machdep.c revision 1.261 1 /* $NetBSD: machdep.c,v 1.261 2003/01/17 22:11:18 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.261 2003/01/17 22:11:18 thorpej Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/sa.h>
86 #include <sys/savar.h>
87 #include <sys/sched.h>
88 #include <sys/buf.h>
89 #include <sys/reboot.h>
90 #include <sys/device.h>
91 #include <sys/file.h>
92 #include <sys/malloc.h>
93 #include <sys/mbuf.h>
94 #include <sys/mman.h>
95 #include <sys/msgbuf.h>
96 #include <sys/ioctl.h>
97 #include <sys/tty.h>
98 #include <sys/user.h>
99 #include <sys/exec.h>
100 #include <sys/exec_ecoff.h>
101 #include <sys/core.h>
102 #include <sys/kcore.h>
103 #include <sys/ucontext.h>
104 #include <sys/conf.h>
105 #include <machine/kcore.h>
106 #include <machine/fpu.h>
107
108 #include <sys/mount.h>
109 #include <sys/sa.h>
110 #include <sys/syscallargs.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <sys/sysctl.h>
114
115 #include <dev/cons.h>
116
117 #include <machine/autoconf.h>
118 #include <machine/cpu.h>
119 #include <machine/reg.h>
120 #include <machine/rpb.h>
121 #include <machine/prom.h>
122 #include <machine/cpuconf.h>
123 #include <machine/ieeefp.h>
124
125 #ifdef DDB
126 #include <machine/db_machdep.h>
127 #include <ddb/db_access.h>
128 #include <ddb/db_sym.h>
129 #include <ddb/db_extern.h>
130 #include <ddb/db_interface.h>
131 #endif
132
133 #ifdef KGDB
134 #include <sys/kgdb.h>
135 #endif
136
137 #ifdef DEBUG
138 #include <machine/sigdebug.h>
139 #endif
140
141 #include <machine/alpha.h>
142
143 struct vm_map *exec_map = NULL;
144 struct vm_map *mb_map = NULL;
145 struct vm_map *phys_map = NULL;
146
147 caddr_t msgbufaddr;
148
149 int maxmem; /* max memory per process */
150
151 int totalphysmem; /* total amount of physical memory in system */
152 int physmem; /* physical memory used by NetBSD + some rsvd */
153 int resvmem; /* amount of memory reserved for PROM */
154 int unusedmem; /* amount of memory for OS that we don't use */
155 int unknownmem; /* amount of memory with an unknown use */
156
157 int cputype; /* system type, from the RPB */
158
159 int bootdev_debug = 0; /* patchable, or from DDB */
160
161 /*
162 * XXX We need an address to which we can assign things so that they
163 * won't be optimized away because we didn't use the value.
164 */
165 u_int32_t no_optimize;
166
167 /* the following is used externally (sysctl_hw) */
168 char machine[] = MACHINE; /* from <machine/param.h> */
169 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
170 char cpu_model[128];
171
172 struct user *proc0paddr;
173
174 /* Number of machine cycles per microsecond */
175 u_int64_t cycles_per_usec;
176
177 /* number of cpus in the box. really! */
178 int ncpus;
179
180 struct bootinfo_kernel bootinfo;
181
182 /* For built-in TCDS */
183 #if defined(DEC_3000_300) || defined(DEC_3000_500)
184 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
185 #endif
186
187 struct platform platform;
188
189 #ifdef DDB
190 /* start and end of kernel symbol table */
191 void *ksym_start, *ksym_end;
192 #endif
193
194 /* for cpu_sysctl() */
195 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
196 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
197 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
198 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
199
200 /*
201 * XXX This should be dynamically sized, but we have the chicken-egg problem!
202 * XXX it should also be larger than it is, because not all of the mddt
203 * XXX clusters end up being used for VM.
204 */
205 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
206 int mem_cluster_cnt;
207
208 int cpu_dump __P((void));
209 int cpu_dumpsize __P((void));
210 u_long cpu_dump_mempagecnt __P((void));
211 void dumpsys __P((void));
212 void identifycpu __P((void));
213 void printregs __P((struct reg *));
214
215 void
216 alpha_init(pfn, ptb, bim, bip, biv)
217 u_long pfn; /* first free PFN number */
218 u_long ptb; /* PFN of current level 1 page table */
219 u_long bim; /* bootinfo magic */
220 u_long bip; /* bootinfo pointer */
221 u_long biv; /* bootinfo version */
222 {
223 extern char kernel_text[], _end[];
224 struct mddt *mddtp;
225 struct mddt_cluster *memc;
226 int i, mddtweird;
227 struct vm_physseg *vps;
228 vaddr_t kernstart, kernend;
229 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
230 vsize_t size;
231 cpuid_t cpu_id;
232 struct cpu_info *ci;
233 char *p;
234 caddr_t v;
235 const char *bootinfo_msg;
236 const struct cpuinit *c;
237
238 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
239
240 /*
241 * Turn off interrupts (not mchecks) and floating point.
242 * Make sure the instruction and data streams are consistent.
243 */
244 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
245 alpha_pal_wrfen(0);
246 ALPHA_TBIA();
247 alpha_pal_imb();
248
249 /* Initialize the SCB. */
250 scb_init();
251
252 cpu_id = cpu_number();
253
254 #if defined(MULTIPROCESSOR)
255 /*
256 * Set our SysValue to the address of our cpu_info structure.
257 * Secondary processors do this in their spinup trampoline.
258 */
259 alpha_pal_wrval((u_long)&cpu_info_primary);
260 cpu_info[cpu_id] = &cpu_info_primary;
261 #endif
262
263 ci = curcpu();
264 ci->ci_cpuid = cpu_id;
265
266 /*
267 * Get critical system information (if possible, from the
268 * information provided by the boot program).
269 */
270 bootinfo_msg = NULL;
271 if (bim == BOOTINFO_MAGIC) {
272 if (biv == 0) { /* backward compat */
273 biv = *(u_long *)bip;
274 bip += 8;
275 }
276 switch (biv) {
277 case 1: {
278 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
279
280 bootinfo.ssym = v1p->ssym;
281 bootinfo.esym = v1p->esym;
282 /* hwrpb may not be provided by boot block in v1 */
283 if (v1p->hwrpb != NULL) {
284 bootinfo.hwrpb_phys =
285 ((struct rpb *)v1p->hwrpb)->rpb_phys;
286 bootinfo.hwrpb_size = v1p->hwrpbsize;
287 } else {
288 bootinfo.hwrpb_phys =
289 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
290 bootinfo.hwrpb_size =
291 ((struct rpb *)HWRPB_ADDR)->rpb_size;
292 }
293 memcpy(bootinfo.boot_flags, v1p->boot_flags,
294 min(sizeof v1p->boot_flags,
295 sizeof bootinfo.boot_flags));
296 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
297 min(sizeof v1p->booted_kernel,
298 sizeof bootinfo.booted_kernel));
299 /* booted dev not provided in bootinfo */
300 init_prom_interface((struct rpb *)
301 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
302 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
303 sizeof bootinfo.booted_dev);
304 break;
305 }
306 default:
307 bootinfo_msg = "unknown bootinfo version";
308 goto nobootinfo;
309 }
310 } else {
311 bootinfo_msg = "boot program did not pass bootinfo";
312 nobootinfo:
313 bootinfo.ssym = (u_long)_end;
314 bootinfo.esym = (u_long)_end;
315 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
316 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
317 init_prom_interface((struct rpb *)HWRPB_ADDR);
318 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
319 sizeof bootinfo.boot_flags);
320 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
321 sizeof bootinfo.booted_kernel);
322 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
323 sizeof bootinfo.booted_dev);
324 }
325
326 /*
327 * Initialize the kernel's mapping of the RPB. It's needed for
328 * lots of things.
329 */
330 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
331
332 #if defined(DEC_3000_300) || defined(DEC_3000_500)
333 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
334 hwrpb->rpb_type == ST_DEC_3000_500) {
335 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
336 sizeof(dec_3000_scsiid));
337 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
338 sizeof(dec_3000_scsifast));
339 }
340 #endif
341
342 /*
343 * Remember how many cycles there are per microsecond,
344 * so that we can use delay(). Round up, for safety.
345 */
346 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
347
348 /*
349 * Initialize the (temporary) bootstrap console interface, so
350 * we can use printf until the VM system starts being setup.
351 * The real console is initialized before then.
352 */
353 init_bootstrap_console();
354
355 /* OUTPUT NOW ALLOWED */
356
357 /* delayed from above */
358 if (bootinfo_msg)
359 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
360 bootinfo_msg, bim, bip, biv);
361
362 /* Initialize the trap vectors on the primary processor. */
363 trap_init();
364
365 /*
366 * find out this system's page size
367 */
368 PAGE_SIZE = hwrpb->rpb_page_size;
369 if (PAGE_SIZE != 8192)
370 panic("page size %d != 8192?!", PAGE_SIZE);
371
372 /*
373 * Initialize PAGE_SIZE-dependent variables.
374 */
375 uvm_setpagesize();
376
377 /*
378 * Find out what hardware we're on, and do basic initialization.
379 */
380 cputype = hwrpb->rpb_type;
381 if (cputype < 0) {
382 /*
383 * At least some white-box systems have SRM which
384 * reports a systype that's the negative of their
385 * blue-box counterpart.
386 */
387 cputype = -cputype;
388 }
389 c = platform_lookup(cputype);
390 if (c == NULL) {
391 platform_not_supported();
392 /* NOTREACHED */
393 }
394 (*c->init)();
395 strcpy(cpu_model, platform.model);
396
397 /*
398 * Initialize the real console, so that the bootstrap console is
399 * no longer necessary.
400 */
401 (*platform.cons_init)();
402
403 #ifdef DIAGNOSTIC
404 /* Paranoid sanity checking */
405
406 /* We should always be running on the primary. */
407 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
408
409 /*
410 * On single-CPU systypes, the primary should always be CPU 0,
411 * except on Alpha 8200 systems where the CPU id is related
412 * to the VID, which is related to the Turbo Laser node id.
413 */
414 if (cputype != ST_DEC_21000)
415 assert(hwrpb->rpb_primary_cpu_id == 0);
416 #endif
417
418 /* NO MORE FIRMWARE ACCESS ALLOWED */
419 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
420 /*
421 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
422 * XXX pmap_uses_prom_console() evaluates to non-zero.)
423 */
424 #endif
425
426 /*
427 * Find the beginning and end of the kernel (and leave a
428 * bit of space before the beginning for the bootstrap
429 * stack).
430 */
431 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
432 #ifdef DDB
433 ksym_start = (void *)bootinfo.ssym;
434 ksym_end = (void *)bootinfo.esym;
435 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
436 #else
437 kernend = (vaddr_t)round_page((vaddr_t)_end);
438 #endif
439
440 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
441 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
442
443 /*
444 * Find out how much memory is available, by looking at
445 * the memory cluster descriptors. This also tries to do
446 * its best to detect things things that have never been seen
447 * before...
448 */
449 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
450
451 /* MDDT SANITY CHECKING */
452 mddtweird = 0;
453 if (mddtp->mddt_cluster_cnt < 2) {
454 mddtweird = 1;
455 printf("WARNING: weird number of mem clusters: %lu\n",
456 mddtp->mddt_cluster_cnt);
457 }
458
459 #if 0
460 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
461 #endif
462
463 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
464 memc = &mddtp->mddt_clusters[i];
465 #if 0
466 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
467 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
468 #endif
469 totalphysmem += memc->mddt_pg_cnt;
470 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
471 mem_clusters[mem_cluster_cnt].start =
472 ptoa(memc->mddt_pfn);
473 mem_clusters[mem_cluster_cnt].size =
474 ptoa(memc->mddt_pg_cnt);
475 if (memc->mddt_usage & MDDT_mbz ||
476 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
477 memc->mddt_usage & MDDT_PALCODE)
478 mem_clusters[mem_cluster_cnt].size |=
479 PROT_READ;
480 else
481 mem_clusters[mem_cluster_cnt].size |=
482 PROT_READ | PROT_WRITE | PROT_EXEC;
483 mem_cluster_cnt++;
484 }
485
486 if (memc->mddt_usage & MDDT_mbz) {
487 mddtweird = 1;
488 printf("WARNING: mem cluster %d has weird "
489 "usage 0x%lx\n", i, memc->mddt_usage);
490 unknownmem += memc->mddt_pg_cnt;
491 continue;
492 }
493 if (memc->mddt_usage & MDDT_NONVOLATILE) {
494 /* XXX should handle these... */
495 printf("WARNING: skipping non-volatile mem "
496 "cluster %d\n", i);
497 unusedmem += memc->mddt_pg_cnt;
498 continue;
499 }
500 if (memc->mddt_usage & MDDT_PALCODE) {
501 resvmem += memc->mddt_pg_cnt;
502 continue;
503 }
504
505 /*
506 * We have a memory cluster available for system
507 * software use. We must determine if this cluster
508 * holds the kernel.
509 */
510 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
511 /*
512 * XXX If the kernel uses the PROM console, we only use the
513 * XXX memory after the kernel in the first system segment,
514 * XXX to avoid clobbering prom mapping, data, etc.
515 */
516 if (!pmap_uses_prom_console() || physmem == 0) {
517 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
518 physmem += memc->mddt_pg_cnt;
519 pfn0 = memc->mddt_pfn;
520 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
521 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
522 /*
523 * Must compute the location of the kernel
524 * within the segment.
525 */
526 #if 0
527 printf("Cluster %d contains kernel\n", i);
528 #endif
529 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
530 if (!pmap_uses_prom_console()) {
531 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
532 if (pfn0 < kernstartpfn) {
533 /*
534 * There is a chunk before the kernel.
535 */
536 #if 0
537 printf("Loading chunk before kernel: "
538 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
539 #endif
540 uvm_page_physload(pfn0, kernstartpfn,
541 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
542 }
543 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
544 }
545 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
546 if (kernendpfn < pfn1) {
547 /*
548 * There is a chunk after the kernel.
549 */
550 #if 0
551 printf("Loading chunk after kernel: "
552 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
553 #endif
554 uvm_page_physload(kernendpfn, pfn1,
555 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
556 }
557 } else {
558 /*
559 * Just load this cluster as one chunk.
560 */
561 #if 0
562 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
563 pfn0, pfn1);
564 #endif
565 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
566 VM_FREELIST_DEFAULT);
567 }
568 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
569 }
570 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
571 }
572
573 /*
574 * Dump out the MDDT if it looks odd...
575 */
576 if (mddtweird) {
577 printf("\n");
578 printf("complete memory cluster information:\n");
579 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
580 printf("mddt %d:\n", i);
581 printf("\tpfn %lx\n",
582 mddtp->mddt_clusters[i].mddt_pfn);
583 printf("\tcnt %lx\n",
584 mddtp->mddt_clusters[i].mddt_pg_cnt);
585 printf("\ttest %lx\n",
586 mddtp->mddt_clusters[i].mddt_pg_test);
587 printf("\tbva %lx\n",
588 mddtp->mddt_clusters[i].mddt_v_bitaddr);
589 printf("\tbpa %lx\n",
590 mddtp->mddt_clusters[i].mddt_p_bitaddr);
591 printf("\tbcksum %lx\n",
592 mddtp->mddt_clusters[i].mddt_bit_cksum);
593 printf("\tusage %lx\n",
594 mddtp->mddt_clusters[i].mddt_usage);
595 }
596 printf("\n");
597 }
598
599 if (totalphysmem == 0)
600 panic("can't happen: system seems to have no memory!");
601 maxmem = physmem;
602 #if 0
603 printf("totalphysmem = %d\n", totalphysmem);
604 printf("physmem = %d\n", physmem);
605 printf("resvmem = %d\n", resvmem);
606 printf("unusedmem = %d\n", unusedmem);
607 printf("unknownmem = %d\n", unknownmem);
608 #endif
609
610 /*
611 * Initialize error message buffer (at end of core).
612 */
613 {
614 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
615 vsize_t reqsz = sz;
616
617 vps = &vm_physmem[vm_nphysseg - 1];
618
619 /* shrink so that it'll fit in the last segment */
620 if ((vps->avail_end - vps->avail_start) < atop(sz))
621 sz = ptoa(vps->avail_end - vps->avail_start);
622
623 vps->end -= atop(sz);
624 vps->avail_end -= atop(sz);
625 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
626 initmsgbuf(msgbufaddr, sz);
627
628 /* Remove the last segment if it now has no pages. */
629 if (vps->start == vps->end)
630 vm_nphysseg--;
631
632 /* warn if the message buffer had to be shrunk */
633 if (sz != reqsz)
634 printf("WARNING: %ld bytes not available for msgbuf "
635 "in last cluster (%ld used)\n", reqsz, sz);
636
637 }
638
639 /*
640 * NOTE: It is safe to use uvm_pageboot_alloc() before
641 * pmap_bootstrap() because our pmap_virtual_space()
642 * returns compile-time constants.
643 */
644
645 /*
646 * Init mapping for u page(s) for proc 0
647 */
648 lwp0.l_addr = proc0paddr =
649 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
650
651 /*
652 * Allocate space for system data structures. These data structures
653 * are allocated here instead of cpu_startup() because physical
654 * memory is directly addressable. We don't have to map these into
655 * virtual address space.
656 */
657 size = (vsize_t)allocsys(NULL, NULL);
658 v = (caddr_t)uvm_pageboot_alloc(size);
659 if ((allocsys(v, NULL) - v) != size)
660 panic("alpha_init: table size inconsistency");
661
662 /*
663 * Initialize the virtual memory system, and set the
664 * page table base register in proc 0's PCB.
665 */
666 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
667 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
668
669 /*
670 * Initialize the rest of proc 0's PCB, and cache its physical
671 * address.
672 */
673 lwp0.l_md.md_pcbpaddr =
674 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
675
676 /*
677 * Set the kernel sp, reserving space for an (empty) trapframe,
678 * and make proc0's trapframe pointer point to it for sanity.
679 */
680 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
681 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
682 lwp0.l_md.md_tf =
683 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
684 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
685
686 /*
687 * Initialize the primary CPU's idle PCB to proc0's. In a
688 * MULTIPROCESSOR configuration, each CPU will later get
689 * its own idle PCB when autoconfiguration runs.
690 */
691 ci->ci_idle_pcb = &proc0paddr->u_pcb;
692 ci->ci_idle_pcb_paddr = (u_long)lwp0.l_md.md_pcbpaddr;
693
694 /* Indicate that proc0 has a CPU. */
695 lwp0.l_cpu = ci;
696
697 /*
698 * Look at arguments passed to us and compute boothowto.
699 */
700
701 boothowto = RB_SINGLE;
702 #ifdef KADB
703 boothowto |= RB_KDB;
704 #endif
705 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
706 /*
707 * Note that we'd really like to differentiate case here,
708 * but the Alpha AXP Architecture Reference Manual
709 * says that we shouldn't.
710 */
711 switch (*p) {
712 case 'a': /* autoboot */
713 case 'A':
714 boothowto &= ~RB_SINGLE;
715 break;
716
717 #ifdef DEBUG
718 case 'c': /* crash dump immediately after autoconfig */
719 case 'C':
720 boothowto |= RB_DUMP;
721 break;
722 #endif
723
724 #if defined(KGDB) || defined(DDB)
725 case 'd': /* break into the kernel debugger ASAP */
726 case 'D':
727 boothowto |= RB_KDB;
728 break;
729 #endif
730
731 case 'h': /* always halt, never reboot */
732 case 'H':
733 boothowto |= RB_HALT;
734 break;
735
736 #if 0
737 case 'm': /* mini root present in memory */
738 case 'M':
739 boothowto |= RB_MINIROOT;
740 break;
741 #endif
742
743 case 'n': /* askname */
744 case 'N':
745 boothowto |= RB_ASKNAME;
746 break;
747
748 case 's': /* single-user (default, supported for sanity) */
749 case 'S':
750 boothowto |= RB_SINGLE;
751 break;
752
753 case 'q': /* quiet boot */
754 case 'Q':
755 boothowto |= AB_QUIET;
756 break;
757
758 case 'v': /* verbose boot */
759 case 'V':
760 boothowto |= AB_VERBOSE;
761 break;
762
763 case '-':
764 /*
765 * Just ignore this. It's not required, but it's
766 * common for it to be passed regardless.
767 */
768 break;
769
770 default:
771 printf("Unrecognized boot flag '%c'.\n", *p);
772 break;
773 }
774 }
775
776
777 /*
778 * Figure out the number of cpus in the box, from RPB fields.
779 * Really. We mean it.
780 */
781 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
782 struct pcs *pcsp;
783
784 pcsp = LOCATE_PCS(hwrpb, i);
785 if ((pcsp->pcs_flags & PCS_PP) != 0)
786 ncpus++;
787 }
788
789 /*
790 * Initialize debuggers, and break into them if appropriate.
791 */
792 #ifdef DDB
793 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
794 ksym_start, ksym_end);
795 #endif
796
797 if (boothowto & RB_KDB) {
798 #if defined(KGDB)
799 kgdb_debug_init = 1;
800 kgdb_connect(1);
801 #elif defined(DDB)
802 Debugger();
803 #endif
804 }
805
806 /*
807 * Figure out our clock frequency, from RPB fields.
808 */
809 hz = hwrpb->rpb_intr_freq >> 12;
810 if (!(60 <= hz && hz <= 10240)) {
811 hz = 1024;
812 #ifdef DIAGNOSTIC
813 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
814 hwrpb->rpb_intr_freq, hz);
815 #endif
816 }
817 }
818
819 void
820 consinit()
821 {
822
823 /*
824 * Everything related to console initialization is done
825 * in alpha_init().
826 */
827 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
828 printf("consinit: %susing prom console\n",
829 pmap_uses_prom_console() ? "" : "not ");
830 #endif
831 }
832
833 #include "pckbc.h"
834 #include "pckbd.h"
835 #if (NPCKBC > 0) && (NPCKBD == 0)
836
837 #include <dev/ic/pckbcvar.h>
838
839 /*
840 * This is called by the pbkbc driver if no pckbd is configured.
841 * On the i386, it is used to glue in the old, deprecated console
842 * code. On the Alpha, it does nothing.
843 */
844 int
845 pckbc_machdep_cnattach(kbctag, kbcslot)
846 pckbc_tag_t kbctag;
847 pckbc_slot_t kbcslot;
848 {
849
850 return (ENXIO);
851 }
852 #endif /* NPCKBC > 0 && NPCKBD == 0 */
853
854 void
855 cpu_startup()
856 {
857 u_int i, base, residual;
858 vaddr_t minaddr, maxaddr;
859 vsize_t size;
860 char pbuf[9];
861 #if defined(DEBUG)
862 extern int pmapdebug;
863 int opmapdebug = pmapdebug;
864
865 pmapdebug = 0;
866 #endif
867
868 /*
869 * Good {morning,afternoon,evening,night}.
870 */
871 printf(version);
872 identifycpu();
873 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
874 printf("total memory = %s\n", pbuf);
875 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
876 printf("(%s reserved for PROM, ", pbuf);
877 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
878 printf("%s used by NetBSD)\n", pbuf);
879 if (unusedmem) {
880 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
881 printf("WARNING: unused memory = %s\n", pbuf);
882 }
883 if (unknownmem) {
884 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
885 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
886 }
887
888 /*
889 * Allocate virtual address space for file I/O buffers.
890 * Note they are different than the array of headers, 'buf',
891 * and usually occupy more virtual memory than physical.
892 */
893 size = MAXBSIZE * nbuf;
894 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
895 NULL, UVM_UNKNOWN_OFFSET, 0,
896 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
897 UVM_ADV_NORMAL, 0)) != 0)
898 panic("startup: cannot allocate VM for buffers");
899 base = bufpages / nbuf;
900 residual = bufpages % nbuf;
901 for (i = 0; i < nbuf; i++) {
902 vsize_t curbufsize;
903 vaddr_t curbuf;
904 struct vm_page *pg;
905
906 /*
907 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
908 * that MAXBSIZE space, we allocate and map (base+1) pages
909 * for the first "residual" buffers, and then we allocate
910 * "base" pages for the rest.
911 */
912 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
913 curbufsize = NBPG * ((i < residual) ? (base+1) : base);
914
915 while (curbufsize) {
916 pg = uvm_pagealloc(NULL, 0, NULL, 0);
917 if (pg == NULL)
918 panic("cpu_startup: not enough memory for "
919 "buffer cache");
920 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
921 VM_PROT_READ|VM_PROT_WRITE);
922 curbuf += PAGE_SIZE;
923 curbufsize -= PAGE_SIZE;
924 }
925 }
926 pmap_update(pmap_kernel());
927
928 /*
929 * Allocate a submap for exec arguments. This map effectively
930 * limits the number of processes exec'ing at any time.
931 */
932 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
933 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
934
935 /*
936 * Allocate a submap for physio
937 */
938 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
939 VM_PHYS_SIZE, 0, FALSE, NULL);
940
941 /*
942 * No need to allocate an mbuf cluster submap. Mbuf clusters
943 * are allocated via the pool allocator, and we use K0SEG to
944 * map those pages.
945 */
946
947 #if defined(DEBUG)
948 pmapdebug = opmapdebug;
949 #endif
950 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
951 printf("avail memory = %s\n", pbuf);
952 #if 0
953 {
954 extern u_long pmap_pages_stolen;
955
956 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
957 printf("stolen memory for VM structures = %s\n", pbuf);
958 }
959 #endif
960 format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
961 printf("using %u buffers containing %s of memory\n", nbuf, pbuf);
962
963 /*
964 * Set up buffers, so they can be used to read disk labels.
965 */
966 bufinit();
967
968 /*
969 * Set up the HWPCB so that it's safe to configure secondary
970 * CPUs.
971 */
972 hwrpb_primary_init();
973 }
974
975 /*
976 * Retrieve the platform name from the DSR.
977 */
978 const char *
979 alpha_dsr_sysname()
980 {
981 struct dsrdb *dsr;
982 const char *sysname;
983
984 /*
985 * DSR does not exist on early HWRPB versions.
986 */
987 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
988 return (NULL);
989
990 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
991 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
992 sizeof(u_int64_t)));
993 return (sysname);
994 }
995
996 /*
997 * Lookup the system specified system variation in the provided table,
998 * returning the model string on match.
999 */
1000 const char *
1001 alpha_variation_name(variation, avtp)
1002 u_int64_t variation;
1003 const struct alpha_variation_table *avtp;
1004 {
1005 int i;
1006
1007 for (i = 0; avtp[i].avt_model != NULL; i++)
1008 if (avtp[i].avt_variation == variation)
1009 return (avtp[i].avt_model);
1010 return (NULL);
1011 }
1012
1013 /*
1014 * Generate a default platform name based for unknown system variations.
1015 */
1016 const char *
1017 alpha_unknown_sysname()
1018 {
1019 static char s[128]; /* safe size */
1020
1021 sprintf(s, "%s family, unknown model variation 0x%lx",
1022 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1023 return ((const char *)s);
1024 }
1025
1026 void
1027 identifycpu()
1028 {
1029 char *s;
1030 int i;
1031
1032 /*
1033 * print out CPU identification information.
1034 */
1035 printf("%s", cpu_model);
1036 for(s = cpu_model; *s; ++s)
1037 if(strncasecmp(s, "MHz", 3) == 0)
1038 goto skipMHz;
1039 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1040 skipMHz:
1041 printf(", s/n ");
1042 for (i = 0; i < 10; i++)
1043 printf("%c", hwrpb->rpb_ssn[i]);
1044 printf("\n");
1045 printf("%ld byte page size, %d processor%s.\n",
1046 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1047 #if 0
1048 /* this isn't defined for any systems that we run on? */
1049 printf("serial number 0x%lx 0x%lx\n",
1050 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1051
1052 /* and these aren't particularly useful! */
1053 printf("variation: 0x%lx, revision 0x%lx\n",
1054 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1055 #endif
1056 }
1057
1058 int waittime = -1;
1059 struct pcb dumppcb;
1060
1061 void
1062 cpu_reboot(howto, bootstr)
1063 int howto;
1064 char *bootstr;
1065 {
1066 #if defined(MULTIPROCESSOR)
1067 u_long cpu_id = cpu_number();
1068 u_long wait_mask = (1UL << cpu_id) |
1069 (1UL << hwrpb->rpb_primary_cpu_id);
1070 int i;
1071 #endif
1072
1073 /* If "always halt" was specified as a boot flag, obey. */
1074 if ((boothowto & RB_HALT) != 0)
1075 howto |= RB_HALT;
1076
1077 boothowto = howto;
1078
1079 /* If system is cold, just halt. */
1080 if (cold) {
1081 boothowto |= RB_HALT;
1082 goto haltsys;
1083 }
1084
1085 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1086 waittime = 0;
1087 vfs_shutdown();
1088 /*
1089 * If we've been adjusting the clock, the todr
1090 * will be out of synch; adjust it now.
1091 */
1092 resettodr();
1093 }
1094
1095 /* Disable interrupts. */
1096 splhigh();
1097
1098 #if defined(MULTIPROCESSOR)
1099 /*
1100 * Halt all other CPUs. If we're not the primary, the
1101 * primary will spin, waiting for us to halt.
1102 */
1103 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1104
1105 for (i = 0; i < 10000; i++) {
1106 alpha_mb();
1107 if (cpus_running == wait_mask)
1108 break;
1109 delay(1000);
1110 }
1111 alpha_mb();
1112 if (cpus_running != wait_mask)
1113 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1114 cpus_running);
1115 #endif /* MULTIPROCESSOR */
1116
1117 /* If rebooting and a dump is requested do it. */
1118 #if 0
1119 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1120 #else
1121 if (boothowto & RB_DUMP)
1122 #endif
1123 dumpsys();
1124
1125 haltsys:
1126
1127 /* run any shutdown hooks */
1128 doshutdownhooks();
1129
1130 #ifdef BOOTKEY
1131 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1132 cnpollc(1); /* for proper keyboard command handling */
1133 cngetc();
1134 cnpollc(0);
1135 printf("\n");
1136 #endif
1137
1138 /* Finally, powerdown/halt/reboot the system. */
1139 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1140 platform.powerdown != NULL) {
1141 (*platform.powerdown)();
1142 printf("WARNING: powerdown failed!\n");
1143 }
1144 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1145 #if defined(MULTIPROCESSOR)
1146 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1147 cpu_halt();
1148 else
1149 #endif
1150 prom_halt(boothowto & RB_HALT);
1151 /*NOTREACHED*/
1152 }
1153
1154 /*
1155 * These variables are needed by /sbin/savecore
1156 */
1157 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1158 int dumpsize = 0; /* pages */
1159 long dumplo = 0; /* blocks */
1160
1161 /*
1162 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1163 */
1164 int
1165 cpu_dumpsize()
1166 {
1167 int size;
1168
1169 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1170 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1171 if (roundup(size, dbtob(1)) != dbtob(1))
1172 return -1;
1173
1174 return (1);
1175 }
1176
1177 /*
1178 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1179 */
1180 u_long
1181 cpu_dump_mempagecnt()
1182 {
1183 u_long i, n;
1184
1185 n = 0;
1186 for (i = 0; i < mem_cluster_cnt; i++)
1187 n += atop(mem_clusters[i].size);
1188 return (n);
1189 }
1190
1191 /*
1192 * cpu_dump: dump machine-dependent kernel core dump headers.
1193 */
1194 int
1195 cpu_dump()
1196 {
1197 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1198 char buf[dbtob(1)];
1199 kcore_seg_t *segp;
1200 cpu_kcore_hdr_t *cpuhdrp;
1201 phys_ram_seg_t *memsegp;
1202 const struct bdevsw *bdev;
1203 int i;
1204
1205 bdev = bdevsw_lookup(dumpdev);
1206 if (bdev == NULL)
1207 return (ENXIO);
1208 dump = bdev->d_dump;
1209
1210 memset(buf, 0, sizeof buf);
1211 segp = (kcore_seg_t *)buf;
1212 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1213 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1214 ALIGN(sizeof(*cpuhdrp))];
1215
1216 /*
1217 * Generate a segment header.
1218 */
1219 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1220 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1221
1222 /*
1223 * Add the machine-dependent header info.
1224 */
1225 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1226 cpuhdrp->page_size = PAGE_SIZE;
1227 cpuhdrp->nmemsegs = mem_cluster_cnt;
1228
1229 /*
1230 * Fill in the memory segment descriptors.
1231 */
1232 for (i = 0; i < mem_cluster_cnt; i++) {
1233 memsegp[i].start = mem_clusters[i].start;
1234 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1235 }
1236
1237 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1238 }
1239
1240 /*
1241 * This is called by main to set dumplo and dumpsize.
1242 * Dumps always skip the first NBPG of disk space
1243 * in case there might be a disk label stored there.
1244 * If there is extra space, put dump at the end to
1245 * reduce the chance that swapping trashes it.
1246 */
1247 void
1248 cpu_dumpconf()
1249 {
1250 const struct bdevsw *bdev;
1251 int nblks, dumpblks; /* size of dump area */
1252
1253 if (dumpdev == NODEV)
1254 goto bad;
1255 bdev = bdevsw_lookup(dumpdev);
1256 if (bdev == NULL)
1257 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1258 if (bdev->d_psize == NULL)
1259 goto bad;
1260 nblks = (*bdev->d_psize)(dumpdev);
1261 if (nblks <= ctod(1))
1262 goto bad;
1263
1264 dumpblks = cpu_dumpsize();
1265 if (dumpblks < 0)
1266 goto bad;
1267 dumpblks += ctod(cpu_dump_mempagecnt());
1268
1269 /* If dump won't fit (incl. room for possible label), punt. */
1270 if (dumpblks > (nblks - ctod(1)))
1271 goto bad;
1272
1273 /* Put dump at end of partition */
1274 dumplo = nblks - dumpblks;
1275
1276 /* dumpsize is in page units, and doesn't include headers. */
1277 dumpsize = cpu_dump_mempagecnt();
1278 return;
1279
1280 bad:
1281 dumpsize = 0;
1282 return;
1283 }
1284
1285 /*
1286 * Dump the kernel's image to the swap partition.
1287 */
1288 #define BYTES_PER_DUMP NBPG
1289
1290 void
1291 dumpsys()
1292 {
1293 const struct bdevsw *bdev;
1294 u_long totalbytesleft, bytes, i, n, memcl;
1295 u_long maddr;
1296 int psize;
1297 daddr_t blkno;
1298 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1299 int error;
1300
1301 /* Save registers. */
1302 savectx(&dumppcb);
1303
1304 if (dumpdev == NODEV)
1305 return;
1306 bdev = bdevsw_lookup(dumpdev);
1307 if (bdev == NULL || bdev->d_psize == NULL)
1308 return;
1309
1310 /*
1311 * For dumps during autoconfiguration,
1312 * if dump device has already configured...
1313 */
1314 if (dumpsize == 0)
1315 cpu_dumpconf();
1316 if (dumplo <= 0) {
1317 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1318 minor(dumpdev));
1319 return;
1320 }
1321 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1322 minor(dumpdev), dumplo);
1323
1324 psize = (*bdev->d_psize)(dumpdev);
1325 printf("dump ");
1326 if (psize == -1) {
1327 printf("area unavailable\n");
1328 return;
1329 }
1330
1331 /* XXX should purge all outstanding keystrokes. */
1332
1333 if ((error = cpu_dump()) != 0)
1334 goto err;
1335
1336 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1337 blkno = dumplo + cpu_dumpsize();
1338 dump = bdev->d_dump;
1339 error = 0;
1340
1341 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1342 maddr = mem_clusters[memcl].start;
1343 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1344
1345 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1346
1347 /* Print out how many MBs we to go. */
1348 if ((totalbytesleft % (1024*1024)) == 0)
1349 printf("%ld ", totalbytesleft / (1024 * 1024));
1350
1351 /* Limit size for next transfer. */
1352 n = bytes - i;
1353 if (n > BYTES_PER_DUMP)
1354 n = BYTES_PER_DUMP;
1355
1356 error = (*dump)(dumpdev, blkno,
1357 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1358 if (error)
1359 goto err;
1360 maddr += n;
1361 blkno += btodb(n); /* XXX? */
1362
1363 /* XXX should look for keystrokes, to cancel. */
1364 }
1365 }
1366
1367 err:
1368 switch (error) {
1369
1370 case ENXIO:
1371 printf("device bad\n");
1372 break;
1373
1374 case EFAULT:
1375 printf("device not ready\n");
1376 break;
1377
1378 case EINVAL:
1379 printf("area improper\n");
1380 break;
1381
1382 case EIO:
1383 printf("i/o error\n");
1384 break;
1385
1386 case EINTR:
1387 printf("aborted from console\n");
1388 break;
1389
1390 case 0:
1391 printf("succeeded\n");
1392 break;
1393
1394 default:
1395 printf("error %d\n", error);
1396 break;
1397 }
1398 printf("\n\n");
1399 delay(1000);
1400 }
1401
1402 void
1403 frametoreg(framep, regp)
1404 const struct trapframe *framep;
1405 struct reg *regp;
1406 {
1407
1408 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1409 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1410 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1411 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1412 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1413 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1414 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1415 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1416 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1417 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1418 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1419 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1420 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1421 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1422 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1423 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1424 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1425 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1426 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1427 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1428 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1429 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1430 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1431 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1432 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1433 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1434 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1435 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1436 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1437 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1438 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1439 regp->r_regs[R_ZERO] = 0;
1440 }
1441
1442 void
1443 regtoframe(regp, framep)
1444 const struct reg *regp;
1445 struct trapframe *framep;
1446 {
1447
1448 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1449 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1450 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1451 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1452 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1453 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1454 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1455 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1456 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1457 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1458 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1459 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1460 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1461 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1462 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1463 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1464 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1465 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1466 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1467 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1468 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1469 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1470 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1471 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1472 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1473 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1474 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1475 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1476 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1477 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1478 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1479 /* ??? = regp->r_regs[R_ZERO]; */
1480 }
1481
1482 void
1483 printregs(regp)
1484 struct reg *regp;
1485 {
1486 int i;
1487
1488 for (i = 0; i < 32; i++)
1489 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1490 i & 1 ? "\n" : "\t");
1491 }
1492
1493 void
1494 regdump(framep)
1495 struct trapframe *framep;
1496 {
1497 struct reg reg;
1498
1499 frametoreg(framep, ®);
1500 reg.r_regs[R_SP] = alpha_pal_rdusp();
1501
1502 printf("REGISTERS:\n");
1503 printregs(®);
1504 }
1505
1506
1507 /*
1508 * Send an interrupt to process.
1509 */
1510 void
1511 sendsig(sig, mask, code)
1512 int sig;
1513 sigset_t *mask;
1514 u_long code;
1515 {
1516 struct lwp *l = curlwp;
1517 struct proc *p = l->l_proc;
1518 struct sigacts *ps = p->p_sigacts;
1519 struct sigcontext *scp, ksc;
1520 struct trapframe *frame;
1521 int onstack, fsize, rndfsize;
1522 sig_t catcher = SIGACTION(p, sig).sa_handler;
1523
1524 frame = l->l_md.md_tf;
1525
1526 /* Do we need to jump onto the signal stack? */
1527 onstack =
1528 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1529 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1530
1531 /* Allocate space for the signal handler context. */
1532 fsize = sizeof(ksc);
1533 rndfsize = ((fsize + 15) / 16) * 16;
1534
1535 if (onstack)
1536 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1537 p->p_sigctx.ps_sigstk.ss_size);
1538 else
1539 scp = (struct sigcontext *)(alpha_pal_rdusp());
1540 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1541
1542 #ifdef DEBUG
1543 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1544 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1545 sig, &onstack, scp);
1546 #endif
1547
1548 /* Build stack frame for signal trampoline. */
1549 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1550 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1551
1552 /* Save register context. */
1553 frametoreg(frame, (struct reg *)ksc.sc_regs);
1554 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1555 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1556
1557 /* save the floating-point state, if necessary, then copy it. */
1558 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1559 fpusave_proc(l, 1);
1560 ksc.sc_ownedfp = l->l_md.md_flags & MDP_FPUSED;
1561 memcpy((struct fpreg *)ksc.sc_fpregs, &l->l_addr->u_pcb.pcb_fp,
1562 sizeof(struct fpreg));
1563 ksc.sc_fp_control = alpha_read_fp_c(l);
1564 memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */
1565 memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */
1566
1567 /* Save signal stack. */
1568 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1569
1570 /* Save signal mask. */
1571 ksc.sc_mask = *mask;
1572
1573 #ifdef COMPAT_13
1574 /*
1575 * XXX We always have to save an old style signal mask because
1576 * XXX we might be delivering a signal to a process which will
1577 * XXX escape from the signal in a non-standard way and invoke
1578 * XXX sigreturn() directly.
1579 */
1580 {
1581 /* Note: it's a long in the stack frame. */
1582 sigset13_t mask13;
1583
1584 native_sigset_to_sigset13(mask, &mask13);
1585 ksc.__sc_mask13 = mask13;
1586 }
1587 #endif
1588
1589 #ifdef COMPAT_OSF1
1590 /*
1591 * XXX Create an OSF/1-style sigcontext and associated goo.
1592 */
1593 #endif
1594
1595 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1596 /*
1597 * Process has trashed its stack; give it an illegal
1598 * instruction to halt it in its tracks.
1599 */
1600 #ifdef DEBUG
1601 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1602 printf("sendsig(%d): copyout failed on sig %d\n",
1603 p->p_pid, sig);
1604 #endif
1605 sigexit(l, SIGILL);
1606 /* NOTREACHED */
1607 }
1608 #ifdef DEBUG
1609 if (sigdebug & SDB_FOLLOW)
1610 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1611 scp, code);
1612 #endif
1613
1614 /*
1615 * Set up the registers to directly invoke the signal handler. The
1616 * signal trampoline is then used to return from the signal. Note
1617 * the trampoline version numbers are coordinated with machine-
1618 * dependent code in libc.
1619 */
1620 switch (ps->sa_sigdesc[sig].sd_vers) {
1621 #if 1 /* COMPAT_16 */
1622 case 0: /* legacy on-stack sigtramp */
1623 frame->tf_regs[FRAME_RA] = (u_int64_t)p->p_sigctx.ps_sigcode;
1624 break;
1625 #endif /* COMPAT_16 */
1626
1627 case 1:
1628 frame->tf_regs[FRAME_RA] =
1629 (u_int64_t)ps->sa_sigdesc[sig].sd_tramp;
1630 break;
1631
1632 default:
1633 /* Don't know what trampoline version; kill it. */
1634 sigexit(l, SIGILL);
1635 }
1636 frame->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1637 frame->tf_regs[FRAME_A0] = sig;
1638 frame->tf_regs[FRAME_A1] = code;
1639 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1640 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1641 alpha_pal_wrusp((unsigned long)scp);
1642
1643 /* Remember that we're now on the signal stack. */
1644 if (onstack)
1645 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1646
1647 #ifdef DEBUG
1648 if (sigdebug & SDB_FOLLOW)
1649 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1650 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1651 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1652 printf("sendsig(%d): sig %d returns\n",
1653 p->p_pid, sig);
1654 #endif
1655 }
1656
1657
1658 void
1659 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1660 {
1661 struct trapframe *tf;
1662
1663 tf = l->l_md.md_tf;
1664
1665 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1666 tf->tf_regs[FRAME_RA] = 0;
1667 tf->tf_regs[FRAME_A0] = type;
1668 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1669 tf->tf_regs[FRAME_A2] = nevents;
1670 tf->tf_regs[FRAME_A3] = ninterrupted;
1671 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1672 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1673 alpha_pal_wrusp((unsigned long)sp);
1674 }
1675
1676 /*
1677 * System call to cleanup state after a signal
1678 * has been taken. Reset signal mask and
1679 * stack state from context left by sendsig (above).
1680 * Return to previous pc and psl as specified by
1681 * context left by sendsig. Check carefully to
1682 * make sure that the user has not modified the
1683 * psl to gain improper privileges or to cause
1684 * a machine fault.
1685 */
1686 /* ARGSUSED */
1687 int
1688 sys___sigreturn14(l, v, retval)
1689 struct lwp *l;
1690 void *v;
1691 register_t *retval;
1692 {
1693 struct sys___sigreturn14_args /* {
1694 syscallarg(struct sigcontext *) sigcntxp;
1695 } */ *uap = v;
1696 struct sigcontext *scp, ksc;
1697 struct proc *p = l->l_proc;
1698
1699 /*
1700 * The trampoline code hands us the context.
1701 * It is unsafe to keep track of it ourselves, in the event that a
1702 * program jumps out of a signal handler.
1703 */
1704 scp = SCARG(uap, sigcntxp);
1705 #ifdef DEBUG
1706 if (sigdebug & SDB_FOLLOW)
1707 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1708 #endif
1709 if (ALIGN(scp) != (u_int64_t)scp)
1710 return (EINVAL);
1711
1712 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1713 return (EFAULT);
1714
1715 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1716 return (EINVAL);
1717
1718 /* Restore register context. */
1719 l->l_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1720 l->l_md.md_tf->tf_regs[FRAME_PS] =
1721 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1722
1723 regtoframe((struct reg *)ksc.sc_regs, l->l_md.md_tf);
1724 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1725
1726 /* XXX ksc.sc_ownedfp ? */
1727 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1728 fpusave_proc(l, 0);
1729 memcpy(&l->l_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1730 sizeof(struct fpreg));
1731 l->l_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1732 l->l_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1733
1734 /* Restore signal stack. */
1735 if (ksc.sc_onstack & SS_ONSTACK)
1736 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1737 else
1738 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1739
1740 /* Restore signal mask. */
1741 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1742
1743 #ifdef DEBUG
1744 if (sigdebug & SDB_FOLLOW)
1745 printf("sigreturn(%d): returns\n", p->p_pid);
1746 #endif
1747 return (EJUSTRETURN);
1748 }
1749
1750 /*
1751 * machine dependent system variables.
1752 */
1753 int
1754 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1755 int *name;
1756 u_int namelen;
1757 void *oldp;
1758 size_t *oldlenp;
1759 void *newp;
1760 size_t newlen;
1761 struct proc *p;
1762 {
1763 dev_t consdev;
1764
1765 /* all sysctl names at this level are terminal */
1766 if (namelen != 1)
1767 return (ENOTDIR); /* overloaded */
1768
1769 switch (name[0]) {
1770 case CPU_CONSDEV:
1771 if (cn_tab != NULL)
1772 consdev = cn_tab->cn_dev;
1773 else
1774 consdev = NODEV;
1775 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1776 sizeof consdev));
1777
1778 case CPU_ROOT_DEVICE:
1779 return (sysctl_rdstring(oldp, oldlenp, newp,
1780 root_device->dv_xname));
1781
1782 case CPU_UNALIGNED_PRINT:
1783 return (sysctl_int(oldp, oldlenp, newp, newlen,
1784 &alpha_unaligned_print));
1785
1786 case CPU_UNALIGNED_FIX:
1787 return (sysctl_int(oldp, oldlenp, newp, newlen,
1788 &alpha_unaligned_fix));
1789
1790 case CPU_UNALIGNED_SIGBUS:
1791 return (sysctl_int(oldp, oldlenp, newp, newlen,
1792 &alpha_unaligned_sigbus));
1793
1794 case CPU_BOOTED_KERNEL:
1795 return (sysctl_rdstring(oldp, oldlenp, newp,
1796 bootinfo.booted_kernel));
1797
1798 case CPU_FP_SYNC_COMPLETE:
1799 return (sysctl_int(oldp, oldlenp, newp, newlen,
1800 &alpha_fp_sync_complete));
1801
1802 default:
1803 return (EOPNOTSUPP);
1804 }
1805 /* NOTREACHED */
1806 }
1807
1808 /*
1809 * Set registers on exec.
1810 */
1811 void
1812 setregs(l, pack, stack)
1813 register struct lwp *l;
1814 struct exec_package *pack;
1815 u_long stack;
1816 {
1817 struct trapframe *tfp = l->l_md.md_tf;
1818 #ifdef DEBUG
1819 int i;
1820 #endif
1821
1822 #ifdef DEBUG
1823 /*
1824 * Crash and dump, if the user requested it.
1825 */
1826 if (boothowto & RB_DUMP)
1827 panic("crash requested by boot flags");
1828 #endif
1829
1830 #ifdef DEBUG
1831 for (i = 0; i < FRAME_SIZE; i++)
1832 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1833 #else
1834 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1835 #endif
1836 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1837 alpha_pal_wrusp(stack);
1838 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1839 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1840
1841 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1842 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1843 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1844 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1845 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1846
1847 l->l_md.md_flags &= ~MDP_FPUSED;
1848 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1849 l->l_md.md_flags &= ~MDP_FP_C;
1850 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1851 }
1852 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1853 fpusave_proc(l, 0);
1854 }
1855
1856 /*
1857 * Release the FPU.
1858 */
1859 void
1860 fpusave_cpu(struct cpu_info *ci, int save)
1861 {
1862 struct lwp *l;
1863 #if defined(MULTIPROCESSOR)
1864 int s;
1865 #endif
1866
1867 KDASSERT(ci == curcpu());
1868
1869 #if defined(MULTIPROCESSOR)
1870 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1871 #endif
1872
1873 l = ci->ci_fpcurlwp;
1874 if (l == NULL)
1875 goto out;
1876
1877 if (save) {
1878 alpha_pal_wrfen(1);
1879 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1880 }
1881
1882 alpha_pal_wrfen(0);
1883
1884 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1885
1886 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1887 ci->ci_fpcurlwp = NULL;
1888
1889 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1890
1891 out:
1892 #if defined(MULTIPROCESSOR)
1893 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1894 #endif
1895 return;
1896 }
1897
1898 /*
1899 * Synchronize FP state for this process.
1900 */
1901 void
1902 fpusave_proc(struct lwp *l, int save)
1903 {
1904 struct cpu_info *ci = curcpu();
1905 struct cpu_info *oci;
1906 #if defined(MULTIPROCESSOR)
1907 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1908 int s, spincount;
1909 #endif
1910
1911 KDASSERT(l->l_addr != NULL);
1912 KDASSERT(l->l_flag & L_INMEM);
1913
1914 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1915
1916 oci = l->l_addr->u_pcb.pcb_fpcpu;
1917 if (oci == NULL) {
1918 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1919 return;
1920 }
1921
1922 #if defined(MULTIPROCESSOR)
1923 if (oci == ci) {
1924 KASSERT(ci->ci_fpcurlwp == l);
1925 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1926 fpusave_cpu(ci, save);
1927 return;
1928 }
1929
1930 KASSERT(oci->ci_fpcurlwp == l);
1931 alpha_send_ipi(oci->ci_cpuid, ipi);
1932 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1933
1934 spincount = 0;
1935 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1936 spincount++;
1937 delay(1000); /* XXX */
1938 if (spincount > 10000)
1939 panic("fpsave ipi didn't");
1940 }
1941 #else
1942 KASSERT(ci->ci_fpcurlwp == l);
1943 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1944 fpusave_cpu(ci, save);
1945 #endif /* MULTIPROCESSOR */
1946 }
1947
1948 /*
1949 * Wait "n" microseconds.
1950 */
1951 void
1952 delay(n)
1953 unsigned long n;
1954 {
1955 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1956
1957 if (n == 0)
1958 return;
1959
1960 pcc0 = alpha_rpcc() & 0xffffffffUL;
1961 cycles = 0;
1962 usec = 0;
1963
1964 while (usec <= n) {
1965 /*
1966 * Get the next CPU cycle count- assumes that we cannot
1967 * have had more than one 32 bit overflow.
1968 */
1969 pcc1 = alpha_rpcc() & 0xffffffffUL;
1970 if (pcc1 < pcc0)
1971 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1972 else
1973 curcycle = pcc1 - pcc0;
1974
1975 /*
1976 * We now have the number of processor cycles since we
1977 * last checked. Add the current cycle count to the
1978 * running total. If it's over cycles_per_usec, increment
1979 * the usec counter.
1980 */
1981 cycles += curcycle;
1982 while (cycles > cycles_per_usec) {
1983 usec++;
1984 cycles -= cycles_per_usec;
1985 }
1986 pcc0 = pcc1;
1987 }
1988 }
1989
1990 #ifdef EXEC_ECOFF
1991 void
1992 cpu_exec_ecoff_setregs(l, epp, stack)
1993 struct lwp *l;
1994 struct exec_package *epp;
1995 u_long stack;
1996 {
1997 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1998
1999 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2000 }
2001
2002 /*
2003 * cpu_exec_ecoff_hook():
2004 * cpu-dependent ECOFF format hook for execve().
2005 *
2006 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2007 *
2008 */
2009 int
2010 cpu_exec_ecoff_probe(p, epp)
2011 struct proc *p;
2012 struct exec_package *epp;
2013 {
2014 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2015 int error;
2016
2017 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2018 error = 0;
2019 else
2020 error = ENOEXEC;
2021
2022 return (error);
2023 }
2024 #endif /* EXEC_ECOFF */
2025
2026 int
2027 alpha_pa_access(pa)
2028 u_long pa;
2029 {
2030 int i;
2031
2032 for (i = 0; i < mem_cluster_cnt; i++) {
2033 if (pa < mem_clusters[i].start)
2034 continue;
2035 if ((pa - mem_clusters[i].start) >=
2036 (mem_clusters[i].size & ~PAGE_MASK))
2037 continue;
2038 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2039 }
2040
2041 /*
2042 * Address is not a memory address. If we're secure, disallow
2043 * access. Otherwise, grant read/write.
2044 */
2045 if (securelevel > 0)
2046 return (PROT_NONE);
2047 else
2048 return (PROT_READ | PROT_WRITE);
2049 }
2050
2051 /* XXX XXX BEGIN XXX XXX */
2052 paddr_t alpha_XXX_dmamap_or; /* XXX */
2053 /* XXX */
2054 paddr_t /* XXX */
2055 alpha_XXX_dmamap(v) /* XXX */
2056 vaddr_t v; /* XXX */
2057 { /* XXX */
2058 /* XXX */
2059 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2060 } /* XXX */
2061 /* XXX XXX END XXX XXX */
2062
2063 char *
2064 dot_conv(x)
2065 unsigned long x;
2066 {
2067 int i;
2068 char *xc;
2069 static int next;
2070 static char space[2][20];
2071
2072 xc = space[next ^= 1] + sizeof space[0];
2073 *--xc = '\0';
2074 for (i = 0;; ++i) {
2075 if (i && (i & 3) == 0)
2076 *--xc = '.';
2077 *--xc = "0123456789abcdef"[x & 0xf];
2078 x >>= 4;
2079 if (x == 0)
2080 break;
2081 }
2082 return xc;
2083 }
2084
2085 void
2086 cpu_getmcontext(l, mcp, flags)
2087 struct lwp *l;
2088 mcontext_t *mcp;
2089 unsigned int *flags;
2090 {
2091 struct trapframe *frame = l->l_md.md_tf;
2092 __greg_t *gr = mcp->__gregs;
2093
2094 /* Save register context. */
2095 frametoreg(frame, (struct reg *)gr);
2096 /* XXX if there's a better, general way to get the USP of
2097 * an LWP that might or might not be curlwp, I'd like to know
2098 * about it.
2099 */
2100 if (l == curlwp) {
2101 gr[_REG_SP] = alpha_pal_rdusp();
2102 gr[_REG_UNIQUE] = alpha_pal_rdunique();
2103 } else {
2104 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
2105 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
2106 }
2107 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
2108 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
2109 *flags |= _UC_CPU | _UC_UNIQUE;
2110
2111 /* Save floating point register context, if any, and copy it. */
2112 if (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
2113 fpusave_proc(l, 1);
2114 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
2115 sizeof (mcp->__fpregs));
2116 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
2117 *flags |= _UC_FPU;
2118 }
2119 }
2120
2121
2122 int
2123 cpu_setmcontext(l, mcp, flags)
2124 struct lwp *l;
2125 const mcontext_t *mcp;
2126 unsigned int flags;
2127 {
2128 struct trapframe *frame = l->l_md.md_tf;
2129 const __greg_t *gr = mcp->__gregs;
2130
2131 /* Restore register context, if any. */
2132 if (flags & _UC_CPU) {
2133 /* Check for security violations first. */
2134 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
2135 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
2136 return (EINVAL);
2137
2138 regtoframe((struct reg *)gr, l->l_md.md_tf);
2139 if (l == curlwp)
2140 alpha_pal_wrusp(gr[_REG_SP]);
2141 else
2142 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
2143 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
2144 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
2145 }
2146 if (flags & _UC_UNIQUE) {
2147 if (l == curlwp)
2148 alpha_pal_wrunique(gr[_REG_UNIQUE]);
2149 else
2150 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
2151 }
2152 /* Restore floating point register context, if any. */
2153 if (flags & _UC_FPU) {
2154 /* If we have an FP register context, get rid of it. */
2155 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
2156 fpusave_proc(l, 0);
2157 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
2158 sizeof (l->l_addr->u_pcb.pcb_fp));
2159 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
2160 }
2161
2162 return (0);
2163 }
2164