Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.27
      1 /*	$NetBSD: machdep.c,v 1.27 1996/06/13 00:28:59 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5  * All rights reserved.
      6  *
      7  * Author: Chris G. Demetriou
      8  *
      9  * Permission to use, copy, modify and distribute this software and
     10  * its documentation is hereby granted, provided that both the copyright
     11  * notice and this permission notice appear in all copies of the
     12  * software, derivative works or modified versions, and any portions
     13  * thereof, and that both notices appear in supporting documentation.
     14  *
     15  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18  *
     19  * Carnegie Mellon requests users of this software to return to
     20  *
     21  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22  *  School of Computer Science
     23  *  Carnegie Mellon University
     24  *  Pittsburgh PA 15213-3890
     25  *
     26  * any improvements or extensions that they make and grant Carnegie the
     27  * rights to redistribute these changes.
     28  */
     29 
     30 #include <sys/param.h>
     31 #include <sys/systm.h>
     32 #include <sys/signalvar.h>
     33 #include <sys/kernel.h>
     34 #include <sys/map.h>
     35 #include <sys/proc.h>
     36 #include <sys/buf.h>
     37 #include <sys/reboot.h>
     38 #include <sys/conf.h>
     39 #include <sys/file.h>
     40 #ifdef REAL_CLISTS
     41 #include <sys/clist.h>
     42 #endif
     43 #include <sys/callout.h>
     44 #include <sys/malloc.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/msgbuf.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/tty.h>
     49 #include <sys/user.h>
     50 #include <sys/exec.h>
     51 #include <sys/exec_ecoff.h>
     52 #include <sys/sysctl.h>
     53 #ifdef SYSVMSG
     54 #include <sys/msg.h>
     55 #endif
     56 #ifdef SYSVSEM
     57 #include <sys/sem.h>
     58 #endif
     59 #ifdef SYSVSHM
     60 #include <sys/shm.h>
     61 #endif
     62 
     63 #include <sys/mount.h>
     64 #include <sys/syscallargs.h>
     65 
     66 #include <vm/vm_kern.h>
     67 
     68 #include <dev/cons.h>
     69 
     70 #include <machine/cpu.h>
     71 #include <machine/reg.h>
     72 #include <machine/rpb.h>
     73 #include <machine/prom.h>
     74 
     75 #ifdef DEC_3000_500
     76 #include <alpha/alpha/dec_3000_500.h>
     77 #endif
     78 #ifdef DEC_3000_300
     79 #include <alpha/alpha/dec_3000_300.h>
     80 #endif
     81 #ifdef DEC_2100_A50
     82 #include <alpha/alpha/dec_2100_a50.h>
     83 #endif
     84 #ifdef DEC_KN20AA
     85 #include <alpha/alpha/dec_kn20aa.h>
     86 #endif
     87 #ifdef DEC_AXPPCI_33
     88 #include <alpha/alpha/dec_axppci_33.h>
     89 #endif
     90 #ifdef DEC_21000
     91 #include <alpha/alpha/dec_21000.h>
     92 #endif
     93 
     94 #include <net/netisr.h>
     95 #include "ether.h"
     96 
     97 #include "le_ioasic.h"			/* for le_iomem creation */
     98 
     99 vm_map_t buffer_map;
    100 
    101 void dumpsys __P((void));
    102 
    103 /*
    104  * Declare these as initialized data so we can patch them.
    105  */
    106 int	nswbuf = 0;
    107 #ifdef	NBUF
    108 int	nbuf = NBUF;
    109 #else
    110 int	nbuf = 0;
    111 #endif
    112 #ifdef	BUFPAGES
    113 int	bufpages = BUFPAGES;
    114 #else
    115 int	bufpages = 0;
    116 #endif
    117 int	msgbufmapped = 0;	/* set when safe to use msgbuf */
    118 int	maxmem;			/* max memory per process */
    119 
    120 int	totalphysmem;		/* total amount of physical memory in system */
    121 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    122 int	firstusablepage;	/* first usable memory page */
    123 int	lastusablepage;		/* last usable memory page */
    124 int	resvmem;		/* amount of memory reserved for PROM */
    125 int	unusedmem;		/* amount of memory for OS that we don't use */
    126 int	unknownmem;		/* amount of memory with an unknown use */
    127 
    128 int	cputype;		/* system type, from the RPB */
    129 
    130 /*
    131  * XXX We need an address to which we can assign things so that they
    132  * won't be optimized away because we didn't use the value.
    133  */
    134 u_int32_t no_optimize;
    135 
    136 /* the following is used externally (sysctl_hw) */
    137 char	machine[] = "alpha";
    138 char	*cpu_model;
    139 char	*model_names[] = {
    140 	"UNKNOWN (0)",
    141 	"Alpha Demonstration Unit",
    142 	"DEC 4000 (\"Cobra\")",
    143 	"DEC 7000 (\"Ruby\")",
    144 	"DEC 3000/500 (\"Flamingo\") family",
    145 	"UNKNOWN (5)",
    146 	"DEC 2000/300 (\"Jensen\")",
    147 	"DEC 3000/300 (\"Pelican\")",
    148 	"UNKNOWN (8)",
    149 	"DEC 2100/A500 (\"Sable\")",
    150 	"AXPvme 64",
    151 	"AXPpci 33 (\"NoName\")",
    152 	"DEC 21000 (\"TurboLaser\")",
    153 	"DEC 2100/A50 (\"Avanti\") family",
    154 	"Mustang",
    155 	"DEC KN20AA",
    156 	"UNKNOWN (16)",
    157 	"DEC 1000 (\"Mikasa\")",
    158 };
    159 int	nmodel_names = sizeof model_names/sizeof model_names[0];
    160 
    161 struct	user *proc0paddr;
    162 
    163 /* Number of machine cycles per microsecond */
    164 u_int64_t	cycles_per_usec;
    165 
    166 /* some memory areas for device DMA.  "ick." */
    167 caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    168 
    169 /* Interrupt vectors (in locore) */
    170 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
    171 
    172 /* number of cpus in the box.  really! */
    173 int		ncpus;
    174 
    175 /* various CPU-specific functions. */
    176 char		*(*cpu_modelname) __P((void));
    177 void		(*cpu_consinit) __P((void));
    178 char		*cpu_iobus;
    179 
    180 char boot_flags[64];
    181 
    182 int
    183 alpha_init(pfn, ptb)
    184 	u_long pfn;		/* first free PFN number */
    185 	u_long ptb;		/* PFN of current level 1 page table */
    186 {
    187 	extern char _end[];
    188 	caddr_t start, v;
    189 	struct mddt *mddtp;
    190 	int i, mddtweird;
    191 	char *p;
    192 
    193 	/*
    194 	 * Turn off interrupts and floating point.
    195 	 * Make sure the instruction and data streams are consistent.
    196 	 */
    197 	(void)splhigh();
    198 	pal_wrfen(0);
    199 	TBIA();
    200 	IMB();
    201 
    202 	/*
    203 	 * get address of the restart block, while we the bootstrap
    204 	 * mapping is still around.
    205 	 */
    206 	hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
    207 
    208 	/*
    209 	 * Remember how many cycles there are per microsecond,
    210 	 * so that we can use delay().  Round up, for safety.
    211 	 */
    212 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    213 
    214 	/*
    215 	 * Init the PROM interface, so we can use printf
    216 	 * until PROM mappings go away in consinit.
    217 	 */
    218 	init_prom_interface();
    219 
    220 	/*
    221 	 * Point interrupt/exception vectors to our own.
    222 	 */
    223 	pal_wrent(XentInt, 0);
    224 	pal_wrent(XentArith, 1);
    225 	pal_wrent(XentMM, 2);
    226 	pal_wrent(XentIF, 3);
    227 	pal_wrent(XentUna, 4);
    228 	pal_wrent(XentSys, 5);
    229 
    230 	/*
    231 	 * Find out how much memory is available, by looking at
    232 	 * the memory cluster descriptors.  This also tries to do
    233 	 * its best to detect things things that have never been seen
    234 	 * before...
    235 	 *
    236 	 * XXX Assumes that the first "system" cluster is the
    237 	 * only one we can use. Is the second (etc.) system cluster
    238 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    239 	 */
    240 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    241 
    242 	/*
    243 	 * BEGIN MDDT WEIRDNESS CHECKING
    244 	 */
    245 	mddtweird = 0;
    246 
    247 #define cnt	 mddtp->mddt_cluster_cnt
    248 #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    249 	if (cnt != 2 && cnt != 3) {
    250 		printf("WARNING: weird number (%d) of mem clusters\n", cnt);
    251 		mddtweird = 1;
    252 	} else if (usage(0) != MDDT_PALCODE ||
    253 		   usage(1) != MDDT_SYSTEM ||
    254 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    255 		mddtweird = 1;
    256 		printf("WARNING: %d mem clusters, but weird config\n", cnt);
    257 	}
    258 
    259 	for (i = 0; i < cnt; i++) {
    260 		if ((usage(i) & MDDT_mbz) != 0) {
    261 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    262 			    i, usage(i));
    263 			mddtweird = 1;
    264 		}
    265 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    266 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    267 			mddtweird = 1;
    268 		}
    269 		/* XXX other things to check? */
    270 	}
    271 #undef cnt
    272 #undef usage
    273 
    274 	if (mddtweird) {
    275 		printf("\n");
    276 		printf("complete memory cluster information:\n");
    277 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    278 			printf("mddt %d:\n", i);
    279 			printf("\tpfn %lx\n",
    280 			    mddtp->mddt_clusters[i].mddt_pfn);
    281 			printf("\tcnt %lx\n",
    282 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    283 			printf("\ttest %lx\n",
    284 			    mddtp->mddt_clusters[i].mddt_pg_test);
    285 			printf("\tbva %lx\n",
    286 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    287 			printf("\tbpa %lx\n",
    288 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    289 			printf("\tbcksum %lx\n",
    290 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    291 			printf("\tusage %lx\n",
    292 			    mddtp->mddt_clusters[i].mddt_usage);
    293 		}
    294 		printf("\n");
    295 	}
    296 	/*
    297 	 * END MDDT WEIRDNESS CHECKING
    298 	 */
    299 
    300 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    301 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    302 #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    303 #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    304 		if ((usage(i) & MDDT_mbz) != 0)
    305 			unknownmem += pgcnt(i);
    306 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    307 			resvmem += pgcnt(i);
    308 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    309 			/*
    310 			 * assumes that the system cluster listed is
    311 			 * one we're in...
    312 			 */
    313 			if (physmem != resvmem) {
    314 				physmem += pgcnt(i);
    315 				firstusablepage =
    316 				    mddtp->mddt_clusters[i].mddt_pfn;
    317 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    318 			} else
    319 				unusedmem += pgcnt(i);
    320 		}
    321 #undef usage
    322 #undef pgcnt
    323 	}
    324 	if (totalphysmem == 0)
    325 		panic("can't happen: system seems to have no memory!");
    326 	maxmem = physmem;
    327 
    328 #if 0
    329 	printf("totalphysmem = %d\n", totalphysmem);
    330 	printf("physmem = %d\n", physmem);
    331 	printf("firstusablepage = %d\n", firstusablepage);
    332 	printf("lastusablepage = %d\n", lastusablepage);
    333 	printf("resvmem = %d\n", resvmem);
    334 	printf("unusedmem = %d\n", unusedmem);
    335 	printf("unknownmem = %d\n", unknownmem);
    336 #endif
    337 
    338 	/*
    339 	 * find out this CPU's page size
    340 	 */
    341 	PAGE_SIZE = hwrpb->rpb_page_size;
    342 	if (PAGE_SIZE != 8192)
    343 		panic("page size %d != 8192?!", PAGE_SIZE);
    344 
    345 	v = (caddr_t)alpha_round_page(_end);
    346 	/*
    347 	 * Init mapping for u page(s) for proc 0
    348 	 */
    349 	start = v;
    350 	curproc->p_addr = proc0paddr = (struct user *)v;
    351 	v += UPAGES * NBPG;
    352 
    353 	/*
    354 	 * Find out what hardware we're on, and remember its type name.
    355 	 */
    356 	cputype = hwrpb->rpb_type;
    357 	switch (cputype) {
    358 #ifdef DEC_3000_500				/* and 400, [6-9]00 */
    359 	case ST_DEC_3000_500:
    360 		cpu_modelname = dec_3000_500_modelname;
    361 		cpu_consinit = dec_3000_500_consinit;
    362 		cpu_iobus = "tcasic";
    363 		break;
    364 #endif
    365 
    366 #ifdef DEC_3000_300
    367 	case ST_DEC_3000_300:
    368 		cpu_modelname = dec_3000_300_modelname;
    369 		cpu_consinit = dec_3000_300_consinit;
    370 		cpu_iobus = "tcasic";
    371 		break;
    372 #endif
    373 
    374 #ifdef DEC_2100_A50
    375 	case ST_DEC_2100_A50:
    376 		cpu_modelname = dec_2100_a50_modelname;
    377 		cpu_consinit = dec_2100_a50_consinit;
    378 		cpu_iobus = "apecs";
    379 		break;
    380 #endif
    381 
    382 #ifdef DEC_KN20AA
    383 	case ST_DEC_KN20AA:
    384 		cpu_modelname = dec_kn20aa_modelname;
    385 		cpu_consinit = dec_kn20aa_consinit;
    386 		cpu_iobus = "cia";
    387 		break;
    388 #endif
    389 
    390 #ifdef DEC_AXPPCI_33
    391 	case ST_DEC_AXPPCI_33:
    392 		cpu_modelname = dec_axppci_33_modelname;
    393 		cpu_consinit = dec_axppci_33_consinit;
    394 		cpu_iobus = "lca";
    395 		break;
    396 #endif
    397 
    398 #ifdef DEC_2000_300
    399 	case ST_DEC_2000_300:
    400 		cpu_modelname = dec_2000_300_modelname;
    401 		cpu_consinit = dec_2000_300_consinit;
    402 		cpu_iobus = "ibus";
    403 	XXX DEC 2000/300 NOT SUPPORTED
    404 		break;
    405 #endif
    406 
    407 #ifdef DEC_21000
    408 	case ST_DEC_21000:
    409 		cpu_modelname = dec_21000_modelname;
    410 		cpu_consinit = dec_21000_consinit;
    411 		cpu_iobus = "tlsb";
    412 	XXX DEC 21000 NOT SUPPORTED
    413 		break;
    414 #endif
    415 
    416 	default:
    417 		if (cputype > nmodel_names)
    418 			panic("Unknown system type %d", cputype);
    419 		else
    420 			panic("Support for %s system type not in kernel.",
    421 			    model_names[cputype]);
    422 	}
    423 
    424 	cpu_model = (*cpu_modelname)();
    425 	if (cpu_model == NULL)
    426 		cpu_model = model_names[cputype];
    427 
    428 #if NLE_IOASIC > 0
    429 	/*
    430 	 * Grab 128K at the top of physical memory for the lance chip
    431 	 * on machines where it does dma through the I/O ASIC.
    432 	 * It must be physically contiguous and aligned on a 128K boundary.
    433 	 *
    434 	 * Note that since this is conditional on the presence of
    435 	 * IOASIC-attached 'le' units in the kernel config, the
    436 	 * message buffer may move on these systems.  This shouldn't
    437 	 * be a problem, because once people have a kernel config that
    438 	 * they use, they're going to stick with it.
    439 	 */
    440 	if (cputype == ST_DEC_3000_500 ||
    441 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    442 		lastusablepage -= btoc(128 * 1024);
    443 		le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
    444 	}
    445 #endif /* NLE_IOASIC */
    446 
    447 	/*
    448 	 * Initialize error message buffer (at end of core).
    449 	 */
    450 	lastusablepage -= btoc(sizeof (struct msgbuf));
    451 	msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
    452 	msgbufmapped = 1;
    453 
    454 	/*
    455 	 * Allocate space for system data structures.
    456 	 * The first available kernel virtual address is in "v".
    457 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    458 	 *
    459 	 * These data structures are allocated here instead of cpu_startup()
    460 	 * because physical memory is directly addressable. We don't have
    461 	 * to map these into virtual address space.
    462 	 */
    463 #define valloc(name, type, num) \
    464 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    465 #define valloclim(name, type, num, lim) \
    466 	    (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
    467 #ifdef REAL_CLISTS
    468 	valloc(cfree, struct cblock, nclist);
    469 #endif
    470 	valloc(callout, struct callout, ncallout);
    471 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    472 #ifdef SYSVSHM
    473 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    474 #endif
    475 #ifdef SYSVSEM
    476 	valloc(sema, struct semid_ds, seminfo.semmni);
    477 	valloc(sem, struct sem, seminfo.semmns);
    478 	/* This is pretty disgusting! */
    479 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    480 #endif
    481 #ifdef SYSVMSG
    482 	valloc(msgpool, char, msginfo.msgmax);
    483 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    484 	valloc(msghdrs, struct msg, msginfo.msgtql);
    485 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    486 #endif
    487 
    488 	/*
    489 	 * Determine how many buffers to allocate.
    490 	 * We allocate the BSD standard of 10% of memory for the first
    491 	 * 2 Meg, and 5% of remaining memory for buffer space.  Insure a
    492 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    493 	 * headers as file i/o buffers.
    494 	 */
    495 	if (bufpages == 0)
    496 		bufpages = (btoc(2 * 1024 * 1024) + physmem) /
    497 		    (20 * CLSIZE);
    498 	if (nbuf == 0) {
    499 		nbuf = bufpages;
    500 		if (nbuf < 16)
    501 			nbuf = 16;
    502 	}
    503 	if (nswbuf == 0) {
    504 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    505 		if (nswbuf > 256)
    506 			nswbuf = 256;		/* sanity */
    507 	}
    508 	valloc(swbuf, struct buf, nswbuf);
    509 	valloc(buf, struct buf, nbuf);
    510 
    511 	/*
    512 	 * Clear allocated memory.
    513 	 */
    514 	bzero(start, v - start);
    515 
    516 	/*
    517 	 * Initialize the virtual memory system, and set the
    518 	 * page table base register in proc 0's PCB.
    519 	 */
    520 	pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
    521 
    522 	/*
    523 	 * Initialize the rest of proc 0's PCB, and cache its physical
    524 	 * address.
    525 	 */
    526 	proc0.p_md.md_pcbpaddr =
    527 	    (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
    528 
    529 	/*
    530 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    531 	 * and make proc0's trapframe pointer point to it for sanity.
    532 	 */
    533 	proc0paddr->u_pcb.pcb_ksp =
    534 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    535 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
    536 
    537 	/*
    538 	 * Look at arguments passed to us and compute boothowto.
    539 	 */
    540 	prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
    541 #if 0
    542 	printf("boot flags = \"%s\"\n", boot_flags);
    543 #endif
    544 
    545 	boothowto = RB_SINGLE;
    546 #ifdef KADB
    547 	boothowto |= RB_KDB;
    548 #endif
    549 	for (p = boot_flags; p && *p != '\0'; p++) {
    550 		/*
    551 		 * Note that we'd really like to differentiate case here,
    552 		 * but the Alpha AXP Architecture Reference Manual
    553 		 * says that we shouldn't.
    554 		 */
    555 		switch (*p) {
    556 		case 'a': /* autoboot */
    557 		case 'A':
    558 			boothowto &= ~RB_SINGLE;
    559 			break;
    560 
    561 		case 'n': /* askname */
    562 		case 'N':
    563 			boothowto |= RB_ASKNAME;
    564 			break;
    565 
    566 #if 0
    567 		case 'm': /* mini root present in memory */
    568 		case 'M':
    569 			boothowto |= RB_MINIROOT;
    570 			break;
    571 #endif
    572 		}
    573 	}
    574 
    575 	/*
    576 	 * Figure out the number of cpus in the box, from RPB fields.
    577 	 * Really.  We mean it.
    578 	 */
    579 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    580 		struct pcs *pcsp;
    581 
    582 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    583 		    (i * hwrpb->rpb_pcs_size));
    584 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    585 			ncpus++;
    586 	}
    587 
    588 	return (0);
    589 }
    590 
    591 void
    592 consinit()
    593 {
    594 
    595 	(*cpu_consinit)();
    596 	pmap_unmap_prom();
    597 }
    598 
    599 void
    600 cpu_startup()
    601 {
    602 	register unsigned i;
    603 	register caddr_t v;
    604 	int base, residual;
    605 	vm_offset_t minaddr, maxaddr;
    606 	vm_size_t size;
    607 #ifdef DEBUG
    608 	extern int pmapdebug;
    609 	int opmapdebug = pmapdebug;
    610 
    611 	pmapdebug = 0;
    612 #endif
    613 
    614 	/*
    615 	 * Good {morning,afternoon,evening,night}.
    616 	 */
    617 	printf(version);
    618 	identifycpu();
    619 	printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
    620 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    621 	if (unusedmem)
    622 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    623 	if (unknownmem)
    624 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    625 		    ctob(unknownmem));
    626 
    627 	/*
    628 	 * Allocate virtual address space for file I/O buffers.
    629 	 * Note they are different than the array of headers, 'buf',
    630 	 * and usually occupy more virtual memory than physical.
    631 	 */
    632 	size = MAXBSIZE * nbuf;
    633 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    634 	    &maxaddr, size, TRUE);
    635 	minaddr = (vm_offset_t)buffers;
    636 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    637 			&minaddr, size, FALSE) != KERN_SUCCESS)
    638 		panic("startup: cannot allocate buffers");
    639 	base = bufpages / nbuf;
    640 	residual = bufpages % nbuf;
    641 	for (i = 0; i < nbuf; i++) {
    642 		vm_size_t curbufsize;
    643 		vm_offset_t curbuf;
    644 
    645 		/*
    646 		 * First <residual> buffers get (base+1) physical pages
    647 		 * allocated for them.  The rest get (base) physical pages.
    648 		 *
    649 		 * The rest of each buffer occupies virtual space,
    650 		 * but has no physical memory allocated for it.
    651 		 */
    652 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    653 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    654 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    655 		vm_map_simplify(buffer_map, curbuf);
    656 	}
    657 	/*
    658 	 * Allocate a submap for exec arguments.  This map effectively
    659 	 * limits the number of processes exec'ing at any time.
    660 	 */
    661 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    662 				 16 * NCARGS, TRUE);
    663 
    664 	/*
    665 	 * Allocate a submap for physio
    666 	 */
    667 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    668 				 VM_PHYS_SIZE, TRUE);
    669 
    670 	/*
    671 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    672 	 * we use the more space efficient malloc in place of kmem_alloc.
    673 	 */
    674 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    675 	    M_MBUF, M_NOWAIT);
    676 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    677 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    678 	    VM_MBUF_SIZE, FALSE);
    679 	/*
    680 	 * Initialize callouts
    681 	 */
    682 	callfree = callout;
    683 	for (i = 1; i < ncallout; i++)
    684 		callout[i-1].c_next = &callout[i];
    685 	callout[i-1].c_next = NULL;
    686 
    687 #ifdef DEBUG
    688 	pmapdebug = opmapdebug;
    689 #endif
    690 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    691 	printf("using %ld buffers containing %ld bytes of memory\n",
    692 		(long)nbuf, (long)(bufpages * CLBYTES));
    693 
    694 	/*
    695 	 * Set up buffers, so they can be used to read disk labels.
    696 	 */
    697 	bufinit();
    698 
    699 	/*
    700 	 * Configure the system.
    701 	 */
    702 	configure();
    703 }
    704 
    705 identifycpu()
    706 {
    707 
    708 	/*
    709 	 * print out CPU identification information.
    710 	 */
    711 	printf("%s, %dMHz\n", cpu_model,
    712 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    713 	printf("%d byte page size, %d processor%s.\n",
    714 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    715 #if 0
    716 	/* this isn't defined for any systems that we run on? */
    717 	printf("serial number 0x%lx 0x%lx\n",
    718 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    719 
    720 	/* and these aren't particularly useful! */
    721 	printf("variation: 0x%lx, revision 0x%lx\n",
    722 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    723 #endif
    724 }
    725 
    726 int	waittime = -1;
    727 struct pcb dumppcb;
    728 
    729 void
    730 boot(howto)
    731 	int howto;
    732 {
    733 	extern int cold;
    734 
    735 	/* If system is cold, just halt. */
    736 	if (cold) {
    737 		howto |= RB_HALT;
    738 		goto haltsys;
    739 	}
    740 
    741 	boothowto = howto;
    742 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    743 		waittime = 0;
    744 		vfs_shutdown();
    745 		/*
    746 		 * If we've been adjusting the clock, the todr
    747 		 * will be out of synch; adjust it now.
    748 		 */
    749 		resettodr();
    750 	}
    751 
    752 	/* Disable interrupts. */
    753 	splhigh();
    754 
    755 	/* If rebooting and a dump is requested do it. */
    756 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
    757 		savectx(&dumppcb, 0);
    758 		dumpsys();
    759 	}
    760 
    761 haltsys:
    762 
    763 	/* run any shutdown hooks */
    764 	doshutdownhooks();
    765 
    766 #ifdef BOOTKEY
    767 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    768 	cngetc();
    769 	printf("\n");
    770 #endif
    771 
    772 	/* Finally, halt/reboot the system. */
    773 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    774 	prom_halt(howto & RB_HALT);
    775 	/*NOTREACHED*/
    776 }
    777 
    778 /*
    779  * These variables are needed by /sbin/savecore
    780  */
    781 u_long	dumpmag = 0x8fca0101;	/* magic number */
    782 int 	dumpsize = 0;		/* pages */
    783 long	dumplo = 0; 		/* blocks */
    784 
    785 /*
    786  * This is called by configure to set dumplo and dumpsize.
    787  * Dumps always skip the first CLBYTES of disk space
    788  * in case there might be a disk label stored there.
    789  * If there is extra space, put dump at the end to
    790  * reduce the chance that swapping trashes it.
    791  */
    792 void
    793 dumpconf()
    794 {
    795 	int nblks;	/* size of dump area */
    796 	int maj;
    797 
    798 	if (dumpdev == NODEV)
    799 		return;
    800 	maj = major(dumpdev);
    801 	if (maj < 0 || maj >= nblkdev)
    802 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    803 	if (bdevsw[maj].d_psize == NULL)
    804 		return;
    805 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    806 	if (nblks <= ctod(1))
    807 		return;
    808 
    809 	/* XXX XXX XXX STARTING MEMORY LOCATION */
    810 	dumpsize = physmem;
    811 
    812 	/* Always skip the first CLBYTES, in case there is a label there. */
    813 	if (dumplo < ctod(1))
    814 		dumplo = ctod(1);
    815 
    816 	/* Put dump at end of partition, and make it fit. */
    817 	if (dumpsize > dtoc(nblks - dumplo))
    818 		dumpsize = dtoc(nblks - dumplo);
    819 	if (dumplo < nblks - ctod(dumpsize))
    820 		dumplo = nblks - ctod(dumpsize);
    821 }
    822 
    823 /*
    824  * Doadump comes here after turning off memory management and
    825  * getting on the dump stack, either when called above, or by
    826  * the auto-restart code.
    827  */
    828 void
    829 dumpsys()
    830 {
    831 
    832 	msgbufmapped = 0;
    833 	if (dumpdev == NODEV)
    834 		return;
    835 	if (dumpsize == 0) {
    836 		dumpconf();
    837 		if (dumpsize == 0)
    838 			return;
    839 	}
    840 	printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
    841 
    842 	printf("dump ");
    843 	switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
    844 
    845 	case ENXIO:
    846 		printf("device bad\n");
    847 		break;
    848 
    849 	case EFAULT:
    850 		printf("device not ready\n");
    851 		break;
    852 
    853 	case EINVAL:
    854 		printf("area improper\n");
    855 		break;
    856 
    857 	case EIO:
    858 		printf("i/o error\n");
    859 		break;
    860 
    861 	case EINTR:
    862 		printf("aborted from console\n");
    863 		break;
    864 
    865 	default:
    866 		printf("succeeded\n");
    867 		break;
    868 	}
    869 	printf("\n\n");
    870 	delay(1000);
    871 }
    872 
    873 void
    874 frametoreg(framep, regp)
    875 	struct trapframe *framep;
    876 	struct reg *regp;
    877 {
    878 
    879 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
    880 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
    881 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
    882 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
    883 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
    884 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
    885 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
    886 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
    887 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
    888 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
    889 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
    890 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
    891 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
    892 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
    893 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
    894 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
    895 	regp->r_regs[R_A0] = framep->tf_a0;
    896 	regp->r_regs[R_A1] = framep->tf_a1;
    897 	regp->r_regs[R_A2] = framep->tf_a2;
    898 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
    899 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
    900 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
    901 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
    902 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
    903 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
    904 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
    905 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
    906 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
    907 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
    908 	regp->r_regs[R_GP] = framep->tf_gp;
    909 	regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
    910 	regp->r_regs[R_ZERO] = 0;
    911 }
    912 
    913 void
    914 regtoframe(regp, framep)
    915 	struct reg *regp;
    916 	struct trapframe *framep;
    917 {
    918 
    919 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
    920 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
    921 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
    922 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
    923 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
    924 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
    925 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
    926 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
    927 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
    928 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
    929 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
    930 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
    931 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
    932 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
    933 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
    934 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
    935 	framep->tf_a0 = regp->r_regs[R_A0];
    936 	framep->tf_a1 = regp->r_regs[R_A1];
    937 	framep->tf_a2 = regp->r_regs[R_A2];
    938 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
    939 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
    940 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
    941 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
    942 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
    943 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
    944 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
    945 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
    946 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
    947 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
    948 	framep->tf_gp = regp->r_regs[R_GP];
    949 	framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
    950 	/* ??? = regp->r_regs[R_ZERO]; */
    951 }
    952 
    953 void
    954 printregs(regp)
    955 	struct reg *regp;
    956 {
    957 	int i;
    958 
    959 	for (i = 0; i < 32; i++)
    960 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
    961 		   i & 1 ? "\n" : "\t");
    962 }
    963 
    964 void
    965 regdump(framep)
    966 	struct trapframe *framep;
    967 {
    968 	struct reg reg;
    969 
    970 	frametoreg(framep, &reg);
    971 	printf("REGISTERS:\n");
    972 	printregs(&reg);
    973 }
    974 
    975 #ifdef DEBUG
    976 int sigdebug = 0;
    977 int sigpid = 0;
    978 #define	SDB_FOLLOW	0x01
    979 #define	SDB_KSTACK	0x02
    980 #endif
    981 
    982 /*
    983  * Send an interrupt to process.
    984  */
    985 void
    986 sendsig(catcher, sig, mask, code)
    987 	sig_t catcher;
    988 	int sig, mask;
    989 	u_long code;
    990 {
    991 	struct proc *p = curproc;
    992 	struct sigcontext *scp, ksc;
    993 	struct trapframe *frame;
    994 	struct sigacts *psp = p->p_sigacts;
    995 	int oonstack, fsize, rndfsize;
    996 	extern char sigcode[], esigcode[];
    997 	extern struct proc *fpcurproc;
    998 
    999 	frame = p->p_md.md_tf;
   1000 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1001 	fsize = sizeof ksc;
   1002 	rndfsize = ((fsize + 15) / 16) * 16;
   1003 	/*
   1004 	 * Allocate and validate space for the signal handler
   1005 	 * context. Note that if the stack is in P0 space, the
   1006 	 * call to grow() is a nop, and the useracc() check
   1007 	 * will fail if the process has not already allocated
   1008 	 * the space with a `brk'.
   1009 	 */
   1010 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1011 	    (psp->ps_sigonstack & sigmask(sig))) {
   1012 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1013 		    psp->ps_sigstk.ss_size - rndfsize);
   1014 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1015 	} else
   1016 		scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
   1017 		    rndfsize);
   1018 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1019 		(void)grow(p, (u_long)scp);
   1020 #ifdef DEBUG
   1021 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1022 		printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
   1023 		    sig, &oonstack, scp);
   1024 #endif
   1025 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1026 #ifdef DEBUG
   1027 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1028 			printf("sendsig(%d): useracc failed on sig %d\n",
   1029 			    p->p_pid, sig);
   1030 #endif
   1031 		/*
   1032 		 * Process has trashed its stack; give it an illegal
   1033 		 * instruction to halt it in its tracks.
   1034 		 */
   1035 		SIGACTION(p, SIGILL) = SIG_DFL;
   1036 		sig = sigmask(SIGILL);
   1037 		p->p_sigignore &= ~sig;
   1038 		p->p_sigcatch &= ~sig;
   1039 		p->p_sigmask &= ~sig;
   1040 		psignal(p, SIGILL);
   1041 		return;
   1042 	}
   1043 
   1044 	/*
   1045 	 * Build the signal context to be used by sigreturn.
   1046 	 */
   1047 	ksc.sc_onstack = oonstack;
   1048 	ksc.sc_mask = mask;
   1049 	ksc.sc_pc = frame->tf_pc;
   1050 	ksc.sc_ps = frame->tf_ps;
   1051 
   1052 	/* copy the registers. */
   1053 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1054 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1055 
   1056 	/* save the floating-point state, if necessary, then copy it. */
   1057 	if (p == fpcurproc) {
   1058 		pal_wrfen(1);
   1059 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1060 		pal_wrfen(0);
   1061 		fpcurproc = NULL;
   1062 	}
   1063 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1064 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1065 	    sizeof(struct fpreg));
   1066 	ksc.sc_fp_control = 0;					/* XXX ? */
   1067 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1068 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1069 
   1070 
   1071 #ifdef COMPAT_OSF1
   1072 	/*
   1073 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1074 	 */
   1075 #endif
   1076 
   1077 	/*
   1078 	 * copy the frame out to userland.
   1079 	 */
   1080 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1081 #ifdef DEBUG
   1082 	if (sigdebug & SDB_FOLLOW)
   1083 		printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
   1084 		    scp, code);
   1085 #endif
   1086 
   1087 	/*
   1088 	 * Set up the registers to return to sigcode.
   1089 	 */
   1090 	frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1091 	frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
   1092 	frame->tf_a0 = sig;
   1093 	frame->tf_a1 = code;
   1094 	frame->tf_a2 = (u_int64_t)scp;
   1095 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1096 
   1097 #ifdef DEBUG
   1098 	if (sigdebug & SDB_FOLLOW)
   1099 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1100 		    frame->tf_pc, frame->tf_regs[FRAME_A3]);
   1101 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1102 		printf("sendsig(%d): sig %d returns\n",
   1103 		    p->p_pid, sig);
   1104 #endif
   1105 }
   1106 
   1107 /*
   1108  * System call to cleanup state after a signal
   1109  * has been taken.  Reset signal mask and
   1110  * stack state from context left by sendsig (above).
   1111  * Return to previous pc and psl as specified by
   1112  * context left by sendsig. Check carefully to
   1113  * make sure that the user has not modified the
   1114  * psl to gain improper priviledges or to cause
   1115  * a machine fault.
   1116  */
   1117 /* ARGSUSED */
   1118 int
   1119 sys_sigreturn(p, v, retval)
   1120 	struct proc *p;
   1121 	void *v;
   1122 	register_t *retval;
   1123 {
   1124 	struct sys_sigreturn_args /* {
   1125 		syscallarg(struct sigcontext *) sigcntxp;
   1126 	} */ *uap = v;
   1127 	struct sigcontext *scp, ksc;
   1128 	extern struct proc *fpcurproc;
   1129 
   1130 	scp = SCARG(uap, sigcntxp);
   1131 #ifdef DEBUG
   1132 	if (sigdebug & SDB_FOLLOW)
   1133 	    printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
   1134 #endif
   1135 
   1136 	if (ALIGN(scp) != (u_int64_t)scp)
   1137 		return (EINVAL);
   1138 
   1139 	/*
   1140 	 * Test and fetch the context structure.
   1141 	 * We grab it all at once for speed.
   1142 	 */
   1143 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1144 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1145 		return (EINVAL);
   1146 
   1147 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1148 		return (EINVAL);
   1149 	/*
   1150 	 * Restore the user-supplied information
   1151 	 */
   1152 	if (ksc.sc_onstack)
   1153 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1154 	else
   1155 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1156 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1157 
   1158 	p->p_md.md_tf->tf_pc = ksc.sc_pc;
   1159 	p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
   1160 
   1161 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1162 
   1163 	/* XXX ksc.sc_ownedfp ? */
   1164 	if (p == fpcurproc)
   1165 		fpcurproc = NULL;
   1166 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1167 	    sizeof(struct fpreg));
   1168 	/* XXX ksc.sc_fp_control ? */
   1169 
   1170 #ifdef DEBUG
   1171 	if (sigdebug & SDB_FOLLOW)
   1172 		printf("sigreturn(%d): returns\n", p->p_pid);
   1173 #endif
   1174 	return (EJUSTRETURN);
   1175 }
   1176 
   1177 /*
   1178  * machine dependent system variables.
   1179  */
   1180 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1181 	int *name;
   1182 	u_int namelen;
   1183 	void *oldp;
   1184 	size_t *oldlenp;
   1185 	void *newp;
   1186 	size_t newlen;
   1187 	struct proc *p;
   1188 {
   1189 	dev_t consdev;
   1190 
   1191 	/* all sysctl names at this level are terminal */
   1192 	if (namelen != 1)
   1193 		return (ENOTDIR);		/* overloaded */
   1194 
   1195 	switch (name[0]) {
   1196 	case CPU_CONSDEV:
   1197 		if (cn_tab != NULL)
   1198 			consdev = cn_tab->cn_dev;
   1199 		else
   1200 			consdev = NODEV;
   1201 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1202 			sizeof consdev));
   1203 	default:
   1204 		return (EOPNOTSUPP);
   1205 	}
   1206 	/* NOTREACHED */
   1207 }
   1208 
   1209 /*
   1210  * Set registers on exec.
   1211  */
   1212 void
   1213 setregs(p, pack, stack, retval)
   1214 	register struct proc *p;
   1215 	struct exec_package *pack;
   1216 	u_long stack;
   1217 	register_t *retval;
   1218 {
   1219 	struct trapframe *tfp = p->p_md.md_tf;
   1220 	int i;
   1221 	extern struct proc *fpcurproc;
   1222 
   1223 #ifdef DEBUG
   1224 	for (i = 0; i < FRAME_NSAVEREGS; i++)
   1225 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1226 	tfp->tf_gp = 0xbabefacedeadbeef;
   1227 	tfp->tf_a0 = 0xbabefacedeadbeef;
   1228 	tfp->tf_a1 = 0xbabefacedeadbeef;
   1229 	tfp->tf_a2 = 0xbabefacedeadbeef;
   1230 #else
   1231 	bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
   1232 	tfp->tf_gp = 0;
   1233 	tfp->tf_a0 = 0;
   1234 	tfp->tf_a1 = 0;
   1235 	tfp->tf_a2 = 0;
   1236 #endif
   1237 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1238 #define FP_RN 2 /* XXX */
   1239 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1240 	tfp->tf_regs[FRAME_SP] = stack;	/* restored to usp in trap return */
   1241 	tfp->tf_ps = PSL_USERSET;
   1242 	tfp->tf_pc = pack->ep_entry & ~3;
   1243 
   1244 	p->p_md.md_flags & ~MDP_FPUSED;
   1245 	if (fpcurproc == p)
   1246 		fpcurproc = NULL;
   1247 
   1248 	retval[0] = retval[1] = 0;
   1249 }
   1250 
   1251 void
   1252 netintr()
   1253 {
   1254 #ifdef INET
   1255 #if NETHER > 0
   1256 	if (netisr & (1 << NETISR_ARP)) {
   1257 		netisr &= ~(1 << NETISR_ARP);
   1258 		arpintr();
   1259 	}
   1260 #endif
   1261 	if (netisr & (1 << NETISR_IP)) {
   1262 		netisr &= ~(1 << NETISR_IP);
   1263 		ipintr();
   1264 	}
   1265 #endif
   1266 #ifdef NS
   1267 	if (netisr & (1 << NETISR_NS)) {
   1268 		netisr &= ~(1 << NETISR_NS);
   1269 		nsintr();
   1270 	}
   1271 #endif
   1272 #ifdef ISO
   1273 	if (netisr & (1 << NETISR_ISO)) {
   1274 		netisr &= ~(1 << NETISR_ISO);
   1275 		clnlintr();
   1276 	}
   1277 #endif
   1278 #ifdef CCITT
   1279 	if (netisr & (1 << NETISR_CCITT)) {
   1280 		netisr &= ~(1 << NETISR_CCITT);
   1281 		ccittintr();
   1282 	}
   1283 #endif
   1284 #ifdef PPP
   1285 	if (netisr & (1 << NETISR_PPP)) {
   1286 		netisr &= ~(1 << NETISR_PPP);
   1287 		pppintr();
   1288 	}
   1289 #endif
   1290 }
   1291 
   1292 void
   1293 do_sir()
   1294 {
   1295 
   1296 	if (ssir & SIR_NET) {
   1297 		siroff(SIR_NET);
   1298 		cnt.v_soft++;
   1299 		netintr();
   1300 	}
   1301 	if (ssir & SIR_CLOCK) {
   1302 		siroff(SIR_CLOCK);
   1303 		cnt.v_soft++;
   1304 		softclock();
   1305 	}
   1306 }
   1307 
   1308 int
   1309 spl0()
   1310 {
   1311 
   1312 	if (ssir) {
   1313 		splsoft();
   1314 		do_sir();
   1315 	}
   1316 
   1317 	return (pal_swpipl(PSL_IPL_0));
   1318 }
   1319 
   1320 /*
   1321  * The following primitives manipulate the run queues.  _whichqs tells which
   1322  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1323  * into queues, Remrq removes them from queues.  The running process is on
   1324  * no queue, other processes are on a queue related to p->p_priority, divided
   1325  * by 4 actually to shrink the 0-127 range of priorities into the 32 available
   1326  * queues.
   1327  */
   1328 /*
   1329  * setrunqueue(p)
   1330  *	proc *p;
   1331  *
   1332  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1333  */
   1334 
   1335 void
   1336 setrunqueue(p)
   1337 	struct proc *p;
   1338 {
   1339 	int bit;
   1340 
   1341 	/* firewall: p->p_back must be NULL */
   1342 	if (p->p_back != NULL)
   1343 		panic("setrunqueue");
   1344 
   1345 	bit = p->p_priority >> 2;
   1346 	whichqs |= (1 << bit);
   1347 	p->p_forw = (struct proc *)&qs[bit];
   1348 	p->p_back = qs[bit].ph_rlink;
   1349 	p->p_back->p_forw = p;
   1350 	qs[bit].ph_rlink = p;
   1351 }
   1352 
   1353 /*
   1354  * Remrq(p)
   1355  *
   1356  * Call should be made at splclock().
   1357  */
   1358 void
   1359 remrq(p)
   1360 	struct proc *p;
   1361 {
   1362 	int bit;
   1363 
   1364 	bit = p->p_priority >> 2;
   1365 	if ((whichqs & (1 << bit)) == 0)
   1366 		panic("remrq");
   1367 
   1368 	p->p_back->p_forw = p->p_forw;
   1369 	p->p_forw->p_back = p->p_back;
   1370 	p->p_back = NULL;	/* for firewall checking. */
   1371 
   1372 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1373 		whichqs &= ~(1 << bit);
   1374 }
   1375 
   1376 /*
   1377  * Return the best possible estimate of the time in the timeval
   1378  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1379  * We guarantee that the time will be greater than the value obtained by a
   1380  * previous call.
   1381  */
   1382 void
   1383 microtime(tvp)
   1384 	register struct timeval *tvp;
   1385 {
   1386 	int s = splclock();
   1387 	static struct timeval lasttime;
   1388 
   1389 	*tvp = time;
   1390 #ifdef notdef
   1391 	tvp->tv_usec += clkread();
   1392 	while (tvp->tv_usec > 1000000) {
   1393 		tvp->tv_sec++;
   1394 		tvp->tv_usec -= 1000000;
   1395 	}
   1396 #endif
   1397 	if (tvp->tv_sec == lasttime.tv_sec &&
   1398 	    tvp->tv_usec <= lasttime.tv_usec &&
   1399 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1400 		tvp->tv_sec++;
   1401 		tvp->tv_usec -= 1000000;
   1402 	}
   1403 	lasttime = *tvp;
   1404 	splx(s);
   1405 }
   1406 
   1407 /*
   1408  * Wait "n" microseconds.
   1409  */
   1410 int
   1411 delay(n)
   1412 	int n;
   1413 {
   1414 	long N = cycles_per_usec * (n);
   1415 
   1416 	while (N > 0)				/* XXX */
   1417 		N -= 3;				/* XXX */
   1418 }
   1419 
   1420 #if defined(COMPAT_OSF1) || 1		/* XXX */
   1421 void
   1422 cpu_exec_ecoff_setregs(p, epp, stack, retval)
   1423 	struct proc *p;
   1424 	struct exec_package *epp;
   1425 	u_long stack;
   1426 	register_t *retval;
   1427 {
   1428 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1429 
   1430 	setregs(p, epp, stack, retval);
   1431 	p->p_md.md_tf->tf_gp = execp->a.gp_value;
   1432 }
   1433 
   1434 /*
   1435  * cpu_exec_ecoff_hook():
   1436  *	cpu-dependent ECOFF format hook for execve().
   1437  *
   1438  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1439  *
   1440  */
   1441 int
   1442 cpu_exec_ecoff_hook(p, epp)
   1443 	struct proc *p;
   1444 	struct exec_package *epp;
   1445 {
   1446 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1447 	extern struct emul emul_netbsd;
   1448 #ifdef COMPAT_OSF1
   1449 	extern struct emul emul_osf1;
   1450 #endif
   1451 
   1452 	switch (execp->f.f_magic) {
   1453 #ifdef COMPAT_OSF1
   1454 	case ECOFF_MAGIC_ALPHA:
   1455 		epp->ep_emul = &emul_osf1;
   1456 		break;
   1457 #endif
   1458 
   1459 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1460 		epp->ep_emul = &emul_netbsd;
   1461 		break;
   1462 
   1463 	default:
   1464 		return ENOEXEC;
   1465 	}
   1466 	return 0;
   1467 }
   1468 #endif
   1469 
   1470 vm_offset_t
   1471 vtophys(vaddr)
   1472 	vm_offset_t vaddr;
   1473 {
   1474 	vm_offset_t paddr;
   1475 
   1476 	if (vaddr < K0SEG_BEGIN) {
   1477 		printf("vtophys: invalid vaddr 0x%lx", vaddr);
   1478 		paddr = vaddr;
   1479 	} else if (vaddr < K0SEG_END)
   1480 		paddr = k0segtophys(vaddr);
   1481 	else
   1482 		paddr = vatopa(vaddr);
   1483 
   1484 #if 0
   1485 	printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
   1486 #endif
   1487 
   1488 	return (paddr);
   1489 }
   1490