machdep.c revision 1.267 1 /* $NetBSD: machdep.c,v 1.267 2003/05/09 05:33:52 enami Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.267 2003/05/09 05:33:52 enami Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/ras.h>
86 #include <sys/sa.h>
87 #include <sys/savar.h>
88 #include <sys/sched.h>
89 #include <sys/buf.h>
90 #include <sys/reboot.h>
91 #include <sys/device.h>
92 #include <sys/file.h>
93 #include <sys/malloc.h>
94 #include <sys/mbuf.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <sys/user.h>
100 #include <sys/exec.h>
101 #include <sys/exec_ecoff.h>
102 #include <sys/core.h>
103 #include <sys/kcore.h>
104 #include <sys/ucontext.h>
105 #include <sys/conf.h>
106 #include <sys/ksyms.h>
107 #include <machine/kcore.h>
108 #include <machine/fpu.h>
109
110 #include <sys/mount.h>
111 #include <sys/sa.h>
112 #include <sys/syscallargs.h>
113
114 #include <uvm/uvm_extern.h>
115 #include <sys/sysctl.h>
116
117 #include <dev/cons.h>
118
119 #include <machine/autoconf.h>
120 #include <machine/cpu.h>
121 #include <machine/reg.h>
122 #include <machine/rpb.h>
123 #include <machine/prom.h>
124 #include <machine/cpuconf.h>
125 #include <machine/ieeefp.h>
126
127 #ifdef DDB
128 #include <machine/db_machdep.h>
129 #include <ddb/db_access.h>
130 #include <ddb/db_sym.h>
131 #include <ddb/db_extern.h>
132 #include <ddb/db_interface.h>
133 #endif
134
135 #ifdef KGDB
136 #include <sys/kgdb.h>
137 #endif
138
139 #ifdef DEBUG
140 #include <machine/sigdebug.h>
141 #endif
142
143 #include <machine/alpha.h>
144
145 #include "ksyms.h"
146
147 struct vm_map *exec_map = NULL;
148 struct vm_map *mb_map = NULL;
149 struct vm_map *phys_map = NULL;
150
151 caddr_t msgbufaddr;
152
153 int maxmem; /* max memory per process */
154
155 int totalphysmem; /* total amount of physical memory in system */
156 int physmem; /* physical memory used by NetBSD + some rsvd */
157 int resvmem; /* amount of memory reserved for PROM */
158 int unusedmem; /* amount of memory for OS that we don't use */
159 int unknownmem; /* amount of memory with an unknown use */
160
161 int cputype; /* system type, from the RPB */
162
163 int bootdev_debug = 0; /* patchable, or from DDB */
164
165 /*
166 * XXX We need an address to which we can assign things so that they
167 * won't be optimized away because we didn't use the value.
168 */
169 u_int32_t no_optimize;
170
171 /* the following is used externally (sysctl_hw) */
172 char machine[] = MACHINE; /* from <machine/param.h> */
173 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
174 char cpu_model[128];
175
176 struct user *proc0paddr;
177
178 /* Number of machine cycles per microsecond */
179 u_int64_t cycles_per_usec;
180
181 /* number of cpus in the box. really! */
182 int ncpus;
183
184 struct bootinfo_kernel bootinfo;
185
186 /* For built-in TCDS */
187 #if defined(DEC_3000_300) || defined(DEC_3000_500)
188 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
189 #endif
190
191 struct platform platform;
192
193 #if NKSYMS || defined(DDB) || defined(LKM)
194 /* start and end of kernel symbol table */
195 void *ksym_start, *ksym_end;
196 #endif
197
198 /* for cpu_sysctl() */
199 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
200 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
201 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
202 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
203
204 /*
205 * XXX This should be dynamically sized, but we have the chicken-egg problem!
206 * XXX it should also be larger than it is, because not all of the mddt
207 * XXX clusters end up being used for VM.
208 */
209 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
210 int mem_cluster_cnt;
211
212 int cpu_dump __P((void));
213 int cpu_dumpsize __P((void));
214 u_long cpu_dump_mempagecnt __P((void));
215 void dumpsys __P((void));
216 void identifycpu __P((void));
217 void printregs __P((struct reg *));
218
219 void
220 alpha_init(pfn, ptb, bim, bip, biv)
221 u_long pfn; /* first free PFN number */
222 u_long ptb; /* PFN of current level 1 page table */
223 u_long bim; /* bootinfo magic */
224 u_long bip; /* bootinfo pointer */
225 u_long biv; /* bootinfo version */
226 {
227 extern char kernel_text[], _end[];
228 struct mddt *mddtp;
229 struct mddt_cluster *memc;
230 int i, mddtweird;
231 struct vm_physseg *vps;
232 vaddr_t kernstart, kernend;
233 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
234 vsize_t size;
235 cpuid_t cpu_id;
236 struct cpu_info *ci;
237 char *p;
238 caddr_t v;
239 const char *bootinfo_msg;
240 const struct cpuinit *c;
241
242 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
243
244 /*
245 * Turn off interrupts (not mchecks) and floating point.
246 * Make sure the instruction and data streams are consistent.
247 */
248 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
249 alpha_pal_wrfen(0);
250 ALPHA_TBIA();
251 alpha_pal_imb();
252
253 /* Initialize the SCB. */
254 scb_init();
255
256 cpu_id = cpu_number();
257
258 #if defined(MULTIPROCESSOR)
259 /*
260 * Set our SysValue to the address of our cpu_info structure.
261 * Secondary processors do this in their spinup trampoline.
262 */
263 alpha_pal_wrval((u_long)&cpu_info_primary);
264 cpu_info[cpu_id] = &cpu_info_primary;
265 #endif
266
267 ci = curcpu();
268 ci->ci_cpuid = cpu_id;
269
270 /*
271 * Get critical system information (if possible, from the
272 * information provided by the boot program).
273 */
274 bootinfo_msg = NULL;
275 if (bim == BOOTINFO_MAGIC) {
276 if (biv == 0) { /* backward compat */
277 biv = *(u_long *)bip;
278 bip += 8;
279 }
280 switch (biv) {
281 case 1: {
282 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
283
284 bootinfo.ssym = v1p->ssym;
285 bootinfo.esym = v1p->esym;
286 /* hwrpb may not be provided by boot block in v1 */
287 if (v1p->hwrpb != NULL) {
288 bootinfo.hwrpb_phys =
289 ((struct rpb *)v1p->hwrpb)->rpb_phys;
290 bootinfo.hwrpb_size = v1p->hwrpbsize;
291 } else {
292 bootinfo.hwrpb_phys =
293 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
294 bootinfo.hwrpb_size =
295 ((struct rpb *)HWRPB_ADDR)->rpb_size;
296 }
297 memcpy(bootinfo.boot_flags, v1p->boot_flags,
298 min(sizeof v1p->boot_flags,
299 sizeof bootinfo.boot_flags));
300 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
301 min(sizeof v1p->booted_kernel,
302 sizeof bootinfo.booted_kernel));
303 /* booted dev not provided in bootinfo */
304 init_prom_interface((struct rpb *)
305 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
306 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
307 sizeof bootinfo.booted_dev);
308 break;
309 }
310 default:
311 bootinfo_msg = "unknown bootinfo version";
312 goto nobootinfo;
313 }
314 } else {
315 bootinfo_msg = "boot program did not pass bootinfo";
316 nobootinfo:
317 bootinfo.ssym = (u_long)_end;
318 bootinfo.esym = (u_long)_end;
319 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
320 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
321 init_prom_interface((struct rpb *)HWRPB_ADDR);
322 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
323 sizeof bootinfo.boot_flags);
324 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
325 sizeof bootinfo.booted_kernel);
326 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
327 sizeof bootinfo.booted_dev);
328 }
329
330 /*
331 * Initialize the kernel's mapping of the RPB. It's needed for
332 * lots of things.
333 */
334 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
335
336 #if defined(DEC_3000_300) || defined(DEC_3000_500)
337 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
338 hwrpb->rpb_type == ST_DEC_3000_500) {
339 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
340 sizeof(dec_3000_scsiid));
341 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
342 sizeof(dec_3000_scsifast));
343 }
344 #endif
345
346 /*
347 * Remember how many cycles there are per microsecond,
348 * so that we can use delay(). Round up, for safety.
349 */
350 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
351
352 /*
353 * Initialize the (temporary) bootstrap console interface, so
354 * we can use printf until the VM system starts being setup.
355 * The real console is initialized before then.
356 */
357 init_bootstrap_console();
358
359 /* OUTPUT NOW ALLOWED */
360
361 /* delayed from above */
362 if (bootinfo_msg)
363 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
364 bootinfo_msg, bim, bip, biv);
365
366 /* Initialize the trap vectors on the primary processor. */
367 trap_init();
368
369 /*
370 * Find out this system's page size, and initialize
371 * PAGE_SIZE-dependent variables.
372 */
373 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
374 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
375 ALPHA_PGBYTES);
376 uvmexp.pagesize = hwrpb->rpb_page_size;
377 uvm_setpagesize();
378
379 /*
380 * Find out what hardware we're on, and do basic initialization.
381 */
382 cputype = hwrpb->rpb_type;
383 if (cputype < 0) {
384 /*
385 * At least some white-box systems have SRM which
386 * reports a systype that's the negative of their
387 * blue-box counterpart.
388 */
389 cputype = -cputype;
390 }
391 c = platform_lookup(cputype);
392 if (c == NULL) {
393 platform_not_supported();
394 /* NOTREACHED */
395 }
396 (*c->init)();
397 strcpy(cpu_model, platform.model);
398
399 /*
400 * Initialize the real console, so that the bootstrap console is
401 * no longer necessary.
402 */
403 (*platform.cons_init)();
404
405 #ifdef DIAGNOSTIC
406 /* Paranoid sanity checking */
407
408 /* We should always be running on the primary. */
409 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
410
411 /*
412 * On single-CPU systypes, the primary should always be CPU 0,
413 * except on Alpha 8200 systems where the CPU id is related
414 * to the VID, which is related to the Turbo Laser node id.
415 */
416 if (cputype != ST_DEC_21000)
417 assert(hwrpb->rpb_primary_cpu_id == 0);
418 #endif
419
420 /* NO MORE FIRMWARE ACCESS ALLOWED */
421 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
422 /*
423 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
424 * XXX pmap_uses_prom_console() evaluates to non-zero.)
425 */
426 #endif
427
428 /*
429 * Find the beginning and end of the kernel (and leave a
430 * bit of space before the beginning for the bootstrap
431 * stack).
432 */
433 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
434 #if NKSYMS || defined(DDB) || defined(LKM)
435 ksym_start = (void *)bootinfo.ssym;
436 ksym_end = (void *)bootinfo.esym;
437 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
438 #else
439 kernend = (vaddr_t)round_page((vaddr_t)_end);
440 #endif
441
442 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
443 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
444
445 /*
446 * Find out how much memory is available, by looking at
447 * the memory cluster descriptors. This also tries to do
448 * its best to detect things things that have never been seen
449 * before...
450 */
451 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
452
453 /* MDDT SANITY CHECKING */
454 mddtweird = 0;
455 if (mddtp->mddt_cluster_cnt < 2) {
456 mddtweird = 1;
457 printf("WARNING: weird number of mem clusters: %lu\n",
458 mddtp->mddt_cluster_cnt);
459 }
460
461 #if 0
462 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
463 #endif
464
465 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
466 memc = &mddtp->mddt_clusters[i];
467 #if 0
468 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
469 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
470 #endif
471 totalphysmem += memc->mddt_pg_cnt;
472 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
473 mem_clusters[mem_cluster_cnt].start =
474 ptoa(memc->mddt_pfn);
475 mem_clusters[mem_cluster_cnt].size =
476 ptoa(memc->mddt_pg_cnt);
477 if (memc->mddt_usage & MDDT_mbz ||
478 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
479 memc->mddt_usage & MDDT_PALCODE)
480 mem_clusters[mem_cluster_cnt].size |=
481 PROT_READ;
482 else
483 mem_clusters[mem_cluster_cnt].size |=
484 PROT_READ | PROT_WRITE | PROT_EXEC;
485 mem_cluster_cnt++;
486 }
487
488 if (memc->mddt_usage & MDDT_mbz) {
489 mddtweird = 1;
490 printf("WARNING: mem cluster %d has weird "
491 "usage 0x%lx\n", i, memc->mddt_usage);
492 unknownmem += memc->mddt_pg_cnt;
493 continue;
494 }
495 if (memc->mddt_usage & MDDT_NONVOLATILE) {
496 /* XXX should handle these... */
497 printf("WARNING: skipping non-volatile mem "
498 "cluster %d\n", i);
499 unusedmem += memc->mddt_pg_cnt;
500 continue;
501 }
502 if (memc->mddt_usage & MDDT_PALCODE) {
503 resvmem += memc->mddt_pg_cnt;
504 continue;
505 }
506
507 /*
508 * We have a memory cluster available for system
509 * software use. We must determine if this cluster
510 * holds the kernel.
511 */
512 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
513 /*
514 * XXX If the kernel uses the PROM console, we only use the
515 * XXX memory after the kernel in the first system segment,
516 * XXX to avoid clobbering prom mapping, data, etc.
517 */
518 if (!pmap_uses_prom_console() || physmem == 0) {
519 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
520 physmem += memc->mddt_pg_cnt;
521 pfn0 = memc->mddt_pfn;
522 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
523 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
524 /*
525 * Must compute the location of the kernel
526 * within the segment.
527 */
528 #if 0
529 printf("Cluster %d contains kernel\n", i);
530 #endif
531 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
532 if (!pmap_uses_prom_console()) {
533 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
534 if (pfn0 < kernstartpfn) {
535 /*
536 * There is a chunk before the kernel.
537 */
538 #if 0
539 printf("Loading chunk before kernel: "
540 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
541 #endif
542 uvm_page_physload(pfn0, kernstartpfn,
543 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
544 }
545 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
546 }
547 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
548 if (kernendpfn < pfn1) {
549 /*
550 * There is a chunk after the kernel.
551 */
552 #if 0
553 printf("Loading chunk after kernel: "
554 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
555 #endif
556 uvm_page_physload(kernendpfn, pfn1,
557 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
558 }
559 } else {
560 /*
561 * Just load this cluster as one chunk.
562 */
563 #if 0
564 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
565 pfn0, pfn1);
566 #endif
567 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
568 VM_FREELIST_DEFAULT);
569 }
570 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
571 }
572 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
573 }
574
575 /*
576 * Dump out the MDDT if it looks odd...
577 */
578 if (mddtweird) {
579 printf("\n");
580 printf("complete memory cluster information:\n");
581 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
582 printf("mddt %d:\n", i);
583 printf("\tpfn %lx\n",
584 mddtp->mddt_clusters[i].mddt_pfn);
585 printf("\tcnt %lx\n",
586 mddtp->mddt_clusters[i].mddt_pg_cnt);
587 printf("\ttest %lx\n",
588 mddtp->mddt_clusters[i].mddt_pg_test);
589 printf("\tbva %lx\n",
590 mddtp->mddt_clusters[i].mddt_v_bitaddr);
591 printf("\tbpa %lx\n",
592 mddtp->mddt_clusters[i].mddt_p_bitaddr);
593 printf("\tbcksum %lx\n",
594 mddtp->mddt_clusters[i].mddt_bit_cksum);
595 printf("\tusage %lx\n",
596 mddtp->mddt_clusters[i].mddt_usage);
597 }
598 printf("\n");
599 }
600
601 if (totalphysmem == 0)
602 panic("can't happen: system seems to have no memory!");
603 maxmem = physmem;
604 #if 0
605 printf("totalphysmem = %d\n", totalphysmem);
606 printf("physmem = %d\n", physmem);
607 printf("resvmem = %d\n", resvmem);
608 printf("unusedmem = %d\n", unusedmem);
609 printf("unknownmem = %d\n", unknownmem);
610 #endif
611
612 /*
613 * Initialize error message buffer (at end of core).
614 */
615 {
616 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
617 vsize_t reqsz = sz;
618
619 vps = &vm_physmem[vm_nphysseg - 1];
620
621 /* shrink so that it'll fit in the last segment */
622 if ((vps->avail_end - vps->avail_start) < atop(sz))
623 sz = ptoa(vps->avail_end - vps->avail_start);
624
625 vps->end -= atop(sz);
626 vps->avail_end -= atop(sz);
627 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
628 initmsgbuf(msgbufaddr, sz);
629
630 /* Remove the last segment if it now has no pages. */
631 if (vps->start == vps->end)
632 vm_nphysseg--;
633
634 /* warn if the message buffer had to be shrunk */
635 if (sz != reqsz)
636 printf("WARNING: %ld bytes not available for msgbuf "
637 "in last cluster (%ld used)\n", reqsz, sz);
638 }
639
640 /*
641 * Init mapping for u page(s) for proc 0
642 */
643 lwp0.l_addr = proc0paddr =
644 (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE);
645
646 /*
647 * Allocate space for system data structures. These data structures
648 * are allocated here instead of cpu_startup() because physical
649 * memory is directly addressable. We don't have to map these into
650 * virtual address space.
651 */
652 size = (vsize_t)allocsys(NULL, NULL);
653 v = (caddr_t)pmap_steal_memory(size);
654 if ((allocsys(v, NULL) - v) != size)
655 panic("alpha_init: table size inconsistency");
656
657 /*
658 * Initialize the virtual memory system, and set the
659 * page table base register in proc 0's PCB.
660 */
661 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
662 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
663
664 /*
665 * Initialize the rest of proc 0's PCB, and cache its physical
666 * address.
667 */
668 lwp0.l_md.md_pcbpaddr =
669 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
670
671 /*
672 * Set the kernel sp, reserving space for an (empty) trapframe,
673 * and make proc0's trapframe pointer point to it for sanity.
674 */
675 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
676 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
677 lwp0.l_md.md_tf =
678 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
679 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
680
681 /*
682 * Initialize the primary CPU's idle PCB to proc0's. In a
683 * MULTIPROCESSOR configuration, each CPU will later get
684 * its own idle PCB when autoconfiguration runs.
685 */
686 ci->ci_idle_pcb = &proc0paddr->u_pcb;
687 ci->ci_idle_pcb_paddr = (u_long)lwp0.l_md.md_pcbpaddr;
688
689 /* Indicate that proc0 has a CPU. */
690 lwp0.l_cpu = ci;
691
692 /*
693 * Look at arguments passed to us and compute boothowto.
694 */
695
696 boothowto = RB_SINGLE;
697 #ifdef KADB
698 boothowto |= RB_KDB;
699 #endif
700 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
701 /*
702 * Note that we'd really like to differentiate case here,
703 * but the Alpha AXP Architecture Reference Manual
704 * says that we shouldn't.
705 */
706 switch (*p) {
707 case 'a': /* autoboot */
708 case 'A':
709 boothowto &= ~RB_SINGLE;
710 break;
711
712 #ifdef DEBUG
713 case 'c': /* crash dump immediately after autoconfig */
714 case 'C':
715 boothowto |= RB_DUMP;
716 break;
717 #endif
718
719 #if defined(KGDB) || defined(DDB)
720 case 'd': /* break into the kernel debugger ASAP */
721 case 'D':
722 boothowto |= RB_KDB;
723 break;
724 #endif
725
726 case 'h': /* always halt, never reboot */
727 case 'H':
728 boothowto |= RB_HALT;
729 break;
730
731 #if 0
732 case 'm': /* mini root present in memory */
733 case 'M':
734 boothowto |= RB_MINIROOT;
735 break;
736 #endif
737
738 case 'n': /* askname */
739 case 'N':
740 boothowto |= RB_ASKNAME;
741 break;
742
743 case 's': /* single-user (default, supported for sanity) */
744 case 'S':
745 boothowto |= RB_SINGLE;
746 break;
747
748 case 'q': /* quiet boot */
749 case 'Q':
750 boothowto |= AB_QUIET;
751 break;
752
753 case 'v': /* verbose boot */
754 case 'V':
755 boothowto |= AB_VERBOSE;
756 break;
757
758 case '-':
759 /*
760 * Just ignore this. It's not required, but it's
761 * common for it to be passed regardless.
762 */
763 break;
764
765 default:
766 printf("Unrecognized boot flag '%c'.\n", *p);
767 break;
768 }
769 }
770
771
772 /*
773 * Figure out the number of cpus in the box, from RPB fields.
774 * Really. We mean it.
775 */
776 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
777 struct pcs *pcsp;
778
779 pcsp = LOCATE_PCS(hwrpb, i);
780 if ((pcsp->pcs_flags & PCS_PP) != 0)
781 ncpus++;
782 }
783
784 /*
785 * Initialize debuggers, and break into them if appropriate.
786 */
787 #if NKSYMS || defined(DDB) || defined(LKM)
788 ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
789 ksym_start, ksym_end);
790 #endif
791
792 if (boothowto & RB_KDB) {
793 #if defined(KGDB)
794 kgdb_debug_init = 1;
795 kgdb_connect(1);
796 #elif defined(DDB)
797 Debugger();
798 #endif
799 }
800
801 /*
802 * Figure out our clock frequency, from RPB fields.
803 */
804 hz = hwrpb->rpb_intr_freq >> 12;
805 if (!(60 <= hz && hz <= 10240)) {
806 hz = 1024;
807 #ifdef DIAGNOSTIC
808 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
809 hwrpb->rpb_intr_freq, hz);
810 #endif
811 }
812 }
813
814 void
815 consinit()
816 {
817
818 /*
819 * Everything related to console initialization is done
820 * in alpha_init().
821 */
822 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
823 printf("consinit: %susing prom console\n",
824 pmap_uses_prom_console() ? "" : "not ");
825 #endif
826 }
827
828 #include "pckbc.h"
829 #include "pckbd.h"
830 #if (NPCKBC > 0) && (NPCKBD == 0)
831
832 #include <dev/ic/pckbcvar.h>
833
834 /*
835 * This is called by the pbkbc driver if no pckbd is configured.
836 * On the i386, it is used to glue in the old, deprecated console
837 * code. On the Alpha, it does nothing.
838 */
839 int
840 pckbc_machdep_cnattach(kbctag, kbcslot)
841 pckbc_tag_t kbctag;
842 pckbc_slot_t kbcslot;
843 {
844
845 return (ENXIO);
846 }
847 #endif /* NPCKBC > 0 && NPCKBD == 0 */
848
849 void
850 cpu_startup()
851 {
852 u_int i, base, residual;
853 vaddr_t minaddr, maxaddr;
854 vsize_t size;
855 char pbuf[9];
856 #if defined(DEBUG)
857 extern int pmapdebug;
858 int opmapdebug = pmapdebug;
859
860 pmapdebug = 0;
861 #endif
862
863 /*
864 * Good {morning,afternoon,evening,night}.
865 */
866 printf(version);
867 identifycpu();
868 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
869 printf("total memory = %s\n", pbuf);
870 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
871 printf("(%s reserved for PROM, ", pbuf);
872 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
873 printf("%s used by NetBSD)\n", pbuf);
874 if (unusedmem) {
875 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
876 printf("WARNING: unused memory = %s\n", pbuf);
877 }
878 if (unknownmem) {
879 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
880 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
881 }
882
883 /*
884 * Allocate virtual address space for file I/O buffers.
885 * Note they are different than the array of headers, 'buf',
886 * and usually occupy more virtual memory than physical.
887 */
888 size = MAXBSIZE * nbuf;
889 if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
890 NULL, UVM_UNKNOWN_OFFSET, 0,
891 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
892 UVM_ADV_NORMAL, 0)) != 0)
893 panic("startup: cannot allocate VM for buffers");
894 base = bufpages / nbuf;
895 residual = bufpages % nbuf;
896 for (i = 0; i < nbuf; i++) {
897 vsize_t curbufsize;
898 vaddr_t curbuf;
899 struct vm_page *pg;
900
901 /*
902 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
903 * that MAXBSIZE space, we allocate and map (base+1) pages
904 * for the first "residual" buffers, and then we allocate
905 * "base" pages for the rest.
906 */
907 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
908 curbufsize = PAGE_SIZE * ((i < residual) ? (base+1) : base);
909
910 while (curbufsize) {
911 pg = uvm_pagealloc(NULL, 0, NULL, 0);
912 if (pg == NULL)
913 panic("cpu_startup: not enough memory for "
914 "buffer cache");
915 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
916 VM_PROT_READ|VM_PROT_WRITE);
917 curbuf += PAGE_SIZE;
918 curbufsize -= PAGE_SIZE;
919 }
920 }
921 pmap_update(pmap_kernel());
922
923 /*
924 * Allocate a submap for exec arguments. This map effectively
925 * limits the number of processes exec'ing at any time.
926 */
927 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
928 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
929
930 /*
931 * Allocate a submap for physio
932 */
933 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
934 VM_PHYS_SIZE, 0, FALSE, NULL);
935
936 /*
937 * No need to allocate an mbuf cluster submap. Mbuf clusters
938 * are allocated via the pool allocator, and we use K0SEG to
939 * map those pages.
940 */
941
942 #if defined(DEBUG)
943 pmapdebug = opmapdebug;
944 #endif
945 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
946 printf("avail memory = %s\n", pbuf);
947 #if 0
948 {
949 extern u_long pmap_pages_stolen;
950
951 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
952 printf("stolen memory for VM structures = %s\n", pbuf);
953 }
954 #endif
955 format_bytes(pbuf, sizeof(pbuf), bufpages * PAGE_SIZE);
956 printf("using %u buffers containing %s of memory\n", nbuf, pbuf);
957
958 /*
959 * Set up buffers, so they can be used to read disk labels.
960 */
961 bufinit();
962
963 /*
964 * Set up the HWPCB so that it's safe to configure secondary
965 * CPUs.
966 */
967 hwrpb_primary_init();
968 }
969
970 /*
971 * Retrieve the platform name from the DSR.
972 */
973 const char *
974 alpha_dsr_sysname()
975 {
976 struct dsrdb *dsr;
977 const char *sysname;
978
979 /*
980 * DSR does not exist on early HWRPB versions.
981 */
982 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
983 return (NULL);
984
985 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
986 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
987 sizeof(u_int64_t)));
988 return (sysname);
989 }
990
991 /*
992 * Lookup the system specified system variation in the provided table,
993 * returning the model string on match.
994 */
995 const char *
996 alpha_variation_name(variation, avtp)
997 u_int64_t variation;
998 const struct alpha_variation_table *avtp;
999 {
1000 int i;
1001
1002 for (i = 0; avtp[i].avt_model != NULL; i++)
1003 if (avtp[i].avt_variation == variation)
1004 return (avtp[i].avt_model);
1005 return (NULL);
1006 }
1007
1008 /*
1009 * Generate a default platform name based for unknown system variations.
1010 */
1011 const char *
1012 alpha_unknown_sysname()
1013 {
1014 static char s[128]; /* safe size */
1015
1016 sprintf(s, "%s family, unknown model variation 0x%lx",
1017 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1018 return ((const char *)s);
1019 }
1020
1021 void
1022 identifycpu()
1023 {
1024 char *s;
1025 int i;
1026
1027 /*
1028 * print out CPU identification information.
1029 */
1030 printf("%s", cpu_model);
1031 for(s = cpu_model; *s; ++s)
1032 if(strncasecmp(s, "MHz", 3) == 0)
1033 goto skipMHz;
1034 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1035 skipMHz:
1036 printf(", s/n ");
1037 for (i = 0; i < 10; i++)
1038 printf("%c", hwrpb->rpb_ssn[i]);
1039 printf("\n");
1040 printf("%ld byte page size, %d processor%s.\n",
1041 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1042 #if 0
1043 /* this isn't defined for any systems that we run on? */
1044 printf("serial number 0x%lx 0x%lx\n",
1045 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1046
1047 /* and these aren't particularly useful! */
1048 printf("variation: 0x%lx, revision 0x%lx\n",
1049 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1050 #endif
1051 }
1052
1053 int waittime = -1;
1054 struct pcb dumppcb;
1055
1056 void
1057 cpu_reboot(howto, bootstr)
1058 int howto;
1059 char *bootstr;
1060 {
1061 #if defined(MULTIPROCESSOR)
1062 u_long cpu_id = cpu_number();
1063 u_long wait_mask = (1UL << cpu_id) |
1064 (1UL << hwrpb->rpb_primary_cpu_id);
1065 int i;
1066 #endif
1067
1068 /* If "always halt" was specified as a boot flag, obey. */
1069 if ((boothowto & RB_HALT) != 0)
1070 howto |= RB_HALT;
1071
1072 boothowto = howto;
1073
1074 /* If system is cold, just halt. */
1075 if (cold) {
1076 boothowto |= RB_HALT;
1077 goto haltsys;
1078 }
1079
1080 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1081 waittime = 0;
1082 vfs_shutdown();
1083 /*
1084 * If we've been adjusting the clock, the todr
1085 * will be out of synch; adjust it now.
1086 */
1087 resettodr();
1088 }
1089
1090 /* Disable interrupts. */
1091 splhigh();
1092
1093 #if defined(MULTIPROCESSOR)
1094 /*
1095 * Halt all other CPUs. If we're not the primary, the
1096 * primary will spin, waiting for us to halt.
1097 */
1098 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1099
1100 for (i = 0; i < 10000; i++) {
1101 alpha_mb();
1102 if (cpus_running == wait_mask)
1103 break;
1104 delay(1000);
1105 }
1106 alpha_mb();
1107 if (cpus_running != wait_mask)
1108 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1109 cpus_running);
1110 #endif /* MULTIPROCESSOR */
1111
1112 /* If rebooting and a dump is requested do it. */
1113 #if 0
1114 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1115 #else
1116 if (boothowto & RB_DUMP)
1117 #endif
1118 dumpsys();
1119
1120 haltsys:
1121
1122 /* run any shutdown hooks */
1123 doshutdownhooks();
1124
1125 #ifdef BOOTKEY
1126 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1127 cnpollc(1); /* for proper keyboard command handling */
1128 cngetc();
1129 cnpollc(0);
1130 printf("\n");
1131 #endif
1132
1133 /* Finally, powerdown/halt/reboot the system. */
1134 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1135 platform.powerdown != NULL) {
1136 (*platform.powerdown)();
1137 printf("WARNING: powerdown failed!\n");
1138 }
1139 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1140 #if defined(MULTIPROCESSOR)
1141 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1142 cpu_halt();
1143 else
1144 #endif
1145 prom_halt(boothowto & RB_HALT);
1146 /*NOTREACHED*/
1147 }
1148
1149 /*
1150 * These variables are needed by /sbin/savecore
1151 */
1152 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1153 int dumpsize = 0; /* pages */
1154 long dumplo = 0; /* blocks */
1155
1156 /*
1157 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1158 */
1159 int
1160 cpu_dumpsize()
1161 {
1162 int size;
1163
1164 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1165 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1166 if (roundup(size, dbtob(1)) != dbtob(1))
1167 return -1;
1168
1169 return (1);
1170 }
1171
1172 /*
1173 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1174 */
1175 u_long
1176 cpu_dump_mempagecnt()
1177 {
1178 u_long i, n;
1179
1180 n = 0;
1181 for (i = 0; i < mem_cluster_cnt; i++)
1182 n += atop(mem_clusters[i].size);
1183 return (n);
1184 }
1185
1186 /*
1187 * cpu_dump: dump machine-dependent kernel core dump headers.
1188 */
1189 int
1190 cpu_dump()
1191 {
1192 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1193 char buf[dbtob(1)];
1194 kcore_seg_t *segp;
1195 cpu_kcore_hdr_t *cpuhdrp;
1196 phys_ram_seg_t *memsegp;
1197 const struct bdevsw *bdev;
1198 int i;
1199
1200 bdev = bdevsw_lookup(dumpdev);
1201 if (bdev == NULL)
1202 return (ENXIO);
1203 dump = bdev->d_dump;
1204
1205 memset(buf, 0, sizeof buf);
1206 segp = (kcore_seg_t *)buf;
1207 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1208 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1209 ALIGN(sizeof(*cpuhdrp))];
1210
1211 /*
1212 * Generate a segment header.
1213 */
1214 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1215 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1216
1217 /*
1218 * Add the machine-dependent header info.
1219 */
1220 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1221 cpuhdrp->page_size = PAGE_SIZE;
1222 cpuhdrp->nmemsegs = mem_cluster_cnt;
1223
1224 /*
1225 * Fill in the memory segment descriptors.
1226 */
1227 for (i = 0; i < mem_cluster_cnt; i++) {
1228 memsegp[i].start = mem_clusters[i].start;
1229 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1230 }
1231
1232 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1233 }
1234
1235 /*
1236 * This is called by main to set dumplo and dumpsize.
1237 * Dumps always skip the first PAGE_SIZE of disk space
1238 * in case there might be a disk label stored there.
1239 * If there is extra space, put dump at the end to
1240 * reduce the chance that swapping trashes it.
1241 */
1242 void
1243 cpu_dumpconf()
1244 {
1245 const struct bdevsw *bdev;
1246 int nblks, dumpblks; /* size of dump area */
1247
1248 if (dumpdev == NODEV)
1249 goto bad;
1250 bdev = bdevsw_lookup(dumpdev);
1251 if (bdev == NULL)
1252 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1253 if (bdev->d_psize == NULL)
1254 goto bad;
1255 nblks = (*bdev->d_psize)(dumpdev);
1256 if (nblks <= ctod(1))
1257 goto bad;
1258
1259 dumpblks = cpu_dumpsize();
1260 if (dumpblks < 0)
1261 goto bad;
1262 dumpblks += ctod(cpu_dump_mempagecnt());
1263
1264 /* If dump won't fit (incl. room for possible label), punt. */
1265 if (dumpblks > (nblks - ctod(1)))
1266 goto bad;
1267
1268 /* Put dump at end of partition */
1269 dumplo = nblks - dumpblks;
1270
1271 /* dumpsize is in page units, and doesn't include headers. */
1272 dumpsize = cpu_dump_mempagecnt();
1273 return;
1274
1275 bad:
1276 dumpsize = 0;
1277 return;
1278 }
1279
1280 /*
1281 * Dump the kernel's image to the swap partition.
1282 */
1283 #define BYTES_PER_DUMP PAGE_SIZE
1284
1285 void
1286 dumpsys()
1287 {
1288 const struct bdevsw *bdev;
1289 u_long totalbytesleft, bytes, i, n, memcl;
1290 u_long maddr;
1291 int psize;
1292 daddr_t blkno;
1293 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1294 int error;
1295
1296 /* Save registers. */
1297 savectx(&dumppcb);
1298
1299 if (dumpdev == NODEV)
1300 return;
1301 bdev = bdevsw_lookup(dumpdev);
1302 if (bdev == NULL || bdev->d_psize == NULL)
1303 return;
1304
1305 /*
1306 * For dumps during autoconfiguration,
1307 * if dump device has already configured...
1308 */
1309 if (dumpsize == 0)
1310 cpu_dumpconf();
1311 if (dumplo <= 0) {
1312 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1313 minor(dumpdev));
1314 return;
1315 }
1316 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1317 minor(dumpdev), dumplo);
1318
1319 psize = (*bdev->d_psize)(dumpdev);
1320 printf("dump ");
1321 if (psize == -1) {
1322 printf("area unavailable\n");
1323 return;
1324 }
1325
1326 /* XXX should purge all outstanding keystrokes. */
1327
1328 if ((error = cpu_dump()) != 0)
1329 goto err;
1330
1331 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1332 blkno = dumplo + cpu_dumpsize();
1333 dump = bdev->d_dump;
1334 error = 0;
1335
1336 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1337 maddr = mem_clusters[memcl].start;
1338 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1339
1340 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1341
1342 /* Print out how many MBs we to go. */
1343 if ((totalbytesleft % (1024*1024)) == 0)
1344 printf("%ld ", totalbytesleft / (1024 * 1024));
1345
1346 /* Limit size for next transfer. */
1347 n = bytes - i;
1348 if (n > BYTES_PER_DUMP)
1349 n = BYTES_PER_DUMP;
1350
1351 error = (*dump)(dumpdev, blkno,
1352 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1353 if (error)
1354 goto err;
1355 maddr += n;
1356 blkno += btodb(n); /* XXX? */
1357
1358 /* XXX should look for keystrokes, to cancel. */
1359 }
1360 }
1361
1362 err:
1363 switch (error) {
1364
1365 case ENXIO:
1366 printf("device bad\n");
1367 break;
1368
1369 case EFAULT:
1370 printf("device not ready\n");
1371 break;
1372
1373 case EINVAL:
1374 printf("area improper\n");
1375 break;
1376
1377 case EIO:
1378 printf("i/o error\n");
1379 break;
1380
1381 case EINTR:
1382 printf("aborted from console\n");
1383 break;
1384
1385 case 0:
1386 printf("succeeded\n");
1387 break;
1388
1389 default:
1390 printf("error %d\n", error);
1391 break;
1392 }
1393 printf("\n\n");
1394 delay(1000);
1395 }
1396
1397 void
1398 frametoreg(framep, regp)
1399 const struct trapframe *framep;
1400 struct reg *regp;
1401 {
1402
1403 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1404 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1405 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1406 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1407 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1408 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1409 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1410 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1411 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1412 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1413 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1414 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1415 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1416 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1417 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1418 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1419 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1420 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1421 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1422 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1423 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1424 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1425 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1426 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1427 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1428 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1429 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1430 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1431 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1432 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1433 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1434 regp->r_regs[R_ZERO] = 0;
1435 }
1436
1437 void
1438 regtoframe(regp, framep)
1439 const struct reg *regp;
1440 struct trapframe *framep;
1441 {
1442
1443 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1444 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1445 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1446 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1447 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1448 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1449 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1450 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1451 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1452 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1453 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1454 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1455 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1456 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1457 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1458 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1459 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1460 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1461 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1462 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1463 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1464 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1465 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1466 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1467 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1468 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1469 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1470 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1471 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1472 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1473 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1474 /* ??? = regp->r_regs[R_ZERO]; */
1475 }
1476
1477 void
1478 printregs(regp)
1479 struct reg *regp;
1480 {
1481 int i;
1482
1483 for (i = 0; i < 32; i++)
1484 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1485 i & 1 ? "\n" : "\t");
1486 }
1487
1488 void
1489 regdump(framep)
1490 struct trapframe *framep;
1491 {
1492 struct reg reg;
1493
1494 frametoreg(framep, ®);
1495 reg.r_regs[R_SP] = alpha_pal_rdusp();
1496
1497 printf("REGISTERS:\n");
1498 printregs(®);
1499 }
1500
1501
1502 /*
1503 * Send an interrupt to process.
1504 */
1505 void
1506 sendsig(sig, mask, code)
1507 int sig;
1508 sigset_t *mask;
1509 u_long code;
1510 {
1511 struct lwp *l = curlwp;
1512 struct proc *p = l->l_proc;
1513 struct sigacts *ps = p->p_sigacts;
1514 struct sigcontext *scp, ksc;
1515 struct trapframe *frame;
1516 int onstack, fsize, rndfsize;
1517 sig_t catcher = SIGACTION(p, sig).sa_handler;
1518
1519 frame = l->l_md.md_tf;
1520
1521 /* Do we need to jump onto the signal stack? */
1522 onstack =
1523 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1524 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1525
1526 /* Allocate space for the signal handler context. */
1527 fsize = sizeof(ksc);
1528 rndfsize = ((fsize + 15) / 16) * 16;
1529
1530 if (onstack)
1531 scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1532 p->p_sigctx.ps_sigstk.ss_size);
1533 else
1534 scp = (struct sigcontext *)(alpha_pal_rdusp());
1535 scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1536
1537 #ifdef DEBUG
1538 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1539 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1540 sig, &onstack, scp);
1541 #endif
1542
1543 /* Build stack frame for signal trampoline. */
1544 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1545 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1546
1547 /* Save register context. */
1548 frametoreg(frame, (struct reg *)ksc.sc_regs);
1549 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1550 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1551
1552 /* save the floating-point state, if necessary, then copy it. */
1553 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1554 fpusave_proc(l, 1);
1555 ksc.sc_ownedfp = l->l_md.md_flags & MDP_FPUSED;
1556 memcpy((struct fpreg *)ksc.sc_fpregs, &l->l_addr->u_pcb.pcb_fp,
1557 sizeof(struct fpreg));
1558 ksc.sc_fp_control = alpha_read_fp_c(l);
1559 memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */
1560 memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */
1561
1562 /* Save signal stack. */
1563 ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1564
1565 /* Save signal mask. */
1566 ksc.sc_mask = *mask;
1567
1568 #ifdef COMPAT_13
1569 /*
1570 * XXX We always have to save an old style signal mask because
1571 * XXX we might be delivering a signal to a process which will
1572 * XXX escape from the signal in a non-standard way and invoke
1573 * XXX sigreturn() directly.
1574 */
1575 {
1576 /* Note: it's a long in the stack frame. */
1577 sigset13_t mask13;
1578
1579 native_sigset_to_sigset13(mask, &mask13);
1580 ksc.__sc_mask13 = mask13;
1581 }
1582 #endif
1583
1584 #ifdef COMPAT_OSF1
1585 /*
1586 * XXX Create an OSF/1-style sigcontext and associated goo.
1587 */
1588 #endif
1589
1590 if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1591 /*
1592 * Process has trashed its stack; give it an illegal
1593 * instruction to halt it in its tracks.
1594 */
1595 #ifdef DEBUG
1596 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1597 printf("sendsig(%d): copyout failed on sig %d\n",
1598 p->p_pid, sig);
1599 #endif
1600 sigexit(l, SIGILL);
1601 /* NOTREACHED */
1602 }
1603 #ifdef DEBUG
1604 if (sigdebug & SDB_FOLLOW)
1605 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1606 scp, code);
1607 #endif
1608
1609 /*
1610 * Set up the registers to directly invoke the signal handler. The
1611 * signal trampoline is then used to return from the signal. Note
1612 * the trampoline version numbers are coordinated with machine-
1613 * dependent code in libc.
1614 */
1615 switch (ps->sa_sigdesc[sig].sd_vers) {
1616 #if 1 /* COMPAT_16 */
1617 case 0: /* legacy on-stack sigtramp */
1618 frame->tf_regs[FRAME_RA] = (u_int64_t)p->p_sigctx.ps_sigcode;
1619 break;
1620 #endif /* COMPAT_16 */
1621
1622 case 1:
1623 frame->tf_regs[FRAME_RA] =
1624 (u_int64_t)ps->sa_sigdesc[sig].sd_tramp;
1625 break;
1626
1627 default:
1628 /* Don't know what trampoline version; kill it. */
1629 sigexit(l, SIGILL);
1630 }
1631 frame->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1632 frame->tf_regs[FRAME_A0] = sig;
1633 frame->tf_regs[FRAME_A1] = code;
1634 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1635 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1636 alpha_pal_wrusp((unsigned long)scp);
1637
1638 /* Remember that we're now on the signal stack. */
1639 if (onstack)
1640 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1641
1642 #ifdef DEBUG
1643 if (sigdebug & SDB_FOLLOW)
1644 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1645 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1646 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1647 printf("sendsig(%d): sig %d returns\n",
1648 p->p_pid, sig);
1649 #endif
1650 }
1651
1652
1653 void
1654 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1655 {
1656 struct trapframe *tf;
1657
1658 tf = l->l_md.md_tf;
1659
1660 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1661 tf->tf_regs[FRAME_RA] = 0;
1662 tf->tf_regs[FRAME_A0] = type;
1663 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1664 tf->tf_regs[FRAME_A2] = nevents;
1665 tf->tf_regs[FRAME_A3] = ninterrupted;
1666 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1667 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1668 alpha_pal_wrusp((unsigned long)sp);
1669 }
1670
1671 /*
1672 * System call to cleanup state after a signal
1673 * has been taken. Reset signal mask and
1674 * stack state from context left by sendsig (above).
1675 * Return to previous pc and psl as specified by
1676 * context left by sendsig. Check carefully to
1677 * make sure that the user has not modified the
1678 * psl to gain improper privileges or to cause
1679 * a machine fault.
1680 */
1681 /* ARGSUSED */
1682 int
1683 sys___sigreturn14(l, v, retval)
1684 struct lwp *l;
1685 void *v;
1686 register_t *retval;
1687 {
1688 struct sys___sigreturn14_args /* {
1689 syscallarg(struct sigcontext *) sigcntxp;
1690 } */ *uap = v;
1691 struct sigcontext *scp, ksc;
1692 struct proc *p = l->l_proc;
1693
1694 /*
1695 * The trampoline code hands us the context.
1696 * It is unsafe to keep track of it ourselves, in the event that a
1697 * program jumps out of a signal handler.
1698 */
1699 scp = SCARG(uap, sigcntxp);
1700 #ifdef DEBUG
1701 if (sigdebug & SDB_FOLLOW)
1702 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1703 #endif
1704 if (ALIGN(scp) != (u_int64_t)scp)
1705 return (EINVAL);
1706
1707 if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1708 return (EFAULT);
1709
1710 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1711 return (EINVAL);
1712
1713 /* Restore register context. */
1714 l->l_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1715 l->l_md.md_tf->tf_regs[FRAME_PS] =
1716 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1717
1718 regtoframe((struct reg *)ksc.sc_regs, l->l_md.md_tf);
1719 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1720
1721 /* XXX ksc.sc_ownedfp ? */
1722 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1723 fpusave_proc(l, 0);
1724 memcpy(&l->l_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1725 sizeof(struct fpreg));
1726 l->l_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1727 l->l_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1728
1729 /* Restore signal stack. */
1730 if (ksc.sc_onstack & SS_ONSTACK)
1731 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1732 else
1733 p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1734
1735 /* Restore signal mask. */
1736 (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1737
1738 #ifdef DEBUG
1739 if (sigdebug & SDB_FOLLOW)
1740 printf("sigreturn(%d): returns\n", p->p_pid);
1741 #endif
1742 return (EJUSTRETURN);
1743 }
1744
1745 /*
1746 * machine dependent system variables.
1747 */
1748 int
1749 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1750 int *name;
1751 u_int namelen;
1752 void *oldp;
1753 size_t *oldlenp;
1754 void *newp;
1755 size_t newlen;
1756 struct proc *p;
1757 {
1758 dev_t consdev;
1759
1760 /* all sysctl names at this level are terminal */
1761 if (namelen != 1)
1762 return (ENOTDIR); /* overloaded */
1763
1764 switch (name[0]) {
1765 case CPU_CONSDEV:
1766 if (cn_tab != NULL)
1767 consdev = cn_tab->cn_dev;
1768 else
1769 consdev = NODEV;
1770 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1771 sizeof consdev));
1772
1773 case CPU_ROOT_DEVICE:
1774 return (sysctl_rdstring(oldp, oldlenp, newp,
1775 root_device->dv_xname));
1776
1777 case CPU_UNALIGNED_PRINT:
1778 return (sysctl_int(oldp, oldlenp, newp, newlen,
1779 &alpha_unaligned_print));
1780
1781 case CPU_UNALIGNED_FIX:
1782 return (sysctl_int(oldp, oldlenp, newp, newlen,
1783 &alpha_unaligned_fix));
1784
1785 case CPU_UNALIGNED_SIGBUS:
1786 return (sysctl_int(oldp, oldlenp, newp, newlen,
1787 &alpha_unaligned_sigbus));
1788
1789 case CPU_BOOTED_KERNEL:
1790 return (sysctl_rdstring(oldp, oldlenp, newp,
1791 bootinfo.booted_kernel));
1792
1793 case CPU_FP_SYNC_COMPLETE:
1794 return (sysctl_int(oldp, oldlenp, newp, newlen,
1795 &alpha_fp_sync_complete));
1796
1797 default:
1798 return (EOPNOTSUPP);
1799 }
1800 /* NOTREACHED */
1801 }
1802
1803 /*
1804 * Set registers on exec.
1805 */
1806 void
1807 setregs(l, pack, stack)
1808 register struct lwp *l;
1809 struct exec_package *pack;
1810 u_long stack;
1811 {
1812 struct trapframe *tfp = l->l_md.md_tf;
1813 #ifdef DEBUG
1814 int i;
1815 #endif
1816
1817 #ifdef DEBUG
1818 /*
1819 * Crash and dump, if the user requested it.
1820 */
1821 if (boothowto & RB_DUMP)
1822 panic("crash requested by boot flags");
1823 #endif
1824
1825 #ifdef DEBUG
1826 for (i = 0; i < FRAME_SIZE; i++)
1827 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1828 #else
1829 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1830 #endif
1831 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1832 alpha_pal_wrusp(stack);
1833 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1834 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1835
1836 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1837 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1838 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1839 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1840 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1841
1842 l->l_md.md_flags &= ~MDP_FPUSED;
1843 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1844 l->l_md.md_flags &= ~MDP_FP_C;
1845 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1846 }
1847 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1848 fpusave_proc(l, 0);
1849 }
1850
1851 /*
1852 * Release the FPU.
1853 */
1854 void
1855 fpusave_cpu(struct cpu_info *ci, int save)
1856 {
1857 struct lwp *l;
1858 #if defined(MULTIPROCESSOR)
1859 int s;
1860 #endif
1861
1862 KDASSERT(ci == curcpu());
1863
1864 #if defined(MULTIPROCESSOR)
1865 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1866 #endif
1867
1868 l = ci->ci_fpcurlwp;
1869 if (l == NULL)
1870 goto out;
1871
1872 if (save) {
1873 alpha_pal_wrfen(1);
1874 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1875 }
1876
1877 alpha_pal_wrfen(0);
1878
1879 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1880
1881 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1882 ci->ci_fpcurlwp = NULL;
1883
1884 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1885
1886 out:
1887 #if defined(MULTIPROCESSOR)
1888 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1889 #endif
1890 return;
1891 }
1892
1893 /*
1894 * Synchronize FP state for this process.
1895 */
1896 void
1897 fpusave_proc(struct lwp *l, int save)
1898 {
1899 struct cpu_info *ci = curcpu();
1900 struct cpu_info *oci;
1901 #if defined(MULTIPROCESSOR)
1902 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1903 int s, spincount;
1904 #endif
1905
1906 KDASSERT(l->l_addr != NULL);
1907 KDASSERT(l->l_flag & L_INMEM);
1908
1909 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1910
1911 oci = l->l_addr->u_pcb.pcb_fpcpu;
1912 if (oci == NULL) {
1913 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1914 return;
1915 }
1916
1917 #if defined(MULTIPROCESSOR)
1918 if (oci == ci) {
1919 KASSERT(ci->ci_fpcurlwp == l);
1920 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1921 fpusave_cpu(ci, save);
1922 return;
1923 }
1924
1925 KASSERT(oci->ci_fpcurlwp == l);
1926 alpha_send_ipi(oci->ci_cpuid, ipi);
1927 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1928
1929 spincount = 0;
1930 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1931 spincount++;
1932 delay(1000); /* XXX */
1933 if (spincount > 10000)
1934 panic("fpsave ipi didn't");
1935 }
1936 #else
1937 KASSERT(ci->ci_fpcurlwp == l);
1938 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1939 fpusave_cpu(ci, save);
1940 #endif /* MULTIPROCESSOR */
1941 }
1942
1943 /*
1944 * Wait "n" microseconds.
1945 */
1946 void
1947 delay(n)
1948 unsigned long n;
1949 {
1950 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1951
1952 if (n == 0)
1953 return;
1954
1955 pcc0 = alpha_rpcc() & 0xffffffffUL;
1956 cycles = 0;
1957 usec = 0;
1958
1959 while (usec <= n) {
1960 /*
1961 * Get the next CPU cycle count- assumes that we cannot
1962 * have had more than one 32 bit overflow.
1963 */
1964 pcc1 = alpha_rpcc() & 0xffffffffUL;
1965 if (pcc1 < pcc0)
1966 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1967 else
1968 curcycle = pcc1 - pcc0;
1969
1970 /*
1971 * We now have the number of processor cycles since we
1972 * last checked. Add the current cycle count to the
1973 * running total. If it's over cycles_per_usec, increment
1974 * the usec counter.
1975 */
1976 cycles += curcycle;
1977 while (cycles > cycles_per_usec) {
1978 usec++;
1979 cycles -= cycles_per_usec;
1980 }
1981 pcc0 = pcc1;
1982 }
1983 }
1984
1985 #ifdef EXEC_ECOFF
1986 void
1987 cpu_exec_ecoff_setregs(l, epp, stack)
1988 struct lwp *l;
1989 struct exec_package *epp;
1990 u_long stack;
1991 {
1992 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1993
1994 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1995 }
1996
1997 /*
1998 * cpu_exec_ecoff_hook():
1999 * cpu-dependent ECOFF format hook for execve().
2000 *
2001 * Do any machine-dependent diddling of the exec package when doing ECOFF.
2002 *
2003 */
2004 int
2005 cpu_exec_ecoff_probe(p, epp)
2006 struct proc *p;
2007 struct exec_package *epp;
2008 {
2009 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2010 int error;
2011
2012 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2013 error = 0;
2014 else
2015 error = ENOEXEC;
2016
2017 return (error);
2018 }
2019 #endif /* EXEC_ECOFF */
2020
2021 int
2022 alpha_pa_access(pa)
2023 u_long pa;
2024 {
2025 int i;
2026
2027 for (i = 0; i < mem_cluster_cnt; i++) {
2028 if (pa < mem_clusters[i].start)
2029 continue;
2030 if ((pa - mem_clusters[i].start) >=
2031 (mem_clusters[i].size & ~PAGE_MASK))
2032 continue;
2033 return (mem_clusters[i].size & PAGE_MASK); /* prot */
2034 }
2035
2036 /*
2037 * Address is not a memory address. If we're secure, disallow
2038 * access. Otherwise, grant read/write.
2039 */
2040 if (securelevel > 0)
2041 return (PROT_NONE);
2042 else
2043 return (PROT_READ | PROT_WRITE);
2044 }
2045
2046 /* XXX XXX BEGIN XXX XXX */
2047 paddr_t alpha_XXX_dmamap_or; /* XXX */
2048 /* XXX */
2049 paddr_t /* XXX */
2050 alpha_XXX_dmamap(v) /* XXX */
2051 vaddr_t v; /* XXX */
2052 { /* XXX */
2053 /* XXX */
2054 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2055 } /* XXX */
2056 /* XXX XXX END XXX XXX */
2057
2058 char *
2059 dot_conv(x)
2060 unsigned long x;
2061 {
2062 int i;
2063 char *xc;
2064 static int next;
2065 static char space[2][20];
2066
2067 xc = space[next ^= 1] + sizeof space[0];
2068 *--xc = '\0';
2069 for (i = 0;; ++i) {
2070 if (i && (i & 3) == 0)
2071 *--xc = '.';
2072 *--xc = "0123456789abcdef"[x & 0xf];
2073 x >>= 4;
2074 if (x == 0)
2075 break;
2076 }
2077 return xc;
2078 }
2079
2080 void
2081 cpu_getmcontext(l, mcp, flags)
2082 struct lwp *l;
2083 mcontext_t *mcp;
2084 unsigned int *flags;
2085 {
2086 struct trapframe *frame = l->l_md.md_tf;
2087 __greg_t *gr = mcp->__gregs;
2088 __greg_t ras_pc;
2089
2090 /* Save register context. */
2091 frametoreg(frame, (struct reg *)gr);
2092 /* XXX if there's a better, general way to get the USP of
2093 * an LWP that might or might not be curlwp, I'd like to know
2094 * about it.
2095 */
2096 if (l == curlwp) {
2097 gr[_REG_SP] = alpha_pal_rdusp();
2098 gr[_REG_UNIQUE] = alpha_pal_rdunique();
2099 } else {
2100 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
2101 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
2102 }
2103 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
2104 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
2105
2106 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
2107 (caddr_t) gr[_REG_PC])) != -1)
2108 gr[_REG_PC] = ras_pc;
2109
2110 *flags |= _UC_CPU | _UC_UNIQUE;
2111
2112 /* Save floating point register context, if any, and copy it. */
2113 if (l->l_md.md_flags & MDP_FPUSED) {
2114 fpusave_proc(l, 1);
2115 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
2116 sizeof (mcp->__fpregs));
2117 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
2118 *flags |= _UC_FPU;
2119 }
2120 }
2121
2122
2123 int
2124 cpu_setmcontext(l, mcp, flags)
2125 struct lwp *l;
2126 const mcontext_t *mcp;
2127 unsigned int flags;
2128 {
2129 struct trapframe *frame = l->l_md.md_tf;
2130 const __greg_t *gr = mcp->__gregs;
2131
2132 /* Restore register context, if any. */
2133 if (flags & _UC_CPU) {
2134 /* Check for security violations first. */
2135 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
2136 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
2137 return (EINVAL);
2138
2139 regtoframe((struct reg *)gr, l->l_md.md_tf);
2140 if (l == curlwp)
2141 alpha_pal_wrusp(gr[_REG_SP]);
2142 else
2143 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
2144 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
2145 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
2146 }
2147 if (flags & _UC_UNIQUE) {
2148 if (l == curlwp)
2149 alpha_pal_wrunique(gr[_REG_UNIQUE]);
2150 else
2151 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
2152 }
2153 /* Restore floating point register context, if any. */
2154 if (flags & _UC_FPU) {
2155 /* If we have an FP register context, get rid of it. */
2156 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
2157 fpusave_proc(l, 0);
2158 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
2159 sizeof (l->l_addr->u_pcb.pcb_fp));
2160 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
2161 }
2162
2163 return (0);
2164 }
2165