	struct exec_package *epp;
   2016 {
   2017 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2018 	int error;
   2019 
   2020 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   2021 		error = 0;
   2022 	else
   2023 		error = ENOEXEC;
   2024 
   2025 	return (error);
   2026 }
   2027 #endif /* EXEC_ECOFF */
   2028 
   2029 int
   2030 alpha_pa_access(pa)
   2031 	u_long pa;
   2032 {
   2033 	int i;
   2034 
   2035 	for (i = 0; i < mem_cluster_cnt; i++) {
   2036 		if (pa < mem_clusters[i].start)
   2037 			continue;
   2038 		if ((pa - mem_clusters[i].start) >=
   2039 		    (mem_clusters[i].size & ~PAGE_MASK))
   2040 			continue;
   2041 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2042 	}
   2043 
   2044 	/*
   2045 	 * Address is not a memory address.  If we're secure, disallow
   2046 	 * access.  Otherwise, grant read/write.
   2047 	 */
   2048 	if (securelevel > 0)
   2049 		return (PROT_NONE);
   2050 	else
   2051 		return (PROT_READ | PROT_WRITE);
   2052 }
   2053 
   2054 /* XXX XXX BEGIN XXX XXX */
   2055 paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2056 								/* XXX */
   2057 paddr_t								/* XXX */
   2058 alpha_XXX_dmamap(v)						/* XXX */
   2059 	vaddr_t v;						/* XXX */
   2060 {								/* XXX */
   2061 								/* XXX */
   2062 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2063 }								/* XXX */
   2064 /* XXX XXX END XXX XXX */
   2065 
   2066 char *
   2067 dot_conv(x)
   2068 	unsigned long x;
   2069 {
   2070 	int i;
   2071 	char *xc;
   2072 	static int next;
   2073 	static char space[2][20];
   2074 
   2075 	xc = space[next ^= 1] + sizeof space[0];
   2076 	*--xc = '\0';
   2077 	for (i = 0;; ++i) {
   2078 		if (i && (i & 3) == 0)
   2079 			*--xc = '.';
   2080 		*--xc = "0123456789abcdef"[x & 0xf];
   2081 		x >>= 4;
   2082 		if (x == 0)
   2083 			break;
   2084 	}
   2085 	return xc;
   2086 }
   2087