machdep.c revision 1.258 1 /* $NetBSD: machdep.c,v 1.258 2002/09/06 13:18:43 gehenna Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.258 2002/09/06 13:18:43 gehenna Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/map.h>
85 #include <sys/proc.h>
86 #include <sys/sched.h>
87 #include <sys/buf.h>
88 #include <sys/reboot.h>
89 #include <sys/device.h>
90 #include <sys/file.h>
91 #include <sys/malloc.h>
92 #include <sys/mbuf.h>
93 #include <sys/mman.h>
94 #include <sys/msgbuf.h>
95 #include <sys/ioctl.h>
96 #include <sys/tty.h>
97 #include <sys/user.h>
98 #include <sys/exec.h>
99 #include <sys/exec_ecoff.h>
100 #include <sys/core.h>
101 #include <sys/kcore.h>
102 #include <sys/conf.h>
103 #include <machine/kcore.h>
104 #include <machine/fpu.h>
105
106 #include <sys/mount.h>
107 #include <sys/syscallargs.h>
108
109 #include <uvm/uvm_extern.h>
110 #include <sys/sysctl.h>
111
112 #include <dev/cons.h>
113
114 #include <machine/autoconf.h>
115 #include <machine/cpu.h>
116 #include <machine/reg.h>
117 #include <machine/rpb.h>
118 #include <machine/prom.h>
119 #include <machine/cpuconf.h>
120 #include <machine/ieeefp.h>
121
122 #ifdef DDB
123 #include <machine/db_machdep.h>
124 #include <ddb/db_access.h>
125 #include <ddb/db_sym.h>
126 #include <ddb/db_extern.h>
127 #include <ddb/db_interface.h>
128 #endif
129
130 #ifdef KGDB
131 #include <sys/kgdb.h>
132 #endif
133
134 #ifdef DEBUG
135 #include <machine/sigdebug.h>
136 #endif
137
138 #include <machine/alpha.h>
139
140 struct vm_map *exec_map = NULL;
141 struct vm_map *mb_map = NULL;
142 struct vm_map *phys_map = NULL;
143
144 caddr_t msgbufaddr;
145
146 int maxmem; /* max memory per process */
147
148 int totalphysmem; /* total amount of physical memory in system */
149 int physmem; /* physical memory used by NetBSD + some rsvd */
150 int resvmem; /* amount of memory reserved for PROM */
151 int unusedmem; /* amount of memory for OS that we don't use */
152 int unknownmem; /* amount of memory with an unknown use */
153
154 int cputype; /* system type, from the RPB */
155
156 int bootdev_debug = 0; /* patchable, or from DDB */
157
158 /*
159 * XXX We need an address to which we can assign things so that they
160 * won't be optimized away because we didn't use the value.
161 */
162 u_int32_t no_optimize;
163
164 /* the following is used externally (sysctl_hw) */
165 char machine[] = MACHINE; /* from <machine/param.h> */
166 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 char cpu_model[128];
168
169 struct user *proc0paddr;
170
171 /* Number of machine cycles per microsecond */
172 u_int64_t cycles_per_usec;
173
174 /* number of cpus in the box. really! */
175 int ncpus;
176
177 struct bootinfo_kernel bootinfo;
178
179 /* For built-in TCDS */
180 #if defined(DEC_3000_300) || defined(DEC_3000_500)
181 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
182 #endif
183
184 struct platform platform;
185
186 #ifdef DDB
187 /* start and end of kernel symbol table */
188 void *ksym_start, *ksym_end;
189 #endif
190
191 /* for cpu_sysctl() */
192 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
193 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
194 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
195 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
196
197 /*
198 * XXX This should be dynamically sized, but we have the chicken-egg problem!
199 * XXX it should also be larger than it is, because not all of the mddt
200 * XXX clusters end up being used for VM.
201 */
202 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
203 int mem_cluster_cnt;
204
205 int cpu_dump __P((void));
206 int cpu_dumpsize __P((void));
207 u_long cpu_dump_mempagecnt __P((void));
208 void dumpsys __P((void));
209 void identifycpu __P((void));
210 void printregs __P((struct reg *));
211
212 void
213 alpha_init(pfn, ptb, bim, bip, biv)
214 u_long pfn; /* first free PFN number */
215 u_long ptb; /* PFN of current level 1 page table */
216 u_long bim; /* bootinfo magic */
217 u_long bip; /* bootinfo pointer */
218 u_long biv; /* bootinfo version */
219 {
220 extern char kernel_text[], _end[];
221 struct mddt *mddtp;
222 struct mddt_cluster *memc;
223 int i, mddtweird;
224 struct vm_physseg *vps;
225 vaddr_t kernstart, kernend;
226 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
227 vsize_t size;
228 cpuid_t cpu_id;
229 struct cpu_info *ci;
230 char *p;
231 caddr_t v;
232 const char *bootinfo_msg;
233 const struct cpuinit *c;
234
235 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
236
237 /*
238 * Turn off interrupts (not mchecks) and floating point.
239 * Make sure the instruction and data streams are consistent.
240 */
241 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
242 alpha_pal_wrfen(0);
243 ALPHA_TBIA();
244 alpha_pal_imb();
245
246 /* Initialize the SCB. */
247 scb_init();
248
249 cpu_id = cpu_number();
250
251 #if defined(MULTIPROCESSOR)
252 /*
253 * Set our SysValue to the address of our cpu_info structure.
254 * Secondary processors do this in their spinup trampoline.
255 */
256 alpha_pal_wrval((u_long)&cpu_info_primary);
257 cpu_info[cpu_id] = &cpu_info_primary;
258 #endif
259
260 ci = curcpu();
261 ci->ci_cpuid = cpu_id;
262
263 /*
264 * Get critical system information (if possible, from the
265 * information provided by the boot program).
266 */
267 bootinfo_msg = NULL;
268 if (bim == BOOTINFO_MAGIC) {
269 if (biv == 0) { /* backward compat */
270 biv = *(u_long *)bip;
271 bip += 8;
272 }
273 switch (biv) {
274 case 1: {
275 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
276
277 bootinfo.ssym = v1p->ssym;
278 bootinfo.esym = v1p->esym;
279 /* hwrpb may not be provided by boot block in v1 */
280 if (v1p->hwrpb != NULL) {
281 bootinfo.hwrpb_phys =
282 ((struct rpb *)v1p->hwrpb)->rpb_phys;
283 bootinfo.hwrpb_size = v1p->hwrpbsize;
284 } else {
285 bootinfo.hwrpb_phys =
286 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
287 bootinfo.hwrpb_size =
288 ((struct rpb *)HWRPB_ADDR)->rpb_size;
289 }
290 memcpy(bootinfo.boot_flags, v1p->boot_flags,
291 min(sizeof v1p->boot_flags,
292 sizeof bootinfo.boot_flags));
293 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
294 min(sizeof v1p->booted_kernel,
295 sizeof bootinfo.booted_kernel));
296 /* booted dev not provided in bootinfo */
297 init_prom_interface((struct rpb *)
298 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
299 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
300 sizeof bootinfo.booted_dev);
301 break;
302 }
303 default:
304 bootinfo_msg = "unknown bootinfo version";
305 goto nobootinfo;
306 }
307 } else {
308 bootinfo_msg = "boot program did not pass bootinfo";
309 nobootinfo:
310 bootinfo.ssym = (u_long)_end;
311 bootinfo.esym = (u_long)_end;
312 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
313 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
314 init_prom_interface((struct rpb *)HWRPB_ADDR);
315 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
316 sizeof bootinfo.boot_flags);
317 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
318 sizeof bootinfo.booted_kernel);
319 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
320 sizeof bootinfo.booted_dev);
321 }
322
323 /*
324 * Initialize the kernel's mapping of the RPB. It's needed for
325 * lots of things.
326 */
327 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
328
329 #if defined(DEC_3000_300) || defined(DEC_3000_500)
330 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
331 hwrpb->rpb_type == ST_DEC_3000_500) {
332 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
333 sizeof(dec_3000_scsiid));
334 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
335 sizeof(dec_3000_scsifast));
336 }
337 #endif
338
339 /*
340 * Remember how many cycles there are per microsecond,
341 * so that we can use delay(). Round up, for safety.
342 */
343 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
344
345 /*
346 * Initialize the (temporary) bootstrap console interface, so
347 * we can use printf until the VM system starts being setup.
348 * The real console is initialized before then.
349 */
350 init_bootstrap_console();
351
352 /* OUTPUT NOW ALLOWED */
353
354 /* delayed from above */
355 if (bootinfo_msg)
356 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
357 bootinfo_msg, bim, bip, biv);
358
359 /* Initialize the trap vectors on the primary processor. */
360 trap_init();
361
362 /*
363 * find out this system's page size
364 */
365 PAGE_SIZE = hwrpb->rpb_page_size;
366 if (PAGE_SIZE != 8192)
367 panic("page size %d != 8192?!", PAGE_SIZE);
368
369 /*
370 * Initialize PAGE_SIZE-dependent variables.
371 */
372 uvm_setpagesize();
373
374 /*
375 * Find out what hardware we're on, and do basic initialization.
376 */
377 cputype = hwrpb->rpb_type;
378 if (cputype < 0) {
379 /*
380 * At least some white-box systems have SRM which
381 * reports a systype that's the negative of their
382 * blue-box counterpart.
383 */
384 cputype = -cputype;
385 }
386 c = platform_lookup(cputype);
387 if (c == NULL) {
388 platform_not_supported();
389 /* NOTREACHED */
390 }
391 (*c->init)();
392 strcpy(cpu_model, platform.model);
393
394 /*
395 * Initialize the real console, so that the bootstrap console is
396 * no longer necessary.
397 */
398 (*platform.cons_init)();
399
400 #ifdef DIAGNOSTIC
401 /* Paranoid sanity checking */
402
403 /* We should always be running on the primary. */
404 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
405
406 /*
407 * On single-CPU systypes, the primary should always be CPU 0,
408 * except on Alpha 8200 systems where the CPU id is related
409 * to the VID, which is related to the Turbo Laser node id.
410 */
411 if (cputype != ST_DEC_21000)
412 assert(hwrpb->rpb_primary_cpu_id == 0);
413 #endif
414
415 /* NO MORE FIRMWARE ACCESS ALLOWED */
416 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
417 /*
418 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
419 * XXX pmap_uses_prom_console() evaluates to non-zero.)
420 */
421 #endif
422
423 /*
424 * Find the beginning and end of the kernel (and leave a
425 * bit of space before the beginning for the bootstrap
426 * stack).
427 */
428 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
429 #ifdef DDB
430 ksym_start = (void *)bootinfo.ssym;
431 ksym_end = (void *)bootinfo.esym;
432 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
433 #else
434 kernend = (vaddr_t)round_page((vaddr_t)_end);
435 #endif
436
437 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
438 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
439
440 /*
441 * Find out how much memory is available, by looking at
442 * the memory cluster descriptors. This also tries to do
443 * its best to detect things things that have never been seen
444 * before...
445 */
446 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
447
448 /* MDDT SANITY CHECKING */
449 mddtweird = 0;
450 if (mddtp->mddt_cluster_cnt < 2) {
451 mddtweird = 1;
452 printf("WARNING: weird number of mem clusters: %lu\n",
453 mddtp->mddt_cluster_cnt);
454 }
455
456 #if 0
457 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
458 #endif
459
460 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
461 memc = &mddtp->mddt_clusters[i];
462 #if 0
463 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
464 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
465 #endif
466 totalphysmem += memc->mddt_pg_cnt;
467 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
468 mem_clusters[mem_cluster_cnt].start =
469 ptoa(memc->mddt_pfn);
470 mem_clusters[mem_cluster_cnt].size =
471 ptoa(memc->mddt_pg_cnt);
472 if (memc->mddt_usage & MDDT_mbz ||
473 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
474 memc->mddt_usage & MDDT_PALCODE)
475 mem_clusters[mem_cluster_cnt].size |=
476 PROT_READ;
477 else
478 mem_clusters[mem_cluster_cnt].size |=
479 PROT_READ | PROT_WRITE | PROT_EXEC;
480 mem_cluster_cnt++;
481 }
482
483 if (memc->mddt_usage & MDDT_mbz) {
484 mddtweird = 1;
485 printf("WARNING: mem cluster %d has weird "
486 "usage 0x%lx\n", i, memc->mddt_usage);
487 unknownmem += memc->mddt_pg_cnt;
488 continue;
489 }
490 if (memc->mddt_usage & MDDT_NONVOLATILE) {
491 /* XXX should handle these... */
492 printf("WARNING: skipping non-volatile mem "
493 "cluster %d\n", i);
494 unusedmem += memc->mddt_pg_cnt;
495 continue;
496 }
497 if (memc->mddt_usage & MDDT_PALCODE) {
498 resvmem += memc->mddt_pg_cnt;
499 continue;
500 }
501
502 /*
503 * We have a memory cluster available for system
504 * software use. We must determine if this cluster
505 * holds the kernel.
506 */
507 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
508 /*
509 * XXX If the kernel uses the PROM console, we only use the
510 * XXX memory after the kernel in the first system segment,
511 * XXX to avoid clobbering prom mapping, data, etc.
512 */
513 if (!pmap_uses_prom_console() || physmem == 0) {
514 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
515 physmem += memc->mddt_pg_cnt;
516 pfn0 = memc->mddt_pfn;
517 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
518 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
519 /*
520 * Must compute the location of the kernel
521 * within the segment.
522 */
523 #if 0
524 printf("Cluster %d contains kernel\n", i);
525 #endif
526 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
527 if (!pmap_uses_prom_console()) {
528 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
529 if (pfn0 < kernstartpfn) {
530 /*
531 * There is a chunk before the kernel.
532 */
533 #if 0
534 printf("Loading chunk before kernel: "
535 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
536 #endif
537 uvm_page_physload(pfn0, kernstartpfn,
538 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
539 }
540 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
541 }
542 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
543 if (kernendpfn < pfn1) {
544 /*
545 * There is a chunk after the kernel.
546 */
547 #if 0
548 printf("Loading chunk after kernel: "
549 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
550 #endif
551 uvm_page_physload(kernendpfn, pfn1,
552 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
553 }
554 } else {
555 /*
556 * Just load this cluster as one chunk.
557 */
558 #if 0
559 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
560 pfn0, pfn1);
561 #endif
562 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
563 VM_FREELIST_DEFAULT);
564 }
565 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
566 }
567 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
568 }
569
570 /*
571 * Dump out the MDDT if it looks odd...
572 */
573 if (mddtweird) {
574 printf("\n");
575 printf("complete memory cluster information:\n");
576 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
577 printf("mddt %d:\n", i);
578 printf("\tpfn %lx\n",
579 mddtp->mddt_clusters[i].mddt_pfn);
580 printf("\tcnt %lx\n",
581 mddtp->mddt_clusters[i].mddt_pg_cnt);
582 printf("\ttest %lx\n",
583 mddtp->mddt_clusters[i].mddt_pg_test);
584 printf("\tbva %lx\n",
585 mddtp->mddt_clusters[i].mddt_v_bitaddr);
586 printf("\tbpa %lx\n",
587 mddtp->mddt_clusters[i].mddt_p_bitaddr);
588 printf("\tbcksum %lx\n",
589 mddtp->mddt_clusters[i].mddt_bit_cksum);
590 printf("\tusage %lx\n",
591 mddtp->mddt_clusters[i].mddt_usage);
592 }
593 printf("\n");
594 }
595
596 if (totalphysmem == 0)
597 panic("can't happen: system seems to have no memory!");
598 maxmem = physmem;
599 #if 0
600 printf("totalphysmem = %d\n", totalphysmem);
601 printf("physmem = %d\n", physmem);
602 printf("resvmem = %d\n", resvmem);
603 printf("unusedmem = %d\n", unusedmem);
604 printf("unknownmem = %d\n", unknownmem);
605 #endif
606
607 /*
608 * Initialize error message buffer (at end of core).
609 */
610 {
611 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
612 vsize_t reqsz = sz;
613
614 vps = &vm_physmem[vm_nphysseg - 1];
615
616 /* shrink so that it'll fit in the last segment */
617 if ((vps->avail_end - vps->avail_start) < atop(sz))
618 sz = ptoa(vps->avail_end - vps->avail_start);
619
620 vps->end -= atop(sz);
621 vps->avail_end -= atop(sz);
622 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
623 initmsgbuf(msgbufaddr, sz);
624
625 /* Remove the last segment if it now has no pages. */
626 if (vps->start == vps->end)
627 vm_nphysseg--;
628
629 /* warn if the message buffer had to be shrunk */
630 if (sz != reqsz)
631 printf("WARNING: %ld bytes not available for msgbuf "
632 "in last cluster (%ld used)\n", reqsz, sz);
633
634 }
635
636 /*
637 * NOTE: It is safe to use uvm_pageboot_alloc() before
638 * pmap_bootstrap() because our pmap_virtual_space()
639 * returns compile-time constants.
640 */
641
642 /*
643 * Init mapping for u page(s) for proc 0
644 */
645 proc0.p_addr = proc0paddr =
646 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
647
648 /*
649 * Allocate space for system data structures. These data structures
650 * are allocated here instead of cpu_startup() because physical
651 * memory is directly addressable. We don't have to map these into
652 * virtual address space.
653 */
654 size = (vsize_t)allocsys(NULL, NULL);
655 v = (caddr_t)uvm_pageboot_alloc(size);
656 if ((allocsys(v, NULL) - v) != size)
657 panic("alpha_init: table size inconsistency");
658
659 /*
660 * Initialize the virtual memory system, and set the
661 * page table base register in proc 0's PCB.
662 */
663 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
664 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
665
666 /*
667 * Initialize the rest of proc 0's PCB, and cache its physical
668 * address.
669 */
670 proc0.p_md.md_pcbpaddr =
671 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
672
673 /*
674 * Set the kernel sp, reserving space for an (empty) trapframe,
675 * and make proc0's trapframe pointer point to it for sanity.
676 */
677 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
678 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
679 proc0.p_md.md_tf =
680 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
681 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
682
683 /*
684 * Initialize the primary CPU's idle PCB to proc0's. In a
685 * MULTIPROCESSOR configuration, each CPU will later get
686 * its own idle PCB when autoconfiguration runs.
687 */
688 ci->ci_idle_pcb = &proc0paddr->u_pcb;
689 ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
690
691 /* Indicate that proc0 has a CPU. */
692 proc0.p_cpu = ci;
693
694 /*
695 * Look at arguments passed to us and compute boothowto.
696 */
697
698 boothowto = RB_SINGLE;
699 #ifdef KADB
700 boothowto |= RB_KDB;
701 #endif
702 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
703 /*
704 * Note that we'd really like to differentiate case here,
705 * but the Alpha AXP Architecture Reference Manual
706 * says that we shouldn't.
707 */
708 switch (*p) {
709 case 'a': /* autoboot */
710 case 'A':
711 boothowto &= ~RB_SINGLE;
712 break;
713
714 #ifdef DEBUG
715 case 'c': /* crash dump immediately after autoconfig */
716 case 'C':
717 boothowto |= RB_DUMP;
718 break;
719 #endif
720
721 #if defined(KGDB) || defined(DDB)
722 case 'd': /* break into the kernel debugger ASAP */
723 case 'D':
724 boothowto |= RB_KDB;
725 break;
726 #endif
727
728 case 'h': /* always halt, never reboot */
729 case 'H':
730 boothowto |= RB_HALT;
731 break;
732
733 #if 0
734 case 'm': /* mini root present in memory */
735 case 'M':
736 boothowto |= RB_MINIROOT;
737 break;
738 #endif
739
740 case 'n': /* askname */
741 case 'N':
742 boothowto |= RB_ASKNAME;
743 break;
744
745 case 's': /* single-user (default, supported for sanity) */
746 case 'S':
747 boothowto |= RB_SINGLE;
748 break;
749
750 case 'q': /* quiet boot */
751 case 'Q':
752 boothowto |= AB_QUIET;
753 break;
754
755 case 'v': /* verbose boot */
756 case 'V':
757 boothowto |= AB_VERBOSE;
758 break;
759
760 case '-':
761 /*
762 * Just ignore this. It's not required, but it's
763 * common for it to be passed regardless.
764 */
765 break;
766
767 default:
768 printf("Unrecognized boot flag '%c'.\n", *p);
769 break;
770 }
771 }
772
773
774 /*
775 * Figure out the number of cpus in the box, from RPB fields.
776 * Really. We mean it.
777 */
778 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
779 struct pcs *pcsp;
780
781 pcsp = LOCATE_PCS(hwrpb, i);
782 if ((pcsp->pcs_flags & PCS_PP) != 0)
783 ncpus++;
784 }
785
786 /*
787 * Initialize debuggers, and break into them if appropriate.
788 */
789 #ifdef DDB
790 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
791 ksym_start, ksym_end);
792 #endif
793
794 if (boothowto & RB_KDB) {
795 #if defined(KGDB)
796 kgdb_debug_init = 1;
797 kgdb_connect(1);
798 #elif defined(DDB)
799 Debugger();
800 #endif
801 }
802
803 /*
804 * Figure out our clock frequency, from RPB fields.
805 */
806 hz = hwrpb->rpb_intr_freq >> 12;
807 if (!(60 <= hz && hz <= 10240)) {
808 hz = 1024;
809 #ifdef DIAGNOSTIC
810 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
811 hwrpb->rpb_intr_freq, hz);
812 #endif
813 }
814 }
815
816 void
817 consinit()
818 {
819
820 /*
821 * Everything related to console initialization is done
822 * in alpha_init().
823 */
824 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
825 printf("consinit: %susing prom console\n",
826 pmap_uses_prom_console() ? "" : "not ");
827 #endif
828 }
829
830 #include "pckbc.h"
831 #include "pckbd.h"
832 #if (NPCKBC > 0) && (NPCKBD == 0)
833
834 #include <dev/ic/pckbcvar.h>
835
836 /*
837 * This is called by the pbkbc driver if no pckbd is configured.
838 * On the i386, it is used to glue in the old, deprecated console
839 * code. On the Alpha, it does nothing.
840 */
841 int
842 pckbc_machdep_cnattach(kbctag, kbcslot)
843 pckbc_tag_t kbctag;
844 pckbc_slot_t kbcslot;
845 {
846
847 return (ENXIO);
848 }
849 #endif /* NPCKBC > 0 && NPCKBD == 0 */
850
851 void
852 cpu_startup()
853 {
854 u_int i, base, residual;
855 vaddr_t minaddr, maxaddr;
856 vsize_t size;
857 char pbuf[9];
858 #if defined(DEBUG)
859 extern int pmapdebug;
860 int opmapdebug = pmapdebug;
861
862 pmapdebug = 0;
863 #endif
864
865 /*
866 * Good {morning,afternoon,evening,night}.
867 */
868 printf(version);
869 identifycpu();
870 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
871 printf("total memory = %s\n", pbuf);
872 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
873 printf("(%s reserved for PROM, ", pbuf);
874 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
875 printf("%s used by NetBSD)\n", pbuf);
876 if (unusedmem) {
877 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
878 printf("WARNING: unused memory = %s\n", pbuf);
879 }
880 if (unknownmem) {
881 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
882 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
883 }
884
885 /*
886 * Allocate virtual address space for file I/O buffers.
887 * Note they are different than the array of headers, 'buf',
888 * and usually occupy more virtual memory than physical.
889 */
890 size = MAXBSIZE * nbuf;
891 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
892 NULL, UVM_UNKNOWN_OFFSET, 0,
893 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
894 UVM_ADV_NORMAL, 0)) != 0)
895 panic("startup: cannot allocate VM for buffers");
896 base = bufpages / nbuf;
897 residual = bufpages % nbuf;
898 for (i = 0; i < nbuf; i++) {
899 vsize_t curbufsize;
900 vaddr_t curbuf;
901 struct vm_page *pg;
902
903 /*
904 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
905 * that MAXBSIZE space, we allocate and map (base+1) pages
906 * for the first "residual" buffers, and then we allocate
907 * "base" pages for the rest.
908 */
909 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
910 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
911
912 while (curbufsize) {
913 pg = uvm_pagealloc(NULL, 0, NULL, 0);
914 if (pg == NULL)
915 panic("cpu_startup: not enough memory for "
916 "buffer cache");
917 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
918 VM_PROT_READ|VM_PROT_WRITE);
919 curbuf += PAGE_SIZE;
920 curbufsize -= PAGE_SIZE;
921 }
922 }
923 pmap_update(pmap_kernel());
924
925 /*
926 * Allocate a submap for exec arguments. This map effectively
927 * limits the number of processes exec'ing at any time.
928 */
929 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
930 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
931
932 /*
933 * Allocate a submap for physio
934 */
935 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
936 VM_PHYS_SIZE, 0, FALSE, NULL);
937
938 /*
939 * No need to allocate an mbuf cluster submap. Mbuf clusters
940 * are allocated via the pool allocator, and we use K0SEG to
941 * map those pages.
942 */
943
944 #if defined(DEBUG)
945 pmapdebug = opmapdebug;
946 #endif
947 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
948 printf("avail memory = %s\n", pbuf);
949 #if 0
950 {
951 extern u_long pmap_pages_stolen;
952
953 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
954 printf("stolen memory for VM structures = %s\n", pbuf);
955 }
956 #endif
957 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
958 printf("using %u buffers containing %s of memory\n", nbuf, pbuf);
959
960 /*
961 * Set up buffers, so they can be used to read disk labels.
962 */
963 bufinit();
964
965 /*
966 * Set up the HWPCB so that it's safe to configure secondary
967 * CPUs.
968 */
969 hwrpb_primary_init();
970 }
971
972 /*
973 * Retrieve the platform name from the DSR.
974 */
975 const char *
976 alpha_dsr_sysname()
977 {
978 struct dsrdb *dsr;
979 const char *sysname;
980
981 /*
982 * DSR does not exist on early HWRPB versions.
983 */
984 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
985 return (NULL);
986
987 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
988 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
989 sizeof(u_int64_t)));
990 return (sysname);
991 }
992
993 /*
994 * Lookup the system specified system variation in the provided table,
995 * returning the model string on match.
996 */
997 const char *
998 alpha_variation_name(variation, avtp)
999 u_int64_t variation;
1000 const struct alpha_variation_table *avtp;
1001 {
1002 int i;
1003
1004 for (i = 0; avtp[i].avt_model != NULL; i++)
1005 if (avtp[i].avt_variation == variation)
1006 return (avtp[i].avt_model);
1007 return (NULL);
1008 }
1009
1010 /*
1011 * Generate a default platform name based for unknown system variations.
1012 */
1013 const char *
1014 alpha_unknown_sysname()
1015 {
1016 static char s[128]; /* safe size */
1017
1018 sprintf(s, "%s family, unknown model variation 0x%lx",
1019 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1020 return ((const char *)s);
1021 }
1022
1023 void
1024 identifycpu()
1025 {
1026 char *s;
1027 int i;
1028
1029 /*
1030 * print out CPU identification information.
1031 */
1032 printf("%s", cpu_model);
1033 for(s = cpu_model; *s; ++s)
1034 if(strncasecmp(s, "MHz", 3) == 0)
1035 goto skipMHz;
1036 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1037 skipMHz:
1038 printf(", s/n ");
1039 for (i = 0; i < 10; i++)
1040 printf("%c", hwrpb->rpb_ssn[i]);
1041 printf("\n");
1042 printf("%ld byte page size, %d processor%s.\n",
1043 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1044 #if 0
1045 /* this isn't defined for any systems that we run on? */
1046 printf("serial number 0x%lx 0x%lx\n",
1047 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1048
1049 /* and these aren't particularly useful! */
1050 printf("variation: 0x%lx, revision 0x%lx\n",
1051 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1052 #endif
1053 }
1054
1055 int waittime = -1;
1056 struct pcb dumppcb;
1057
1058 void
1059 cpu_reboot(howto, bootstr)
1060 int howto;
1061 char *bootstr;
1062 {
1063 #if defined(MULTIPROCESSOR)
1064 u_long cpu_id = cpu_number();
1065 u_long wait_mask = (1UL << cpu_id) |
1066 (1UL << hwrpb->rpb_primary_cpu_id);
1067 int i;
1068 #endif
1069
1070 /* If "always halt" was specified as a boot flag, obey. */
1071 if ((boothowto & RB_HALT) != 0)
1072 howto |= RB_HALT;
1073
1074 boothowto = howto;
1075
1076 /* If system is cold, just halt. */
1077 if (cold) {
1078 boothowto |= RB_HALT;
1079 goto haltsys;
1080 }
1081
1082 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1083 waittime = 0;
1084 vfs_shutdown();
1085 /*
1086 * If we've been adjusting the clock, the todr
1087 * will be out of synch; adjust it now.
1088 */
1089 resettodr();
1090 }
1091
1092 /* Disable interrupts. */
1093 splhigh();
1094
1095 #if defined(MULTIPROCESSOR)
1096 /*
1097 * Halt all other CPUs. If we're not the primary, the
1098 * primary will spin, waiting for us to halt.
1099 */
1100 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1101
1102 for (i = 0; i < 10000; i++) {
1103 alpha_mb();
1104 if (cpus_running == wait_mask)
1105 break;
1106 delay(1000);
1107 }
1108 alpha_mb();
1109 if (cpus_running != wait_mask)
1110 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1111 cpus_running);
1112 #endif /* MULTIPROCESSOR */
1113
1114 /* If rebooting and a dump is requested do it. */
1115 #if 0
1116 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1117 #else
1118 if (boothowto & RB_DUMP)
1119 #endif
1120 dumpsys();
1121
1122 haltsys:
1123
1124 /* run any shutdown hooks */
1125 doshutdownhooks();
1126
1127 #ifdef BOOTKEY
1128 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1129 cnpollc(1); /* for proper keyboard command handling */
1130 cngetc();
1131 cnpollc(0);
1132 printf("\n");
1133 #endif
1134
1135 /* Finally, powerdown/halt/reboot the system. */
1136 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1137 platform.powerdown != NULL) {
1138 (*platform.powerdown)();
1139 printf("WARNING: powerdown failed!\n");
1140 }
1141 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1142 #if defined(MULTIPROCESSOR)
1143 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1144 cpu_halt();
1145 else
1146 #endif
1147 prom_halt(boothowto & RB_HALT);
1148 /*NOTREACHED*/
1149 }
1150
1151 /*
1152 * These variables are needed by /sbin/savecore
1153 */
1154 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1155 int dumpsize = 0; /* pages */
1156 long dumplo = 0; /* blocks */
1157
1158 /*
1159 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1160 */
1161 int
1162 cpu_dumpsize()
1163 {
1164 int size;
1165
1166 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1167 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1168 if (roundup(size, dbtob(1)) != dbtob(1))
1169 return -1;
1170
1171 return (1);
1172 }
1173
1174 /*
1175 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1176 */
1177 u_long
1178 cpu_dump_mempagecnt()
1179 {
1180 u_long i, n;
1181
1182 n = 0;
1183 for (i = 0; i < mem_cluster_cnt; i++)
1184 n += atop(mem_clusters[i].size);
1185 return (n);
1186 }
1187
1188 /*
1189 * cpu_dump: dump machine-dependent kernel core dump headers.
1190 */
1191 int
1192 cpu_dump()
1193 {
1194 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1195 char buf[dbtob(1)];
1196 kcore_seg_t *segp;
1197 cpu_kcore_hdr_t *cpuhdrp;
1198 phys_ram_seg_t *memsegp;
1199 const struct bdevsw *bdev;
1200 int i;
1201
1202 bdev = bdevsw_lookup(dumpdev);
1203 if (bdev == NULL)
1204 return (ENXIO);
1205 dump = bdev->d_dump;
1206
1207 memset(buf, 0, sizeof buf);
1208 segp = (kcore_seg_t *)buf;
1209 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1210 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1211 ALIGN(sizeof(*cpuhdrp))];
1212
1213 /*
1214 * Generate a segment header.
1215 */
1216 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1217 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1218
1219 /*
1220 * Add the machine-dependent header info.
1221 */
1222 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1223 cpuhdrp->page_size = PAGE_SIZE;
1224 cpuhdrp->nmemsegs = mem_cluster_cnt;
1225
1226 /*
1227 * Fill in the memory segment descriptors.
1228 */
1229 for (i = 0; i < mem_cluster_cnt; i++) {
1230 memsegp[i].start = mem_clusters[i].start;
1231 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1232 }
1233
1234 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1235 }
1236
1237 /*
1238 * This is called by main to set dumplo and dumpsize.
1239 * Dumps always skip the first NBPG of disk space
1240 * in case there might be a disk label stored there.
1241 * If there is extra space, put dump at the end to
1242 * reduce the chance that swapping trashes it.
1243 */
1244 void
1245 cpu_dumpconf()
1246 {
1247 const struct bdevsw *bdev;
1248 int nblks, dumpblks; /* size of dump area */
1249
1250 if (dumpdev == NODEV)
1251 goto bad;
1252 bdev = bdevsw_lookup(dumpdev);
1253 if (bdev == NULL)
1254 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1255 if (bdev->d_psize == NULL)
1256 goto bad;
1257 nblks = (*bdev->d_psize)(dumpdev);
1258 if (nblks <= ctod(1))
1259 goto bad;
1260
1261 dumpblks = cpu_dumpsize();
1262 if (dumpblks < 0)
1263 goto bad;
1264 dumpblks += ctod(cpu_dump_mempagecnt());
1265
1266 /* If dump won't fit (incl. room for possible label), punt. */
1267 if (dumpblks > (nblks - ctod(1)))
1268 goto bad;
1269
1270 /* Put dump at end of partition */
1271 dumplo = nblks - dumpblks;
1272
1273 /* dumpsize is in page units, and doesn't include headers. */
1274 dumpsize = cpu_dump_mempagecnt();
1275 return;
1276
1277 bad:
1278 dumpsize = 0;
1279 return;
1280 }
1281
1282 /*
1283 * Dump the kernel's image to the swap partition.
1284 */
1285 #define BYTES_PER_DUMP NBPG
1286
1287 void
1288 dumpsys()
1289 {
1290 const struct bdevsw *bdev;
1291 u_long totalbytesleft, bytes, i, n, memcl;
1292 u_long maddr;
1293 int psize;
1294 daddr_t blkno;
1295 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1296 int error;
1297
1298 /* Save registers. */
1299 savectx(&dumppcb);
1300
1301 if (dumpdev == NODEV)
1302 return;
1303 bdev = bdevsw_lookup(dumpdev);
1304 if (bdev == NULL || bdev->d_psize == NULL)
1305 return;
1306
1307 /*
1308 * For dumps during autoconfiguration,
1309 * if dump device has already configured...
1310 */
1311 if (dumpsize == 0)
1312 cpu_dumpconf();
1313 if (dumplo <= 0) {
1314 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1315 minor(dumpdev));
1316 return;
1317 }
1318 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1319 minor(dumpdev), dumplo);
1320
1321 psize = (*bdev->d_psize)(dumpdev);
1322 printf("dump ");
1323 if (psize == -1) {
1324 printf("area unavailable\n");
1325 return;
1326 }
1327
1328 /* XXX should purge all outstanding keystrokes. */
1329
1330 if ((error = cpu_dump()) != 0)
1331 goto err;
1332
1333 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1334 blkno = dumplo + cpu_dumpsize();
1335 dump = bdev->d_dump;
1336 error = 0;
1337
1338 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1339 maddr = mem_clusters[memcl].start;
1340 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1341
1342 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1343
1344 /* Print out how many MBs we to go. */
1345 if ((totalbytesleft % (1024*1024)) == 0)
1346 printf("%ld ", totalbytesleft / (1024 * 1024));
1347
1348 /* Limit size for next transfer. */
1349 n = bytes - i;
1350 if (n > BYTES_PER_DUMP)
1351 n = BYTES_PER_DUMP;
1352
1353 error = (*dump)(dumpdev, blkno,
1354 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1355 if (error)
1356 goto err;
1357 maddr += n;
1358 blkno += btodb(n); /* XXX? */
1359
1360 /* XXX should look for keystrokes, to cancel. */
1361 }
1362 }
1363
1364 err:
1365 switch (error) {
1366
1367 case ENXIO:
1368 printf("device bad\n");
1369 break;
1370
1371 case EFAULT:
1372 printf("device not ready\n");
1373 break;
1374
1375 case EINVAL:
1376 printf("area improper\n");
1377 break;
1378
1379 case EIO:
1380 printf("i/o error\n");
1381 break;
1382
1383 case EINTR:
1384 printf("aborted from console\n");
1385 break;
1386
1387 case 0:
1388 printf("succeeded\n");
1389 break;
1390
1391 default:
1392 printf("error %d\n", error);
1393 break;
1394 }
1395 printf("\n\n");
1396 delay(1000);
1397 }
1398
1399 void
1400 frametoreg(framep, regp)
1401 struct trapframe *framep;
1402 struct reg *regp;
1403 {
1404
1405 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1406 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1407 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1408 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1409 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1410 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1411 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1412 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1413 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1414 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1415 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1416 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1417 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1418 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1419 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1420 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1421 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1422 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1423 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1424 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1425 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1426 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1427 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1428 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1429 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1430 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1431 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1432 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1433 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1434 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1435 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1436 regp->r_regs[R_ZERO] = 0;
1437 }
1438
1439 void
1440 regtoframe(regp, framep)
1441 struct reg *regp;
1442 struct trapframe *framep;
1443 {
1444
1445 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1446 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1447 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1448 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1449 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1450 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1451 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1452 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1453 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1454 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1455 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1456 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1457 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1458 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1459 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1460 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1461 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1462 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1463 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1464 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1465 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1466 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1467 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1468 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1469 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1470 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1471 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1472 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1473 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1474 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1475 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1476 /* ??? = regp->r_regs[R_ZERO]; */
1477 }
1478
1479 void
1480 printregs(regp)
1481 struct reg *regp;
1482 {
1483 int i;
1484
1485 for (i = 0; i < 32; i++)
1486 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1487 i & 1 ? "\n" : "\t");
1488 }
1489
1490 void
1491 regdump(framep)
1492 struct trapframe *framep;
1493 {
1494 struct reg reg;
1495
1496 frametoreg(framep, ®);
1497 reg.r_regs[R_SP] = alpha_pal_rdusp();
1498
1499 printf("REGISTERS:\n");
1500 printregs(®);
1501 }
1502
1503
1504 /*
1505 * Send an interrupt to process.
1506 */
1507 void
1508 sendsig(sig, mask, code)
1509 int sig;
1510 sigset_t *mask;
1511 u_long code;
1512 {
1513 struct proc *p = curproc;
1514 struct sigacts *ps = p->p_sigacts;
1515 struct sigcontext *scp, ksc;
1516 struct trapframe *frame;
1517 int onstack, fsize, rndfsize;
1518 sig_t catcher = SIGACTION(p, sig).sa_handler;
1519
1520 frame = p->p_md.md_tf;
1521
1522 /* Do we need to jump onto the signal stack? */
1523 onstack =
1524 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1525 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1526
1527 /* Allocate space for the signal handler context. */
1528 fsize = sizeof(ksc);
1529 rndfsize = ((fsize + 15) / 16) * 16;
1530
1531 if (onstack)
1532 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1533 p->p_sigctx.ps_sigstk.ss_size);
1534 else
1535 scp = (struct sigcontext *)(alpha_pal_rdusp());
1536 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1537
1538 #ifdef DEBUG
1539 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1540 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1541 sig, &onstack, scp);
1542 #endif
1543
1544 /* Build stack frame for signal trampoline. */
1545 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1546 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1547
1548 /* Save register context. */
1549 frametoreg(frame, (struct reg *)ksc.sc_regs);
1550 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1551 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1552
1553 /* save the floating-point state, if necessary, then copy it. */
1554 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1555 fpusave_proc(p, 1);
1556 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1557 memcpy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1558 sizeof(struct fpreg));
1559 ksc.sc_fp_control = alpha_read_fp_c(p);
1560 memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */
1561 memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */
1562
1563 /* Save signal stack. */
1564 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1565
1566 /* Save signal mask. */
1567 ksc.sc_mask = *mask;
1568
1569 #ifdef COMPAT_13
1570 /*
1571 * XXX We always have to save an old style signal mask because
1572 * XXX we might be delivering a signal to a process which will
1573 * XXX escape from the signal in a non-standard way and invoke
1574 * XXX sigreturn() directly.
1575 */
1576 {
1577 /* Note: it's a long in the stack frame. */
1578 sigset13_t mask13;
1579
1580 native_sigset_to_sigset13(mask, &mask13);
1581 ksc.__sc_mask13 = mask13;
1582 }
1583 #endif
1584
1585 #ifdef COMPAT_OSF1
1586 /*
1587 * XXX Create an OSF/1-style sigcontext and associated goo.
1588 */
1589 #endif
1590
1591 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1592 /*
1593 * Process has trashed its stack; give it an illegal
1594 * instruction to halt it in its tracks.
1595 */
1596 #ifdef DEBUG
1597 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1598 printf("sendsig(%d): copyout failed on sig %d\n",
1599 p->p_pid, sig);
1600 #endif
1601 sigexit(p, SIGILL);
1602 /* NOTREACHED */
1603 }
1604 #ifdef DEBUG
1605 if (sigdebug & SDB_FOLLOW)
1606 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1607 scp, code);
1608 #endif
1609
1610 /*
1611 * Set up the registers to directly invoke the signal handler. The
1612 * signal trampoline is then used to return from the signal. Note
1613 * the trampoline version numbers are coordinated with machine-
1614 * dependent code in libc.
1615 */
1616 switch (ps->sa_sigdesc[sig].sd_vers) {
1617 #if 1 /* COMPAT_16 */
1618 case 0: /* legacy on-stack sigtramp */
1619 frame->tf_regs[FRAME_RA] = (u_int64_t)p->p_sigctx.ps_sigcode;
1620 break;
1621 #endif /* COMPAT_16 */
1622
1623 case 1:
1624 frame->tf_regs[FRAME_RA] =
1625 (u_int64_t)ps->sa_sigdesc[sig].sd_tramp;
1626 break;
1627
1628 default:
1629 /* Don't know what trampoline version; kill it. */
1630 sigexit(p, SIGILL);
1631 }
1632 frame->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1633 frame->tf_regs[FRAME_A0] = sig;
1634 frame->tf_regs[FRAME_A1] = code;
1635 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1636 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1637 alpha_pal_wrusp((unsigned long)scp);
1638
1639 /* Remember that we're now on the signal stack. */
1640 if (onstack)
1641 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1642
1643 #ifdef DEBUG
1644 if (sigdebug & SDB_FOLLOW)
1645 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1646 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1647 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1648 printf("sendsig(%d): sig %d returns\n",
1649 p->p_pid, sig);
1650 #endif
1651 }
1652
1653 /*
1654 * System call to cleanup state after a signal
1655 * has been taken. Reset signal mask and
1656 * stack state from context left by sendsig (above).
1657 * Return to previous pc and psl as specified by
1658 * context left by sendsig. Check carefully to
1659 * make sure that the user has not modified the
1660 * psl to gain improper privileges or to cause
1661 * a machine fault.
1662 */
1663 /* ARGSUSED */
1664 int
1665 sys___sigreturn14(p, v, retval)
1666 struct proc *p;
1667 void *v;
1668 register_t *retval;
1669 {
1670 struct sys___sigreturn14_args /* {
1671 syscallarg(struct sigcontext *) sigcntxp;
1672 } */ *uap = v;
1673 struct sigcontext *scp, ksc;
1674
1675 /*
1676 * The trampoline code hands us the context.
1677 * It is unsafe to keep track of it ourselves, in the event that a
1678 * program jumps out of a signal handler.
1679 */
1680 scp = SCARG(uap, sigcntxp);
1681 #ifdef DEBUG
1682 if (sigdebug & SDB_FOLLOW)
1683 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1684 #endif
1685 if (ALIGN(scp) != (u_int64_t)scp)
1686 return (EINVAL);
1687
1688 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1689 return (EFAULT);
1690
1691 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1692 return (EINVAL);
1693
1694 /* Restore register context. */
1695 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1696 p->p_md.md_tf->tf_regs[FRAME_PS] =
1697 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1698
1699 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1700 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1701
1702 /* XXX ksc.sc_ownedfp ? */
1703 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1704 fpusave_proc(p, 0);
1705 memcpy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1706 sizeof(struct fpreg));
1707 p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1708 p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1709
1710 /* Restore signal stack. */
1711 if (ksc.sc_onstack & SS_ONSTACK)
1712 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1713 else
1714 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1715
1716 /* Restore signal mask. */
1717 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1718
1719 #ifdef DEBUG
1720 if (sigdebug & SDB_FOLLOW)
1721 printf("sigreturn(%d): returns\n", p->p_pid);
1722 #endif
1723 return (EJUSTRETURN);
1724 }
1725
1726 /*
1727 * machine dependent system variables.
1728 */
1729 int
1730 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1731 int *name;
1732 u_int namelen;
1733 void *oldp;
1734 size_t *oldlenp;
1735 void *newp;
1736 size_t newlen;
1737 struct proc *p;
1738 {
1739 dev_t consdev;
1740
1741 /* all sysctl names at this level are terminal */
1742 if (namelen != 1)
1743 return (ENOTDIR); /* overloaded */
1744
1745 switch (name[0]) {
1746 case CPU_CONSDEV:
1747 if (cn_tab != NULL)
1748 consdev = cn_tab->cn_dev;
1749 else
1750 consdev = NODEV;
1751 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1752 sizeof consdev));
1753
1754 case CPU_ROOT_DEVICE:
1755 return (sysctl_rdstring(oldp, oldlenp, newp,
1756 root_device->dv_xname));
1757
1758 case CPU_UNALIGNED_PRINT:
1759 return (sysctl_int(oldp, oldlenp, newp, newlen,
1760 &alpha_unaligned_print));
1761
1762 case CPU_UNALIGNED_FIX:
1763 return (sysctl_int(oldp, oldlenp, newp, newlen,
1764 &alpha_unaligned_fix));
1765
1766 case CPU_UNALIGNED_SIGBUS:
1767 return (sysctl_int(oldp, oldlenp, newp, newlen,
1768 &alpha_unaligned_sigbus));
1769
1770 case CPU_BOOTED_KERNEL:
1771 return (sysctl_rdstring(oldp, oldlenp, newp,
1772 bootinfo.booted_kernel));
1773
1774 case CPU_FP_SYNC_COMPLETE:
1775 return (sysctl_int(oldp, oldlenp, newp, newlen,
1776 &alpha_fp_sync_complete));
1777
1778 default:
1779 return (EOPNOTSUPP);
1780 }
1781 /* NOTREACHED */
1782 }
1783
1784 /*
1785 * Set registers on exec.
1786 */
1787 void
1788 setregs(p, pack, stack)
1789 register struct proc *p;
1790 struct exec_package *pack;
1791 u_long stack;
1792 {
1793 struct trapframe *tfp = p->p_md.md_tf;
1794 #ifdef DEBUG
1795 int i;
1796 #endif
1797
1798 #ifdef DEBUG
1799 /*
1800 * Crash and dump, if the user requested it.
1801 */
1802 if (boothowto & RB_DUMP)
1803 panic("crash requested by boot flags");
1804 #endif
1805
1806 #ifdef DEBUG
1807 for (i = 0; i < FRAME_SIZE; i++)
1808 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1809 #else
1810 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1811 #endif
1812 memset(&p->p_addr->u_pcb.pcb_fp, 0, sizeof p->p_addr->u_pcb.pcb_fp);
1813 alpha_pal_wrusp(stack);
1814 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1815 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1816
1817 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1818 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1819 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1820 tfp->tf_regs[FRAME_A3] = (u_int64_t)p->p_psstr; /* a3 = ps_strings */
1821 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1822
1823 p->p_md.md_flags &= ~MDP_FPUSED;
1824 if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
1825 p->p_md.md_flags &= ~MDP_FP_C;
1826 p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1827 }
1828 if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1829 fpusave_proc(p, 0);
1830 }
1831
1832 /*
1833 * Release the FPU.
1834 */
1835 void
1836 fpusave_cpu(struct cpu_info *ci, int save)
1837 {
1838 struct proc *p;
1839 #if defined(MULTIPROCESSOR)
1840 int s;
1841 #endif
1842
1843 KDASSERT(ci == curcpu());
1844
1845 #if defined(MULTIPROCESSOR)
1846 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1847 #endif
1848
1849 p = ci->ci_fpcurproc;
1850 if (p == NULL)
1851 goto out;
1852
1853 if (save) {
1854 alpha_pal_wrfen(1);
1855 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1856 }
1857
1858 alpha_pal_wrfen(0);
1859
1860 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1861
1862 p->p_addr->u_pcb.pcb_fpcpu = NULL;
1863 ci->ci_fpcurproc = NULL;
1864
1865 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1866
1867 out:
1868 #if defined(MULTIPROCESSOR)
1869 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1870 #endif
1871 return;
1872 }
1873
1874 /*
1875 * Synchronize FP state for this process.
1876 */
1877 void
1878 fpusave_proc(struct proc *p, int save)
1879 {
1880 struct cpu_info *ci = curcpu();
1881 struct cpu_info *oci;
1882 #if defined(MULTIPROCESSOR)
1883 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1884 int s, spincount;
1885 #endif
1886
1887 KDASSERT(p->p_addr != NULL);
1888 KDASSERT(p->p_flag & P_INMEM);
1889
1890 FPCPU_LOCK(&p->p_addr->u_pcb, s);
1891
1892 oci = p->p_addr->u_pcb.pcb_fpcpu;
1893 if (oci == NULL) {
1894 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1895 return;
1896 }
1897
1898 #if defined(MULTIPROCESSOR)
1899 if (oci == ci) {
1900 KASSERT(ci->ci_fpcurproc == p);
1901 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1902 fpusave_cpu(ci, save);
1903 return;
1904 }
1905
1906 KASSERT(oci->ci_fpcurproc == p);
1907 alpha_send_ipi(oci->ci_cpuid, ipi);
1908 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1909
1910 spincount = 0;
1911 while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
1912 spincount++;
1913 delay(1000); /* XXX */
1914 if (spincount > 10000)
1915 panic("fpsave ipi didn't");
1916 }
1917 #else
1918 KASSERT(ci->ci_fpcurproc == p);
1919 FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1920 fpusave_cpu(ci, save);
1921 #endif /* MULTIPROCESSOR */
1922 }
1923
1924 /*
1925 * The following primitives manipulate the run queues. _whichqs tells which
1926 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1927 * into queues, Remrunqueue removes them from queues. The running process is
1928 * on no queue, other processes are on a queue related to p->p_priority,
1929 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1930 * available queues.
1931 */
1932 /*
1933 * setrunqueue(p)
1934 * proc *p;
1935 *
1936 * Call should be made at splclock(), and p->p_stat should be SRUN.
1937 */
1938
1939 void
1940 setrunqueue(p)
1941 struct proc *p;
1942 {
1943 int bit;
1944
1945 /* firewall: p->p_back must be NULL */
1946 if (p->p_back != NULL)
1947 panic("setrunqueue");
1948
1949 bit = p->p_priority >> 2;
1950 sched_whichqs |= (1 << bit);
1951 p->p_forw = (struct proc *)&sched_qs[bit];
1952 p->p_back = sched_qs[bit].ph_rlink;
1953 p->p_back->p_forw = p;
1954 sched_qs[bit].ph_rlink = p;
1955 }
1956
1957 /*
1958 * remrunqueue(p)
1959 *
1960 * Call should be made at splclock().
1961 */
1962 void
1963 remrunqueue(p)
1964 struct proc *p;
1965 {
1966 int bit;
1967
1968 bit = p->p_priority >> 2;
1969 if ((sched_whichqs & (1 << bit)) == 0)
1970 panic("remrunqueue");
1971
1972 p->p_back->p_forw = p->p_forw;
1973 p->p_forw->p_back = p->p_back;
1974 p->p_back = NULL; /* for firewall checking. */
1975
1976 if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1977 sched_whichqs &= ~(1 << bit);
1978 }
1979
1980 /*
1981 * Wait "n" microseconds.
1982 */
1983 void
1984 delay(n)
1985 unsigned long n;
1986 {
1987 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1988
1989 if (n == 0)
1990 return;
1991
1992 pcc0 = alpha_rpcc() & 0xffffffffUL;
1993 cycles = 0;
1994 usec = 0;
1995
1996 while (usec <= n) {
1997 /*
1998 * Get the next CPU cycle count- assumes that we cannot
1999 * have had more than one 32 bit overflow.
2000 */
2001 pcc1 = alpha_rpcc() & 0xffffffffUL;
2002 if (pcc1 < pcc0)
2003 curcycle = (pcc1 + 0x100000000UL) - pcc0;
2004 else
2005 curcycle = pcc1 - pcc0;
2006
2007 /*
2008 * We now have the number of processor cycles since we
2009 * last checked. Add the current cycle count to the
2010 * running total. If it's over cycles_per_usec, increment
2011 * the usec counter.
2012 */
2013 cycles += curcycle;
2014 while (cycles > cycles_per_usec) {
2015 usec++;
2016 cycles -= cycles_per_usec;
2017 }
2018 pcc0 = pcc1;
2019 }
2020 }
2021
2022 #ifdef EXEC_ECOFF
2023 void
2024 cpu_exec_ecoff_setregs(p, epp, stack)
2025 struct proc *p;
2026 struct exec_package *epp;
2027 u_long stack;
2028 {
2029 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2030
2031 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2032 }
2033
2034 /*
2035 * cpu_exec_ecoff_hook():
2036 * cpu-dependent ECOFF format hook for execve().
2037 *
2038 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2039 *
2040 */
2041 int
2042 cpu_exec_ecoff_probe(p, epp)
2043 struct proc *p;
2044 struct exec_package *epp;
2045 {
2046 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2047 int error;
2048
2049 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2050 error = 0;
2051 else
2052 error = ENOEXEC;
2053
2054 return (error);
2055 }
2056 #endif /* EXEC_ECOFF */
2057
2058 int
2059 alpha_pa_access(pa)
2060 u_long pa;
2061 {
2062 int i;
2063
2064 for (i = 0; i < mem_cluster_cnt; i++) {
2065 if (pa < mem_clusters[i].start)
2066 continue;
2067 if ((pa - mem_clusters[i].start) >=
2068 (mem_clusters[i].size & ~PAGE_MASK))
2069 continue;
2070 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2071 }
2072
2073 /*
2074 * Address is not a memory address. If we're secure, disallow
2075 * access. Otherwise, grant read/write.
2076 */
2077 if (securelevel > 0)
2078 return (PROT_NONE);
2079 else
2080 return (PROT_READ | PROT_WRITE);
2081 }
2082
2083 /* XXX XXX BEGIN XXX XXX */
2084 paddr_t alpha_XXX_dmamap_or; /* XXX */
2085 /* XXX */
2086 paddr_t /* XXX */
2087 alpha_XXX_dmamap(v) /* XXX */
2088 vaddr_t v; /* XXX */
2089 { /* XXX */
2090 /* XXX */
2091 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2092 } /* XXX */
2093 /* XXX XXX END XXX XXX */
2094
2095 char *
2096 dot_conv(x)
2097 unsigned long x;
2098 {
2099 int i;
2100 char *xc;
2101 static int next;
2102 static char space[2][20];
2103
2104 xc = space[next ^= 1] + sizeof space[0];
2105 *--xc = '\0';
2106 for (i = 0;; ++i) {
2107 if (i && (i & 3) == 0)
2108 *--xc = '.';
2109 *--xc = "0123456789abcdef"[x & 0xf];
2110 x >>= 4;
2111 if (x == 0)
2112 break;
2113 }
2114 return xc;
2115 }
2116