machdep.c revision 1.26 1 /* $NetBSD: machdep.c,v 1.26 1996/06/13 00:24:52 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/conf.h>
39 #include <sys/file.h>
40 #ifdef REAL_CLISTS
41 #include <sys/clist.h>
42 #endif
43 #include <sys/callout.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/msgbuf.h>
47 #include <sys/ioctl.h>
48 #include <sys/tty.h>
49 #include <sys/user.h>
50 #include <sys/exec.h>
51 #include <sys/exec_ecoff.h>
52 #include <sys/sysctl.h>
53 #ifdef SYSVMSG
54 #include <sys/msg.h>
55 #endif
56 #ifdef SYSVSEM
57 #include <sys/sem.h>
58 #endif
59 #ifdef SYSVSHM
60 #include <sys/shm.h>
61 #endif
62
63 #include <sys/mount.h>
64 #include <sys/syscallargs.h>
65
66 #include <vm/vm_kern.h>
67
68 #include <dev/cons.h>
69
70 #include <machine/cpu.h>
71 #include <machine/reg.h>
72 #include <machine/rpb.h>
73 #include <machine/prom.h>
74
75 #ifdef DEC_3000_500
76 #include <alpha/alpha/dec_3000_500.h>
77 #endif
78 #ifdef DEC_3000_300
79 #include <alpha/alpha/dec_3000_300.h>
80 #endif
81 #ifdef DEC_2100_A50
82 #include <alpha/alpha/dec_2100_a50.h>
83 #endif
84 #ifdef DEC_KN20AA
85 #include <alpha/alpha/dec_kn20aa.h>
86 #endif
87 #ifdef DEC_AXPPCI_33
88 #include <alpha/alpha/dec_axppci_33.h>
89 #endif
90 #ifdef DEC_21000
91 #include <alpha/alpha/dec_21000.h>
92 #endif
93
94 #include <net/netisr.h>
95 #include "ether.h"
96
97 #include "le_ioasic.h" /* for le_iomem creation */
98
99 vm_map_t buffer_map;
100
101 void dumpsys __P((void));
102
103 /*
104 * Declare these as initialized data so we can patch them.
105 */
106 int nswbuf = 0;
107 #ifdef NBUF
108 int nbuf = NBUF;
109 #else
110 int nbuf = 0;
111 #endif
112 #ifdef BUFPAGES
113 int bufpages = BUFPAGES;
114 #else
115 int bufpages = 0;
116 #endif
117 int msgbufmapped = 0; /* set when safe to use msgbuf */
118 int maxmem; /* max memory per process */
119
120 int totalphysmem; /* total amount of physical memory in system */
121 int physmem; /* physical memory used by NetBSD + some rsvd */
122 int firstusablepage; /* first usable memory page */
123 int lastusablepage; /* last usable memory page */
124 int resvmem; /* amount of memory reserved for PROM */
125 int unusedmem; /* amount of memory for OS that we don't use */
126 int unknownmem; /* amount of memory with an unknown use */
127
128 int cputype; /* system type, from the RPB */
129
130 /*
131 * XXX We need an address to which we can assign things so that they
132 * won't be optimized away because we didn't use the value.
133 */
134 u_int32_t no_optimize;
135
136 /* the following is used externally (sysctl_hw) */
137 char machine[] = "alpha";
138 char *cpu_model;
139 char *model_names[] = {
140 "UNKNOWN (0)",
141 "Alpha Demonstration Unit",
142 "DEC 4000 (\"Cobra\")",
143 "DEC 7000 (\"Ruby\")",
144 "DEC 3000/500 (\"Flamingo\") family",
145 "UNKNOWN (5)",
146 "DEC 2000/300 (\"Jensen\")",
147 "DEC 3000/300 (\"Pelican\")",
148 "UNKNOWN (8)",
149 "DEC 2100/A500 (\"Sable\")",
150 "AXPvme 64",
151 "AXPpci 33 (\"NoName\")",
152 "DEC 21000 (\"TurboLaser\")",
153 "DEC 2100/A50 (\"Avanti\") family",
154 "Mustang",
155 "DEC KN20AA",
156 "UNKNOWN (16)",
157 "DEC 1000 (\"Mikasa\")",
158 };
159 int nmodel_names = sizeof model_names/sizeof model_names[0];
160
161 struct user *proc0paddr;
162
163 /* Number of machine cycles per microsecond */
164 u_int64_t cycles_per_usec;
165
166 /* some memory areas for device DMA. "ick." */
167 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
168
169 /* Interrupt vectors (in locore) */
170 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
171
172 /* number of cpus in the box. really! */
173 int ncpus;
174
175 /* various CPU-specific functions. */
176 char *(*cpu_modelname) __P((void));
177 void (*cpu_consinit) __P((void));
178 char *cpu_iobus;
179
180 char boot_flags[64];
181
182 int
183 alpha_init(pfn, ptb)
184 u_long pfn; /* first free PFN number */
185 u_long ptb; /* PFN of current level 1 page table */
186 {
187 extern char _end[];
188 caddr_t start, v;
189 struct mddt *mddtp;
190 int i, mddtweird;
191 char *p;
192
193 /*
194 * Turn off interrupts and floating point.
195 * Make sure the instruction and data streams are consistent.
196 */
197 (void)splhigh();
198 pal_wrfen(0);
199 TBIA();
200 IMB();
201
202 /*
203 * get address of the restart block, while we the bootstrap
204 * mapping is still around.
205 */
206 hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
207
208 /*
209 * Remember how many cycles there are per microsecond,
210 * so that we can use delay(). Round up, for safety.
211 */
212 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
213
214 /*
215 * Init the PROM interface, so we can use printf
216 * until PROM mappings go away in consinit.
217 */
218 init_prom_interface();
219
220 /*
221 * Point interrupt/exception vectors to our own.
222 */
223 pal_wrent(XentInt, 0);
224 pal_wrent(XentArith, 1);
225 pal_wrent(XentMM, 2);
226 pal_wrent(XentIF, 3);
227 pal_wrent(XentUna, 4);
228 pal_wrent(XentSys, 5);
229
230 /*
231 * Find out how much memory is available, by looking at
232 * the memory cluster descriptors. This also tries to do
233 * its best to detect things things that have never been seen
234 * before...
235 *
236 * XXX Assumes that the first "system" cluster is the
237 * only one we can use. Is the second (etc.) system cluster
238 * (if one happens to exist) guaranteed to be contiguous? or...?
239 */
240 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
241
242 /*
243 * BEGIN MDDT WEIRDNESS CHECKING
244 */
245 mddtweird = 0;
246
247 #define cnt mddtp->mddt_cluster_cnt
248 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
249 if (cnt != 2 && cnt != 3) {
250 printf("WARNING: weird number (%d) of mem clusters\n", cnt);
251 mddtweird = 1;
252 } else if (usage(0) != MDDT_PALCODE ||
253 usage(1) != MDDT_SYSTEM ||
254 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
255 mddtweird = 1;
256 printf("WARNING: %d mem clusters, but weird config\n", cnt);
257 }
258
259 for (i = 0; i < cnt; i++) {
260 if ((usage(i) & MDDT_mbz) != 0) {
261 printf("WARNING: mem cluster %d has weird usage %lx\n",
262 i, usage(i));
263 mddtweird = 1;
264 }
265 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
266 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
267 mddtweird = 1;
268 }
269 /* XXX other things to check? */
270 }
271 #undef cnt
272 #undef usage
273
274 if (mddtweird) {
275 printf("\n");
276 printf("complete memory cluster information:\n");
277 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
278 printf("mddt %d:\n", i);
279 printf("\tpfn %lx\n",
280 mddtp->mddt_clusters[i].mddt_pfn);
281 printf("\tcnt %lx\n",
282 mddtp->mddt_clusters[i].mddt_pg_cnt);
283 printf("\ttest %lx\n",
284 mddtp->mddt_clusters[i].mddt_pg_test);
285 printf("\tbva %lx\n",
286 mddtp->mddt_clusters[i].mddt_v_bitaddr);
287 printf("\tbpa %lx\n",
288 mddtp->mddt_clusters[i].mddt_p_bitaddr);
289 printf("\tbcksum %lx\n",
290 mddtp->mddt_clusters[i].mddt_bit_cksum);
291 printf("\tusage %lx\n",
292 mddtp->mddt_clusters[i].mddt_usage);
293 }
294 printf("\n");
295 }
296 /*
297 * END MDDT WEIRDNESS CHECKING
298 */
299
300 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
301 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
302 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
303 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
304 if ((usage(i) & MDDT_mbz) != 0)
305 unknownmem += pgcnt(i);
306 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
307 resvmem += pgcnt(i);
308 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
309 /*
310 * assumes that the system cluster listed is
311 * one we're in...
312 */
313 if (physmem != resvmem) {
314 physmem += pgcnt(i);
315 firstusablepage =
316 mddtp->mddt_clusters[i].mddt_pfn;
317 lastusablepage = firstusablepage + pgcnt(i) - 1;
318 } else
319 unusedmem += pgcnt(i);
320 }
321 #undef usage
322 #undef pgcnt
323 }
324 if (totalphysmem == 0)
325 panic("can't happen: system seems to have no memory!");
326 maxmem = physmem;
327
328 #if 0
329 printf("totalphysmem = %d\n", totalphysmem);
330 printf("physmem = %d\n", physmem);
331 printf("firstusablepage = %d\n", firstusablepage);
332 printf("lastusablepage = %d\n", lastusablepage);
333 printf("resvmem = %d\n", resvmem);
334 printf("unusedmem = %d\n", unusedmem);
335 printf("unknownmem = %d\n", unknownmem);
336 #endif
337
338 /*
339 * find out this CPU's page size
340 */
341 PAGE_SIZE = hwrpb->rpb_page_size;
342 if (PAGE_SIZE != 8192)
343 panic("page size %d != 8192?!", PAGE_SIZE);
344
345 v = (caddr_t)alpha_round_page(_end);
346 /*
347 * Init mapping for u page(s) for proc 0
348 */
349 start = v;
350 curproc->p_addr = proc0paddr = (struct user *)v;
351 v += UPAGES * NBPG;
352
353 /*
354 * Find out what hardware we're on, and remember its type name.
355 */
356 cputype = hwrpb->rpb_type;
357 switch (cputype) {
358 #ifdef DEC_3000_500 /* and 400, [6-9]00 */
359 case ST_DEC_3000_500:
360 cpu_modelname = dec_3000_500_modelname;
361 cpu_consinit = dec_3000_500_consinit;
362 cpu_iobus = "tcasic";
363 break;
364 #endif
365
366 #ifdef DEC_3000_300
367 case ST_DEC_3000_300:
368 cpu_modelname = dec_3000_300_modelname;
369 cpu_consinit = dec_3000_300_consinit;
370 cpu_iobus = "tcasic";
371 break;
372 #endif
373
374 #ifdef DEC_2100_A50
375 case ST_DEC_2100_A50:
376 cpu_modelname = dec_2100_a50_modelname;
377 cpu_consinit = dec_2100_a50_consinit;
378 cpu_iobus = "apecs";
379 break;
380 #endif
381
382 #ifdef DEC_KN20AA
383 case ST_DEC_KN20AA:
384 cpu_modelname = dec_kn20aa_modelname;
385 cpu_consinit = dec_kn20aa_consinit;
386 cpu_iobus = "cia";
387 break;
388 #endif
389
390 #ifdef DEC_AXPPCI_33
391 case ST_DEC_AXPPCI_33:
392 cpu_modelname = dec_axppci_33_modelname;
393 cpu_consinit = dec_axppci_33_consinit;
394 cpu_iobus = "lca";
395 break;
396 #endif
397
398 #ifdef DEC_2000_300
399 case ST_DEC_2000_300:
400 cpu_modelname = dec_2000_300_modelname;
401 cpu_consinit = dec_2000_300_consinit;
402 cpu_iobus = "ibus";
403 XXX DEC 2000/300 NOT SUPPORTED
404 break;
405 #endif
406
407 #ifdef DEC_21000
408 case ST_DEC_21000:
409 cpu_modelname = dec_21000_modelname;
410 cpu_consinit = dec_21000_consinit;
411 cpu_iobus = "tlsb";
412 break;
413 #endif
414
415 default:
416 if (cputype > nmodel_names)
417 panic("Unknown system type %d", cputype);
418 else
419 panic("Support for %s system type not in kernel.",
420 model_names[cputype]);
421 }
422
423 cpu_model = (*cpu_modelname)();
424 if (cpu_model == NULL)
425 cpu_model = model_names[cputype];
426
427 #if NLE_IOASIC > 0
428 /*
429 * Grab 128K at the top of physical memory for the lance chip
430 * on machines where it does dma through the I/O ASIC.
431 * It must be physically contiguous and aligned on a 128K boundary.
432 *
433 * Note that since this is conditional on the presence of
434 * IOASIC-attached 'le' units in the kernel config, the
435 * message buffer may move on these systems. This shouldn't
436 * be a problem, because once people have a kernel config that
437 * they use, they're going to stick with it.
438 */
439 if (cputype == ST_DEC_3000_500 ||
440 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
441 lastusablepage -= btoc(128 * 1024);
442 le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
443 }
444 #endif /* NLE_IOASIC */
445
446 /*
447 * Initialize error message buffer (at end of core).
448 */
449 lastusablepage -= btoc(sizeof (struct msgbuf));
450 msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
451 msgbufmapped = 1;
452
453 /*
454 * Allocate space for system data structures.
455 * The first available kernel virtual address is in "v".
456 * As pages of kernel virtual memory are allocated, "v" is incremented.
457 *
458 * These data structures are allocated here instead of cpu_startup()
459 * because physical memory is directly addressable. We don't have
460 * to map these into virtual address space.
461 */
462 #define valloc(name, type, num) \
463 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
464 #define valloclim(name, type, num, lim) \
465 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
466 #ifdef REAL_CLISTS
467 valloc(cfree, struct cblock, nclist);
468 #endif
469 valloc(callout, struct callout, ncallout);
470 valloc(swapmap, struct map, nswapmap = maxproc * 2);
471 #ifdef SYSVSHM
472 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
473 #endif
474 #ifdef SYSVSEM
475 valloc(sema, struct semid_ds, seminfo.semmni);
476 valloc(sem, struct sem, seminfo.semmns);
477 /* This is pretty disgusting! */
478 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
479 #endif
480 #ifdef SYSVMSG
481 valloc(msgpool, char, msginfo.msgmax);
482 valloc(msgmaps, struct msgmap, msginfo.msgseg);
483 valloc(msghdrs, struct msg, msginfo.msgtql);
484 valloc(msqids, struct msqid_ds, msginfo.msgmni);
485 #endif
486
487 /*
488 * Determine how many buffers to allocate.
489 * We allocate the BSD standard of 10% of memory for the first
490 * 2 Meg, and 5% of remaining memory for buffer space. Insure a
491 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
492 * headers as file i/o buffers.
493 */
494 if (bufpages == 0)
495 bufpages = (btoc(2 * 1024 * 1024) + physmem) /
496 (20 * CLSIZE);
497 if (nbuf == 0) {
498 nbuf = bufpages;
499 if (nbuf < 16)
500 nbuf = 16;
501 }
502 if (nswbuf == 0) {
503 nswbuf = (nbuf / 2) &~ 1; /* force even */
504 if (nswbuf > 256)
505 nswbuf = 256; /* sanity */
506 }
507 valloc(swbuf, struct buf, nswbuf);
508 valloc(buf, struct buf, nbuf);
509
510 /*
511 * Clear allocated memory.
512 */
513 bzero(start, v - start);
514
515 /*
516 * Initialize the virtual memory system, and set the
517 * page table base register in proc 0's PCB.
518 */
519 pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
520
521 /*
522 * Initialize the rest of proc 0's PCB, and cache its physical
523 * address.
524 */
525 proc0.p_md.md_pcbpaddr =
526 (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
527
528 /*
529 * Set the kernel sp, reserving space for an (empty) trapframe,
530 * and make proc0's trapframe pointer point to it for sanity.
531 */
532 proc0paddr->u_pcb.pcb_ksp =
533 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
534 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
535
536 /*
537 * Look at arguments passed to us and compute boothowto.
538 */
539 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
540 #if 0
541 printf("boot flags = \"%s\"\n", boot_flags);
542 #endif
543
544 boothowto = RB_SINGLE;
545 #ifdef KADB
546 boothowto |= RB_KDB;
547 #endif
548 for (p = boot_flags; p && *p != '\0'; p++) {
549 /*
550 * Note that we'd really like to differentiate case here,
551 * but the Alpha AXP Architecture Reference Manual
552 * says that we shouldn't.
553 */
554 switch (*p) {
555 case 'a': /* autoboot */
556 case 'A':
557 boothowto &= ~RB_SINGLE;
558 break;
559
560 case 'n': /* askname */
561 case 'N':
562 boothowto |= RB_ASKNAME;
563 break;
564
565 #if 0
566 case 'm': /* mini root present in memory */
567 case 'M':
568 boothowto |= RB_MINIROOT;
569 break;
570 #endif
571 }
572 }
573
574 /*
575 * Figure out the number of cpus in the box, from RPB fields.
576 * Really. We mean it.
577 */
578 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
579 struct pcs *pcsp;
580
581 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
582 (i * hwrpb->rpb_pcs_size));
583 if ((pcsp->pcs_flags & PCS_PP) != 0)
584 ncpus++;
585 }
586
587 return (0);
588 }
589
590 void
591 consinit()
592 {
593
594 (*cpu_consinit)();
595 pmap_unmap_prom();
596 }
597
598 void
599 cpu_startup()
600 {
601 register unsigned i;
602 register caddr_t v;
603 int base, residual;
604 vm_offset_t minaddr, maxaddr;
605 vm_size_t size;
606 #ifdef DEBUG
607 extern int pmapdebug;
608 int opmapdebug = pmapdebug;
609
610 pmapdebug = 0;
611 #endif
612
613 /*
614 * Good {morning,afternoon,evening,night}.
615 */
616 printf(version);
617 identifycpu();
618 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
619 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
620 if (unusedmem)
621 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
622 if (unknownmem)
623 printf("WARNING: %d bytes of memory with unknown purpose\n",
624 ctob(unknownmem));
625
626 /*
627 * Allocate virtual address space for file I/O buffers.
628 * Note they are different than the array of headers, 'buf',
629 * and usually occupy more virtual memory than physical.
630 */
631 size = MAXBSIZE * nbuf;
632 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
633 &maxaddr, size, TRUE);
634 minaddr = (vm_offset_t)buffers;
635 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
636 &minaddr, size, FALSE) != KERN_SUCCESS)
637 panic("startup: cannot allocate buffers");
638 base = bufpages / nbuf;
639 residual = bufpages % nbuf;
640 for (i = 0; i < nbuf; i++) {
641 vm_size_t curbufsize;
642 vm_offset_t curbuf;
643
644 /*
645 * First <residual> buffers get (base+1) physical pages
646 * allocated for them. The rest get (base) physical pages.
647 *
648 * The rest of each buffer occupies virtual space,
649 * but has no physical memory allocated for it.
650 */
651 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
652 curbufsize = CLBYTES * (i < residual ? base+1 : base);
653 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
654 vm_map_simplify(buffer_map, curbuf);
655 }
656 /*
657 * Allocate a submap for exec arguments. This map effectively
658 * limits the number of processes exec'ing at any time.
659 */
660 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
661 16 * NCARGS, TRUE);
662
663 /*
664 * Allocate a submap for physio
665 */
666 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
667 VM_PHYS_SIZE, TRUE);
668
669 /*
670 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
671 * we use the more space efficient malloc in place of kmem_alloc.
672 */
673 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
674 M_MBUF, M_NOWAIT);
675 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
676 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
677 VM_MBUF_SIZE, FALSE);
678 /*
679 * Initialize callouts
680 */
681 callfree = callout;
682 for (i = 1; i < ncallout; i++)
683 callout[i-1].c_next = &callout[i];
684 callout[i-1].c_next = NULL;
685
686 #ifdef DEBUG
687 pmapdebug = opmapdebug;
688 #endif
689 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
690 printf("using %ld buffers containing %ld bytes of memory\n",
691 (long)nbuf, (long)(bufpages * CLBYTES));
692
693 /*
694 * Set up buffers, so they can be used to read disk labels.
695 */
696 bufinit();
697
698 /*
699 * Configure the system.
700 */
701 configure();
702 }
703
704 identifycpu()
705 {
706
707 /*
708 * print out CPU identification information.
709 */
710 printf("%s, %dMHz\n", cpu_model,
711 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
712 printf("%d byte page size, %d processor%s.\n",
713 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
714 #if 0
715 /* this isn't defined for any systems that we run on? */
716 printf("serial number 0x%lx 0x%lx\n",
717 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
718
719 /* and these aren't particularly useful! */
720 printf("variation: 0x%lx, revision 0x%lx\n",
721 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
722 #endif
723 }
724
725 int waittime = -1;
726 struct pcb dumppcb;
727
728 void
729 boot(howto)
730 int howto;
731 {
732 extern int cold;
733
734 /* If system is cold, just halt. */
735 if (cold) {
736 howto |= RB_HALT;
737 goto haltsys;
738 }
739
740 boothowto = howto;
741 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
742 waittime = 0;
743 vfs_shutdown();
744 /*
745 * If we've been adjusting the clock, the todr
746 * will be out of synch; adjust it now.
747 */
748 resettodr();
749 }
750
751 /* Disable interrupts. */
752 splhigh();
753
754 /* If rebooting and a dump is requested do it. */
755 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
756 savectx(&dumppcb, 0);
757 dumpsys();
758 }
759
760 haltsys:
761
762 /* run any shutdown hooks */
763 doshutdownhooks();
764
765 #ifdef BOOTKEY
766 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
767 cngetc();
768 printf("\n");
769 #endif
770
771 /* Finally, halt/reboot the system. */
772 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
773 prom_halt(howto & RB_HALT);
774 /*NOTREACHED*/
775 }
776
777 /*
778 * These variables are needed by /sbin/savecore
779 */
780 u_long dumpmag = 0x8fca0101; /* magic number */
781 int dumpsize = 0; /* pages */
782 long dumplo = 0; /* blocks */
783
784 /*
785 * This is called by configure to set dumplo and dumpsize.
786 * Dumps always skip the first CLBYTES of disk space
787 * in case there might be a disk label stored there.
788 * If there is extra space, put dump at the end to
789 * reduce the chance that swapping trashes it.
790 */
791 void
792 dumpconf()
793 {
794 int nblks; /* size of dump area */
795 int maj;
796
797 if (dumpdev == NODEV)
798 return;
799 maj = major(dumpdev);
800 if (maj < 0 || maj >= nblkdev)
801 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
802 if (bdevsw[maj].d_psize == NULL)
803 return;
804 nblks = (*bdevsw[maj].d_psize)(dumpdev);
805 if (nblks <= ctod(1))
806 return;
807
808 /* XXX XXX XXX STARTING MEMORY LOCATION */
809 dumpsize = physmem;
810
811 /* Always skip the first CLBYTES, in case there is a label there. */
812 if (dumplo < ctod(1))
813 dumplo = ctod(1);
814
815 /* Put dump at end of partition, and make it fit. */
816 if (dumpsize > dtoc(nblks - dumplo))
817 dumpsize = dtoc(nblks - dumplo);
818 if (dumplo < nblks - ctod(dumpsize))
819 dumplo = nblks - ctod(dumpsize);
820 }
821
822 /*
823 * Doadump comes here after turning off memory management and
824 * getting on the dump stack, either when called above, or by
825 * the auto-restart code.
826 */
827 void
828 dumpsys()
829 {
830
831 msgbufmapped = 0;
832 if (dumpdev == NODEV)
833 return;
834 if (dumpsize == 0) {
835 dumpconf();
836 if (dumpsize == 0)
837 return;
838 }
839 printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
840
841 printf("dump ");
842 switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
843
844 case ENXIO:
845 printf("device bad\n");
846 break;
847
848 case EFAULT:
849 printf("device not ready\n");
850 break;
851
852 case EINVAL:
853 printf("area improper\n");
854 break;
855
856 case EIO:
857 printf("i/o error\n");
858 break;
859
860 case EINTR:
861 printf("aborted from console\n");
862 break;
863
864 default:
865 printf("succeeded\n");
866 break;
867 }
868 printf("\n\n");
869 delay(1000);
870 }
871
872 void
873 frametoreg(framep, regp)
874 struct trapframe *framep;
875 struct reg *regp;
876 {
877
878 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
879 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
880 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
881 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
882 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
883 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
884 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
885 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
886 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
887 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
888 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
889 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
890 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
891 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
892 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
893 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
894 regp->r_regs[R_A0] = framep->tf_a0;
895 regp->r_regs[R_A1] = framep->tf_a1;
896 regp->r_regs[R_A2] = framep->tf_a2;
897 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
898 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
899 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
900 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
901 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
902 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
903 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
904 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
905 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
906 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
907 regp->r_regs[R_GP] = framep->tf_gp;
908 regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
909 regp->r_regs[R_ZERO] = 0;
910 }
911
912 void
913 regtoframe(regp, framep)
914 struct reg *regp;
915 struct trapframe *framep;
916 {
917
918 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
919 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
920 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
921 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
922 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
923 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
924 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
925 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
926 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
927 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
928 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
929 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
930 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
931 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
932 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
933 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
934 framep->tf_a0 = regp->r_regs[R_A0];
935 framep->tf_a1 = regp->r_regs[R_A1];
936 framep->tf_a2 = regp->r_regs[R_A2];
937 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
938 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
939 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
940 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
941 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
942 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
943 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
944 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
945 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
946 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
947 framep->tf_gp = regp->r_regs[R_GP];
948 framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
949 /* ??? = regp->r_regs[R_ZERO]; */
950 }
951
952 void
953 printregs(regp)
954 struct reg *regp;
955 {
956 int i;
957
958 for (i = 0; i < 32; i++)
959 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
960 i & 1 ? "\n" : "\t");
961 }
962
963 void
964 regdump(framep)
965 struct trapframe *framep;
966 {
967 struct reg reg;
968
969 frametoreg(framep, ®);
970 printf("REGISTERS:\n");
971 printregs(®);
972 }
973
974 #ifdef DEBUG
975 int sigdebug = 0;
976 int sigpid = 0;
977 #define SDB_FOLLOW 0x01
978 #define SDB_KSTACK 0x02
979 #endif
980
981 /*
982 * Send an interrupt to process.
983 */
984 void
985 sendsig(catcher, sig, mask, code)
986 sig_t catcher;
987 int sig, mask;
988 u_long code;
989 {
990 struct proc *p = curproc;
991 struct sigcontext *scp, ksc;
992 struct trapframe *frame;
993 struct sigacts *psp = p->p_sigacts;
994 int oonstack, fsize, rndfsize;
995 extern char sigcode[], esigcode[];
996 extern struct proc *fpcurproc;
997
998 frame = p->p_md.md_tf;
999 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1000 fsize = sizeof ksc;
1001 rndfsize = ((fsize + 15) / 16) * 16;
1002 /*
1003 * Allocate and validate space for the signal handler
1004 * context. Note that if the stack is in P0 space, the
1005 * call to grow() is a nop, and the useracc() check
1006 * will fail if the process has not already allocated
1007 * the space with a `brk'.
1008 */
1009 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1010 (psp->ps_sigonstack & sigmask(sig))) {
1011 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1012 psp->ps_sigstk.ss_size - rndfsize);
1013 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1014 } else
1015 scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1016 rndfsize);
1017 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1018 (void)grow(p, (u_long)scp);
1019 #ifdef DEBUG
1020 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1021 printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1022 sig, &oonstack, scp);
1023 #endif
1024 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1025 #ifdef DEBUG
1026 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1027 printf("sendsig(%d): useracc failed on sig %d\n",
1028 p->p_pid, sig);
1029 #endif
1030 /*
1031 * Process has trashed its stack; give it an illegal
1032 * instruction to halt it in its tracks.
1033 */
1034 SIGACTION(p, SIGILL) = SIG_DFL;
1035 sig = sigmask(SIGILL);
1036 p->p_sigignore &= ~sig;
1037 p->p_sigcatch &= ~sig;
1038 p->p_sigmask &= ~sig;
1039 psignal(p, SIGILL);
1040 return;
1041 }
1042
1043 /*
1044 * Build the signal context to be used by sigreturn.
1045 */
1046 ksc.sc_onstack = oonstack;
1047 ksc.sc_mask = mask;
1048 ksc.sc_pc = frame->tf_pc;
1049 ksc.sc_ps = frame->tf_ps;
1050
1051 /* copy the registers. */
1052 frametoreg(frame, (struct reg *)ksc.sc_regs);
1053 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1054
1055 /* save the floating-point state, if necessary, then copy it. */
1056 if (p == fpcurproc) {
1057 pal_wrfen(1);
1058 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1059 pal_wrfen(0);
1060 fpcurproc = NULL;
1061 }
1062 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1063 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1064 sizeof(struct fpreg));
1065 ksc.sc_fp_control = 0; /* XXX ? */
1066 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1067 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1068
1069
1070 #ifdef COMPAT_OSF1
1071 /*
1072 * XXX Create an OSF/1-style sigcontext and associated goo.
1073 */
1074 #endif
1075
1076 /*
1077 * copy the frame out to userland.
1078 */
1079 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1080 #ifdef DEBUG
1081 if (sigdebug & SDB_FOLLOW)
1082 printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1083 scp, code);
1084 #endif
1085
1086 /*
1087 * Set up the registers to return to sigcode.
1088 */
1089 frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1090 frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1091 frame->tf_a0 = sig;
1092 frame->tf_a1 = code;
1093 frame->tf_a2 = (u_int64_t)scp;
1094 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1095
1096 #ifdef DEBUG
1097 if (sigdebug & SDB_FOLLOW)
1098 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1099 frame->tf_pc, frame->tf_regs[FRAME_A3]);
1100 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1101 printf("sendsig(%d): sig %d returns\n",
1102 p->p_pid, sig);
1103 #endif
1104 }
1105
1106 /*
1107 * System call to cleanup state after a signal
1108 * has been taken. Reset signal mask and
1109 * stack state from context left by sendsig (above).
1110 * Return to previous pc and psl as specified by
1111 * context left by sendsig. Check carefully to
1112 * make sure that the user has not modified the
1113 * psl to gain improper priviledges or to cause
1114 * a machine fault.
1115 */
1116 /* ARGSUSED */
1117 int
1118 sys_sigreturn(p, v, retval)
1119 struct proc *p;
1120 void *v;
1121 register_t *retval;
1122 {
1123 struct sys_sigreturn_args /* {
1124 syscallarg(struct sigcontext *) sigcntxp;
1125 } */ *uap = v;
1126 struct sigcontext *scp, ksc;
1127 extern struct proc *fpcurproc;
1128
1129 scp = SCARG(uap, sigcntxp);
1130 #ifdef DEBUG
1131 if (sigdebug & SDB_FOLLOW)
1132 printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1133 #endif
1134
1135 if (ALIGN(scp) != (u_int64_t)scp)
1136 return (EINVAL);
1137
1138 /*
1139 * Test and fetch the context structure.
1140 * We grab it all at once for speed.
1141 */
1142 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1143 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1144 return (EINVAL);
1145
1146 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1147 return (EINVAL);
1148 /*
1149 * Restore the user-supplied information
1150 */
1151 if (ksc.sc_onstack)
1152 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1153 else
1154 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1155 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1156
1157 p->p_md.md_tf->tf_pc = ksc.sc_pc;
1158 p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
1159
1160 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1161
1162 /* XXX ksc.sc_ownedfp ? */
1163 if (p == fpcurproc)
1164 fpcurproc = NULL;
1165 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1166 sizeof(struct fpreg));
1167 /* XXX ksc.sc_fp_control ? */
1168
1169 #ifdef DEBUG
1170 if (sigdebug & SDB_FOLLOW)
1171 printf("sigreturn(%d): returns\n", p->p_pid);
1172 #endif
1173 return (EJUSTRETURN);
1174 }
1175
1176 /*
1177 * machine dependent system variables.
1178 */
1179 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1180 int *name;
1181 u_int namelen;
1182 void *oldp;
1183 size_t *oldlenp;
1184 void *newp;
1185 size_t newlen;
1186 struct proc *p;
1187 {
1188 dev_t consdev;
1189
1190 /* all sysctl names at this level are terminal */
1191 if (namelen != 1)
1192 return (ENOTDIR); /* overloaded */
1193
1194 switch (name[0]) {
1195 case CPU_CONSDEV:
1196 if (cn_tab != NULL)
1197 consdev = cn_tab->cn_dev;
1198 else
1199 consdev = NODEV;
1200 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1201 sizeof consdev));
1202 default:
1203 return (EOPNOTSUPP);
1204 }
1205 /* NOTREACHED */
1206 }
1207
1208 /*
1209 * Set registers on exec.
1210 */
1211 void
1212 setregs(p, pack, stack, retval)
1213 register struct proc *p;
1214 struct exec_package *pack;
1215 u_long stack;
1216 register_t *retval;
1217 {
1218 struct trapframe *tfp = p->p_md.md_tf;
1219 int i;
1220 extern struct proc *fpcurproc;
1221
1222 #ifdef DEBUG
1223 for (i = 0; i < FRAME_NSAVEREGS; i++)
1224 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1225 tfp->tf_gp = 0xbabefacedeadbeef;
1226 tfp->tf_a0 = 0xbabefacedeadbeef;
1227 tfp->tf_a1 = 0xbabefacedeadbeef;
1228 tfp->tf_a2 = 0xbabefacedeadbeef;
1229 #else
1230 bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1231 tfp->tf_gp = 0;
1232 tfp->tf_a0 = 0;
1233 tfp->tf_a1 = 0;
1234 tfp->tf_a2 = 0;
1235 #endif
1236 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1237 #define FP_RN 2 /* XXX */
1238 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1239 tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1240 tfp->tf_ps = PSL_USERSET;
1241 tfp->tf_pc = pack->ep_entry & ~3;
1242
1243 p->p_md.md_flags & ~MDP_FPUSED;
1244 if (fpcurproc == p)
1245 fpcurproc = NULL;
1246
1247 retval[0] = retval[1] = 0;
1248 }
1249
1250 void
1251 netintr()
1252 {
1253 #ifdef INET
1254 #if NETHER > 0
1255 if (netisr & (1 << NETISR_ARP)) {
1256 netisr &= ~(1 << NETISR_ARP);
1257 arpintr();
1258 }
1259 #endif
1260 if (netisr & (1 << NETISR_IP)) {
1261 netisr &= ~(1 << NETISR_IP);
1262 ipintr();
1263 }
1264 #endif
1265 #ifdef NS
1266 if (netisr & (1 << NETISR_NS)) {
1267 netisr &= ~(1 << NETISR_NS);
1268 nsintr();
1269 }
1270 #endif
1271 #ifdef ISO
1272 if (netisr & (1 << NETISR_ISO)) {
1273 netisr &= ~(1 << NETISR_ISO);
1274 clnlintr();
1275 }
1276 #endif
1277 #ifdef CCITT
1278 if (netisr & (1 << NETISR_CCITT)) {
1279 netisr &= ~(1 << NETISR_CCITT);
1280 ccittintr();
1281 }
1282 #endif
1283 #ifdef PPP
1284 if (netisr & (1 << NETISR_PPP)) {
1285 netisr &= ~(1 << NETISR_PPP);
1286 pppintr();
1287 }
1288 #endif
1289 }
1290
1291 void
1292 do_sir()
1293 {
1294
1295 if (ssir & SIR_NET) {
1296 siroff(SIR_NET);
1297 cnt.v_soft++;
1298 netintr();
1299 }
1300 if (ssir & SIR_CLOCK) {
1301 siroff(SIR_CLOCK);
1302 cnt.v_soft++;
1303 softclock();
1304 }
1305 }
1306
1307 int
1308 spl0()
1309 {
1310
1311 if (ssir) {
1312 splsoft();
1313 do_sir();
1314 }
1315
1316 return (pal_swpipl(PSL_IPL_0));
1317 }
1318
1319 /*
1320 * The following primitives manipulate the run queues. _whichqs tells which
1321 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1322 * into queues, Remrq removes them from queues. The running process is on
1323 * no queue, other processes are on a queue related to p->p_priority, divided
1324 * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1325 * queues.
1326 */
1327 /*
1328 * setrunqueue(p)
1329 * proc *p;
1330 *
1331 * Call should be made at splclock(), and p->p_stat should be SRUN.
1332 */
1333
1334 void
1335 setrunqueue(p)
1336 struct proc *p;
1337 {
1338 int bit;
1339
1340 /* firewall: p->p_back must be NULL */
1341 if (p->p_back != NULL)
1342 panic("setrunqueue");
1343
1344 bit = p->p_priority >> 2;
1345 whichqs |= (1 << bit);
1346 p->p_forw = (struct proc *)&qs[bit];
1347 p->p_back = qs[bit].ph_rlink;
1348 p->p_back->p_forw = p;
1349 qs[bit].ph_rlink = p;
1350 }
1351
1352 /*
1353 * Remrq(p)
1354 *
1355 * Call should be made at splclock().
1356 */
1357 void
1358 remrq(p)
1359 struct proc *p;
1360 {
1361 int bit;
1362
1363 bit = p->p_priority >> 2;
1364 if ((whichqs & (1 << bit)) == 0)
1365 panic("remrq");
1366
1367 p->p_back->p_forw = p->p_forw;
1368 p->p_forw->p_back = p->p_back;
1369 p->p_back = NULL; /* for firewall checking. */
1370
1371 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1372 whichqs &= ~(1 << bit);
1373 }
1374
1375 /*
1376 * Return the best possible estimate of the time in the timeval
1377 * to which tvp points. Unfortunately, we can't read the hardware registers.
1378 * We guarantee that the time will be greater than the value obtained by a
1379 * previous call.
1380 */
1381 void
1382 microtime(tvp)
1383 register struct timeval *tvp;
1384 {
1385 int s = splclock();
1386 static struct timeval lasttime;
1387
1388 *tvp = time;
1389 #ifdef notdef
1390 tvp->tv_usec += clkread();
1391 while (tvp->tv_usec > 1000000) {
1392 tvp->tv_sec++;
1393 tvp->tv_usec -= 1000000;
1394 }
1395 #endif
1396 if (tvp->tv_sec == lasttime.tv_sec &&
1397 tvp->tv_usec <= lasttime.tv_usec &&
1398 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1399 tvp->tv_sec++;
1400 tvp->tv_usec -= 1000000;
1401 }
1402 lasttime = *tvp;
1403 splx(s);
1404 }
1405
1406 /*
1407 * Wait "n" microseconds.
1408 */
1409 int
1410 delay(n)
1411 int n;
1412 {
1413 long N = cycles_per_usec * (n);
1414
1415 while (N > 0) /* XXX */
1416 N -= 3; /* XXX */
1417 }
1418
1419 #if defined(COMPAT_OSF1) || 1 /* XXX */
1420 void
1421 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1422 struct proc *p;
1423 struct exec_package *epp;
1424 u_long stack;
1425 register_t *retval;
1426 {
1427 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1428
1429 setregs(p, epp, stack, retval);
1430 p->p_md.md_tf->tf_gp = execp->a.gp_value;
1431 }
1432
1433 /*
1434 * cpu_exec_ecoff_hook():
1435 * cpu-dependent ECOFF format hook for execve().
1436 *
1437 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1438 *
1439 */
1440 int
1441 cpu_exec_ecoff_hook(p, epp)
1442 struct proc *p;
1443 struct exec_package *epp;
1444 {
1445 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1446 extern struct emul emul_netbsd;
1447 #ifdef COMPAT_OSF1
1448 extern struct emul emul_osf1;
1449 #endif
1450
1451 switch (execp->f.f_magic) {
1452 #ifdef COMPAT_OSF1
1453 case ECOFF_MAGIC_ALPHA:
1454 epp->ep_emul = &emul_osf1;
1455 break;
1456 #endif
1457
1458 case ECOFF_MAGIC_NETBSD_ALPHA:
1459 epp->ep_emul = &emul_netbsd;
1460 break;
1461
1462 default:
1463 return ENOEXEC;
1464 }
1465 return 0;
1466 }
1467 #endif
1468
1469 vm_offset_t
1470 vtophys(vaddr)
1471 vm_offset_t vaddr;
1472 {
1473 vm_offset_t paddr;
1474
1475 if (vaddr < K0SEG_BEGIN) {
1476 printf("vtophys: invalid vaddr 0x%lx", vaddr);
1477 paddr = vaddr;
1478 } else if (vaddr < K0SEG_END)
1479 paddr = k0segtophys(vaddr);
1480 else
1481 paddr = vatopa(vaddr);
1482
1483 #if 0
1484 printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1485 #endif
1486
1487 return (paddr);
1488 }
1489