machdep.c revision 1.263 1 /* $NetBSD: machdep.c,v 1.263 2003/04/08 23:35:48 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.263 2003/04/08 23:35:48 thorpej Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/sa.h>
86 #include <sys/savar.h>
87 #include <sys/sched.h>
88 #include <sys/buf.h>
89 #include <sys/reboot.h>
90 #include <sys/device.h>
91 #include <sys/file.h>
92 #include <sys/malloc.h>
93 #include <sys/mbuf.h>
94 #include <sys/mman.h>
95 #include <sys/msgbuf.h>
96 #include <sys/ioctl.h>
97 #include <sys/tty.h>
98 #include <sys/user.h>
99 #include <sys/exec.h>
100 #include <sys/exec_ecoff.h>
101 #include <sys/core.h>
102 #include <sys/kcore.h>
103 #include <sys/ucontext.h>
104 #include <sys/conf.h>
105 #include <machine/kcore.h>
106 #include <machine/fpu.h>
107
108 #include <sys/mount.h>
109 #include <sys/sa.h>
110 #include <sys/syscallargs.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <sys/sysctl.h>
114
115 #include <dev/cons.h>
116
117 #include <machine/autoconf.h>
118 #include <machine/cpu.h>
119 #include <machine/reg.h>
120 #include <machine/rpb.h>
121 #include <machine/prom.h>
122 #include <machine/cpuconf.h>
123 #include <machine/ieeefp.h>
124
125 #ifdef DDB
126 #include <machine/db_machdep.h>
127 #include <ddb/db_access.h>
128 #include <ddb/db_sym.h>
129 #include <ddb/db_extern.h>
130 #include <ddb/db_interface.h>
131 #endif
132
133 #ifdef KGDB
134 #include <sys/kgdb.h>
135 #endif
136
137 #ifdef DEBUG
138 #include <machine/sigdebug.h>
139 #endif
140
141 #include <machine/alpha.h>
142
143 struct vm_map *exec_map = NULL;
144 struct vm_map *mb_map = NULL;
145 struct vm_map *phys_map = NULL;
146
147 caddr_t msgbufaddr;
148
149 int maxmem; /* max memory per process */
150
151 int totalphysmem; /* total amount of physical memory in system */
152 int physmem; /* physical memory used by NetBSD + some rsvd */
153 int resvmem; /* amount of memory reserved for PROM */
154 int unusedmem; /* amount of memory for OS that we don't use */
155 int unknownmem; /* amount of memory with an unknown use */
156
157 int cputype; /* system type, from the RPB */
158
159 int bootdev_debug = 0; /* patchable, or from DDB */
160
161 /*
162 * XXX We need an address to which we can assign things so that they
163 * won't be optimized away because we didn't use the value.
164 */
165 u_int32_t no_optimize;
166
167 /* the following is used externally (sysctl_hw) */
168 char machine[] = MACHINE; /* from <machine/param.h> */
169 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
170 char cpu_model[128];
171
172 struct user *proc0paddr;
173
174 /* Number of machine cycles per microsecond */
175 u_int64_t cycles_per_usec;
176
177 /* number of cpus in the box. really! */
178 int ncpus;
179
180 struct bootinfo_kernel bootinfo;
181
182 /* For built-in TCDS */
183 #if defined(DEC_3000_300) || defined(DEC_3000_500)
184 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
185 #endif
186
187 struct platform platform;
188
189 #ifdef DDB
190 /* start and end of kernel symbol table */
191 void *ksym_start, *ksym_end;
192 #endif
193
194 /* for cpu_sysctl() */
195 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
196 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
197 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
198 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
199
200 /*
201 * XXX This should be dynamically sized, but we have the chicken-egg problem!
202 * XXX it should also be larger than it is, because not all of the mddt
203 * XXX clusters end up being used for VM.
204 */
205 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
206 int mem_cluster_cnt;
207
208 int cpu_dump __P((void));
209 int cpu_dumpsize __P((void));
210 u_long cpu_dump_mempagecnt __P((void));
211 void dumpsys __P((void));
212 void identifycpu __P((void));
213 void printregs __P((struct reg *));
214
215 void
216 alpha_init(pfn, ptb, bim, bip, biv)
217 u_long pfn; /* first free PFN number */
218 u_long ptb; /* PFN of current level 1 page table */
219 u_long bim; /* bootinfo magic */
220 u_long bip; /* bootinfo pointer */
221 u_long biv; /* bootinfo version */
222 {
223 extern char kernel_text[], _end[];
224 struct mddt *mddtp;
225 struct mddt_cluster *memc;
226 int i, mddtweird;
227 struct vm_physseg *vps;
228 vaddr_t kernstart, kernend;
229 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
230 vsize_t size;
231 cpuid_t cpu_id;
232 struct cpu_info *ci;
233 char *p;
234 caddr_t v;
235 const char *bootinfo_msg;
236 const struct cpuinit *c;
237
238 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
239
240 /*
241 * Turn off interrupts (not mchecks) and floating point.
242 * Make sure the instruction and data streams are consistent.
243 */
244 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
245 alpha_pal_wrfen(0);
246 ALPHA_TBIA();
247 alpha_pal_imb();
248
249 /* Initialize the SCB. */
250 scb_init();
251
252 cpu_id = cpu_number();
253
254 #if defined(MULTIPROCESSOR)
255 /*
256 * Set our SysValue to the address of our cpu_info structure.
257 * Secondary processors do this in their spinup trampoline.
258 */
259 alpha_pal_wrval((u_long)&cpu_info_primary);
260 cpu_info[cpu_id] = &cpu_info_primary;
261 #endif
262
263 ci = curcpu();
264 ci->ci_cpuid = cpu_id;
265
266 /*
267 * Get critical system information (if possible, from the
268 * information provided by the boot program).
269 */
270 bootinfo_msg = NULL;
271 if (bim == BOOTINFO_MAGIC) {
272 if (biv == 0) { /* backward compat */
273 biv = *(u_long *)bip;
274 bip += 8;
275 }
276 switch (biv) {
277 case 1: {
278 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
279
280 bootinfo.ssym = v1p->ssym;
281 bootinfo.esym = v1p->esym;
282 /* hwrpb may not be provided by boot block in v1 */
283 if (v1p->hwrpb != NULL) {
284 bootinfo.hwrpb_phys =
285 ((struct rpb *)v1p->hwrpb)->rpb_phys;
286 bootinfo.hwrpb_size = v1p->hwrpbsize;
287 } else {
288 bootinfo.hwrpb_phys =
289 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
290 bootinfo.hwrpb_size =
291 ((struct rpb *)HWRPB_ADDR)->rpb_size;
292 }
293 memcpy(bootinfo.boot_flags, v1p->boot_flags,
294 min(sizeof v1p->boot_flags,
295 sizeof bootinfo.boot_flags));
296 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
297 min(sizeof v1p->booted_kernel,
298 sizeof bootinfo.booted_kernel));
299 /* booted dev not provided in bootinfo */
300 init_prom_interface((struct rpb *)
301 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
302 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
303 sizeof bootinfo.booted_dev);
304 break;
305 }
306 default:
307 bootinfo_msg = "unknown bootinfo version";
308 goto nobootinfo;
309 }
310 } else {
311 bootinfo_msg = "boot program did not pass bootinfo";
312 nobootinfo:
313 bootinfo.ssym = (u_long)_end;
314 bootinfo.esym = (u_long)_end;
315 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
316 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
317 init_prom_interface((struct rpb *)HWRPB_ADDR);
318 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
319 sizeof bootinfo.boot_flags);
320 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
321 sizeof bootinfo.booted_kernel);
322 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
323 sizeof bootinfo.booted_dev);
324 }
325
326 /*
327 * Initialize the kernel's mapping of the RPB. It's needed for
328 * lots of things.
329 */
330 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
331
332 #if defined(DEC_3000_300) || defined(DEC_3000_500)
333 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
334 hwrpb->rpb_type == ST_DEC_3000_500) {
335 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
336 sizeof(dec_3000_scsiid));
337 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
338 sizeof(dec_3000_scsifast));
339 }
340 #endif
341
342 /*
343 * Remember how many cycles there are per microsecond,
344 * so that we can use delay(). Round up, for safety.
345 */
346 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
347
348 /*
349 * Initialize the (temporary) bootstrap console interface, so
350 * we can use printf until the VM system starts being setup.
351 * The real console is initialized before then.
352 */
353 init_bootstrap_console();
354
355 /* OUTPUT NOW ALLOWED */
356
357 /* delayed from above */
358 if (bootinfo_msg)
359 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
360 bootinfo_msg, bim, bip, biv);
361
362 /* Initialize the trap vectors on the primary processor. */
363 trap_init();
364
365 /*
366 * Find out this system's page size, and initialize
367 * PAGE_SIZE-dependent variables.
368 */
369 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
370 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
371 ALPHA_PGBYTES);
372 uvmexp.pagesize = hwrpb->rpb_page_size;
373 uvm_setpagesize();
374
375 /*
376 * Find out what hardware we're on, and do basic initialization.
377 */
378 cputype = hwrpb->rpb_type;
379 if (cputype < 0) {
380 /*
381 * At least some white-box systems have SRM which
382 * reports a systype that's the negative of their
383 * blue-box counterpart.
384 */
385 cputype = -cputype;
386 }
387 c = platform_lookup(cputype);
388 if (c == NULL) {
389 platform_not_supported();
390 /* NOTREACHED */
391 }
392 (*c->init)();
393 strcpy(cpu_model, platform.model);
394
395 /*
396 * Initialize the real console, so that the bootstrap console is
397 * no longer necessary.
398 */
399 (*platform.cons_init)();
400
401 #ifdef DIAGNOSTIC
402 /* Paranoid sanity checking */
403
404 /* We should always be running on the primary. */
405 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
406
407 /*
408 * On single-CPU systypes, the primary should always be CPU 0,
409 * except on Alpha 8200 systems where the CPU id is related
410 * to the VID, which is related to the Turbo Laser node id.
411 */
412 if (cputype != ST_DEC_21000)
413 assert(hwrpb->rpb_primary_cpu_id == 0);
414 #endif
415
416 /* NO MORE FIRMWARE ACCESS ALLOWED */
417 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
418 /*
419 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
420 * XXX pmap_uses_prom_console() evaluates to non-zero.)
421 */
422 #endif
423
424 /*
425 * Find the beginning and end of the kernel (and leave a
426 * bit of space before the beginning for the bootstrap
427 * stack).
428 */
429 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
430 #ifdef DDB
431 ksym_start = (void *)bootinfo.ssym;
432 ksym_end = (void *)bootinfo.esym;
433 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
434 #else
435 kernend = (vaddr_t)round_page((vaddr_t)_end);
436 #endif
437
438 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
439 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
440
441 /*
442 * Find out how much memory is available, by looking at
443 * the memory cluster descriptors. This also tries to do
444 * its best to detect things things that have never been seen
445 * before...
446 */
447 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
448
449 /* MDDT SANITY CHECKING */
450 mddtweird = 0;
451 if (mddtp->mddt_cluster_cnt < 2) {
452 mddtweird = 1;
453 printf("WARNING: weird number of mem clusters: %lu\n",
454 mddtp->mddt_cluster_cnt);
455 }
456
457 #if 0
458 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
459 #endif
460
461 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
462 memc = &mddtp->mddt_clusters[i];
463 #if 0
464 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
465 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
466 #endif
467 totalphysmem += memc->mddt_pg_cnt;
468 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
469 mem_clusters[mem_cluster_cnt].start =
470 ptoa(memc->mddt_pfn);
471 mem_clusters[mem_cluster_cnt].size =
472 ptoa(memc->mddt_pg_cnt);
473 if (memc->mddt_usage & MDDT_mbz ||
474 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
475 memc->mddt_usage & MDDT_PALCODE)
476 mem_clusters[mem_cluster_cnt].size |=
477 PROT_READ;
478 else
479 mem_clusters[mem_cluster_cnt].size |=
480 PROT_READ | PROT_WRITE | PROT_EXEC;
481 mem_cluster_cnt++;
482 }
483
484 if (memc->mddt_usage & MDDT_mbz) {
485 mddtweird = 1;
486 printf("WARNING: mem cluster %d has weird "
487 "usage 0x%lx\n", i, memc->mddt_usage);
488 unknownmem += memc->mddt_pg_cnt;
489 continue;
490 }
491 if (memc->mddt_usage & MDDT_NONVOLATILE) {
492 /* XXX should handle these... */
493 printf("WARNING: skipping non-volatile mem "
494 "cluster %d\n", i);
495 unusedmem += memc->mddt_pg_cnt;
496 continue;
497 }
498 if (memc->mddt_usage & MDDT_PALCODE) {
499 resvmem += memc->mddt_pg_cnt;
500 continue;
501 }
502
503 /*
504 * We have a memory cluster available for system
505 * software use. We must determine if this cluster
506 * holds the kernel.
507 */
508 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
509 /*
510 * XXX If the kernel uses the PROM console, we only use the
511 * XXX memory after the kernel in the first system segment,
512 * XXX to avoid clobbering prom mapping, data, etc.
513 */
514 if (!pmap_uses_prom_console() || physmem == 0) {
515 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
516 physmem += memc->mddt_pg_cnt;
517 pfn0 = memc->mddt_pfn;
518 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
519 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
520 /*
521 * Must compute the location of the kernel
522 * within the segment.
523 */
524 #if 0
525 printf("Cluster %d contains kernel\n", i);
526 #endif
527 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
528 if (!pmap_uses_prom_console()) {
529 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
530 if (pfn0 < kernstartpfn) {
531 /*
532 * There is a chunk before the kernel.
533 */
534 #if 0
535 printf("Loading chunk before kernel: "
536 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
537 #endif
538 uvm_page_physload(pfn0, kernstartpfn,
539 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
540 }
541 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
542 }
543 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
544 if (kernendpfn < pfn1) {
545 /*
546 * There is a chunk after the kernel.
547 */
548 #if 0
549 printf("Loading chunk after kernel: "
550 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
551 #endif
552 uvm_page_physload(kernendpfn, pfn1,
553 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
554 }
555 } else {
556 /*
557 * Just load this cluster as one chunk.
558 */
559 #if 0
560 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
561 pfn0, pfn1);
562 #endif
563 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
564 VM_FREELIST_DEFAULT);
565 }
566 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
567 }
568 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
569 }
570
571 /*
572 * Dump out the MDDT if it looks odd...
573 */
574 if (mddtweird) {
575 printf("\n");
576 printf("complete memory cluster information:\n");
577 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
578 printf("mddt %d:\n", i);
579 printf("\tpfn %lx\n",
580 mddtp->mddt_clusters[i].mddt_pfn);
581 printf("\tcnt %lx\n",
582 mddtp->mddt_clusters[i].mddt_pg_cnt);
583 printf("\ttest %lx\n",
584 mddtp->mddt_clusters[i].mddt_pg_test);
585 printf("\tbva %lx\n",
586 mddtp->mddt_clusters[i].mddt_v_bitaddr);
587 printf("\tbpa %lx\n",
588 mddtp->mddt_clusters[i].mddt_p_bitaddr);
589 printf("\tbcksum %lx\n",
590 mddtp->mddt_clusters[i].mddt_bit_cksum);
591 printf("\tusage %lx\n",
592 mddtp->mddt_clusters[i].mddt_usage);
593 }
594 printf("\n");
595 }
596
597 if (totalphysmem == 0)
598 panic("can't happen: system seems to have no memory!");
599 maxmem = physmem;
600 #if 0
601 printf("totalphysmem = %d\n", totalphysmem);
602 printf("physmem = %d\n", physmem);
603 printf("resvmem = %d\n", resvmem);
604 printf("unusedmem = %d\n", unusedmem);
605 printf("unknownmem = %d\n", unknownmem);
606 #endif
607
608 /*
609 * Initialize error message buffer (at end of core).
610 */
611 {
612 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
613 vsize_t reqsz = sz;
614
615 vps = &vm_physmem[vm_nphysseg - 1];
616
617 /* shrink so that it'll fit in the last segment */
618 if ((vps->avail_end - vps->avail_start) < atop(sz))
619 sz = ptoa(vps->avail_end - vps->avail_start);
620
621 vps->end -= atop(sz);
622 vps->avail_end -= atop(sz);
623 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
624 initmsgbuf(msgbufaddr, sz);
625
626 /* Remove the last segment if it now has no pages. */
627 if (vps->start == vps->end)
628 vm_nphysseg--;
629
630 /* warn if the message buffer had to be shrunk */
631 if (sz != reqsz)
632 printf("WARNING: %ld bytes not available for msgbuf "
633 "in last cluster (%ld used)\n", reqsz, sz);
634
635 }
636
637 /*
638 * NOTE: It is safe to use uvm_pageboot_alloc() before
639 * pmap_bootstrap() because our pmap_virtual_space()
640 * returns compile-time constants.
641 */
642
643 /*
644 * Init mapping for u page(s) for proc 0
645 */
646 lwp0.l_addr = proc0paddr =
647 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
648
649 /*
650 * Allocate space for system data structures. These data structures
651 * are allocated here instead of cpu_startup() because physical
652 * memory is directly addressable. We don't have to map these into
653 * virtual address space.
654 */
655 size = (vsize_t)allocsys(NULL, NULL);
656 v = (caddr_t)uvm_pageboot_alloc(size);
657 if ((allocsys(v, NULL) - v) != size)
658 panic("alpha_init: table size inconsistency");
659
660 /*
661 * Initialize the virtual memory system, and set the
662 * page table base register in proc 0's PCB.
663 */
664 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
665 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
666
667 /*
668 * Initialize the rest of proc 0's PCB, and cache its physical
669 * address.
670 */
671 lwp0.l_md.md_pcbpaddr =
672 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
673
674 /*
675 * Set the kernel sp, reserving space for an (empty) trapframe,
676 * and make proc0's trapframe pointer point to it for sanity.
677 */
678 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
679 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
680 lwp0.l_md.md_tf =
681 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
682 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
683
684 /*
685 * Initialize the primary CPU's idle PCB to proc0's. In a
686 * MULTIPROCESSOR configuration, each CPU will later get
687 * its own idle PCB when autoconfiguration runs.
688 */
689 ci->ci_idle_pcb = &proc0paddr->u_pcb;
690 ci->ci_idle_pcb_paddr = (u_long)lwp0.l_md.md_pcbpaddr;
691
692 /* Indicate that proc0 has a CPU. */
693 lwp0.l_cpu = ci;
694
695 /*
696 * Look at arguments passed to us and compute boothowto.
697 */
698
699 boothowto = RB_SINGLE;
700 #ifdef KADB
701 boothowto |= RB_KDB;
702 #endif
703 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
704 /*
705 * Note that we'd really like to differentiate case here,
706 * but the Alpha AXP Architecture Reference Manual
707 * says that we shouldn't.
708 */
709 switch (*p) {
710 case 'a': /* autoboot */
711 case 'A':
712 boothowto &= ~RB_SINGLE;
713 break;
714
715 #ifdef DEBUG
716 case 'c': /* crash dump immediately after autoconfig */
717 case 'C':
718 boothowto |= RB_DUMP;
719 break;
720 #endif
721
722 #if defined(KGDB) || defined(DDB)
723 case 'd': /* break into the kernel debugger ASAP */
724 case 'D':
725 boothowto |= RB_KDB;
726 break;
727 #endif
728
729 case 'h': /* always halt, never reboot */
730 case 'H':
731 boothowto |= RB_HALT;
732 break;
733
734 #if 0
735 case 'm': /* mini root present in memory */
736 case 'M':
737 boothowto |= RB_MINIROOT;
738 break;
739 #endif
740
741 case 'n': /* askname */
742 case 'N':
743 boothowto |= RB_ASKNAME;
744 break;
745
746 case 's': /* single-user (default, supported for sanity) */
747 case 'S':
748 boothowto |= RB_SINGLE;
749 break;
750
751 case 'q': /* quiet boot */
752 case 'Q':
753 boothowto |= AB_QUIET;
754 break;
755
756 case 'v': /* verbose boot */
757 case 'V':
758 boothowto |= AB_VERBOSE;
759 break;
760
761 case '-':
762 /*
763 * Just ignore this. It's not required, but it's
764 * common for it to be passed regardless.
765 */
766 break;
767
768 default:
769 printf("Unrecognized boot flag '%c'.\n", *p);
770 break;
771 }
772 }
773
774
775 /*
776 * Figure out the number of cpus in the box, from RPB fields.
777 * Really. We mean it.
778 */
779 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
780 struct pcs *pcsp;
781
782 pcsp = LOCATE_PCS(hwrpb, i);
783 if ((pcsp->pcs_flags & PCS_PP) != 0)
784 ncpus++;
785 }
786
787 /*
788 * Initialize debuggers, and break into them if appropriate.
789 */
790 #ifdef DDB
791 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
792 ksym_start, ksym_end);
793 #endif
794
795 if (boothowto & RB_KDB) {
796 #if defined(KGDB)
797 kgdb_debug_init = 1;
798 kgdb_connect(1);
799 #elif defined(DDB)
800 Debugger();
801 #endif
802 }
803
804 /*
805 * Figure out our clock frequency, from RPB fields.
806 */
807 hz = hwrpb->rpb_intr_freq >> 12;
808 if (!(60 <= hz && hz <= 10240)) {
809 hz = 1024;
810 #ifdef DIAGNOSTIC
811 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
812 hwrpb->rpb_intr_freq, hz);
813 #endif
814 }
815 }
816
817 void
818 consinit()
819 {
820
821 /*
822 * Everything related to console initialization is done
823 * in alpha_init().
824 */
825 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
826 printf("consinit: %susing prom console\n",
827 pmap_uses_prom_console() ? "" : "not ");
828 #endif
829 }
830
831 #include "pckbc.h"
832 #include "pckbd.h"
833 #if (NPCKBC > 0) && (NPCKBD == 0)
834
835 #include <dev/ic/pckbcvar.h>
836
837 /*
838 * This is called by the pbkbc driver if no pckbd is configured.
839 * On the i386, it is used to glue in the old, deprecated console
840 * code. On the Alpha, it does nothing.
841 */
842 int
843 pckbc_machdep_cnattach(kbctag, kbcslot)
844 pckbc_tag_t kbctag;
845 pckbc_slot_t kbcslot;
846 {
847
848 return (ENXIO);
849 }
850 #endif /* NPCKBC > 0 && NPCKBD == 0 */
851
852 void
853 cpu_startup()
854 {
855 u_int i, base, residual;
856 vaddr_t minaddr, maxaddr;
857 vsize_t size;
858 char pbuf[9];
859 #if defined(DEBUG)
860 extern int pmapdebug;
861 int opmapdebug = pmapdebug;
862
863 pmapdebug = 0;
864 #endif
865
866 /*
867 * Good {morning,afternoon,evening,night}.
868 */
869 printf(version);
870 identifycpu();
871 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
872 printf("total memory = %s\n", pbuf);
873 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
874 printf("(%s reserved for PROM, ", pbuf);
875 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
876 printf("%s used by NetBSD)\n", pbuf);
877 if (unusedmem) {
878 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
879 printf("WARNING: unused memory = %s\n", pbuf);
880 }
881 if (unknownmem) {
882 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
883 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
884 }
885
886 /*
887 * Allocate virtual address space for file I/O buffers.
888 * Note they are different than the array of headers, 'buf',
889 * and usually occupy more virtual memory than physical.
890 */
891 size = MAXBSIZE * nbuf;
892 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
893 NULL, UVM_UNKNOWN_OFFSET, 0,
894 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
895 UVM_ADV_NORMAL, 0)) != 0)
896 panic("startup: cannot allocate VM for buffers");
897 base = bufpages / nbuf;
898 residual = bufpages % nbuf;
899 for (i = 0; i < nbuf; i++) {
900 vsize_t curbufsize;
901 vaddr_t curbuf;
902 struct vm_page *pg;
903
904 /*
905 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
906 * that MAXBSIZE space, we allocate and map (base+1) pages
907 * for the first "residual" buffers, and then we allocate
908 * "base" pages for the rest.
909 */
910 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
911 curbufsize = PAGE_SIZE * ((i < residual) ? (base+1) : base);
912
913 while (curbufsize) {
914 pg = uvm_pagealloc(NULL, 0, NULL, 0);
915 if (pg == NULL)
916 panic("cpu_startup: not enough memory for "
917 "buffer cache");
918 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
919 VM_PROT_READ|VM_PROT_WRITE);
920 curbuf += PAGE_SIZE;
921 curbufsize -= PAGE_SIZE;
922 }
923 }
924 pmap_update(pmap_kernel());
925
926 /*
927 * Allocate a submap for exec arguments. This map effectively
928 * limits the number of processes exec'ing at any time.
929 */
930 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
931 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
932
933 /*
934 * Allocate a submap for physio
935 */
936 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
937 VM_PHYS_SIZE, 0, FALSE, NULL);
938
939 /*
940 * No need to allocate an mbuf cluster submap. Mbuf clusters
941 * are allocated via the pool allocator, and we use K0SEG to
942 * map those pages.
943 */
944
945 #if defined(DEBUG)
946 pmapdebug = opmapdebug;
947 #endif
948 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
949 printf("avail memory = %s\n", pbuf);
950 #if 0
951 {
952 extern u_long pmap_pages_stolen;
953
954 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
955 printf("stolen memory for VM structures = %s\n", pbuf);
956 }
957 #endif
958 format_bytes(pbuf, sizeof(pbuf), bufpages * PAGE_SIZE);
959 printf("using %u buffers containing %s of memory\n", nbuf, pbuf);
960
961 /*
962 * Set up buffers, so they can be used to read disk labels.
963 */
964 bufinit();
965
966 /*
967 * Set up the HWPCB so that it's safe to configure secondary
968 * CPUs.
969 */
970 hwrpb_primary_init();
971 }
972
973 /*
974 * Retrieve the platform name from the DSR.
975 */
976 const char *
977 alpha_dsr_sysname()
978 {
979 struct dsrdb *dsr;
980 const char *sysname;
981
982 /*
983 * DSR does not exist on early HWRPB versions.
984 */
985 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
986 return (NULL);
987
988 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
989 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
990 sizeof(u_int64_t)));
991 return (sysname);
992 }
993
994 /*
995 * Lookup the system specified system variation in the provided table,
996 * returning the model string on match.
997 */
998 const char *
999 alpha_variation_name(variation, avtp)
1000 u_int64_t variation;
1001 const struct alpha_variation_table *avtp;
1002 {
1003 int i;
1004
1005 for (i = 0; avtp[i].avt_model != NULL; i++)
1006 if (avtp[i].avt_variation == variation)
1007 return (avtp[i].avt_model);
1008 return (NULL);
1009 }
1010
1011 /*
1012 * Generate a default platform name based for unknown system variations.
1013 */
1014 const char *
1015 alpha_unknown_sysname()
1016 {
1017 static char s[128]; /* safe size */
1018
1019 sprintf(s, "%s family, unknown model variation 0x%lx",
1020 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1021 return ((const char *)s);
1022 }
1023
1024 void
1025 identifycpu()
1026 {
1027 char *s;
1028 int i;
1029
1030 /*
1031 * print out CPU identification information.
1032 */
1033 printf("%s", cpu_model);
1034 for(s = cpu_model; *s; ++s)
1035 if(strncasecmp(s, "MHz", 3) == 0)
1036 goto skipMHz;
1037 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1038 skipMHz:
1039 printf(", s/n ");
1040 for (i = 0; i < 10; i++)
1041 printf("%c", hwrpb->rpb_ssn[i]);
1042 printf("\n");
1043 printf("%ld byte page size, %d processor%s.\n",
1044 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1045 #if 0
1046 /* this isn't defined for any systems that we run on? */
1047 printf("serial number 0x%lx 0x%lx\n",
1048 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1049
1050 /* and these aren't particularly useful! */
1051 printf("variation: 0x%lx, revision 0x%lx\n",
1052 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1053 #endif
1054 }
1055
1056 int waittime = -1;
1057 struct pcb dumppcb;
1058
1059 void
1060 cpu_reboot(howto, bootstr)
1061 int howto;
1062 char *bootstr;
1063 {
1064 #if defined(MULTIPROCESSOR)
1065 u_long cpu_id = cpu_number();
1066 u_long wait_mask = (1UL << cpu_id) |
1067 (1UL << hwrpb->rpb_primary_cpu_id);
1068 int i;
1069 #endif
1070
1071 /* If "always halt" was specified as a boot flag, obey. */
1072 if ((boothowto & RB_HALT) != 0)
1073 howto |= RB_HALT;
1074
1075 boothowto = howto;
1076
1077 /* If system is cold, just halt. */
1078 if (cold) {
1079 boothowto |= RB_HALT;
1080 goto haltsys;
1081 }
1082
1083 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1084 waittime = 0;
1085 vfs_shutdown();
1086 /*
1087 * If we've been adjusting the clock, the todr
1088 * will be out of synch; adjust it now.
1089 */
1090 resettodr();
1091 }
1092
1093 /* Disable interrupts. */
1094 splhigh();
1095
1096 #if defined(MULTIPROCESSOR)
1097 /*
1098 * Halt all other CPUs. If we're not the primary, the
1099 * primary will spin, waiting for us to halt.
1100 */
1101 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1102
1103 for (i = 0; i < 10000; i++) {
1104 alpha_mb();
1105 if (cpus_running == wait_mask)
1106 break;
1107 delay(1000);
1108 }
1109 alpha_mb();
1110 if (cpus_running != wait_mask)
1111 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1112 cpus_running);
1113 #endif /* MULTIPROCESSOR */
1114
1115 /* If rebooting and a dump is requested do it. */
1116 #if 0
1117 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1118 #else
1119 if (boothowto & RB_DUMP)
1120 #endif
1121 dumpsys();
1122
1123 haltsys:
1124
1125 /* run any shutdown hooks */
1126 doshutdownhooks();
1127
1128 #ifdef BOOTKEY
1129 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1130 cnpollc(1); /* for proper keyboard command handling */
1131 cngetc();
1132 cnpollc(0);
1133 printf("\n");
1134 #endif
1135
1136 /* Finally, powerdown/halt/reboot the system. */
1137 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1138 platform.powerdown != NULL) {
1139 (*platform.powerdown)();
1140 printf("WARNING: powerdown failed!\n");
1141 }
1142 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1143 #if defined(MULTIPROCESSOR)
1144 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1145 cpu_halt();
1146 else
1147 #endif
1148 prom_halt(boothowto & RB_HALT);
1149 /*NOTREACHED*/
1150 }
1151
1152 /*
1153 * These variables are needed by /sbin/savecore
1154 */
1155 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1156 int dumpsize = 0; /* pages */
1157 long dumplo = 0; /* blocks */
1158
1159 /*
1160 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1161 */
1162 int
1163 cpu_dumpsize()
1164 {
1165 int size;
1166
1167 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1168 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1169 if (roundup(size, dbtob(1)) != dbtob(1))
1170 return -1;
1171
1172 return (1);
1173 }
1174
1175 /*
1176 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1177 */
1178 u_long
1179 cpu_dump_mempagecnt()
1180 {
1181 u_long i, n;
1182
1183 n = 0;
1184 for (i = 0; i < mem_cluster_cnt; i++)
1185 n += atop(mem_clusters[i].size);
1186 return (n);
1187 }
1188
1189 /*
1190 * cpu_dump: dump machine-dependent kernel core dump headers.
1191 */
1192 int
1193 cpu_dump()
1194 {
1195 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1196 char buf[dbtob(1)];
1197 kcore_seg_t *segp;
1198 cpu_kcore_hdr_t *cpuhdrp;
1199 phys_ram_seg_t *memsegp;
1200 const struct bdevsw *bdev;
1201 int i;
1202
1203 bdev = bdevsw_lookup(dumpdev);
1204 if (bdev == NULL)
1205 return (ENXIO);
1206 dump = bdev->d_dump;
1207
1208 memset(buf, 0, sizeof buf);
1209 segp = (kcore_seg_t *)buf;
1210 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1211 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1212 ALIGN(sizeof(*cpuhdrp))];
1213
1214 /*
1215 * Generate a segment header.
1216 */
1217 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1218 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1219
1220 /*
1221 * Add the machine-dependent header info.
1222 */
1223 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1224 cpuhdrp->page_size = PAGE_SIZE;
1225 cpuhdrp->nmemsegs = mem_cluster_cnt;
1226
1227 /*
1228 * Fill in the memory segment descriptors.
1229 */
1230 for (i = 0; i < mem_cluster_cnt; i++) {
1231 memsegp[i].start = mem_clusters[i].start;
1232 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1233 }
1234
1235 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1236 }
1237
1238 /*
1239 * This is called by main to set dumplo and dumpsize.
1240 * Dumps always skip the first PAGE_SIZE of disk space
1241 * in case there might be a disk label stored there.
1242 * If there is extra space, put dump at the end to
1243 * reduce the chance that swapping trashes it.
1244 */
1245 void
1246 cpu_dumpconf()
1247 {
1248 const struct bdevsw *bdev;
1249 int nblks, dumpblks; /* size of dump area */
1250
1251 if (dumpdev == NODEV)
1252 goto bad;
1253 bdev = bdevsw_lookup(dumpdev);
1254 if (bdev == NULL)
1255 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1256 if (bdev->d_psize == NULL)
1257 goto bad;
1258 nblks = (*bdev->d_psize)(dumpdev);
1259 if (nblks <= ctod(1))
1260 goto bad;
1261
1262 dumpblks = cpu_dumpsize();
1263 if (dumpblks < 0)
1264 goto bad;
1265 dumpblks += ctod(cpu_dump_mempagecnt());
1266
1267 /* If dump won't fit (incl. room for possible label), punt. */
1268 if (dumpblks > (nblks - ctod(1)))
1269 goto bad;
1270
1271 /* Put dump at end of partition */
1272 dumplo = nblks - dumpblks;
1273
1274 /* dumpsize is in page units, and doesn't include headers. */
1275 dumpsize = cpu_dump_mempagecnt();
1276 return;
1277
1278 bad:
1279 dumpsize = 0;
1280 return;
1281 }
1282
1283 /*
1284 * Dump the kernel's image to the swap partition.
1285 */
1286 #define BYTES_PER_DUMP PAGE_SIZE
1287
1288 void
1289 dumpsys()
1290 {
1291 const struct bdevsw *bdev;
1292 u_long totalbytesleft, bytes, i, n, memcl;
1293 u_long maddr;
1294 int psize;
1295 daddr_t blkno;
1296 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1297 int error;
1298
1299 /* Save registers. */
1300 savectx(&dumppcb);
1301
1302 if (dumpdev == NODEV)
1303 return;
1304 bdev = bdevsw_lookup(dumpdev);
1305 if (bdev == NULL || bdev->d_psize == NULL)
1306 return;
1307
1308 /*
1309 * For dumps during autoconfiguration,
1310 * if dump device has already configured...
1311 */
1312 if (dumpsize == 0)
1313 cpu_dumpconf();
1314 if (dumplo <= 0) {
1315 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1316 minor(dumpdev));
1317 return;
1318 }
1319 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1320 minor(dumpdev), dumplo);
1321
1322 psize = (*bdev->d_psize)(dumpdev);
1323 printf("dump ");
1324 if (psize == -1) {
1325 printf("area unavailable\n");
1326 return;
1327 }
1328
1329 /* XXX should purge all outstanding keystrokes. */
1330
1331 if ((error = cpu_dump()) != 0)
1332 goto err;
1333
1334 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1335 blkno = dumplo + cpu_dumpsize();
1336 dump = bdev->d_dump;
1337 error = 0;
1338
1339 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1340 maddr = mem_clusters[memcl].start;
1341 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1342
1343 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1344
1345 /* Print out how many MBs we to go. */
1346 if ((totalbytesleft % (1024*1024)) == 0)
1347 printf("%ld ", totalbytesleft / (1024 * 1024));
1348
1349 /* Limit size for next transfer. */
1350 n = bytes - i;
1351 if (n > BYTES_PER_DUMP)
1352 n = BYTES_PER_DUMP;
1353
1354 error = (*dump)(dumpdev, blkno,
1355 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1356 if (error)
1357 goto err;
1358 maddr += n;
1359 blkno += btodb(n); /* XXX? */
1360
1361 /* XXX should look for keystrokes, to cancel. */
1362 }
1363 }
1364
1365 err:
1366 switch (error) {
1367
1368 case ENXIO:
1369 printf("device bad\n");
1370 break;
1371
1372 case EFAULT:
1373 printf("device not ready\n");
1374 break;
1375
1376 case EINVAL:
1377 printf("area improper\n");
1378 break;
1379
1380 case EIO:
1381 printf("i/o error\n");
1382 break;
1383
1384 case EINTR:
1385 printf("aborted from console\n");
1386 break;
1387
1388 case 0:
1389 printf("succeeded\n");
1390 break;
1391
1392 default:
1393 printf("error %d\n", error);
1394 break;
1395 }
1396 printf("\n\n");
1397 delay(1000);
1398 }
1399
1400 void
1401 frametoreg(framep, regp)
1402 const struct trapframe *framep;
1403 struct reg *regp;
1404 {
1405
1406 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1407 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1408 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1409 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1410 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1411 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1412 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1413 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1414 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1415 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1416 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1417 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1418 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1419 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1420 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1421 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1422 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1423 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1424 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1425 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1426 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1427 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1428 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1429 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1430 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1431 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1432 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1433 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1434 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1435 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1436 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1437 regp->r_regs[R_ZERO] = 0;
1438 }
1439
1440 void
1441 regtoframe(regp, framep)
1442 const struct reg *regp;
1443 struct trapframe *framep;
1444 {
1445
1446 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1447 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1448 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1449 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1450 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1451 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1452 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1453 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1454 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1455 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1456 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1457 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1458 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1459 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1460 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1461 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1462 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1463 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1464 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1465 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1466 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1467 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1468 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1469 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1470 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1471 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1472 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1473 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1474 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1475 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1476 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1477 /* ??? = regp->r_regs[R_ZERO]; */
1478 }
1479
1480 void
1481 printregs(regp)
1482 struct reg *regp;
1483 {
1484 int i;
1485
1486 for (i = 0; i < 32; i++)
1487 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1488 i & 1 ? "\n" : "\t");
1489 }
1490
1491 void
1492 regdump(framep)
1493 struct trapframe *framep;
1494 {
1495 struct reg reg;
1496
1497 frametoreg(framep, ®);
1498 reg.r_regs[R_SP] = alpha_pal_rdusp();
1499
1500 printf("REGISTERS:\n");
1501 printregs(®);
1502 }
1503
1504
1505 /*
1506 * Send an interrupt to process.
1507 */
1508 void
1509 sendsig(sig, mask, code)
1510 int sig;
1511 sigset_t *mask;
1512 u_long code;
1513 {
1514 struct lwp *l = curlwp;
1515 struct proc *p = l->l_proc;
1516 struct sigacts *ps = p->p_sigacts;
1517 struct sigcontext *scp, ksc;
1518 struct trapframe *frame;
1519 int onstack, fsize, rndfsize;
1520 sig_t catcher = SIGACTION(p, sig).sa_handler;
1521
1522 frame = l->l_md.md_tf;
1523
1524 /* Do we need to jump onto the signal stack? */
1525 onstack =
1526 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1527 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1528
1529 /* Allocate space for the signal handler context. */
1530 fsize = sizeof(ksc);
1531 rndfsize = ((fsize + 15) / 16) * 16;
1532
1533 if (onstack)
1534 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1535 p->p_sigctx.ps_sigstk.ss_size);
1536 else
1537 scp = (struct sigcontext *)(alpha_pal_rdusp());
1538 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1539
1540 #ifdef DEBUG
1541 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1542 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1543 sig, &onstack, scp);
1544 #endif
1545
1546 /* Build stack frame for signal trampoline. */
1547 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1548 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1549
1550 /* Save register context. */
1551 frametoreg(frame, (struct reg *)ksc.sc_regs);
1552 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1553 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1554
1555 /* save the floating-point state, if necessary, then copy it. */
1556 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1557 fpusave_proc(l, 1);
1558 ksc.sc_ownedfp = l->l_md.md_flags & MDP_FPUSED;
1559 memcpy((struct fpreg *)ksc.sc_fpregs, &l->l_addr->u_pcb.pcb_fp,
1560 sizeof(struct fpreg));
1561 ksc.sc_fp_control = alpha_read_fp_c(l);
1562 memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */
1563 memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */
1564
1565 /* Save signal stack. */
1566 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1567
1568 /* Save signal mask. */
1569 ksc.sc_mask = *mask;
1570
1571 #ifdef COMPAT_13
1572 /*
1573 * XXX We always have to save an old style signal mask because
1574 * XXX we might be delivering a signal to a process which will
1575 * XXX escape from the signal in a non-standard way and invoke
1576 * XXX sigreturn() directly.
1577 */
1578 {
1579 /* Note: it's a long in the stack frame. */
1580 sigset13_t mask13;
1581
1582 native_sigset_to_sigset13(mask, &mask13);
1583 ksc.__sc_mask13 = mask13;
1584 }
1585 #endif
1586
1587 #ifdef COMPAT_OSF1
1588 /*
1589 * XXX Create an OSF/1-style sigcontext and associated goo.
1590 */
1591 #endif
1592
1593 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1594 /*
1595 * Process has trashed its stack; give it an illegal
1596 * instruction to halt it in its tracks.
1597 */
1598 #ifdef DEBUG
1599 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1600 printf("sendsig(%d): copyout failed on sig %d\n",
1601 p->p_pid, sig);
1602 #endif
1603 sigexit(l, SIGILL);
1604 /* NOTREACHED */
1605 }
1606 #ifdef DEBUG
1607 if (sigdebug & SDB_FOLLOW)
1608 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1609 scp, code);
1610 #endif
1611
1612 /*
1613 * Set up the registers to directly invoke the signal handler. The
1614 * signal trampoline is then used to return from the signal. Note
1615 * the trampoline version numbers are coordinated with machine-
1616 * dependent code in libc.
1617 */
1618 switch (ps->sa_sigdesc[sig].sd_vers) {
1619 #if 1 /* COMPAT_16 */
1620 case 0: /* legacy on-stack sigtramp */
1621 frame->tf_regs[FRAME_RA] = (u_int64_t)p->p_sigctx.ps_sigcode;
1622 break;
1623 #endif /* COMPAT_16 */
1624
1625 case 1:
1626 frame->tf_regs[FRAME_RA] =
1627 (u_int64_t)ps->sa_sigdesc[sig].sd_tramp;
1628 break;
1629
1630 default:
1631 /* Don't know what trampoline version; kill it. */
1632 sigexit(l, SIGILL);
1633 }
1634 frame->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1635 frame->tf_regs[FRAME_A0] = sig;
1636 frame->tf_regs[FRAME_A1] = code;
1637 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1638 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1639 alpha_pal_wrusp((unsigned long)scp);
1640
1641 /* Remember that we're now on the signal stack. */
1642 if (onstack)
1643 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1644
1645 #ifdef DEBUG
1646 if (sigdebug & SDB_FOLLOW)
1647 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1648 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1649 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1650 printf("sendsig(%d): sig %d returns\n",
1651 p->p_pid, sig);
1652 #endif
1653 }
1654
1655
1656 void
1657 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1658 {
1659 struct trapframe *tf;
1660
1661 tf = l->l_md.md_tf;
1662
1663 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1664 tf->tf_regs[FRAME_RA] = 0;
1665 tf->tf_regs[FRAME_A0] = type;
1666 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1667 tf->tf_regs[FRAME_A2] = nevents;
1668 tf->tf_regs[FRAME_A3] = ninterrupted;
1669 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1670 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1671 alpha_pal_wrusp((unsigned long)sp);
1672 }
1673
1674 /*
1675 * System call to cleanup state after a signal
1676 * has been taken. Reset signal mask and
1677 * stack state from context left by sendsig (above).
1678 * Return to previous pc and psl as specified by
1679 * context left by sendsig. Check carefully to
1680 * make sure that the user has not modified the
1681 * psl to gain improper privileges or to cause
1682 * a machine fault.
1683 */
1684 /* ARGSUSED */
1685 int
1686 sys___sigreturn14(l, v, retval)
1687 struct lwp *l;
1688 void *v;
1689 register_t *retval;
1690 {
1691 struct sys___sigreturn14_args /* {
1692 syscallarg(struct sigcontext *) sigcntxp;
1693 } */ *uap = v;
1694 struct sigcontext *scp, ksc;
1695 struct proc *p = l->l_proc;
1696
1697 /*
1698 * The trampoline code hands us the context.
1699 * It is unsafe to keep track of it ourselves, in the event that a
1700 * program jumps out of a signal handler.
1701 */
1702 scp = SCARG(uap, sigcntxp);
1703 #ifdef DEBUG
1704 if (sigdebug & SDB_FOLLOW)
1705 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1706 #endif
1707 if (ALIGN(scp) != (u_int64_t)scp)
1708 return (EINVAL);
1709
1710 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1711 return (EFAULT);
1712
1713 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1714 return (EINVAL);
1715
1716 /* Restore register context. */
1717 l->l_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1718 l->l_md.md_tf->tf_regs[FRAME_PS] =
1719 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1720
1721 regtoframe((struct reg *)ksc.sc_regs, l->l_md.md_tf);
1722 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1723
1724 /* XXX ksc.sc_ownedfp ? */
1725 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1726 fpusave_proc(l, 0);
1727 memcpy(&l->l_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1728 sizeof(struct fpreg));
1729 l->l_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1730 l->l_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1731
1732 /* Restore signal stack. */
1733 if (ksc.sc_onstack & SS_ONSTACK)
1734 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1735 else
1736 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1737
1738 /* Restore signal mask. */
1739 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1740
1741 #ifdef DEBUG
1742 if (sigdebug & SDB_FOLLOW)
1743 printf("sigreturn(%d): returns\n", p->p_pid);
1744 #endif
1745 return (EJUSTRETURN);
1746 }
1747
1748 /*
1749 * machine dependent system variables.
1750 */
1751 int
1752 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1753 int *name;
1754 u_int namelen;
1755 void *oldp;
1756 size_t *oldlenp;
1757 void *newp;
1758 size_t newlen;
1759 struct proc *p;
1760 {
1761 dev_t consdev;
1762
1763 /* all sysctl names at this level are terminal */
1764 if (namelen != 1)
1765 return (ENOTDIR); /* overloaded */
1766
1767 switch (name[0]) {
1768 case CPU_CONSDEV:
1769 if (cn_tab != NULL)
1770 consdev = cn_tab->cn_dev;
1771 else
1772 consdev = NODEV;
1773 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1774 sizeof consdev));
1775
1776 case CPU_ROOT_DEVICE:
1777 return (sysctl_rdstring(oldp, oldlenp, newp,
1778 root_device->dv_xname));
1779
1780 case CPU_UNALIGNED_PRINT:
1781 return (sysctl_int(oldp, oldlenp, newp, newlen,
1782 &alpha_unaligned_print));
1783
1784 case CPU_UNALIGNED_FIX:
1785 return (sysctl_int(oldp, oldlenp, newp, newlen,
1786 &alpha_unaligned_fix));
1787
1788 case CPU_UNALIGNED_SIGBUS:
1789 return (sysctl_int(oldp, oldlenp, newp, newlen,
1790 &alpha_unaligned_sigbus));
1791
1792 case CPU_BOOTED_KERNEL:
1793 return (sysctl_rdstring(oldp, oldlenp, newp,
1794 bootinfo.booted_kernel));
1795
1796 case CPU_FP_SYNC_COMPLETE:
1797 return (sysctl_int(oldp, oldlenp, newp, newlen,
1798 &alpha_fp_sync_complete));
1799
1800 default:
1801 return (EOPNOTSUPP);
1802 }
1803 /* NOTREACHED */
1804 }
1805
1806 /*
1807 * Set registers on exec.
1808 */
1809 void
1810 setregs(l, pack, stack)
1811 register struct lwp *l;
1812 struct exec_package *pack;
1813 u_long stack;
1814 {
1815 struct trapframe *tfp = l->l_md.md_tf;
1816 #ifdef DEBUG
1817 int i;
1818 #endif
1819
1820 #ifdef DEBUG
1821 /*
1822 * Crash and dump, if the user requested it.
1823 */
1824 if (boothowto & RB_DUMP)
1825 panic("crash requested by boot flags");
1826 #endif
1827
1828 #ifdef DEBUG
1829 for (i = 0; i < FRAME_SIZE; i++)
1830 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1831 #else
1832 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1833 #endif
1834 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1835 alpha_pal_wrusp(stack);
1836 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1837 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1838
1839 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1840 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1841 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1842 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1843 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1844
1845 l->l_md.md_flags &= ~MDP_FPUSED;
1846 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1847 l->l_md.md_flags &= ~MDP_FP_C;
1848 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1849 }
1850 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1851 fpusave_proc(l, 0);
1852 }
1853
1854 /*
1855 * Release the FPU.
1856 */
1857 void
1858 fpusave_cpu(struct cpu_info *ci, int save)
1859 {
1860 struct lwp *l;
1861 #if defined(MULTIPROCESSOR)
1862 int s;
1863 #endif
1864
1865 KDASSERT(ci == curcpu());
1866
1867 #if defined(MULTIPROCESSOR)
1868 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1869 #endif
1870
1871 l = ci->ci_fpcurlwp;
1872 if (l == NULL)
1873 goto out;
1874
1875 if (save) {
1876 alpha_pal_wrfen(1);
1877 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1878 }
1879
1880 alpha_pal_wrfen(0);
1881
1882 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1883
1884 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1885 ci->ci_fpcurlwp = NULL;
1886
1887 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1888
1889 out:
1890 #if defined(MULTIPROCESSOR)
1891 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1892 #endif
1893 return;
1894 }
1895
1896 /*
1897 * Synchronize FP state for this process.
1898 */
1899 void
1900 fpusave_proc(struct lwp *l, int save)
1901 {
1902 struct cpu_info *ci = curcpu();
1903 struct cpu_info *oci;
1904 #if defined(MULTIPROCESSOR)
1905 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1906 int s, spincount;
1907 #endif
1908
1909 KDASSERT(l->l_addr != NULL);
1910 KDASSERT(l->l_flag & L_INMEM);
1911
1912 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1913
1914 oci = l->l_addr->u_pcb.pcb_fpcpu;
1915 if (oci == NULL) {
1916 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1917 return;
1918 }
1919
1920 #if defined(MULTIPROCESSOR)
1921 if (oci == ci) {
1922 KASSERT(ci->ci_fpcurlwp == l);
1923 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1924 fpusave_cpu(ci, save);
1925 return;
1926 }
1927
1928 KASSERT(oci->ci_fpcurlwp == l);
1929 alpha_send_ipi(oci->ci_cpuid, ipi);
1930 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1931
1932 spincount = 0;
1933 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1934 spincount++;
1935 delay(1000); /* XXX */
1936 if (spincount > 10000)
1937 panic("fpsave ipi didn't");
1938 }
1939 #else
1940 KASSERT(ci->ci_fpcurlwp == l);
1941 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1942 fpusave_cpu(ci, save);
1943 #endif /* MULTIPROCESSOR */
1944 }
1945
1946 /*
1947 * Wait "n" microseconds.
1948 */
1949 void
1950 delay(n)
1951 unsigned long n;
1952 {
1953 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1954
1955 if (n == 0)
1956 return;
1957
1958 pcc0 = alpha_rpcc() & 0xffffffffUL;
1959 cycles = 0;
1960 usec = 0;
1961
1962 while (usec <= n) {
1963 /*
1964 * Get the next CPU cycle count- assumes that we cannot
1965 * have had more than one 32 bit overflow.
1966 */
1967 pcc1 = alpha_rpcc() & 0xffffffffUL;
1968 if (pcc1 < pcc0)
1969 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1970 else
1971 curcycle = pcc1 - pcc0;
1972
1973 /*
1974 * We now have the number of processor cycles since we
1975 * last checked. Add the current cycle count to the
1976 * running total. If it's over cycles_per_usec, increment
1977 * the usec counter.
1978 */
1979 cycles += curcycle;
1980 while (cycles > cycles_per_usec) {
1981 usec++;
1982 cycles -= cycles_per_usec;
1983 }
1984 pcc0 = pcc1;
1985 }
1986 }
1987
1988 #ifdef EXEC_ECOFF
1989 void
1990 cpu_exec_ecoff_setregs(l, epp, stack)
1991 struct lwp *l;
1992 struct exec_package *epp;
1993 u_long stack;
1994 {
1995 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1996
1997 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1998 }
1999
2000 /*
2001 * cpu_exec_ecoff_hook():
2002 * cpu-dependent ECOFF format hook for execve().
2003 *
2004 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2005 *
2006 */
2007 int
2008 cpu_exec_ecoff_probe(p, epp)
2009 struct proc *p;
2010 struct exec_package *epp;
2011 {
2012 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2013 int error;
2014
2015 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2016 error = 0;
2017 else
2018 error = ENOEXEC;
2019
2020 return (error);
2021 }
2022 #endif /* EXEC_ECOFF */
2023
2024 int
2025 alpha_pa_access(pa)
2026 u_long pa;
2027 {
2028 int i;
2029
2030 for (i = 0; i < mem_cluster_cnt; i++) {
2031 if (pa < mem_clusters[i].start)
2032 continue;
2033 if ((pa - mem_clusters[i].start) >=
2034 (mem_clusters[i].size & ~PAGE_MASK))
2035 continue;
2036 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2037 }
2038
2039 /*
2040 * Address is not a memory address. If we're secure, disallow
2041 * access. Otherwise, grant read/write.
2042 */
2043 if (securelevel > 0)
2044 return (PROT_NONE);
2045 else
2046 return (PROT_READ | PROT_WRITE);
2047 }
2048
2049 /* XXX XXX BEGIN XXX XXX */
2050 paddr_t alpha_XXX_dmamap_or; /* XXX */
2051 /* XXX */
2052 paddr_t /* XXX */
2053 alpha_XXX_dmamap(v) /* XXX */
2054 vaddr_t v; /* XXX */
2055 { /* XXX */
2056 /* XXX */
2057 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2058 } /* XXX */
2059 /* XXX XXX END XXX XXX */
2060
2061 char *
2062 dot_conv(x)
2063 unsigned long x;
2064 {
2065 int i;
2066 char *xc;
2067 static int next;
2068 static char space[2][20];
2069
2070 xc = space[next ^= 1] + sizeof space[0];
2071 *--xc = '\0';
2072 for (i = 0;; ++i) {
2073 if (i && (i & 3) == 0)
2074 *--xc = '.';
2075 *--xc = "0123456789abcdef"[x & 0xf];
2076 x >>= 4;
2077 if (x == 0)
2078 break;
2079 }
2080 return xc;
2081 }
2082
2083 void
2084 cpu_getmcontext(l, mcp, flags)
2085 struct lwp *l;
2086 mcontext_t *mcp;
2087 unsigned int *flags;
2088 {
2089 struct trapframe *frame = l->l_md.md_tf;
2090 __greg_t *gr = mcp->__gregs;
2091
2092 /* Save register context. */
2093 frametoreg(frame, (struct reg *)gr);
2094 /* XXX if there's a better, general way to get the USP of
2095 * an LWP that might or might not be curlwp, I'd like to know
2096 * about it.
2097 */
2098 if (l == curlwp) {
2099 gr[_REG_SP] = alpha_pal_rdusp();
2100 gr[_REG_UNIQUE] = alpha_pal_rdunique();
2101 } else {
2102 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
2103 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
2104 }
2105 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
2106 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
2107 *flags |= _UC_CPU | _UC_UNIQUE;
2108
2109 /* Save floating point register context, if any, and copy it. */
2110 if (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
2111 fpusave_proc(l, 1);
2112 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
2113 sizeof (mcp->__fpregs));
2114 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
2115 *flags |= _UC_FPU;
2116 }
2117 }
2118
2119
2120 int
2121 cpu_setmcontext(l, mcp, flags)
2122 struct lwp *l;
2123 const mcontext_t *mcp;
2124 unsigned int flags;
2125 {
2126 struct trapframe *frame = l->l_md.md_tf;
2127 const __greg_t *gr = mcp->__gregs;
2128
2129 /* Restore register context, if any. */
2130 if (flags & _UC_CPU) {
2131 /* Check for security violations first. */
2132 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
2133 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
2134 return (EINVAL);
2135
2136 regtoframe((struct reg *)gr, l->l_md.md_tf);
2137 if (l == curlwp)
2138 alpha_pal_wrusp(gr[_REG_SP]);
2139 else
2140 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
2141 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
2142 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
2143 }
2144 if (flags & _UC_UNIQUE) {
2145 if (l == curlwp)
2146 alpha_pal_wrunique(gr[_REG_UNIQUE]);
2147 else
2148 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
2149 }
2150 /* Restore floating point register context, if any. */
2151 if (flags & _UC_FPU) {
2152 /* If we have an FP register context, get rid of it. */
2153 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
2154 fpusave_proc(l, 0);
2155 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
2156 sizeof (l->l_addr->u_pcb.pcb_fp));
2157 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
2158 }
2159
2160 return (0);
2161 }
2162