machdep.c revision 1.265 1 /* $NetBSD: machdep.c,v 1.265 2003/04/17 00:15:19 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.265 2003/04/17 00:15:19 nathanw Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/ras.h>
86 #include <sys/sa.h>
87 #include <sys/savar.h>
88 #include <sys/sched.h>
89 #include <sys/buf.h>
90 #include <sys/reboot.h>
91 #include <sys/device.h>
92 #include <sys/file.h>
93 #include <sys/malloc.h>
94 #include <sys/mbuf.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <sys/user.h>
100 #include <sys/exec.h>
101 #include <sys/exec_ecoff.h>
102 #include <sys/core.h>
103 #include <sys/kcore.h>
104 #include <sys/ucontext.h>
105 #include <sys/conf.h>
106 #include <machine/kcore.h>
107 #include <machine/fpu.h>
108
109 #include <sys/mount.h>
110 #include <sys/sa.h>
111 #include <sys/syscallargs.h>
112
113 #include <uvm/uvm_extern.h>
114 #include <sys/sysctl.h>
115
116 #include <dev/cons.h>
117
118 #include <machine/autoconf.h>
119 #include <machine/cpu.h>
120 #include <machine/reg.h>
121 #include <machine/rpb.h>
122 #include <machine/prom.h>
123 #include <machine/cpuconf.h>
124 #include <machine/ieeefp.h>
125
126 #ifdef DDB
127 #include <machine/db_machdep.h>
128 #include <ddb/db_access.h>
129 #include <ddb/db_sym.h>
130 #include <ddb/db_extern.h>
131 #include <ddb/db_interface.h>
132 #endif
133
134 #ifdef KGDB
135 #include <sys/kgdb.h>
136 #endif
137
138 #ifdef DEBUG
139 #include <machine/sigdebug.h>
140 #endif
141
142 #include <machine/alpha.h>
143
144 struct vm_map *exec_map = NULL;
145 struct vm_map *mb_map = NULL;
146 struct vm_map *phys_map = NULL;
147
148 caddr_t msgbufaddr;
149
150 int maxmem; /* max memory per process */
151
152 int totalphysmem; /* total amount of physical memory in system */
153 int physmem; /* physical memory used by NetBSD + some rsvd */
154 int resvmem; /* amount of memory reserved for PROM */
155 int unusedmem; /* amount of memory for OS that we don't use */
156 int unknownmem; /* amount of memory with an unknown use */
157
158 int cputype; /* system type, from the RPB */
159
160 int bootdev_debug = 0; /* patchable, or from DDB */
161
162 /*
163 * XXX We need an address to which we can assign things so that they
164 * won't be optimized away because we didn't use the value.
165 */
166 u_int32_t no_optimize;
167
168 /* the following is used externally (sysctl_hw) */
169 char machine[] = MACHINE; /* from <machine/param.h> */
170 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
171 char cpu_model[128];
172
173 struct user *proc0paddr;
174
175 /* Number of machine cycles per microsecond */
176 u_int64_t cycles_per_usec;
177
178 /* number of cpus in the box. really! */
179 int ncpus;
180
181 struct bootinfo_kernel bootinfo;
182
183 /* For built-in TCDS */
184 #if defined(DEC_3000_300) || defined(DEC_3000_500)
185 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
186 #endif
187
188 struct platform platform;
189
190 #ifdef DDB
191 /* start and end of kernel symbol table */
192 void *ksym_start, *ksym_end;
193 #endif
194
195 /* for cpu_sysctl() */
196 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
197 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
198 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
199 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
200
201 /*
202 * XXX This should be dynamically sized, but we have the chicken-egg problem!
203 * XXX it should also be larger than it is, because not all of the mddt
204 * XXX clusters end up being used for VM.
205 */
206 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
207 int mem_cluster_cnt;
208
209 int cpu_dump __P((void));
210 int cpu_dumpsize __P((void));
211 u_long cpu_dump_mempagecnt __P((void));
212 void dumpsys __P((void));
213 void identifycpu __P((void));
214 void printregs __P((struct reg *));
215
216 void
217 alpha_init(pfn, ptb, bim, bip, biv)
218 u_long pfn; /* first free PFN number */
219 u_long ptb; /* PFN of current level 1 page table */
220 u_long bim; /* bootinfo magic */
221 u_long bip; /* bootinfo pointer */
222 u_long biv; /* bootinfo version */
223 {
224 extern char kernel_text[], _end[];
225 struct mddt *mddtp;
226 struct mddt_cluster *memc;
227 int i, mddtweird;
228 struct vm_physseg *vps;
229 vaddr_t kernstart, kernend;
230 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
231 vsize_t size;
232 cpuid_t cpu_id;
233 struct cpu_info *ci;
234 char *p;
235 caddr_t v;
236 const char *bootinfo_msg;
237 const struct cpuinit *c;
238
239 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
240
241 /*
242 * Turn off interrupts (not mchecks) and floating point.
243 * Make sure the instruction and data streams are consistent.
244 */
245 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
246 alpha_pal_wrfen(0);
247 ALPHA_TBIA();
248 alpha_pal_imb();
249
250 /* Initialize the SCB. */
251 scb_init();
252
253 cpu_id = cpu_number();
254
255 #if defined(MULTIPROCESSOR)
256 /*
257 * Set our SysValue to the address of our cpu_info structure.
258 * Secondary processors do this in their spinup trampoline.
259 */
260 alpha_pal_wrval((u_long)&cpu_info_primary);
261 cpu_info[cpu_id] = &cpu_info_primary;
262 #endif
263
264 ci = curcpu();
265 ci->ci_cpuid = cpu_id;
266
267 /*
268 * Get critical system information (if possible, from the
269 * information provided by the boot program).
270 */
271 bootinfo_msg = NULL;
272 if (bim == BOOTINFO_MAGIC) {
273 if (biv == 0) { /* backward compat */
274 biv = *(u_long *)bip;
275 bip += 8;
276 }
277 switch (biv) {
278 case 1: {
279 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
280
281 bootinfo.ssym = v1p->ssym;
282 bootinfo.esym = v1p->esym;
283 /* hwrpb may not be provided by boot block in v1 */
284 if (v1p->hwrpb != NULL) {
285 bootinfo.hwrpb_phys =
286 ((struct rpb *)v1p->hwrpb)->rpb_phys;
287 bootinfo.hwrpb_size = v1p->hwrpbsize;
288 } else {
289 bootinfo.hwrpb_phys =
290 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
291 bootinfo.hwrpb_size =
292 ((struct rpb *)HWRPB_ADDR)->rpb_size;
293 }
294 memcpy(bootinfo.boot_flags, v1p->boot_flags,
295 min(sizeof v1p->boot_flags,
296 sizeof bootinfo.boot_flags));
297 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
298 min(sizeof v1p->booted_kernel,
299 sizeof bootinfo.booted_kernel));
300 /* booted dev not provided in bootinfo */
301 init_prom_interface((struct rpb *)
302 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
303 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
304 sizeof bootinfo.booted_dev);
305 break;
306 }
307 default:
308 bootinfo_msg = "unknown bootinfo version";
309 goto nobootinfo;
310 }
311 } else {
312 bootinfo_msg = "boot program did not pass bootinfo";
313 nobootinfo:
314 bootinfo.ssym = (u_long)_end;
315 bootinfo.esym = (u_long)_end;
316 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
317 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
318 init_prom_interface((struct rpb *)HWRPB_ADDR);
319 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
320 sizeof bootinfo.boot_flags);
321 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
322 sizeof bootinfo.booted_kernel);
323 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
324 sizeof bootinfo.booted_dev);
325 }
326
327 /*
328 * Initialize the kernel's mapping of the RPB. It's needed for
329 * lots of things.
330 */
331 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
332
333 #if defined(DEC_3000_300) || defined(DEC_3000_500)
334 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
335 hwrpb->rpb_type == ST_DEC_3000_500) {
336 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
337 sizeof(dec_3000_scsiid));
338 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
339 sizeof(dec_3000_scsifast));
340 }
341 #endif
342
343 /*
344 * Remember how many cycles there are per microsecond,
345 * so that we can use delay(). Round up, for safety.
346 */
347 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
348
349 /*
350 * Initialize the (temporary) bootstrap console interface, so
351 * we can use printf until the VM system starts being setup.
352 * The real console is initialized before then.
353 */
354 init_bootstrap_console();
355
356 /* OUTPUT NOW ALLOWED */
357
358 /* delayed from above */
359 if (bootinfo_msg)
360 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
361 bootinfo_msg, bim, bip, biv);
362
363 /* Initialize the trap vectors on the primary processor. */
364 trap_init();
365
366 /*
367 * Find out this system's page size, and initialize
368 * PAGE_SIZE-dependent variables.
369 */
370 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
371 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
372 ALPHA_PGBYTES);
373 uvmexp.pagesize = hwrpb->rpb_page_size;
374 uvm_setpagesize();
375
376 /*
377 * Find out what hardware we're on, and do basic initialization.
378 */
379 cputype = hwrpb->rpb_type;
380 if (cputype < 0) {
381 /*
382 * At least some white-box systems have SRM which
383 * reports a systype that's the negative of their
384 * blue-box counterpart.
385 */
386 cputype = -cputype;
387 }
388 c = platform_lookup(cputype);
389 if (c == NULL) {
390 platform_not_supported();
391 /* NOTREACHED */
392 }
393 (*c->init)();
394 strcpy(cpu_model, platform.model);
395
396 /*
397 * Initialize the real console, so that the bootstrap console is
398 * no longer necessary.
399 */
400 (*platform.cons_init)();
401
402 #ifdef DIAGNOSTIC
403 /* Paranoid sanity checking */
404
405 /* We should always be running on the primary. */
406 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
407
408 /*
409 * On single-CPU systypes, the primary should always be CPU 0,
410 * except on Alpha 8200 systems where the CPU id is related
411 * to the VID, which is related to the Turbo Laser node id.
412 */
413 if (cputype != ST_DEC_21000)
414 assert(hwrpb->rpb_primary_cpu_id == 0);
415 #endif
416
417 /* NO MORE FIRMWARE ACCESS ALLOWED */
418 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
419 /*
420 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
421 * XXX pmap_uses_prom_console() evaluates to non-zero.)
422 */
423 #endif
424
425 /*
426 * Find the beginning and end of the kernel (and leave a
427 * bit of space before the beginning for the bootstrap
428 * stack).
429 */
430 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
431 #ifdef DDB
432 ksym_start = (void *)bootinfo.ssym;
433 ksym_end = (void *)bootinfo.esym;
434 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
435 #else
436 kernend = (vaddr_t)round_page((vaddr_t)_end);
437 #endif
438
439 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
440 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
441
442 /*
443 * Find out how much memory is available, by looking at
444 * the memory cluster descriptors. This also tries to do
445 * its best to detect things things that have never been seen
446 * before...
447 */
448 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
449
450 /* MDDT SANITY CHECKING */
451 mddtweird = 0;
452 if (mddtp->mddt_cluster_cnt < 2) {
453 mddtweird = 1;
454 printf("WARNING: weird number of mem clusters: %lu\n",
455 mddtp->mddt_cluster_cnt);
456 }
457
458 #if 0
459 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
460 #endif
461
462 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
463 memc = &mddtp->mddt_clusters[i];
464 #if 0
465 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
466 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
467 #endif
468 totalphysmem += memc->mddt_pg_cnt;
469 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
470 mem_clusters[mem_cluster_cnt].start =
471 ptoa(memc->mddt_pfn);
472 mem_clusters[mem_cluster_cnt].size =
473 ptoa(memc->mddt_pg_cnt);
474 if (memc->mddt_usage & MDDT_mbz ||
475 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
476 memc->mddt_usage & MDDT_PALCODE)
477 mem_clusters[mem_cluster_cnt].size |=
478 PROT_READ;
479 else
480 mem_clusters[mem_cluster_cnt].size |=
481 PROT_READ | PROT_WRITE | PROT_EXEC;
482 mem_cluster_cnt++;
483 }
484
485 if (memc->mddt_usage & MDDT_mbz) {
486 mddtweird = 1;
487 printf("WARNING: mem cluster %d has weird "
488 "usage 0x%lx\n", i, memc->mddt_usage);
489 unknownmem += memc->mddt_pg_cnt;
490 continue;
491 }
492 if (memc->mddt_usage & MDDT_NONVOLATILE) {
493 /* XXX should handle these... */
494 printf("WARNING: skipping non-volatile mem "
495 "cluster %d\n", i);
496 unusedmem += memc->mddt_pg_cnt;
497 continue;
498 }
499 if (memc->mddt_usage & MDDT_PALCODE) {
500 resvmem += memc->mddt_pg_cnt;
501 continue;
502 }
503
504 /*
505 * We have a memory cluster available for system
506 * software use. We must determine if this cluster
507 * holds the kernel.
508 */
509 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
510 /*
511 * XXX If the kernel uses the PROM console, we only use the
512 * XXX memory after the kernel in the first system segment,
513 * XXX to avoid clobbering prom mapping, data, etc.
514 */
515 if (!pmap_uses_prom_console() || physmem == 0) {
516 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
517 physmem += memc->mddt_pg_cnt;
518 pfn0 = memc->mddt_pfn;
519 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
520 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
521 /*
522 * Must compute the location of the kernel
523 * within the segment.
524 */
525 #if 0
526 printf("Cluster %d contains kernel\n", i);
527 #endif
528 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
529 if (!pmap_uses_prom_console()) {
530 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
531 if (pfn0 < kernstartpfn) {
532 /*
533 * There is a chunk before the kernel.
534 */
535 #if 0
536 printf("Loading chunk before kernel: "
537 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
538 #endif
539 uvm_page_physload(pfn0, kernstartpfn,
540 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
541 }
542 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
543 }
544 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
545 if (kernendpfn < pfn1) {
546 /*
547 * There is a chunk after the kernel.
548 */
549 #if 0
550 printf("Loading chunk after kernel: "
551 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
552 #endif
553 uvm_page_physload(kernendpfn, pfn1,
554 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
555 }
556 } else {
557 /*
558 * Just load this cluster as one chunk.
559 */
560 #if 0
561 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
562 pfn0, pfn1);
563 #endif
564 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
565 VM_FREELIST_DEFAULT);
566 }
567 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
568 }
569 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
570 }
571
572 /*
573 * Dump out the MDDT if it looks odd...
574 */
575 if (mddtweird) {
576 printf("\n");
577 printf("complete memory cluster information:\n");
578 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
579 printf("mddt %d:\n", i);
580 printf("\tpfn %lx\n",
581 mddtp->mddt_clusters[i].mddt_pfn);
582 printf("\tcnt %lx\n",
583 mddtp->mddt_clusters[i].mddt_pg_cnt);
584 printf("\ttest %lx\n",
585 mddtp->mddt_clusters[i].mddt_pg_test);
586 printf("\tbva %lx\n",
587 mddtp->mddt_clusters[i].mddt_v_bitaddr);
588 printf("\tbpa %lx\n",
589 mddtp->mddt_clusters[i].mddt_p_bitaddr);
590 printf("\tbcksum %lx\n",
591 mddtp->mddt_clusters[i].mddt_bit_cksum);
592 printf("\tusage %lx\n",
593 mddtp->mddt_clusters[i].mddt_usage);
594 }
595 printf("\n");
596 }
597
598 if (totalphysmem == 0)
599 panic("can't happen: system seems to have no memory!");
600 maxmem = physmem;
601 #if 0
602 printf("totalphysmem = %d\n", totalphysmem);
603 printf("physmem = %d\n", physmem);
604 printf("resvmem = %d\n", resvmem);
605 printf("unusedmem = %d\n", unusedmem);
606 printf("unknownmem = %d\n", unknownmem);
607 #endif
608
609 /*
610 * Initialize error message buffer (at end of core).
611 */
612 {
613 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
614 vsize_t reqsz = sz;
615
616 vps = &vm_physmem[vm_nphysseg - 1];
617
618 /* shrink so that it'll fit in the last segment */
619 if ((vps->avail_end - vps->avail_start) < atop(sz))
620 sz = ptoa(vps->avail_end - vps->avail_start);
621
622 vps->end -= atop(sz);
623 vps->avail_end -= atop(sz);
624 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
625 initmsgbuf(msgbufaddr, sz);
626
627 /* Remove the last segment if it now has no pages. */
628 if (vps->start == vps->end)
629 vm_nphysseg--;
630
631 /* warn if the message buffer had to be shrunk */
632 if (sz != reqsz)
633 printf("WARNING: %ld bytes not available for msgbuf "
634 "in last cluster (%ld used)\n", reqsz, sz);
635
636 }
637
638 /*
639 * NOTE: It is safe to use uvm_pageboot_alloc() before
640 * pmap_bootstrap() because our pmap_virtual_space()
641 * returns compile-time constants.
642 */
643
644 /*
645 * Init mapping for u page(s) for proc 0
646 */
647 lwp0.l_addr = proc0paddr =
648 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
649
650 /*
651 * Allocate space for system data structures. These data structures
652 * are allocated here instead of cpu_startup() because physical
653 * memory is directly addressable. We don't have to map these into
654 * virtual address space.
655 */
656 size = (vsize_t)allocsys(NULL, NULL);
657 v = (caddr_t)uvm_pageboot_alloc(size);
658 if ((allocsys(v, NULL) - v) != size)
659 panic("alpha_init: table size inconsistency");
660
661 /*
662 * Initialize the virtual memory system, and set the
663 * page table base register in proc 0's PCB.
664 */
665 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
666 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
667
668 /*
669 * Initialize the rest of proc 0's PCB, and cache its physical
670 * address.
671 */
672 lwp0.l_md.md_pcbpaddr =
673 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
674
675 /*
676 * Set the kernel sp, reserving space for an (empty) trapframe,
677 * and make proc0's trapframe pointer point to it for sanity.
678 */
679 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
680 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
681 lwp0.l_md.md_tf =
682 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
683 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
684
685 /*
686 * Initialize the primary CPU's idle PCB to proc0's. In a
687 * MULTIPROCESSOR configuration, each CPU will later get
688 * its own idle PCB when autoconfiguration runs.
689 */
690 ci->ci_idle_pcb = &proc0paddr->u_pcb;
691 ci->ci_idle_pcb_paddr = (u_long)lwp0.l_md.md_pcbpaddr;
692
693 /* Indicate that proc0 has a CPU. */
694 lwp0.l_cpu = ci;
695
696 /*
697 * Look at arguments passed to us and compute boothowto.
698 */
699
700 boothowto = RB_SINGLE;
701 #ifdef KADB
702 boothowto |= RB_KDB;
703 #endif
704 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
705 /*
706 * Note that we'd really like to differentiate case here,
707 * but the Alpha AXP Architecture Reference Manual
708 * says that we shouldn't.
709 */
710 switch (*p) {
711 case 'a': /* autoboot */
712 case 'A':
713 boothowto &= ~RB_SINGLE;
714 break;
715
716 #ifdef DEBUG
717 case 'c': /* crash dump immediately after autoconfig */
718 case 'C':
719 boothowto |= RB_DUMP;
720 break;
721 #endif
722
723 #if defined(KGDB) || defined(DDB)
724 case 'd': /* break into the kernel debugger ASAP */
725 case 'D':
726 boothowto |= RB_KDB;
727 break;
728 #endif
729
730 case 'h': /* always halt, never reboot */
731 case 'H':
732 boothowto |= RB_HALT;
733 break;
734
735 #if 0
736 case 'm': /* mini root present in memory */
737 case 'M':
738 boothowto |= RB_MINIROOT;
739 break;
740 #endif
741
742 case 'n': /* askname */
743 case 'N':
744 boothowto |= RB_ASKNAME;
745 break;
746
747 case 's': /* single-user (default, supported for sanity) */
748 case 'S':
749 boothowto |= RB_SINGLE;
750 break;
751
752 case 'q': /* quiet boot */
753 case 'Q':
754 boothowto |= AB_QUIET;
755 break;
756
757 case 'v': /* verbose boot */
758 case 'V':
759 boothowto |= AB_VERBOSE;
760 break;
761
762 case '-':
763 /*
764 * Just ignore this. It's not required, but it's
765 * common for it to be passed regardless.
766 */
767 break;
768
769 default:
770 printf("Unrecognized boot flag '%c'.\n", *p);
771 break;
772 }
773 }
774
775
776 /*
777 * Figure out the number of cpus in the box, from RPB fields.
778 * Really. We mean it.
779 */
780 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
781 struct pcs *pcsp;
782
783 pcsp = LOCATE_PCS(hwrpb, i);
784 if ((pcsp->pcs_flags & PCS_PP) != 0)
785 ncpus++;
786 }
787
788 /*
789 * Initialize debuggers, and break into them if appropriate.
790 */
791 #ifdef DDB
792 ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
793 ksym_start, ksym_end);
794 #endif
795
796 if (boothowto & RB_KDB) {
797 #if defined(KGDB)
798 kgdb_debug_init = 1;
799 kgdb_connect(1);
800 #elif defined(DDB)
801 Debugger();
802 #endif
803 }
804
805 /*
806 * Figure out our clock frequency, from RPB fields.
807 */
808 hz = hwrpb->rpb_intr_freq >> 12;
809 if (!(60 <= hz && hz <= 10240)) {
810 hz = 1024;
811 #ifdef DIAGNOSTIC
812 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
813 hwrpb->rpb_intr_freq, hz);
814 #endif
815 }
816 }
817
818 void
819 consinit()
820 {
821
822 /*
823 * Everything related to console initialization is done
824 * in alpha_init().
825 */
826 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
827 printf("consinit: %susing prom console\n",
828 pmap_uses_prom_console() ? "" : "not ");
829 #endif
830 }
831
832 #include "pckbc.h"
833 #include "pckbd.h"
834 #if (NPCKBC > 0) && (NPCKBD == 0)
835
836 #include <dev/ic/pckbcvar.h>
837
838 /*
839 * This is called by the pbkbc driver if no pckbd is configured.
840 * On the i386, it is used to glue in the old, deprecated console
841 * code. On the Alpha, it does nothing.
842 */
843 int
844 pckbc_machdep_cnattach(kbctag, kbcslot)
845 pckbc_tag_t kbctag;
846 pckbc_slot_t kbcslot;
847 {
848
849 return (ENXIO);
850 }
851 #endif /* NPCKBC > 0 && NPCKBD == 0 */
852
853 void
854 cpu_startup()
855 {
856 u_int i, base, residual;
857 vaddr_t minaddr, maxaddr;
858 vsize_t size;
859 char pbuf[9];
860 #if defined(DEBUG)
861 extern int pmapdebug;
862 int opmapdebug = pmapdebug;
863
864 pmapdebug = 0;
865 #endif
866
867 /*
868 * Good {morning,afternoon,evening,night}.
869 */
870 printf(version);
871 identifycpu();
872 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
873 printf("total memory = %s\n", pbuf);
874 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
875 printf("(%s reserved for PROM, ", pbuf);
876 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
877 printf("%s used by NetBSD)\n", pbuf);
878 if (unusedmem) {
879 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
880 printf("WARNING: unused memory = %s\n", pbuf);
881 }
882 if (unknownmem) {
883 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
884 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
885 }
886
887 /*
888 * Allocate virtual address space for file I/O buffers.
889 * Note they are different than the array of headers, 'buf',
890 * and usually occupy more virtual memory than physical.
891 */
892 size = MAXBSIZE * nbuf;
893 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
894 NULL, UVM_UNKNOWN_OFFSET, 0,
895 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
896 UVM_ADV_NORMAL, 0)) != 0)
897 panic("startup: cannot allocate VM for buffers");
898 base = bufpages / nbuf;
899 residual = bufpages % nbuf;
900 for (i = 0; i < nbuf; i++) {
901 vsize_t curbufsize;
902 vaddr_t curbuf;
903 struct vm_page *pg;
904
905 /*
906 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
907 * that MAXBSIZE space, we allocate and map (base+1) pages
908 * for the first "residual" buffers, and then we allocate
909 * "base" pages for the rest.
910 */
911 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
912 curbufsize = PAGE_SIZE * ((i < residual) ? (base+1) : base);
913
914 while (curbufsize) {
915 pg = uvm_pagealloc(NULL, 0, NULL, 0);
916 if (pg == NULL)
917 panic("cpu_startup: not enough memory for "
918 "buffer cache");
919 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
920 VM_PROT_READ|VM_PROT_WRITE);
921 curbuf += PAGE_SIZE;
922 curbufsize -= PAGE_SIZE;
923 }
924 }
925 pmap_update(pmap_kernel());
926
927 /*
928 * Allocate a submap for exec arguments. This map effectively
929 * limits the number of processes exec'ing at any time.
930 */
931 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
932 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
933
934 /*
935 * Allocate a submap for physio
936 */
937 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
938 VM_PHYS_SIZE, 0, FALSE, NULL);
939
940 /*
941 * No need to allocate an mbuf cluster submap. Mbuf clusters
942 * are allocated via the pool allocator, and we use K0SEG to
943 * map those pages.
944 */
945
946 #if defined(DEBUG)
947 pmapdebug = opmapdebug;
948 #endif
949 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
950 printf("avail memory = %s\n", pbuf);
951 #if 0
952 {
953 extern u_long pmap_pages_stolen;
954
955 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
956 printf("stolen memory for VM structures = %s\n", pbuf);
957 }
958 #endif
959 format_bytes(pbuf, sizeof(pbuf), bufpages * PAGE_SIZE);
960 printf("using %u buffers containing %s of memory\n", nbuf, pbuf);
961
962 /*
963 * Set up buffers, so they can be used to read disk labels.
964 */
965 bufinit();
966
967 /*
968 * Set up the HWPCB so that it's safe to configure secondary
969 * CPUs.
970 */
971 hwrpb_primary_init();
972 }
973
974 /*
975 * Retrieve the platform name from the DSR.
976 */
977 const char *
978 alpha_dsr_sysname()
979 {
980 struct dsrdb *dsr;
981 const char *sysname;
982
983 /*
984 * DSR does not exist on early HWRPB versions.
985 */
986 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
987 return (NULL);
988
989 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
990 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
991 sizeof(u_int64_t)));
992 return (sysname);
993 }
994
995 /*
996 * Lookup the system specified system variation in the provided table,
997 * returning the model string on match.
998 */
999 const char *
1000 alpha_variation_name(variation, avtp)
1001 u_int64_t variation;
1002 const struct alpha_variation_table *avtp;
1003 {
1004 int i;
1005
1006 for (i = 0; avtp[i].avt_model != NULL; i++)
1007 if (avtp[i].avt_variation == variation)
1008 return (avtp[i].avt_model);
1009 return (NULL);
1010 }
1011
1012 /*
1013 * Generate a default platform name based for unknown system variations.
1014 */
1015 const char *
1016 alpha_unknown_sysname()
1017 {
1018 static char s[128]; /* safe size */
1019
1020 sprintf(s, "%s family, unknown model variation 0x%lx",
1021 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1022 return ((const char *)s);
1023 }
1024
1025 void
1026 identifycpu()
1027 {
1028 char *s;
1029 int i;
1030
1031 /*
1032 * print out CPU identification information.
1033 */
1034 printf("%s", cpu_model);
1035 for(s = cpu_model; *s; ++s)
1036 if(strncasecmp(s, "MHz", 3) == 0)
1037 goto skipMHz;
1038 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1039 skipMHz:
1040 printf(", s/n ");
1041 for (i = 0; i < 10; i++)
1042 printf("%c", hwrpb->rpb_ssn[i]);
1043 printf("\n");
1044 printf("%ld byte page size, %d processor%s.\n",
1045 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1046 #if 0
1047 /* this isn't defined for any systems that we run on? */
1048 printf("serial number 0x%lx 0x%lx\n",
1049 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1050
1051 /* and these aren't particularly useful! */
1052 printf("variation: 0x%lx, revision 0x%lx\n",
1053 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1054 #endif
1055 }
1056
1057 int waittime = -1;
1058 struct pcb dumppcb;
1059
1060 void
1061 cpu_reboot(howto, bootstr)
1062 int howto;
1063 char *bootstr;
1064 {
1065 #if defined(MULTIPROCESSOR)
1066 u_long cpu_id = cpu_number();
1067 u_long wait_mask = (1UL << cpu_id) |
1068 (1UL << hwrpb->rpb_primary_cpu_id);
1069 int i;
1070 #endif
1071
1072 /* If "always halt" was specified as a boot flag, obey. */
1073 if ((boothowto & RB_HALT) != 0)
1074 howto |= RB_HALT;
1075
1076 boothowto = howto;
1077
1078 /* If system is cold, just halt. */
1079 if (cold) {
1080 boothowto |= RB_HALT;
1081 goto haltsys;
1082 }
1083
1084 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1085 waittime = 0;
1086 vfs_shutdown();
1087 /*
1088 * If we've been adjusting the clock, the todr
1089 * will be out of synch; adjust it now.
1090 */
1091 resettodr();
1092 }
1093
1094 /* Disable interrupts. */
1095 splhigh();
1096
1097 #if defined(MULTIPROCESSOR)
1098 /*
1099 * Halt all other CPUs. If we're not the primary, the
1100 * primary will spin, waiting for us to halt.
1101 */
1102 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1103
1104 for (i = 0; i < 10000; i++) {
1105 alpha_mb();
1106 if (cpus_running == wait_mask)
1107 break;
1108 delay(1000);
1109 }
1110 alpha_mb();
1111 if (cpus_running != wait_mask)
1112 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1113 cpus_running);
1114 #endif /* MULTIPROCESSOR */
1115
1116 /* If rebooting and a dump is requested do it. */
1117 #if 0
1118 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1119 #else
1120 if (boothowto & RB_DUMP)
1121 #endif
1122 dumpsys();
1123
1124 haltsys:
1125
1126 /* run any shutdown hooks */
1127 doshutdownhooks();
1128
1129 #ifdef BOOTKEY
1130 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1131 cnpollc(1); /* for proper keyboard command handling */
1132 cngetc();
1133 cnpollc(0);
1134 printf("\n");
1135 #endif
1136
1137 /* Finally, powerdown/halt/reboot the system. */
1138 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1139 platform.powerdown != NULL) {
1140 (*platform.powerdown)();
1141 printf("WARNING: powerdown failed!\n");
1142 }
1143 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1144 #if defined(MULTIPROCESSOR)
1145 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1146 cpu_halt();
1147 else
1148 #endif
1149 prom_halt(boothowto & RB_HALT);
1150 /*NOTREACHED*/
1151 }
1152
1153 /*
1154 * These variables are needed by /sbin/savecore
1155 */
1156 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1157 int dumpsize = 0; /* pages */
1158 long dumplo = 0; /* blocks */
1159
1160 /*
1161 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1162 */
1163 int
1164 cpu_dumpsize()
1165 {
1166 int size;
1167
1168 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1169 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1170 if (roundup(size, dbtob(1)) != dbtob(1))
1171 return -1;
1172
1173 return (1);
1174 }
1175
1176 /*
1177 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1178 */
1179 u_long
1180 cpu_dump_mempagecnt()
1181 {
1182 u_long i, n;
1183
1184 n = 0;
1185 for (i = 0; i < mem_cluster_cnt; i++)
1186 n += atop(mem_clusters[i].size);
1187 return (n);
1188 }
1189
1190 /*
1191 * cpu_dump: dump machine-dependent kernel core dump headers.
1192 */
1193 int
1194 cpu_dump()
1195 {
1196 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1197 char buf[dbtob(1)];
1198 kcore_seg_t *segp;
1199 cpu_kcore_hdr_t *cpuhdrp;
1200 phys_ram_seg_t *memsegp;
1201 const struct bdevsw *bdev;
1202 int i;
1203
1204 bdev = bdevsw_lookup(dumpdev);
1205 if (bdev == NULL)
1206 return (ENXIO);
1207 dump = bdev->d_dump;
1208
1209 memset(buf, 0, sizeof buf);
1210 segp = (kcore_seg_t *)buf;
1211 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1212 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1213 ALIGN(sizeof(*cpuhdrp))];
1214
1215 /*
1216 * Generate a segment header.
1217 */
1218 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1219 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1220
1221 /*
1222 * Add the machine-dependent header info.
1223 */
1224 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1225 cpuhdrp->page_size = PAGE_SIZE;
1226 cpuhdrp->nmemsegs = mem_cluster_cnt;
1227
1228 /*
1229 * Fill in the memory segment descriptors.
1230 */
1231 for (i = 0; i < mem_cluster_cnt; i++) {
1232 memsegp[i].start = mem_clusters[i].start;
1233 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1234 }
1235
1236 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1237 }
1238
1239 /*
1240 * This is called by main to set dumplo and dumpsize.
1241 * Dumps always skip the first PAGE_SIZE of disk space
1242 * in case there might be a disk label stored there.
1243 * If there is extra space, put dump at the end to
1244 * reduce the chance that swapping trashes it.
1245 */
1246 void
1247 cpu_dumpconf()
1248 {
1249 const struct bdevsw *bdev;
1250 int nblks, dumpblks; /* size of dump area */
1251
1252 if (dumpdev == NODEV)
1253 goto bad;
1254 bdev = bdevsw_lookup(dumpdev);
1255 if (bdev == NULL)
1256 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1257 if (bdev->d_psize == NULL)
1258 goto bad;
1259 nblks = (*bdev->d_psize)(dumpdev);
1260 if (nblks <= ctod(1))
1261 goto bad;
1262
1263 dumpblks = cpu_dumpsize();
1264 if (dumpblks < 0)
1265 goto bad;
1266 dumpblks += ctod(cpu_dump_mempagecnt());
1267
1268 /* If dump won't fit (incl. room for possible label), punt. */
1269 if (dumpblks > (nblks - ctod(1)))
1270 goto bad;
1271
1272 /* Put dump at end of partition */
1273 dumplo = nblks - dumpblks;
1274
1275 /* dumpsize is in page units, and doesn't include headers. */
1276 dumpsize = cpu_dump_mempagecnt();
1277 return;
1278
1279 bad:
1280 dumpsize = 0;
1281 return;
1282 }
1283
1284 /*
1285 * Dump the kernel's image to the swap partition.
1286 */
1287 #define BYTES_PER_DUMP PAGE_SIZE
1288
1289 void
1290 dumpsys()
1291 {
1292 const struct bdevsw *bdev;
1293 u_long totalbytesleft, bytes, i, n, memcl;
1294 u_long maddr;
1295 int psize;
1296 daddr_t blkno;
1297 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1298 int error;
1299
1300 /* Save registers. */
1301 savectx(&dumppcb);
1302
1303 if (dumpdev == NODEV)
1304 return;
1305 bdev = bdevsw_lookup(dumpdev);
1306 if (bdev == NULL || bdev->d_psize == NULL)
1307 return;
1308
1309 /*
1310 * For dumps during autoconfiguration,
1311 * if dump device has already configured...
1312 */
1313 if (dumpsize == 0)
1314 cpu_dumpconf();
1315 if (dumplo <= 0) {
1316 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1317 minor(dumpdev));
1318 return;
1319 }
1320 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1321 minor(dumpdev), dumplo);
1322
1323 psize = (*bdev->d_psize)(dumpdev);
1324 printf("dump ");
1325 if (psize == -1) {
1326 printf("area unavailable\n");
1327 return;
1328 }
1329
1330 /* XXX should purge all outstanding keystrokes. */
1331
1332 if ((error = cpu_dump()) != 0)
1333 goto err;
1334
1335 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1336 blkno = dumplo + cpu_dumpsize();
1337 dump = bdev->d_dump;
1338 error = 0;
1339
1340 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1341 maddr = mem_clusters[memcl].start;
1342 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1343
1344 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1345
1346 /* Print out how many MBs we to go. */
1347 if ((totalbytesleft % (1024*1024)) == 0)
1348 printf("%ld ", totalbytesleft / (1024 * 1024));
1349
1350 /* Limit size for next transfer. */
1351 n = bytes - i;
1352 if (n > BYTES_PER_DUMP)
1353 n = BYTES_PER_DUMP;
1354
1355 error = (*dump)(dumpdev, blkno,
1356 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1357 if (error)
1358 goto err;
1359 maddr += n;
1360 blkno += btodb(n); /* XXX? */
1361
1362 /* XXX should look for keystrokes, to cancel. */
1363 }
1364 }
1365
1366 err:
1367 switch (error) {
1368
1369 case ENXIO:
1370 printf("device bad\n");
1371 break;
1372
1373 case EFAULT:
1374 printf("device not ready\n");
1375 break;
1376
1377 case EINVAL:
1378 printf("area improper\n");
1379 break;
1380
1381 case EIO:
1382 printf("i/o error\n");
1383 break;
1384
1385 case EINTR:
1386 printf("aborted from console\n");
1387 break;
1388
1389 case 0:
1390 printf("succeeded\n");
1391 break;
1392
1393 default:
1394 printf("error %d\n", error);
1395 break;
1396 }
1397 printf("\n\n");
1398 delay(1000);
1399 }
1400
1401 void
1402 frametoreg(framep, regp)
1403 const struct trapframe *framep;
1404 struct reg *regp;
1405 {
1406
1407 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1408 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1409 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1410 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1411 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1412 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1413 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1414 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1415 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1416 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1417 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1418 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1419 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1420 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1421 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1422 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1423 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1424 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1425 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1426 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1427 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1428 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1429 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1430 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1431 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1432 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1433 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1434 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1435 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1436 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1437 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1438 regp->r_regs[R_ZERO] = 0;
1439 }
1440
1441 void
1442 regtoframe(regp, framep)
1443 const struct reg *regp;
1444 struct trapframe *framep;
1445 {
1446
1447 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1448 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1449 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1450 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1451 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1452 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1453 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1454 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1455 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1456 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1457 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1458 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1459 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1460 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1461 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1462 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1463 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1464 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1465 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1466 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1467 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1468 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1469 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1470 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1471 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1472 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1473 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1474 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1475 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1476 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1477 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1478 /* ??? = regp->r_regs[R_ZERO]; */
1479 }
1480
1481 void
1482 printregs(regp)
1483 struct reg *regp;
1484 {
1485 int i;
1486
1487 for (i = 0; i < 32; i++)
1488 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1489 i & 1 ? "\n" : "\t");
1490 }
1491
1492 void
1493 regdump(framep)
1494 struct trapframe *framep;
1495 {
1496 struct reg reg;
1497
1498 frametoreg(framep, ®);
1499 reg.r_regs[R_SP] = alpha_pal_rdusp();
1500
1501 printf("REGISTERS:\n");
1502 printregs(®);
1503 }
1504
1505
1506 /*
1507 * Send an interrupt to process.
1508 */
1509 void
1510 sendsig(sig, mask, code)
1511 int sig;
1512 sigset_t *mask;
1513 u_long code;
1514 {
1515 struct lwp *l = curlwp;
1516 struct proc *p = l->l_proc;
1517 struct sigacts *ps = p->p_sigacts;
1518 struct sigcontext *scp, ksc;
1519 struct trapframe *frame;
1520 int onstack, fsize, rndfsize;
1521 sig_t catcher = SIGACTION(p, sig).sa_handler;
1522
1523 frame = l->l_md.md_tf;
1524
1525 /* Do we need to jump onto the signal stack? */
1526 onstack =
1527 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1528 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1529
1530 /* Allocate space for the signal handler context. */
1531 fsize = sizeof(ksc);
1532 rndfsize = ((fsize + 15) / 16) * 16;
1533
1534 if (onstack)
1535 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1536 p->p_sigctx.ps_sigstk.ss_size);
1537 else
1538 scp = (struct sigcontext *)(alpha_pal_rdusp());
1539 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1540
1541 #ifdef DEBUG
1542 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1543 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1544 sig, &onstack, scp);
1545 #endif
1546
1547 /* Build stack frame for signal trampoline. */
1548 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1549 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1550
1551 /* Save register context. */
1552 frametoreg(frame, (struct reg *)ksc.sc_regs);
1553 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1554 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1555
1556 /* save the floating-point state, if necessary, then copy it. */
1557 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1558 fpusave_proc(l, 1);
1559 ksc.sc_ownedfp = l->l_md.md_flags & MDP_FPUSED;
1560 memcpy((struct fpreg *)ksc.sc_fpregs, &l->l_addr->u_pcb.pcb_fp,
1561 sizeof(struct fpreg));
1562 ksc.sc_fp_control = alpha_read_fp_c(l);
1563 memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */
1564 memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */
1565
1566 /* Save signal stack. */
1567 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1568
1569 /* Save signal mask. */
1570 ksc.sc_mask = *mask;
1571
1572 #ifdef COMPAT_13
1573 /*
1574 * XXX We always have to save an old style signal mask because
1575 * XXX we might be delivering a signal to a process which will
1576 * XXX escape from the signal in a non-standard way and invoke
1577 * XXX sigreturn() directly.
1578 */
1579 {
1580 /* Note: it's a long in the stack frame. */
1581 sigset13_t mask13;
1582
1583 native_sigset_to_sigset13(mask, &mask13);
1584 ksc.__sc_mask13 = mask13;
1585 }
1586 #endif
1587
1588 #ifdef COMPAT_OSF1
1589 /*
1590 * XXX Create an OSF/1-style sigcontext and associated goo.
1591 */
1592 #endif
1593
1594 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1595 /*
1596 * Process has trashed its stack; give it an illegal
1597 * instruction to halt it in its tracks.
1598 */
1599 #ifdef DEBUG
1600 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1601 printf("sendsig(%d): copyout failed on sig %d\n",
1602 p->p_pid, sig);
1603 #endif
1604 sigexit(l, SIGILL);
1605 /* NOTREACHED */
1606 }
1607 #ifdef DEBUG
1608 if (sigdebug & SDB_FOLLOW)
1609 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1610 scp, code);
1611 #endif
1612
1613 /*
1614 * Set up the registers to directly invoke the signal handler. The
1615 * signal trampoline is then used to return from the signal. Note
1616 * the trampoline version numbers are coordinated with machine-
1617 * dependent code in libc.
1618 */
1619 switch (ps->sa_sigdesc[sig].sd_vers) {
1620 #if 1 /* COMPAT_16 */
1621 case 0: /* legacy on-stack sigtramp */
1622 frame->tf_regs[FRAME_RA] = (u_int64_t)p->p_sigctx.ps_sigcode;
1623 break;
1624 #endif /* COMPAT_16 */
1625
1626 case 1:
1627 frame->tf_regs[FRAME_RA] =
1628 (u_int64_t)ps->sa_sigdesc[sig].sd_tramp;
1629 break;
1630
1631 default:
1632 /* Don't know what trampoline version; kill it. */
1633 sigexit(l, SIGILL);
1634 }
1635 frame->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1636 frame->tf_regs[FRAME_A0] = sig;
1637 frame->tf_regs[FRAME_A1] = code;
1638 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1639 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1640 alpha_pal_wrusp((unsigned long)scp);
1641
1642 /* Remember that we're now on the signal stack. */
1643 if (onstack)
1644 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1645
1646 #ifdef DEBUG
1647 if (sigdebug & SDB_FOLLOW)
1648 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1649 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1650 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1651 printf("sendsig(%d): sig %d returns\n",
1652 p->p_pid, sig);
1653 #endif
1654 }
1655
1656
1657 void
1658 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1659 {
1660 struct trapframe *tf;
1661
1662 tf = l->l_md.md_tf;
1663
1664 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1665 tf->tf_regs[FRAME_RA] = 0;
1666 tf->tf_regs[FRAME_A0] = type;
1667 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1668 tf->tf_regs[FRAME_A2] = nevents;
1669 tf->tf_regs[FRAME_A3] = ninterrupted;
1670 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1671 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1672 alpha_pal_wrusp((unsigned long)sp);
1673 }
1674
1675 /*
1676 * System call to cleanup state after a signal
1677 * has been taken. Reset signal mask and
1678 * stack state from context left by sendsig (above).
1679 * Return to previous pc and psl as specified by
1680 * context left by sendsig. Check carefully to
1681 * make sure that the user has not modified the
1682 * psl to gain improper privileges or to cause
1683 * a machine fault.
1684 */
1685 /* ARGSUSED */
1686 int
1687 sys___sigreturn14(l, v, retval)
1688 struct lwp *l;
1689 void *v;
1690 register_t *retval;
1691 {
1692 struct sys___sigreturn14_args /* {
1693 syscallarg(struct sigcontext *) sigcntxp;
1694 } */ *uap = v;
1695 struct sigcontext *scp, ksc;
1696 struct proc *p = l->l_proc;
1697
1698 /*
1699 * The trampoline code hands us the context.
1700 * It is unsafe to keep track of it ourselves, in the event that a
1701 * program jumps out of a signal handler.
1702 */
1703 scp = SCARG(uap, sigcntxp);
1704 #ifdef DEBUG
1705 if (sigdebug & SDB_FOLLOW)
1706 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1707 #endif
1708 if (ALIGN(scp) != (u_int64_t)scp)
1709 return (EINVAL);
1710
1711 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1712 return (EFAULT);
1713
1714 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1715 return (EINVAL);
1716
1717 /* Restore register context. */
1718 l->l_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1719 l->l_md.md_tf->tf_regs[FRAME_PS] =
1720 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1721
1722 regtoframe((struct reg *)ksc.sc_regs, l->l_md.md_tf);
1723 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1724
1725 /* XXX ksc.sc_ownedfp ? */
1726 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1727 fpusave_proc(l, 0);
1728 memcpy(&l->l_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1729 sizeof(struct fpreg));
1730 l->l_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1731 l->l_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1732
1733 /* Restore signal stack. */
1734 if (ksc.sc_onstack & SS_ONSTACK)
1735 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1736 else
1737 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1738
1739 /* Restore signal mask. */
1740 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1741
1742 #ifdef DEBUG
1743 if (sigdebug & SDB_FOLLOW)
1744 printf("sigreturn(%d): returns\n", p->p_pid);
1745 #endif
1746 return (EJUSTRETURN);
1747 }
1748
1749 /*
1750 * machine dependent system variables.
1751 */
1752 int
1753 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1754 int *name;
1755 u_int namelen;
1756 void *oldp;
1757 size_t *oldlenp;
1758 void *newp;
1759 size_t newlen;
1760 struct proc *p;
1761 {
1762 dev_t consdev;
1763
1764 /* all sysctl names at this level are terminal */
1765 if (namelen != 1)
1766 return (ENOTDIR); /* overloaded */
1767
1768 switch (name[0]) {
1769 case CPU_CONSDEV:
1770 if (cn_tab != NULL)
1771 consdev = cn_tab->cn_dev;
1772 else
1773 consdev = NODEV;
1774 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1775 sizeof consdev));
1776
1777 case CPU_ROOT_DEVICE:
1778 return (sysctl_rdstring(oldp, oldlenp, newp,
1779 root_device->dv_xname));
1780
1781 case CPU_UNALIGNED_PRINT:
1782 return (sysctl_int(oldp, oldlenp, newp, newlen,
1783 &alpha_unaligned_print));
1784
1785 case CPU_UNALIGNED_FIX:
1786 return (sysctl_int(oldp, oldlenp, newp, newlen,
1787 &alpha_unaligned_fix));
1788
1789 case CPU_UNALIGNED_SIGBUS:
1790 return (sysctl_int(oldp, oldlenp, newp, newlen,
1791 &alpha_unaligned_sigbus));
1792
1793 case CPU_BOOTED_KERNEL:
1794 return (sysctl_rdstring(oldp, oldlenp, newp,
1795 bootinfo.booted_kernel));
1796
1797 case CPU_FP_SYNC_COMPLETE:
1798 return (sysctl_int(oldp, oldlenp, newp, newlen,
1799 &alpha_fp_sync_complete));
1800
1801 default:
1802 return (EOPNOTSUPP);
1803 }
1804 /* NOTREACHED */
1805 }
1806
1807 /*
1808 * Set registers on exec.
1809 */
1810 void
1811 setregs(l, pack, stack)
1812 register struct lwp *l;
1813 struct exec_package *pack;
1814 u_long stack;
1815 {
1816 struct trapframe *tfp = l->l_md.md_tf;
1817 #ifdef DEBUG
1818 int i;
1819 #endif
1820
1821 #ifdef DEBUG
1822 /*
1823 * Crash and dump, if the user requested it.
1824 */
1825 if (boothowto & RB_DUMP)
1826 panic("crash requested by boot flags");
1827 #endif
1828
1829 #ifdef DEBUG
1830 for (i = 0; i < FRAME_SIZE; i++)
1831 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1832 #else
1833 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1834 #endif
1835 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1836 alpha_pal_wrusp(stack);
1837 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1838 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1839
1840 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1841 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1842 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1843 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1844 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1845
1846 l->l_md.md_flags &= ~MDP_FPUSED;
1847 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1848 l->l_md.md_flags &= ~MDP_FP_C;
1849 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1850 }
1851 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1852 fpusave_proc(l, 0);
1853 }
1854
1855 /*
1856 * Release the FPU.
1857 */
1858 void
1859 fpusave_cpu(struct cpu_info *ci, int save)
1860 {
1861 struct lwp *l;
1862 #if defined(MULTIPROCESSOR)
1863 int s;
1864 #endif
1865
1866 KDASSERT(ci == curcpu());
1867
1868 #if defined(MULTIPROCESSOR)
1869 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1870 #endif
1871
1872 l = ci->ci_fpcurlwp;
1873 if (l == NULL)
1874 goto out;
1875
1876 if (save) {
1877 alpha_pal_wrfen(1);
1878 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1879 }
1880
1881 alpha_pal_wrfen(0);
1882
1883 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1884
1885 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1886 ci->ci_fpcurlwp = NULL;
1887
1888 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1889
1890 out:
1891 #if defined(MULTIPROCESSOR)
1892 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1893 #endif
1894 return;
1895 }
1896
1897 /*
1898 * Synchronize FP state for this process.
1899 */
1900 void
1901 fpusave_proc(struct lwp *l, int save)
1902 {
1903 struct cpu_info *ci = curcpu();
1904 struct cpu_info *oci;
1905 #if defined(MULTIPROCESSOR)
1906 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1907 int s, spincount;
1908 #endif
1909
1910 KDASSERT(l->l_addr != NULL);
1911 KDASSERT(l->l_flag & L_INMEM);
1912
1913 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1914
1915 oci = l->l_addr->u_pcb.pcb_fpcpu;
1916 if (oci == NULL) {
1917 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1918 return;
1919 }
1920
1921 #if defined(MULTIPROCESSOR)
1922 if (oci == ci) {
1923 KASSERT(ci->ci_fpcurlwp == l);
1924 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1925 fpusave_cpu(ci, save);
1926 return;
1927 }
1928
1929 KASSERT(oci->ci_fpcurlwp == l);
1930 alpha_send_ipi(oci->ci_cpuid, ipi);
1931 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1932
1933 spincount = 0;
1934 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1935 spincount++;
1936 delay(1000); /* XXX */
1937 if (spincount > 10000)
1938 panic("fpsave ipi didn't");
1939 }
1940 #else
1941 KASSERT(ci->ci_fpcurlwp == l);
1942 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1943 fpusave_cpu(ci, save);
1944 #endif /* MULTIPROCESSOR */
1945 }
1946
1947 /*
1948 * Wait "n" microseconds.
1949 */
1950 void
1951 delay(n)
1952 unsigned long n;
1953 {
1954 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1955
1956 if (n == 0)
1957 return;
1958
1959 pcc0 = alpha_rpcc() & 0xffffffffUL;
1960 cycles = 0;
1961 usec = 0;
1962
1963 while (usec <= n) {
1964 /*
1965 * Get the next CPU cycle count- assumes that we cannot
1966 * have had more than one 32 bit overflow.
1967 */
1968 pcc1 = alpha_rpcc() & 0xffffffffUL;
1969 if (pcc1 < pcc0)
1970 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1971 else
1972 curcycle = pcc1 - pcc0;
1973
1974 /*
1975 * We now have the number of processor cycles since we
1976 * last checked. Add the current cycle count to the
1977 * running total. If it's over cycles_per_usec, increment
1978 * the usec counter.
1979 */
1980 cycles += curcycle;
1981 while (cycles > cycles_per_usec) {
1982 usec++;
1983 cycles -= cycles_per_usec;
1984 }
1985 pcc0 = pcc1;
1986 }
1987 }
1988
1989 #ifdef EXEC_ECOFF
1990 void
1991 cpu_exec_ecoff_setregs(l, epp, stack)
1992 struct lwp *l;
1993 struct exec_package *epp;
1994 u_long stack;
1995 {
1996 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1997
1998 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1999 }
2000
2001 /*
2002 * cpu_exec_ecoff_hook():
2003 * cpu-dependent ECOFF format hook for execve().
2004 *
2005 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2006 *
2007 */
2008 int
2009 cpu_exec_ecoff_probe(p, epp)
2010 struct proc *p;
2011 struct exec_package *epp;
2012 {
2013 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2014 int error;
2015
2016 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2017 error = 0;
2018 else
2019 error = ENOEXEC;
2020
2021 return (error);
2022 }
2023 #endif /* EXEC_ECOFF */
2024
2025 int
2026 alpha_pa_access(pa)
2027 u_long pa;
2028 {
2029 int i;
2030
2031 for (i = 0; i < mem_cluster_cnt; i++) {
2032 if (pa < mem_clusters[i].start)
2033 continue;
2034 if ((pa - mem_clusters[i].start) >=
2035 (mem_clusters[i].size & ~PAGE_MASK))
2036 continue;
2037 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2038 }
2039
2040 /*
2041 * Address is not a memory address. If we're secure, disallow
2042 * access. Otherwise, grant read/write.
2043 */
2044 if (securelevel > 0)
2045 return (PROT_NONE);
2046 else
2047 return (PROT_READ | PROT_WRITE);
2048 }
2049
2050 /* XXX XXX BEGIN XXX XXX */
2051 paddr_t alpha_XXX_dmamap_or; /* XXX */
2052 /* XXX */
2053 paddr_t /* XXX */
2054 alpha_XXX_dmamap(v) /* XXX */
2055 vaddr_t v; /* XXX */
2056 { /* XXX */
2057 /* XXX */
2058 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2059 } /* XXX */
2060 /* XXX XXX END XXX XXX */
2061
2062 char *
2063 dot_conv(x)
2064 unsigned long x;
2065 {
2066 int i;
2067 char *xc;
2068 static int next;
2069 static char space[2][20];
2070
2071 xc = space[next ^= 1] + sizeof space[0];
2072 *--xc = '\0';
2073 for (i = 0;; ++i) {
2074 if (i && (i & 3) == 0)
2075 *--xc = '.';
2076 *--xc = "0123456789abcdef"[x & 0xf];
2077 x >>= 4;
2078 if (x == 0)
2079 break;
2080 }
2081 return xc;
2082 }
2083
2084 void
2085 cpu_getmcontext(l, mcp, flags)
2086 struct lwp *l;
2087 mcontext_t *mcp;
2088 unsigned int *flags;
2089 {
2090 struct trapframe *frame = l->l_md.md_tf;
2091 __greg_t *gr = mcp->__gregs;
2092 __greg_t ras_pc;
2093
2094 /* Save register context. */
2095 frametoreg(frame, (struct reg *)gr);
2096 /* XXX if there's a better, general way to get the USP of
2097 * an LWP that might or might not be curlwp, I'd like to know
2098 * about it.
2099 */
2100 if (l == curlwp) {
2101 gr[_REG_SP] = alpha_pal_rdusp();
2102 gr[_REG_UNIQUE] = alpha_pal_rdunique();
2103 } else {
2104 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
2105 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
2106 }
2107 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
2108 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
2109
2110 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
2111 (caddr_t) gr[_REG_PC])) != -1)
2112 gr[_REG_PC] = ras_pc;
2113
2114 *flags |= _UC_CPU | _UC_UNIQUE;
2115
2116 /* Save floating point register context, if any, and copy it. */
2117 if (l->l_md.md_flags & MDP_FPUSED) {
2118 fpusave_proc(l, 1);
2119 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
2120 sizeof (mcp->__fpregs));
2121 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
2122 *flags |= _UC_FPU;
2123 }
2124 }
2125
2126
2127 int
2128 cpu_setmcontext(l, mcp, flags)
2129 struct lwp *l;
2130 const mcontext_t *mcp;
2131 unsigned int flags;
2132 {
2133 struct trapframe *frame = l->l_md.md_tf;
2134 const __greg_t *gr = mcp->__gregs;
2135
2136 /* Restore register context, if any. */
2137 if (flags & _UC_CPU) {
2138 /* Check for security violations first. */
2139 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
2140 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
2141 return (EINVAL);
2142
2143 regtoframe((struct reg *)gr, l->l_md.md_tf);
2144 if (l == curlwp)
2145 alpha_pal_wrusp(gr[_REG_SP]);
2146 else
2147 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
2148 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
2149 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
2150 }
2151 if (flags & _UC_UNIQUE) {
2152 if (l == curlwp)
2153 alpha_pal_wrunique(gr[_REG_UNIQUE]);
2154 else
2155 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
2156 }
2157 /* Restore floating point register context, if any. */
2158 if (flags & _UC_FPU) {
2159 /* If we have an FP register context, get rid of it. */
2160 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
2161 fpusave_proc(l, 0);
2162 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
2163 sizeof (l->l_addr->u_pcb.pcb_fp));
2164 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
2165 }
2166
2167 return (0);
2168 }
2169