machdep.c revision 1.276 1 /* $NetBSD: machdep.c,v 1.276 2003/10/13 22:19:15 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.276 2003/10/13 22:19:15 nathanw Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/ras.h>
86 #include <sys/sa.h>
87 #include <sys/savar.h>
88 #include <sys/sched.h>
89 #include <sys/buf.h>
90 #include <sys/reboot.h>
91 #include <sys/device.h>
92 #include <sys/file.h>
93 #include <sys/malloc.h>
94 #include <sys/mbuf.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <sys/user.h>
100 #include <sys/exec.h>
101 #include <sys/exec_ecoff.h>
102 #include <sys/core.h>
103 #include <sys/kcore.h>
104 #include <sys/ucontext.h>
105 #include <sys/conf.h>
106 #include <sys/ksyms.h>
107 #include <machine/kcore.h>
108 #include <machine/fpu.h>
109
110 #include <sys/mount.h>
111 #include <sys/sa.h>
112 #include <sys/syscallargs.h>
113
114 #include <uvm/uvm_extern.h>
115 #include <sys/sysctl.h>
116
117 #include <dev/cons.h>
118
119 #include <machine/autoconf.h>
120 #include <machine/cpu.h>
121 #include <machine/reg.h>
122 #include <machine/rpb.h>
123 #include <machine/prom.h>
124 #include <machine/cpuconf.h>
125 #include <machine/ieeefp.h>
126
127 #ifdef DDB
128 #include <machine/db_machdep.h>
129 #include <ddb/db_access.h>
130 #include <ddb/db_sym.h>
131 #include <ddb/db_extern.h>
132 #include <ddb/db_interface.h>
133 #endif
134
135 #ifdef KGDB
136 #include <sys/kgdb.h>
137 #endif
138
139 #ifdef DEBUG
140 #include <machine/sigdebug.h>
141 #endif
142
143 #include <machine/alpha.h>
144
145 #include "ksyms.h"
146
147 struct vm_map *exec_map = NULL;
148 struct vm_map *mb_map = NULL;
149 struct vm_map *phys_map = NULL;
150
151 caddr_t msgbufaddr;
152
153 int maxmem; /* max memory per process */
154
155 int totalphysmem; /* total amount of physical memory in system */
156 int physmem; /* physical memory used by NetBSD + some rsvd */
157 int resvmem; /* amount of memory reserved for PROM */
158 int unusedmem; /* amount of memory for OS that we don't use */
159 int unknownmem; /* amount of memory with an unknown use */
160
161 int cputype; /* system type, from the RPB */
162
163 int bootdev_debug = 0; /* patchable, or from DDB */
164
165 /*
166 * XXX We need an address to which we can assign things so that they
167 * won't be optimized away because we didn't use the value.
168 */
169 u_int32_t no_optimize;
170
171 /* the following is used externally (sysctl_hw) */
172 char machine[] = MACHINE; /* from <machine/param.h> */
173 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
174 char cpu_model[128];
175
176 struct user *proc0paddr;
177
178 /* Number of machine cycles per microsecond */
179 u_int64_t cycles_per_usec;
180
181 /* number of cpus in the box. really! */
182 int ncpus;
183
184 struct bootinfo_kernel bootinfo;
185
186 /* For built-in TCDS */
187 #if defined(DEC_3000_300) || defined(DEC_3000_500)
188 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
189 #endif
190
191 struct platform platform;
192
193 #if NKSYMS || defined(DDB) || defined(LKM)
194 /* start and end of kernel symbol table */
195 void *ksym_start, *ksym_end;
196 #endif
197
198 /* for cpu_sysctl() */
199 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
200 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
201 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
202 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
203
204 /*
205 * XXX This should be dynamically sized, but we have the chicken-egg problem!
206 * XXX it should also be larger than it is, because not all of the mddt
207 * XXX clusters end up being used for VM.
208 */
209 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
210 int mem_cluster_cnt;
211
212 int cpu_dump __P((void));
213 int cpu_dumpsize __P((void));
214 u_long cpu_dump_mempagecnt __P((void));
215 void dumpsys __P((void));
216 void identifycpu __P((void));
217 void printregs __P((struct reg *));
218
219 void
220 alpha_init(pfn, ptb, bim, bip, biv)
221 u_long pfn; /* first free PFN number */
222 u_long ptb; /* PFN of current level 1 page table */
223 u_long bim; /* bootinfo magic */
224 u_long bip; /* bootinfo pointer */
225 u_long biv; /* bootinfo version */
226 {
227 extern char kernel_text[], _end[];
228 struct mddt *mddtp;
229 struct mddt_cluster *memc;
230 int i, mddtweird;
231 struct vm_physseg *vps;
232 vaddr_t kernstart, kernend;
233 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
234 vsize_t size;
235 cpuid_t cpu_id;
236 struct cpu_info *ci;
237 char *p;
238 caddr_t v;
239 const char *bootinfo_msg;
240 const struct cpuinit *c;
241
242 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
243
244 /*
245 * Turn off interrupts (not mchecks) and floating point.
246 * Make sure the instruction and data streams are consistent.
247 */
248 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
249 alpha_pal_wrfen(0);
250 ALPHA_TBIA();
251 alpha_pal_imb();
252
253 /* Initialize the SCB. */
254 scb_init();
255
256 cpu_id = cpu_number();
257
258 #if defined(MULTIPROCESSOR)
259 /*
260 * Set our SysValue to the address of our cpu_info structure.
261 * Secondary processors do this in their spinup trampoline.
262 */
263 alpha_pal_wrval((u_long)&cpu_info_primary);
264 cpu_info[cpu_id] = &cpu_info_primary;
265 #endif
266
267 ci = curcpu();
268 ci->ci_cpuid = cpu_id;
269
270 /*
271 * Get critical system information (if possible, from the
272 * information provided by the boot program).
273 */
274 bootinfo_msg = NULL;
275 if (bim == BOOTINFO_MAGIC) {
276 if (biv == 0) { /* backward compat */
277 biv = *(u_long *)bip;
278 bip += 8;
279 }
280 switch (biv) {
281 case 1: {
282 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
283
284 bootinfo.ssym = v1p->ssym;
285 bootinfo.esym = v1p->esym;
286 /* hwrpb may not be provided by boot block in v1 */
287 if (v1p->hwrpb != NULL) {
288 bootinfo.hwrpb_phys =
289 ((struct rpb *)v1p->hwrpb)->rpb_phys;
290 bootinfo.hwrpb_size = v1p->hwrpbsize;
291 } else {
292 bootinfo.hwrpb_phys =
293 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
294 bootinfo.hwrpb_size =
295 ((struct rpb *)HWRPB_ADDR)->rpb_size;
296 }
297 memcpy(bootinfo.boot_flags, v1p->boot_flags,
298 min(sizeof v1p->boot_flags,
299 sizeof bootinfo.boot_flags));
300 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
301 min(sizeof v1p->booted_kernel,
302 sizeof bootinfo.booted_kernel));
303 /* booted dev not provided in bootinfo */
304 init_prom_interface((struct rpb *)
305 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
306 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
307 sizeof bootinfo.booted_dev);
308 break;
309 }
310 default:
311 bootinfo_msg = "unknown bootinfo version";
312 goto nobootinfo;
313 }
314 } else {
315 bootinfo_msg = "boot program did not pass bootinfo";
316 nobootinfo:
317 bootinfo.ssym = (u_long)_end;
318 bootinfo.esym = (u_long)_end;
319 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
320 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
321 init_prom_interface((struct rpb *)HWRPB_ADDR);
322 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
323 sizeof bootinfo.boot_flags);
324 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
325 sizeof bootinfo.booted_kernel);
326 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
327 sizeof bootinfo.booted_dev);
328 }
329
330 /*
331 * Initialize the kernel's mapping of the RPB. It's needed for
332 * lots of things.
333 */
334 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
335
336 #if defined(DEC_3000_300) || defined(DEC_3000_500)
337 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
338 hwrpb->rpb_type == ST_DEC_3000_500) {
339 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
340 sizeof(dec_3000_scsiid));
341 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
342 sizeof(dec_3000_scsifast));
343 }
344 #endif
345
346 /*
347 * Remember how many cycles there are per microsecond,
348 * so that we can use delay(). Round up, for safety.
349 */
350 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
351
352 /*
353 * Initialize the (temporary) bootstrap console interface, so
354 * we can use printf until the VM system starts being setup.
355 * The real console is initialized before then.
356 */
357 init_bootstrap_console();
358
359 /* OUTPUT NOW ALLOWED */
360
361 /* delayed from above */
362 if (bootinfo_msg)
363 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
364 bootinfo_msg, bim, bip, biv);
365
366 /* Initialize the trap vectors on the primary processor. */
367 trap_init();
368
369 /*
370 * Find out this system's page size, and initialize
371 * PAGE_SIZE-dependent variables.
372 */
373 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
374 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
375 ALPHA_PGBYTES);
376 uvmexp.pagesize = hwrpb->rpb_page_size;
377 uvm_setpagesize();
378
379 /*
380 * Find out what hardware we're on, and do basic initialization.
381 */
382 cputype = hwrpb->rpb_type;
383 if (cputype < 0) {
384 /*
385 * At least some white-box systems have SRM which
386 * reports a systype that's the negative of their
387 * blue-box counterpart.
388 */
389 cputype = -cputype;
390 }
391 c = platform_lookup(cputype);
392 if (c == NULL) {
393 platform_not_supported();
394 /* NOTREACHED */
395 }
396 (*c->init)();
397 strcpy(cpu_model, platform.model);
398
399 /*
400 * Initialize the real console, so that the bootstrap console is
401 * no longer necessary.
402 */
403 (*platform.cons_init)();
404
405 #ifdef DIAGNOSTIC
406 /* Paranoid sanity checking */
407
408 /* We should always be running on the primary. */
409 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
410
411 /*
412 * On single-CPU systypes, the primary should always be CPU 0,
413 * except on Alpha 8200 systems where the CPU id is related
414 * to the VID, which is related to the Turbo Laser node id.
415 */
416 if (cputype != ST_DEC_21000)
417 assert(hwrpb->rpb_primary_cpu_id == 0);
418 #endif
419
420 /* NO MORE FIRMWARE ACCESS ALLOWED */
421 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
422 /*
423 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
424 * XXX pmap_uses_prom_console() evaluates to non-zero.)
425 */
426 #endif
427
428 /*
429 * Find the beginning and end of the kernel (and leave a
430 * bit of space before the beginning for the bootstrap
431 * stack).
432 */
433 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
434 #if NKSYMS || defined(DDB) || defined(LKM)
435 ksym_start = (void *)bootinfo.ssym;
436 ksym_end = (void *)bootinfo.esym;
437 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
438 #else
439 kernend = (vaddr_t)round_page((vaddr_t)_end);
440 #endif
441
442 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
443 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
444
445 /*
446 * Find out how much memory is available, by looking at
447 * the memory cluster descriptors. This also tries to do
448 * its best to detect things things that have never been seen
449 * before...
450 */
451 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
452
453 /* MDDT SANITY CHECKING */
454 mddtweird = 0;
455 if (mddtp->mddt_cluster_cnt < 2) {
456 mddtweird = 1;
457 printf("WARNING: weird number of mem clusters: %lu\n",
458 mddtp->mddt_cluster_cnt);
459 }
460
461 #if 0
462 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
463 #endif
464
465 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
466 memc = &mddtp->mddt_clusters[i];
467 #if 0
468 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
469 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
470 #endif
471 totalphysmem += memc->mddt_pg_cnt;
472 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
473 mem_clusters[mem_cluster_cnt].start =
474 ptoa(memc->mddt_pfn);
475 mem_clusters[mem_cluster_cnt].size =
476 ptoa(memc->mddt_pg_cnt);
477 if (memc->mddt_usage & MDDT_mbz ||
478 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
479 memc->mddt_usage & MDDT_PALCODE)
480 mem_clusters[mem_cluster_cnt].size |=
481 PROT_READ;
482 else
483 mem_clusters[mem_cluster_cnt].size |=
484 PROT_READ | PROT_WRITE | PROT_EXEC;
485 mem_cluster_cnt++;
486 }
487
488 if (memc->mddt_usage & MDDT_mbz) {
489 mddtweird = 1;
490 printf("WARNING: mem cluster %d has weird "
491 "usage 0x%lx\n", i, memc->mddt_usage);
492 unknownmem += memc->mddt_pg_cnt;
493 continue;
494 }
495 if (memc->mddt_usage & MDDT_NONVOLATILE) {
496 /* XXX should handle these... */
497 printf("WARNING: skipping non-volatile mem "
498 "cluster %d\n", i);
499 unusedmem += memc->mddt_pg_cnt;
500 continue;
501 }
502 if (memc->mddt_usage & MDDT_PALCODE) {
503 resvmem += memc->mddt_pg_cnt;
504 continue;
505 }
506
507 /*
508 * We have a memory cluster available for system
509 * software use. We must determine if this cluster
510 * holds the kernel.
511 */
512 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
513 /*
514 * XXX If the kernel uses the PROM console, we only use the
515 * XXX memory after the kernel in the first system segment,
516 * XXX to avoid clobbering prom mapping, data, etc.
517 */
518 if (!pmap_uses_prom_console() || physmem == 0) {
519 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
520 physmem += memc->mddt_pg_cnt;
521 pfn0 = memc->mddt_pfn;
522 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
523 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
524 /*
525 * Must compute the location of the kernel
526 * within the segment.
527 */
528 #if 0
529 printf("Cluster %d contains kernel\n", i);
530 #endif
531 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
532 if (!pmap_uses_prom_console()) {
533 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
534 if (pfn0 < kernstartpfn) {
535 /*
536 * There is a chunk before the kernel.
537 */
538 #if 0
539 printf("Loading chunk before kernel: "
540 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
541 #endif
542 uvm_page_physload(pfn0, kernstartpfn,
543 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
544 }
545 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
546 }
547 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
548 if (kernendpfn < pfn1) {
549 /*
550 * There is a chunk after the kernel.
551 */
552 #if 0
553 printf("Loading chunk after kernel: "
554 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
555 #endif
556 uvm_page_physload(kernendpfn, pfn1,
557 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
558 }
559 } else {
560 /*
561 * Just load this cluster as one chunk.
562 */
563 #if 0
564 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
565 pfn0, pfn1);
566 #endif
567 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
568 VM_FREELIST_DEFAULT);
569 }
570 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
571 }
572 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
573 }
574
575 /*
576 * Dump out the MDDT if it looks odd...
577 */
578 if (mddtweird) {
579 printf("\n");
580 printf("complete memory cluster information:\n");
581 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
582 printf("mddt %d:\n", i);
583 printf("\tpfn %lx\n",
584 mddtp->mddt_clusters[i].mddt_pfn);
585 printf("\tcnt %lx\n",
586 mddtp->mddt_clusters[i].mddt_pg_cnt);
587 printf("\ttest %lx\n",
588 mddtp->mddt_clusters[i].mddt_pg_test);
589 printf("\tbva %lx\n",
590 mddtp->mddt_clusters[i].mddt_v_bitaddr);
591 printf("\tbpa %lx\n",
592 mddtp->mddt_clusters[i].mddt_p_bitaddr);
593 printf("\tbcksum %lx\n",
594 mddtp->mddt_clusters[i].mddt_bit_cksum);
595 printf("\tusage %lx\n",
596 mddtp->mddt_clusters[i].mddt_usage);
597 }
598 printf("\n");
599 }
600
601 if (totalphysmem == 0)
602 panic("can't happen: system seems to have no memory!");
603 maxmem = physmem;
604 #if 0
605 printf("totalphysmem = %d\n", totalphysmem);
606 printf("physmem = %d\n", physmem);
607 printf("resvmem = %d\n", resvmem);
608 printf("unusedmem = %d\n", unusedmem);
609 printf("unknownmem = %d\n", unknownmem);
610 #endif
611
612 /*
613 * Initialize error message buffer (at end of core).
614 */
615 {
616 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
617 vsize_t reqsz = sz;
618
619 vps = &vm_physmem[vm_nphysseg - 1];
620
621 /* shrink so that it'll fit in the last segment */
622 if ((vps->avail_end - vps->avail_start) < atop(sz))
623 sz = ptoa(vps->avail_end - vps->avail_start);
624
625 vps->end -= atop(sz);
626 vps->avail_end -= atop(sz);
627 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
628 initmsgbuf(msgbufaddr, sz);
629
630 /* Remove the last segment if it now has no pages. */
631 if (vps->start == vps->end)
632 vm_nphysseg--;
633
634 /* warn if the message buffer had to be shrunk */
635 if (sz != reqsz)
636 printf("WARNING: %ld bytes not available for msgbuf "
637 "in last cluster (%ld used)\n", reqsz, sz);
638
639 }
640
641 /*
642 * NOTE: It is safe to use uvm_pageboot_alloc() before
643 * pmap_bootstrap() because our pmap_virtual_space()
644 * returns compile-time constants.
645 */
646
647 /*
648 * Init mapping for u page(s) for proc 0
649 */
650 lwp0.l_addr = proc0paddr =
651 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
652
653 /*
654 * Allocate space for system data structures. These data structures
655 * are allocated here instead of cpu_startup() because physical
656 * memory is directly addressable. We don't have to map these into
657 * virtual address space.
658 */
659 size = (vsize_t)allocsys(NULL, NULL);
660 v = (caddr_t)uvm_pageboot_alloc(size);
661 if ((allocsys(v, NULL) - v) != size)
662 panic("alpha_init: table size inconsistency");
663
664 /*
665 * Initialize the virtual memory system, and set the
666 * page table base register in proc 0's PCB.
667 */
668 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
669 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
670
671 /*
672 * Initialize the rest of proc 0's PCB, and cache its physical
673 * address.
674 */
675 lwp0.l_md.md_pcbpaddr =
676 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
677
678 /*
679 * Set the kernel sp, reserving space for an (empty) trapframe,
680 * and make proc0's trapframe pointer point to it for sanity.
681 */
682 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
683 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
684 lwp0.l_md.md_tf =
685 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
686 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
687
688 /*
689 * Initialize the primary CPU's idle PCB to proc0's. In a
690 * MULTIPROCESSOR configuration, each CPU will later get
691 * its own idle PCB when autoconfiguration runs.
692 */
693 ci->ci_idle_pcb = &proc0paddr->u_pcb;
694 ci->ci_idle_pcb_paddr = (u_long)lwp0.l_md.md_pcbpaddr;
695
696 /* Indicate that proc0 has a CPU. */
697 lwp0.l_cpu = ci;
698
699 /*
700 * Look at arguments passed to us and compute boothowto.
701 */
702
703 boothowto = RB_SINGLE;
704 #ifdef KADB
705 boothowto |= RB_KDB;
706 #endif
707 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
708 /*
709 * Note that we'd really like to differentiate case here,
710 * but the Alpha AXP Architecture Reference Manual
711 * says that we shouldn't.
712 */
713 switch (*p) {
714 case 'a': /* autoboot */
715 case 'A':
716 boothowto &= ~RB_SINGLE;
717 break;
718
719 #ifdef DEBUG
720 case 'c': /* crash dump immediately after autoconfig */
721 case 'C':
722 boothowto |= RB_DUMP;
723 break;
724 #endif
725
726 #if defined(KGDB) || defined(DDB)
727 case 'd': /* break into the kernel debugger ASAP */
728 case 'D':
729 boothowto |= RB_KDB;
730 break;
731 #endif
732
733 case 'h': /* always halt, never reboot */
734 case 'H':
735 boothowto |= RB_HALT;
736 break;
737
738 #if 0
739 case 'm': /* mini root present in memory */
740 case 'M':
741 boothowto |= RB_MINIROOT;
742 break;
743 #endif
744
745 case 'n': /* askname */
746 case 'N':
747 boothowto |= RB_ASKNAME;
748 break;
749
750 case 's': /* single-user (default, supported for sanity) */
751 case 'S':
752 boothowto |= RB_SINGLE;
753 break;
754
755 case 'q': /* quiet boot */
756 case 'Q':
757 boothowto |= AB_QUIET;
758 break;
759
760 case 'v': /* verbose boot */
761 case 'V':
762 boothowto |= AB_VERBOSE;
763 break;
764
765 case '-':
766 /*
767 * Just ignore this. It's not required, but it's
768 * common for it to be passed regardless.
769 */
770 break;
771
772 default:
773 printf("Unrecognized boot flag '%c'.\n", *p);
774 break;
775 }
776 }
777
778
779 /*
780 * Figure out the number of cpus in the box, from RPB fields.
781 * Really. We mean it.
782 */
783 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
784 struct pcs *pcsp;
785
786 pcsp = LOCATE_PCS(hwrpb, i);
787 if ((pcsp->pcs_flags & PCS_PP) != 0)
788 ncpus++;
789 }
790
791 /*
792 * Initialize debuggers, and break into them if appropriate.
793 */
794 #if NKSYMS || defined(DDB) || defined(LKM)
795 ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
796 ksym_start, ksym_end);
797 #endif
798
799 if (boothowto & RB_KDB) {
800 #if defined(KGDB)
801 kgdb_debug_init = 1;
802 kgdb_connect(1);
803 #elif defined(DDB)
804 Debugger();
805 #endif
806 }
807
808 /*
809 * Figure out our clock frequency, from RPB fields.
810 */
811 hz = hwrpb->rpb_intr_freq >> 12;
812 if (!(60 <= hz && hz <= 10240)) {
813 hz = 1024;
814 #ifdef DIAGNOSTIC
815 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
816 hwrpb->rpb_intr_freq, hz);
817 #endif
818 }
819 }
820
821 void
822 consinit()
823 {
824
825 /*
826 * Everything related to console initialization is done
827 * in alpha_init().
828 */
829 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
830 printf("consinit: %susing prom console\n",
831 pmap_uses_prom_console() ? "" : "not ");
832 #endif
833 }
834
835 #include "pckbc.h"
836 #include "pckbd.h"
837 #if (NPCKBC > 0) && (NPCKBD == 0)
838
839 #include <dev/ic/pckbcvar.h>
840
841 /*
842 * This is called by the pbkbc driver if no pckbd is configured.
843 * On the i386, it is used to glue in the old, deprecated console
844 * code. On the Alpha, it does nothing.
845 */
846 int
847 pckbc_machdep_cnattach(kbctag, kbcslot)
848 pckbc_tag_t kbctag;
849 pckbc_slot_t kbcslot;
850 {
851
852 return (ENXIO);
853 }
854 #endif /* NPCKBC > 0 && NPCKBD == 0 */
855
856 void
857 cpu_startup()
858 {
859 u_int i, base, residual;
860 vaddr_t minaddr, maxaddr;
861 vsize_t size;
862 char pbuf[9];
863 #if defined(DEBUG)
864 extern int pmapdebug;
865 int opmapdebug = pmapdebug;
866
867 pmapdebug = 0;
868 #endif
869
870 /*
871 * Good {morning,afternoon,evening,night}.
872 */
873 printf(version);
874 identifycpu();
875 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
876 printf("total memory = %s\n", pbuf);
877 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
878 printf("(%s reserved for PROM, ", pbuf);
879 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
880 printf("%s used by NetBSD)\n", pbuf);
881 if (unusedmem) {
882 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
883 printf("WARNING: unused memory = %s\n", pbuf);
884 }
885 if (unknownmem) {
886 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
887 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
888 }
889
890 /*
891 * Allocate virtual address space for file I/O buffers.
892 * Note they are different than the array of headers, 'buf',
893 * and usually occupy more virtual memory than physical.
894 */
895 size = MAXBSIZE * nbuf;
896 if (uvm_map(kernel_map, (void *) &buffers, round_page(size),
897 NULL, UVM_UNKNOWN_OFFSET, 0,
898 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
899 UVM_ADV_NORMAL, 0)) != 0)
900 panic("startup: cannot allocate VM for buffers");
901 base = bufpages / nbuf;
902 residual = bufpages % nbuf;
903 for (i = 0; i < nbuf; i++) {
904 vsize_t curbufsize;
905 vaddr_t curbuf;
906 struct vm_page *pg;
907
908 /*
909 * Each buffer has MAXBSIZE bytes of VM space allocated. Of
910 * that MAXBSIZE space, we allocate and map (base+1) pages
911 * for the first "residual" buffers, and then we allocate
912 * "base" pages for the rest.
913 */
914 curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
915 curbufsize = PAGE_SIZE * ((i < residual) ? (base+1) : base);
916
917 while (curbufsize) {
918 pg = uvm_pagealloc(NULL, 0, NULL, 0);
919 if (pg == NULL)
920 panic("cpu_startup: not enough memory for "
921 "buffer cache");
922 pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
923 VM_PROT_READ|VM_PROT_WRITE);
924 curbuf += PAGE_SIZE;
925 curbufsize -= PAGE_SIZE;
926 }
927 }
928 pmap_update(pmap_kernel());
929
930 /*
931 * Allocate a submap for exec arguments. This map effectively
932 * limits the number of processes exec'ing at any time.
933 */
934 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
935 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
936
937 /*
938 * Allocate a submap for physio
939 */
940 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
941 VM_PHYS_SIZE, 0, FALSE, NULL);
942
943 /*
944 * No need to allocate an mbuf cluster submap. Mbuf clusters
945 * are allocated via the pool allocator, and we use K0SEG to
946 * map those pages.
947 */
948
949 #if defined(DEBUG)
950 pmapdebug = opmapdebug;
951 #endif
952 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
953 printf("avail memory = %s\n", pbuf);
954 #if 0
955 {
956 extern u_long pmap_pages_stolen;
957
958 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
959 printf("stolen memory for VM structures = %s\n", pbuf);
960 }
961 #endif
962 format_bytes(pbuf, sizeof(pbuf), bufpages * PAGE_SIZE);
963 printf("using %u buffers containing %s of memory\n", nbuf, pbuf);
964
965 /*
966 * Set up buffers, so they can be used to read disk labels.
967 */
968 bufinit();
969
970 /*
971 * Set up the HWPCB so that it's safe to configure secondary
972 * CPUs.
973 */
974 hwrpb_primary_init();
975 }
976
977 /*
978 * Retrieve the platform name from the DSR.
979 */
980 const char *
981 alpha_dsr_sysname()
982 {
983 struct dsrdb *dsr;
984 const char *sysname;
985
986 /*
987 * DSR does not exist on early HWRPB versions.
988 */
989 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
990 return (NULL);
991
992 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
993 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
994 sizeof(u_int64_t)));
995 return (sysname);
996 }
997
998 /*
999 * Lookup the system specified system variation in the provided table,
1000 * returning the model string on match.
1001 */
1002 const char *
1003 alpha_variation_name(variation, avtp)
1004 u_int64_t variation;
1005 const struct alpha_variation_table *avtp;
1006 {
1007 int i;
1008
1009 for (i = 0; avtp[i].avt_model != NULL; i++)
1010 if (avtp[i].avt_variation == variation)
1011 return (avtp[i].avt_model);
1012 return (NULL);
1013 }
1014
1015 /*
1016 * Generate a default platform name based for unknown system variations.
1017 */
1018 const char *
1019 alpha_unknown_sysname()
1020 {
1021 static char s[128]; /* safe size */
1022
1023 sprintf(s, "%s family, unknown model variation 0x%lx",
1024 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1025 return ((const char *)s);
1026 }
1027
1028 void
1029 identifycpu()
1030 {
1031 char *s;
1032 int i;
1033
1034 /*
1035 * print out CPU identification information.
1036 */
1037 printf("%s", cpu_model);
1038 for(s = cpu_model; *s; ++s)
1039 if(strncasecmp(s, "MHz", 3) == 0)
1040 goto skipMHz;
1041 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1042 skipMHz:
1043 printf(", s/n ");
1044 for (i = 0; i < 10; i++)
1045 printf("%c", hwrpb->rpb_ssn[i]);
1046 printf("\n");
1047 printf("%ld byte page size, %d processor%s.\n",
1048 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1049 #if 0
1050 /* this isn't defined for any systems that we run on? */
1051 printf("serial number 0x%lx 0x%lx\n",
1052 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1053
1054 /* and these aren't particularly useful! */
1055 printf("variation: 0x%lx, revision 0x%lx\n",
1056 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1057 #endif
1058 }
1059
1060 int waittime = -1;
1061 struct pcb dumppcb;
1062
1063 void
1064 cpu_reboot(howto, bootstr)
1065 int howto;
1066 char *bootstr;
1067 {
1068 #if defined(MULTIPROCESSOR)
1069 u_long cpu_id = cpu_number();
1070 u_long wait_mask = (1UL << cpu_id) |
1071 (1UL << hwrpb->rpb_primary_cpu_id);
1072 int i;
1073 #endif
1074
1075 /* If "always halt" was specified as a boot flag, obey. */
1076 if ((boothowto & RB_HALT) != 0)
1077 howto |= RB_HALT;
1078
1079 boothowto = howto;
1080
1081 /* If system is cold, just halt. */
1082 if (cold) {
1083 boothowto |= RB_HALT;
1084 goto haltsys;
1085 }
1086
1087 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1088 waittime = 0;
1089 vfs_shutdown();
1090 /*
1091 * If we've been adjusting the clock, the todr
1092 * will be out of synch; adjust it now.
1093 */
1094 resettodr();
1095 }
1096
1097 /* Disable interrupts. */
1098 splhigh();
1099
1100 #if defined(MULTIPROCESSOR)
1101 /*
1102 * Halt all other CPUs. If we're not the primary, the
1103 * primary will spin, waiting for us to halt.
1104 */
1105 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1106
1107 for (i = 0; i < 10000; i++) {
1108 alpha_mb();
1109 if (cpus_running == wait_mask)
1110 break;
1111 delay(1000);
1112 }
1113 alpha_mb();
1114 if (cpus_running != wait_mask)
1115 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1116 cpus_running);
1117 #endif /* MULTIPROCESSOR */
1118
1119 /* If rebooting and a dump is requested do it. */
1120 #if 0
1121 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1122 #else
1123 if (boothowto & RB_DUMP)
1124 #endif
1125 dumpsys();
1126
1127 haltsys:
1128
1129 /* run any shutdown hooks */
1130 doshutdownhooks();
1131
1132 #ifdef BOOTKEY
1133 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1134 cnpollc(1); /* for proper keyboard command handling */
1135 cngetc();
1136 cnpollc(0);
1137 printf("\n");
1138 #endif
1139
1140 /* Finally, powerdown/halt/reboot the system. */
1141 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1142 platform.powerdown != NULL) {
1143 (*platform.powerdown)();
1144 printf("WARNING: powerdown failed!\n");
1145 }
1146 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1147 #if defined(MULTIPROCESSOR)
1148 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1149 cpu_halt();
1150 else
1151 #endif
1152 prom_halt(boothowto & RB_HALT);
1153 /*NOTREACHED*/
1154 }
1155
1156 /*
1157 * These variables are needed by /sbin/savecore
1158 */
1159 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1160 int dumpsize = 0; /* pages */
1161 long dumplo = 0; /* blocks */
1162
1163 /*
1164 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1165 */
1166 int
1167 cpu_dumpsize()
1168 {
1169 int size;
1170
1171 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1172 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1173 if (roundup(size, dbtob(1)) != dbtob(1))
1174 return -1;
1175
1176 return (1);
1177 }
1178
1179 /*
1180 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1181 */
1182 u_long
1183 cpu_dump_mempagecnt()
1184 {
1185 u_long i, n;
1186
1187 n = 0;
1188 for (i = 0; i < mem_cluster_cnt; i++)
1189 n += atop(mem_clusters[i].size);
1190 return (n);
1191 }
1192
1193 /*
1194 * cpu_dump: dump machine-dependent kernel core dump headers.
1195 */
1196 int
1197 cpu_dump()
1198 {
1199 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1200 char buf[dbtob(1)];
1201 kcore_seg_t *segp;
1202 cpu_kcore_hdr_t *cpuhdrp;
1203 phys_ram_seg_t *memsegp;
1204 const struct bdevsw *bdev;
1205 int i;
1206
1207 bdev = bdevsw_lookup(dumpdev);
1208 if (bdev == NULL)
1209 return (ENXIO);
1210 dump = bdev->d_dump;
1211
1212 memset(buf, 0, sizeof buf);
1213 segp = (kcore_seg_t *)buf;
1214 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1215 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1216 ALIGN(sizeof(*cpuhdrp))];
1217
1218 /*
1219 * Generate a segment header.
1220 */
1221 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1222 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1223
1224 /*
1225 * Add the machine-dependent header info.
1226 */
1227 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1228 cpuhdrp->page_size = PAGE_SIZE;
1229 cpuhdrp->nmemsegs = mem_cluster_cnt;
1230
1231 /*
1232 * Fill in the memory segment descriptors.
1233 */
1234 for (i = 0; i < mem_cluster_cnt; i++) {
1235 memsegp[i].start = mem_clusters[i].start;
1236 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1237 }
1238
1239 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1240 }
1241
1242 /*
1243 * This is called by main to set dumplo and dumpsize.
1244 * Dumps always skip the first PAGE_SIZE of disk space
1245 * in case there might be a disk label stored there.
1246 * If there is extra space, put dump at the end to
1247 * reduce the chance that swapping trashes it.
1248 */
1249 void
1250 cpu_dumpconf()
1251 {
1252 const struct bdevsw *bdev;
1253 int nblks, dumpblks; /* size of dump area */
1254
1255 if (dumpdev == NODEV)
1256 goto bad;
1257 bdev = bdevsw_lookup(dumpdev);
1258 if (bdev == NULL)
1259 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1260 if (bdev->d_psize == NULL)
1261 goto bad;
1262 nblks = (*bdev->d_psize)(dumpdev);
1263 if (nblks <= ctod(1))
1264 goto bad;
1265
1266 dumpblks = cpu_dumpsize();
1267 if (dumpblks < 0)
1268 goto bad;
1269 dumpblks += ctod(cpu_dump_mempagecnt());
1270
1271 /* If dump won't fit (incl. room for possible label), punt. */
1272 if (dumpblks > (nblks - ctod(1)))
1273 goto bad;
1274
1275 /* Put dump at end of partition */
1276 dumplo = nblks - dumpblks;
1277
1278 /* dumpsize is in page units, and doesn't include headers. */
1279 dumpsize = cpu_dump_mempagecnt();
1280 return;
1281
1282 bad:
1283 dumpsize = 0;
1284 return;
1285 }
1286
1287 /*
1288 * Dump the kernel's image to the swap partition.
1289 */
1290 #define BYTES_PER_DUMP PAGE_SIZE
1291
1292 void
1293 dumpsys()
1294 {
1295 const struct bdevsw *bdev;
1296 u_long totalbytesleft, bytes, i, n, memcl;
1297 u_long maddr;
1298 int psize;
1299 daddr_t blkno;
1300 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1301 int error;
1302
1303 /* Save registers. */
1304 savectx(&dumppcb);
1305
1306 if (dumpdev == NODEV)
1307 return;
1308 bdev = bdevsw_lookup(dumpdev);
1309 if (bdev == NULL || bdev->d_psize == NULL)
1310 return;
1311
1312 /*
1313 * For dumps during autoconfiguration,
1314 * if dump device has already configured...
1315 */
1316 if (dumpsize == 0)
1317 cpu_dumpconf();
1318 if (dumplo <= 0) {
1319 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1320 minor(dumpdev));
1321 return;
1322 }
1323 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1324 minor(dumpdev), dumplo);
1325
1326 psize = (*bdev->d_psize)(dumpdev);
1327 printf("dump ");
1328 if (psize == -1) {
1329 printf("area unavailable\n");
1330 return;
1331 }
1332
1333 /* XXX should purge all outstanding keystrokes. */
1334
1335 if ((error = cpu_dump()) != 0)
1336 goto err;
1337
1338 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1339 blkno = dumplo + cpu_dumpsize();
1340 dump = bdev->d_dump;
1341 error = 0;
1342
1343 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1344 maddr = mem_clusters[memcl].start;
1345 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1346
1347 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1348
1349 /* Print out how many MBs we to go. */
1350 if ((totalbytesleft % (1024*1024)) == 0)
1351 printf("%ld ", totalbytesleft / (1024 * 1024));
1352
1353 /* Limit size for next transfer. */
1354 n = bytes - i;
1355 if (n > BYTES_PER_DUMP)
1356 n = BYTES_PER_DUMP;
1357
1358 error = (*dump)(dumpdev, blkno,
1359 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1360 if (error)
1361 goto err;
1362 maddr += n;
1363 blkno += btodb(n); /* XXX? */
1364
1365 /* XXX should look for keystrokes, to cancel. */
1366 }
1367 }
1368
1369 err:
1370 switch (error) {
1371
1372 case ENXIO:
1373 printf("device bad\n");
1374 break;
1375
1376 case EFAULT:
1377 printf("device not ready\n");
1378 break;
1379
1380 case EINVAL:
1381 printf("area improper\n");
1382 break;
1383
1384 case EIO:
1385 printf("i/o error\n");
1386 break;
1387
1388 case EINTR:
1389 printf("aborted from console\n");
1390 break;
1391
1392 case 0:
1393 printf("succeeded\n");
1394 break;
1395
1396 default:
1397 printf("error %d\n", error);
1398 break;
1399 }
1400 printf("\n\n");
1401 delay(1000);
1402 }
1403
1404 void
1405 frametoreg(framep, regp)
1406 const struct trapframe *framep;
1407 struct reg *regp;
1408 {
1409
1410 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1411 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1412 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1413 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1414 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1415 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1416 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1417 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1418 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1419 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1420 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1421 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1422 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1423 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1424 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1425 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1426 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1427 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1428 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1429 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1430 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1431 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1432 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1433 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1434 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1435 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1436 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1437 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1438 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1439 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1440 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1441 regp->r_regs[R_ZERO] = 0;
1442 }
1443
1444 void
1445 regtoframe(regp, framep)
1446 const struct reg *regp;
1447 struct trapframe *framep;
1448 {
1449
1450 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1451 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1452 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1453 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1454 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1455 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1456 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1457 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1458 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1459 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1460 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1461 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1462 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1463 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1464 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1465 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1466 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1467 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1468 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1469 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1470 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1471 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1472 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1473 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1474 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1475 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1476 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1477 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1478 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1479 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1480 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1481 /* ??? = regp->r_regs[R_ZERO]; */
1482 }
1483
1484 void
1485 printregs(regp)
1486 struct reg *regp;
1487 {
1488 int i;
1489
1490 for (i = 0; i < 32; i++)
1491 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1492 i & 1 ? "\n" : "\t");
1493 }
1494
1495 void
1496 regdump(framep)
1497 struct trapframe *framep;
1498 {
1499 struct reg reg;
1500
1501 frametoreg(framep, ®);
1502 reg.r_regs[R_SP] = alpha_pal_rdusp();
1503
1504 printf("REGISTERS:\n");
1505 printregs(®);
1506 }
1507
1508
1509
1510 void *
1511 getframe(const struct lwp *l, int sig, int *onstack)
1512 {
1513 void * frame;
1514 struct proc *p;
1515
1516 p = l->l_proc;
1517
1518 /* Do we need to jump onto the signal stack? */
1519 *onstack =
1520 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1521 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1522
1523 if (*onstack)
1524 frame = (void *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1525 p->p_sigctx.ps_sigstk.ss_size);
1526 else
1527 frame = (void *)(alpha_pal_rdusp());
1528 return (frame);
1529 }
1530
1531 void
1532 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1533 {
1534 struct trapframe *tf = l->l_md.md_tf;
1535
1536 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1537 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1538 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1539 alpha_pal_wrusp((unsigned long)fp);
1540 }
1541
1542
1543 /*
1544 * Send an interrupt to process, new style
1545 */
1546 void
1547 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1548 {
1549 struct lwp *l = curlwp;
1550 struct proc *p = l->l_proc;
1551 struct sigacts *ps = p->p_sigacts;
1552 int onstack, sig = ksi->ksi_signo;
1553 struct sigframe_siginfo *fp, frame;
1554 struct trapframe *tf;
1555 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1556
1557 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1558 tf = l->l_md.md_tf;
1559
1560 /* Allocate space for the signal handler context. */
1561 fp--;
1562
1563 /* Build stack frame for signal trampoline. */
1564 switch (ps->sa_sigdesc[sig].sd_vers) {
1565 case 0: /* handled by sendsig_sigcontext */
1566 case 1: /* handled by sendsig_sigcontext */
1567 default: /* unknown version */
1568 printf("nsendsig: bad version %d\n",
1569 ps->sa_sigdesc[sig].sd_vers);
1570 sigexit(l, SIGILL);
1571 case 2:
1572 break;
1573 }
1574
1575 #ifdef DEBUG
1576 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1577 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1578 sig, &onstack, fp);
1579 #endif
1580
1581 /* Build stack frame for signal trampoline. */
1582
1583 frame.sf_si._info = ksi->ksi_info;
1584 frame.sf_uc.uc_flags = _UC_SIGMASK;
1585 frame.sf_uc.uc_sigmask = *mask;
1586 frame.sf_uc.uc_link = NULL;
1587 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1588 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1589
1590 if (copyout(&frame, fp, sizeof(frame)) != 0) {
1591 /*
1592 * Process has trashed its stack; give it an illegal
1593 * instruction to halt it in its tracks.
1594 */
1595 #ifdef DEBUG
1596 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1597 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1598 p->p_pid, sig);
1599 #endif
1600 sigexit(l, SIGILL);
1601 /* NOTREACHED */
1602 }
1603
1604 #ifdef DEBUG
1605 if (sigdebug & SDB_FOLLOW)
1606 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1607 p->p_pid, sig, fp, ksi->ksi_code);
1608 #endif
1609
1610 /*
1611 * Set up the registers to directly invoke the signal handler. The
1612 * signal trampoline is then used to return from the signal. Note
1613 * the trampoline version numbers are coordinated with machine-
1614 * dependent code in libc.
1615 */
1616
1617 tf->tf_regs[FRAME_A0] = sig;
1618 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1619 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1620
1621 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1622
1623 /* Remember that we're now on the signal stack. */
1624 if (onstack)
1625 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1626
1627 #ifdef DEBUG
1628 if (sigdebug & SDB_FOLLOW)
1629 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1630 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1631 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1632 printf("sendsig_siginfo(%d): sig %d returns\n",
1633 p->p_pid, sig);
1634 #endif
1635 }
1636
1637
1638 void
1639 sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
1640 {
1641 #ifdef COMPAT_16
1642 if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) {
1643 sendsig_sigcontext(ksi, mask);
1644 } else {
1645 #endif
1646 #ifdef DEBUG
1647 if (sigdebug & SDB_FOLLOW)
1648 printf("sendsig: sendsig called: sig %d vers %d\n",
1649 ksi->ksi_signo,
1650 curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers);
1651 #endif
1652 sendsig_siginfo(ksi, mask);
1653 #ifdef COMPAT_16
1654 }
1655 #endif
1656 }
1657
1658 void
1659 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1660 {
1661 struct trapframe *tf;
1662
1663 tf = l->l_md.md_tf;
1664
1665 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1666 tf->tf_regs[FRAME_RA] = 0;
1667 tf->tf_regs[FRAME_A0] = type;
1668 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1669 tf->tf_regs[FRAME_A2] = nevents;
1670 tf->tf_regs[FRAME_A3] = ninterrupted;
1671 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1672 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1673 alpha_pal_wrusp((unsigned long)sp);
1674 }
1675
1676 /*
1677 * machine dependent system variables.
1678 */
1679 int
1680 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1681 int *name;
1682 u_int namelen;
1683 void *oldp;
1684 size_t *oldlenp;
1685 void *newp;
1686 size_t newlen;
1687 struct proc *p;
1688 {
1689 dev_t consdev;
1690
1691 /* all sysctl names at this level are terminal */
1692 if (namelen != 1)
1693 return (ENOTDIR); /* overloaded */
1694
1695 switch (name[0]) {
1696 case CPU_CONSDEV:
1697 if (cn_tab != NULL)
1698 consdev = cn_tab->cn_dev;
1699 else
1700 consdev = NODEV;
1701 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1702 sizeof consdev));
1703
1704 case CPU_ROOT_DEVICE:
1705 return (sysctl_rdstring(oldp, oldlenp, newp,
1706 root_device->dv_xname));
1707
1708 case CPU_UNALIGNED_PRINT:
1709 return (sysctl_int(oldp, oldlenp, newp, newlen,
1710 &alpha_unaligned_print));
1711
1712 case CPU_UNALIGNED_FIX:
1713 return (sysctl_int(oldp, oldlenp, newp, newlen,
1714 &alpha_unaligned_fix));
1715
1716 case CPU_UNALIGNED_SIGBUS:
1717 return (sysctl_int(oldp, oldlenp, newp, newlen,
1718 &alpha_unaligned_sigbus));
1719
1720 case CPU_BOOTED_KERNEL:
1721 return (sysctl_rdstring(oldp, oldlenp, newp,
1722 bootinfo.booted_kernel));
1723
1724 case CPU_FP_SYNC_COMPLETE:
1725 return (sysctl_int(oldp, oldlenp, newp, newlen,
1726 &alpha_fp_sync_complete));
1727
1728 default:
1729 return (EOPNOTSUPP);
1730 }
1731 /* NOTREACHED */
1732 }
1733
1734 /*
1735 * Set registers on exec.
1736 */
1737 void
1738 setregs(l, pack, stack)
1739 register struct lwp *l;
1740 struct exec_package *pack;
1741 u_long stack;
1742 {
1743 struct trapframe *tfp = l->l_md.md_tf;
1744 #ifdef DEBUG
1745 int i;
1746 #endif
1747
1748 #ifdef DEBUG
1749 /*
1750 * Crash and dump, if the user requested it.
1751 */
1752 if (boothowto & RB_DUMP)
1753 panic("crash requested by boot flags");
1754 #endif
1755
1756 #ifdef DEBUG
1757 for (i = 0; i < FRAME_SIZE; i++)
1758 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1759 #else
1760 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1761 #endif
1762 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1763 alpha_pal_wrusp(stack);
1764 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1765 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1766
1767 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1768 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1769 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1770 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1771 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1772
1773 l->l_md.md_flags &= ~MDP_FPUSED;
1774 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1775 l->l_md.md_flags &= ~MDP_FP_C;
1776 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1777 }
1778 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1779 fpusave_proc(l, 0);
1780 }
1781
1782 /*
1783 * Release the FPU.
1784 */
1785 void
1786 fpusave_cpu(struct cpu_info *ci, int save)
1787 {
1788 struct lwp *l;
1789 #if defined(MULTIPROCESSOR)
1790 int s;
1791 #endif
1792
1793 KDASSERT(ci == curcpu());
1794
1795 #if defined(MULTIPROCESSOR)
1796 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1797 #endif
1798
1799 l = ci->ci_fpcurlwp;
1800 if (l == NULL)
1801 goto out;
1802
1803 if (save) {
1804 alpha_pal_wrfen(1);
1805 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1806 }
1807
1808 alpha_pal_wrfen(0);
1809
1810 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1811
1812 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1813 ci->ci_fpcurlwp = NULL;
1814
1815 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1816
1817 out:
1818 #if defined(MULTIPROCESSOR)
1819 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1820 #endif
1821 return;
1822 }
1823
1824 /*
1825 * Synchronize FP state for this process.
1826 */
1827 void
1828 fpusave_proc(struct lwp *l, int save)
1829 {
1830 struct cpu_info *ci = curcpu();
1831 struct cpu_info *oci;
1832 #if defined(MULTIPROCESSOR)
1833 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1834 int s, spincount;
1835 #endif
1836
1837 KDASSERT(l->l_addr != NULL);
1838 KDASSERT(l->l_flag & L_INMEM);
1839
1840 FPCPU_LOCK(&l->l_addr->u_pcb, s);
1841
1842 oci = l->l_addr->u_pcb.pcb_fpcpu;
1843 if (oci == NULL) {
1844 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1845 return;
1846 }
1847
1848 #if defined(MULTIPROCESSOR)
1849 if (oci == ci) {
1850 KASSERT(ci->ci_fpcurlwp == l);
1851 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1852 fpusave_cpu(ci, save);
1853 return;
1854 }
1855
1856 KASSERT(oci->ci_fpcurlwp == l);
1857 alpha_send_ipi(oci->ci_cpuid, ipi);
1858 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1859
1860 spincount = 0;
1861 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1862 spincount++;
1863 delay(1000); /* XXX */
1864 if (spincount > 10000)
1865 panic("fpsave ipi didn't");
1866 }
1867 #else
1868 KASSERT(ci->ci_fpcurlwp == l);
1869 FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
1870 fpusave_cpu(ci, save);
1871 #endif /* MULTIPROCESSOR */
1872 }
1873
1874 /*
1875 * Wait "n" microseconds.
1876 */
1877 void
1878 delay(n)
1879 unsigned long n;
1880 {
1881 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1882
1883 if (n == 0)
1884 return;
1885
1886 pcc0 = alpha_rpcc() & 0xffffffffUL;
1887 cycles = 0;
1888 usec = 0;
1889
1890 while (usec <= n) {
1891 /*
1892 * Get the next CPU cycle count- assumes that we cannot
1893 * have had more than one 32 bit overflow.
1894 */
1895 pcc1 = alpha_rpcc() & 0xffffffffUL;
1896 if (pcc1 < pcc0)
1897 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1898 else
1899 curcycle = pcc1 - pcc0;
1900
1901 /*
1902 * We now have the number of processor cycles since we
1903 * last checked. Add the current cycle count to the
1904 * running total. If it's over cycles_per_usec, increment
1905 * the usec counter.
1906 */
1907 cycles += curcycle;
1908 while (cycles > cycles_per_usec) {
1909 usec++;
1910 cycles -= cycles_per_usec;
1911 }
1912 pcc0 = pcc1;
1913 }
1914 }
1915
1916 #ifdef EXEC_ECOFF
1917 void
1918 cpu_exec_ecoff_setregs(l, epp, stack)
1919 struct lwp *l;
1920 struct exec_package *epp;
1921 u_long stack;
1922 {
1923 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1924
1925 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1926 }
1927
1928 /*
1929 * cpu_exec_ecoff_hook():
1930 * cpu-dependent ECOFF format hook for execve().
1931 *
1932 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1933 *
1934 */
1935 int
1936 cpu_exec_ecoff_probe(p, epp)
1937 struct proc *p;
1938 struct exec_package *epp;
1939 {
1940 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1941 int error;
1942
1943 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1944 error = 0;
1945 else
1946 error = ENOEXEC;
1947
1948 return (error);
1949 }
1950 #endif /* EXEC_ECOFF */
1951
1952 int
1953 alpha_pa_access(pa)
1954 u_long pa;
1955 {
1956 int i;
1957
1958 for (i = 0; i < mem_cluster_cnt; i++) {
1959 if (pa < mem_clusters[i].start)
1960 continue;
1961 if ((pa - mem_clusters[i].start) >=
1962 (mem_clusters[i].size & ~PAGE_MASK))
1963 continue;
1964 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1965 }
1966
1967 /*
1968 * Address is not a memory address. If we're secure, disallow
1969 * access. Otherwise, grant read/write.
1970 */
1971 if (securelevel > 0)
1972 return (PROT_NONE);
1973 else
1974 return (PROT_READ | PROT_WRITE);
1975 }
1976
1977 /* XXX XXX BEGIN XXX XXX */
1978 paddr_t alpha_XXX_dmamap_or; /* XXX */
1979 /* XXX */
1980 paddr_t /* XXX */
1981 alpha_XXX_dmamap(v) /* XXX */
1982 vaddr_t v; /* XXX */
1983 { /* XXX */
1984 /* XXX */
1985 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1986 } /* XXX */
1987 /* XXX XXX END XXX XXX */
1988
1989 char *
1990 dot_conv(x)
1991 unsigned long x;
1992 {
1993 int i;
1994 char *xc;
1995 static int next;
1996 static char space[2][20];
1997
1998 xc = space[next ^= 1] + sizeof space[0];
1999 *--xc = '\0';
2000 for (i = 0;; ++i) {
2001 if (i && (i & 3) == 0)
2002 *--xc = '.';
2003 *--xc = "0123456789abcdef"[x & 0xf];
2004 x >>= 4;
2005 if (x == 0)
2006 break;
2007 }
2008 return xc;
2009 }
2010
2011 void
2012 cpu_getmcontext(l, mcp, flags)
2013 struct lwp *l;
2014 mcontext_t *mcp;
2015 unsigned int *flags;
2016 {
2017 struct trapframe *frame = l->l_md.md_tf;
2018 __greg_t *gr = mcp->__gregs;
2019 __greg_t ras_pc;
2020
2021 /* Save register context. */
2022 frametoreg(frame, (struct reg *)gr);
2023 /* XXX if there's a better, general way to get the USP of
2024 * an LWP that might or might not be curlwp, I'd like to know
2025 * about it.
2026 */
2027 if (l == curlwp) {
2028 gr[_REG_SP] = alpha_pal_rdusp();
2029 gr[_REG_UNIQUE] = alpha_pal_rdunique();
2030 } else {
2031 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
2032 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
2033 }
2034 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
2035 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
2036
2037 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
2038 (caddr_t) gr[_REG_PC])) != -1)
2039 gr[_REG_PC] = ras_pc;
2040
2041 *flags |= _UC_CPU | _UC_UNIQUE;
2042
2043 /* Save floating point register context, if any, and copy it. */
2044 if (l->l_md.md_flags & MDP_FPUSED) {
2045 fpusave_proc(l, 1);
2046 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
2047 sizeof (mcp->__fpregs));
2048 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
2049 *flags |= _UC_FPU;
2050 }
2051 }
2052
2053
2054 int
2055 cpu_setmcontext(l, mcp, flags)
2056 struct lwp *l;
2057 const mcontext_t *mcp;
2058 unsigned int flags;
2059 {
2060 struct trapframe *frame = l->l_md.md_tf;
2061 const __greg_t *gr = mcp->__gregs;
2062
2063 /* Restore register context, if any. */
2064 if (flags & _UC_CPU) {
2065 /* Check for security violations first. */
2066 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
2067 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
2068 return (EINVAL);
2069
2070 regtoframe((struct reg *)gr, l->l_md.md_tf);
2071 if (l == curlwp)
2072 alpha_pal_wrusp(gr[_REG_SP]);
2073 else
2074 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
2075 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
2076 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
2077 }
2078 if (flags & _UC_UNIQUE) {
2079 if (l == curlwp)
2080 alpha_pal_wrunique(gr[_REG_UNIQUE]);
2081 else
2082 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
2083 }
2084 /* Restore floating point register context, if any. */
2085 if (flags & _UC_FPU) {
2086 /* If we have an FP register context, get rid of it. */
2087 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
2088 fpusave_proc(l, 0);
2089 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
2090 sizeof (l->l_addr->u_pcb.pcb_fp));
2091 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
2092 l->l_md.md_flags |= MDP_FPUSED;
2093 }
2094
2095 return (0);
2096 }
2097