Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.28
      1 /*	$NetBSD: machdep.c,v 1.28 1996/06/13 04:54:01 cgd Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5  * All rights reserved.
      6  *
      7  * Author: Chris G. Demetriou
      8  *
      9  * Permission to use, copy, modify and distribute this software and
     10  * its documentation is hereby granted, provided that both the copyright
     11  * notice and this permission notice appear in all copies of the
     12  * software, derivative works or modified versions, and any portions
     13  * thereof, and that both notices appear in supporting documentation.
     14  *
     15  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18  *
     19  * Carnegie Mellon requests users of this software to return to
     20  *
     21  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22  *  School of Computer Science
     23  *  Carnegie Mellon University
     24  *  Pittsburgh PA 15213-3890
     25  *
     26  * any improvements or extensions that they make and grant Carnegie the
     27  * rights to redistribute these changes.
     28  */
     29 
     30 #include <sys/param.h>
     31 #include <sys/systm.h>
     32 #include <sys/signalvar.h>
     33 #include <sys/kernel.h>
     34 #include <sys/map.h>
     35 #include <sys/proc.h>
     36 #include <sys/buf.h>
     37 #include <sys/reboot.h>
     38 #include <sys/device.h>
     39 #include <sys/conf.h>
     40 #include <sys/file.h>
     41 #ifdef REAL_CLISTS
     42 #include <sys/clist.h>
     43 #endif
     44 #include <sys/callout.h>
     45 #include <sys/malloc.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/msgbuf.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/tty.h>
     50 #include <sys/user.h>
     51 #include <sys/exec.h>
     52 #include <sys/exec_ecoff.h>
     53 #include <sys/sysctl.h>
     54 #ifdef SYSVMSG
     55 #include <sys/msg.h>
     56 #endif
     57 #ifdef SYSVSEM
     58 #include <sys/sem.h>
     59 #endif
     60 #ifdef SYSVSHM
     61 #include <sys/shm.h>
     62 #endif
     63 
     64 #include <sys/mount.h>
     65 #include <sys/syscallargs.h>
     66 
     67 #include <vm/vm_kern.h>
     68 
     69 #include <dev/cons.h>
     70 
     71 #include <machine/cpu.h>
     72 #include <machine/reg.h>
     73 #include <machine/rpb.h>
     74 #include <machine/prom.h>
     75 
     76 #ifdef DEC_3000_500
     77 #include <alpha/alpha/dec_3000_500.h>
     78 #endif
     79 #ifdef DEC_3000_300
     80 #include <alpha/alpha/dec_3000_300.h>
     81 #endif
     82 #ifdef DEC_2100_A50
     83 #include <alpha/alpha/dec_2100_a50.h>
     84 #endif
     85 #ifdef DEC_KN20AA
     86 #include <alpha/alpha/dec_kn20aa.h>
     87 #endif
     88 #ifdef DEC_AXPPCI_33
     89 #include <alpha/alpha/dec_axppci_33.h>
     90 #endif
     91 #ifdef DEC_21000
     92 #include <alpha/alpha/dec_21000.h>
     93 #endif
     94 
     95 #include <net/netisr.h>
     96 #include "ether.h"
     97 
     98 #include "le_ioasic.h"			/* for le_iomem creation */
     99 
    100 vm_map_t buffer_map;
    101 
    102 void dumpsys __P((void));
    103 
    104 /*
    105  * Declare these as initialized data so we can patch them.
    106  */
    107 int	nswbuf = 0;
    108 #ifdef	NBUF
    109 int	nbuf = NBUF;
    110 #else
    111 int	nbuf = 0;
    112 #endif
    113 #ifdef	BUFPAGES
    114 int	bufpages = BUFPAGES;
    115 #else
    116 int	bufpages = 0;
    117 #endif
    118 int	msgbufmapped = 0;	/* set when safe to use msgbuf */
    119 int	maxmem;			/* max memory per process */
    120 
    121 int	totalphysmem;		/* total amount of physical memory in system */
    122 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    123 int	firstusablepage;	/* first usable memory page */
    124 int	lastusablepage;		/* last usable memory page */
    125 int	resvmem;		/* amount of memory reserved for PROM */
    126 int	unusedmem;		/* amount of memory for OS that we don't use */
    127 int	unknownmem;		/* amount of memory with an unknown use */
    128 
    129 int	cputype;		/* system type, from the RPB */
    130 
    131 /*
    132  * XXX We need an address to which we can assign things so that they
    133  * won't be optimized away because we didn't use the value.
    134  */
    135 u_int32_t no_optimize;
    136 
    137 /* the following is used externally (sysctl_hw) */
    138 char	machine[] = "alpha";
    139 char	*cpu_model;
    140 char	*model_names[] = {
    141 	"UNKNOWN (0)",
    142 	"Alpha Demonstration Unit",
    143 	"DEC 4000 (\"Cobra\")",
    144 	"DEC 7000 (\"Ruby\")",
    145 	"DEC 3000/500 (\"Flamingo\") family",
    146 	"UNKNOWN (5)",
    147 	"DEC 2000/300 (\"Jensen\")",
    148 	"DEC 3000/300 (\"Pelican\")",
    149 	"UNKNOWN (8)",
    150 	"DEC 2100/A500 (\"Sable\")",
    151 	"AXPvme 64",
    152 	"AXPpci 33 (\"NoName\")",
    153 	"DEC 21000 (\"TurboLaser\")",
    154 	"DEC 2100/A50 (\"Avanti\") family",
    155 	"Mustang",
    156 	"DEC KN20AA",
    157 	"UNKNOWN (16)",
    158 	"DEC 1000 (\"Mikasa\")",
    159 };
    160 int	nmodel_names = sizeof model_names/sizeof model_names[0];
    161 
    162 struct	user *proc0paddr;
    163 
    164 /* Number of machine cycles per microsecond */
    165 u_int64_t	cycles_per_usec;
    166 
    167 /* some memory areas for device DMA.  "ick." */
    168 caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    169 
    170 /* Interrupt vectors (in locore) */
    171 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
    172 
    173 /* number of cpus in the box.  really! */
    174 int		ncpus;
    175 
    176 /* various CPU-specific functions. */
    177 char		*(*cpu_modelname) __P((void));
    178 void		(*cpu_consinit) __P((void));
    179 void		(*cpu_device_register) __P((struct device *dev, void *aux));
    180 char		*cpu_iobus;
    181 
    182 char boot_flags[64];
    183 
    184 int
    185 alpha_init(pfn, ptb)
    186 	u_long pfn;		/* first free PFN number */
    187 	u_long ptb;		/* PFN of current level 1 page table */
    188 {
    189 	extern char _end[];
    190 	caddr_t start, v;
    191 	struct mddt *mddtp;
    192 	int i, mddtweird;
    193 	char *p;
    194 
    195 	/*
    196 	 * Turn off interrupts and floating point.
    197 	 * Make sure the instruction and data streams are consistent.
    198 	 */
    199 	(void)splhigh();
    200 	pal_wrfen(0);
    201 	TBIA();
    202 	IMB();
    203 
    204 	/*
    205 	 * get address of the restart block, while we the bootstrap
    206 	 * mapping is still around.
    207 	 */
    208 	hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
    209 
    210 	/*
    211 	 * Remember how many cycles there are per microsecond,
    212 	 * so that we can use delay().  Round up, for safety.
    213 	 */
    214 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    215 
    216 	/*
    217 	 * Init the PROM interface, so we can use printf
    218 	 * until PROM mappings go away in consinit.
    219 	 */
    220 	init_prom_interface();
    221 
    222 	/*
    223 	 * Point interrupt/exception vectors to our own.
    224 	 */
    225 	pal_wrent(XentInt, 0);
    226 	pal_wrent(XentArith, 1);
    227 	pal_wrent(XentMM, 2);
    228 	pal_wrent(XentIF, 3);
    229 	pal_wrent(XentUna, 4);
    230 	pal_wrent(XentSys, 5);
    231 
    232 	/*
    233 	 * Find out how much memory is available, by looking at
    234 	 * the memory cluster descriptors.  This also tries to do
    235 	 * its best to detect things things that have never been seen
    236 	 * before...
    237 	 *
    238 	 * XXX Assumes that the first "system" cluster is the
    239 	 * only one we can use. Is the second (etc.) system cluster
    240 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    241 	 */
    242 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    243 
    244 	/*
    245 	 * BEGIN MDDT WEIRDNESS CHECKING
    246 	 */
    247 	mddtweird = 0;
    248 
    249 #define cnt	 mddtp->mddt_cluster_cnt
    250 #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    251 	if (cnt != 2 && cnt != 3) {
    252 		printf("WARNING: weird number (%d) of mem clusters\n", cnt);
    253 		mddtweird = 1;
    254 	} else if (usage(0) != MDDT_PALCODE ||
    255 		   usage(1) != MDDT_SYSTEM ||
    256 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    257 		mddtweird = 1;
    258 		printf("WARNING: %d mem clusters, but weird config\n", cnt);
    259 	}
    260 
    261 	for (i = 0; i < cnt; i++) {
    262 		if ((usage(i) & MDDT_mbz) != 0) {
    263 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    264 			    i, usage(i));
    265 			mddtweird = 1;
    266 		}
    267 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    268 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    269 			mddtweird = 1;
    270 		}
    271 		/* XXX other things to check? */
    272 	}
    273 #undef cnt
    274 #undef usage
    275 
    276 	if (mddtweird) {
    277 		printf("\n");
    278 		printf("complete memory cluster information:\n");
    279 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    280 			printf("mddt %d:\n", i);
    281 			printf("\tpfn %lx\n",
    282 			    mddtp->mddt_clusters[i].mddt_pfn);
    283 			printf("\tcnt %lx\n",
    284 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    285 			printf("\ttest %lx\n",
    286 			    mddtp->mddt_clusters[i].mddt_pg_test);
    287 			printf("\tbva %lx\n",
    288 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    289 			printf("\tbpa %lx\n",
    290 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    291 			printf("\tbcksum %lx\n",
    292 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    293 			printf("\tusage %lx\n",
    294 			    mddtp->mddt_clusters[i].mddt_usage);
    295 		}
    296 		printf("\n");
    297 	}
    298 	/*
    299 	 * END MDDT WEIRDNESS CHECKING
    300 	 */
    301 
    302 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    303 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    304 #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    305 #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    306 		if ((usage(i) & MDDT_mbz) != 0)
    307 			unknownmem += pgcnt(i);
    308 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    309 			resvmem += pgcnt(i);
    310 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    311 			/*
    312 			 * assumes that the system cluster listed is
    313 			 * one we're in...
    314 			 */
    315 			if (physmem != resvmem) {
    316 				physmem += pgcnt(i);
    317 				firstusablepage =
    318 				    mddtp->mddt_clusters[i].mddt_pfn;
    319 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    320 			} else
    321 				unusedmem += pgcnt(i);
    322 		}
    323 #undef usage
    324 #undef pgcnt
    325 	}
    326 	if (totalphysmem == 0)
    327 		panic("can't happen: system seems to have no memory!");
    328 	maxmem = physmem;
    329 
    330 #if 0
    331 	printf("totalphysmem = %d\n", totalphysmem);
    332 	printf("physmem = %d\n", physmem);
    333 	printf("firstusablepage = %d\n", firstusablepage);
    334 	printf("lastusablepage = %d\n", lastusablepage);
    335 	printf("resvmem = %d\n", resvmem);
    336 	printf("unusedmem = %d\n", unusedmem);
    337 	printf("unknownmem = %d\n", unknownmem);
    338 #endif
    339 
    340 	/*
    341 	 * find out this CPU's page size
    342 	 */
    343 	PAGE_SIZE = hwrpb->rpb_page_size;
    344 	if (PAGE_SIZE != 8192)
    345 		panic("page size %d != 8192?!", PAGE_SIZE);
    346 
    347 	v = (caddr_t)alpha_round_page(_end);
    348 	/*
    349 	 * Init mapping for u page(s) for proc 0
    350 	 */
    351 	start = v;
    352 	curproc->p_addr = proc0paddr = (struct user *)v;
    353 	v += UPAGES * NBPG;
    354 
    355 	/*
    356 	 * Find out what hardware we're on, and remember its type name.
    357 	 */
    358 	cputype = hwrpb->rpb_type;
    359 	switch (cputype) {
    360 #ifdef DEC_3000_500				/* and 400, [6-9]00 */
    361 	case ST_DEC_3000_500:
    362 		cpu_modelname = dec_3000_500_modelname;
    363 		cpu_consinit = dec_3000_500_consinit;
    364 		cpu_device_register = dec_3000_500_device_register;
    365 		cpu_iobus = "tcasic";
    366 		break;
    367 #endif
    368 
    369 #ifdef DEC_3000_300
    370 	case ST_DEC_3000_300:
    371 		cpu_modelname = dec_3000_300_modelname;
    372 		cpu_consinit = dec_3000_300_consinit;
    373 		cpu_device_register = dec_3000_300_device_register;
    374 		cpu_iobus = "tcasic";
    375 		break;
    376 #endif
    377 
    378 #ifdef DEC_2100_A50
    379 	case ST_DEC_2100_A50:
    380 		cpu_modelname = dec_2100_a50_modelname;
    381 		cpu_consinit = dec_2100_a50_consinit;
    382 		cpu_device_register = dec_2100_a50_device_register;
    383 		cpu_iobus = "apecs";
    384 		break;
    385 #endif
    386 
    387 #ifdef DEC_KN20AA
    388 	case ST_DEC_KN20AA:
    389 		cpu_modelname = dec_kn20aa_modelname;
    390 		cpu_consinit = dec_kn20aa_consinit;
    391 		cpu_device_register = dec_kn20aa_device_register;
    392 		cpu_iobus = "cia";
    393 		break;
    394 #endif
    395 
    396 #ifdef DEC_AXPPCI_33
    397 	case ST_DEC_AXPPCI_33:
    398 		cpu_modelname = dec_axppci_33_modelname;
    399 		cpu_consinit = dec_axppci_33_consinit;
    400 		cpu_device_register = dec_axppci_33_device_register;
    401 		cpu_iobus = "lca";
    402 		break;
    403 #endif
    404 
    405 #ifdef DEC_2000_300
    406 	case ST_DEC_2000_300:
    407 		cpu_modelname = dec_2000_300_modelname;
    408 		cpu_consinit = dec_2000_300_consinit;
    409 		cpu_device_register = dec_2000_300_device_register;
    410 		cpu_iobus = "ibus";
    411 	XXX DEC 2000/300 NOT SUPPORTED
    412 		break;
    413 #endif
    414 
    415 #ifdef DEC_21000
    416 	case ST_DEC_21000:
    417 		cpu_modelname = dec_21000_modelname;
    418 		cpu_consinit = dec_21000_consinit;
    419 		cpu_device_register = dec_21000_device_register;
    420 		cpu_iobus = "tlsb";
    421 	XXX DEC 21000 NOT SUPPORTED
    422 		break;
    423 #endif
    424 
    425 	default:
    426 		if (cputype > nmodel_names)
    427 			panic("Unknown system type %d", cputype);
    428 		else
    429 			panic("Support for %s system type not in kernel.",
    430 			    model_names[cputype]);
    431 	}
    432 
    433 	cpu_model = (*cpu_modelname)();
    434 	if (cpu_model == NULL)
    435 		cpu_model = model_names[cputype];
    436 
    437 #if NLE_IOASIC > 0
    438 	/*
    439 	 * Grab 128K at the top of physical memory for the lance chip
    440 	 * on machines where it does dma through the I/O ASIC.
    441 	 * It must be physically contiguous and aligned on a 128K boundary.
    442 	 *
    443 	 * Note that since this is conditional on the presence of
    444 	 * IOASIC-attached 'le' units in the kernel config, the
    445 	 * message buffer may move on these systems.  This shouldn't
    446 	 * be a problem, because once people have a kernel config that
    447 	 * they use, they're going to stick with it.
    448 	 */
    449 	if (cputype == ST_DEC_3000_500 ||
    450 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    451 		lastusablepage -= btoc(128 * 1024);
    452 		le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
    453 	}
    454 #endif /* NLE_IOASIC */
    455 
    456 	/*
    457 	 * Initialize error message buffer (at end of core).
    458 	 */
    459 	lastusablepage -= btoc(sizeof (struct msgbuf));
    460 	msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
    461 	msgbufmapped = 1;
    462 
    463 	/*
    464 	 * Allocate space for system data structures.
    465 	 * The first available kernel virtual address is in "v".
    466 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    467 	 *
    468 	 * These data structures are allocated here instead of cpu_startup()
    469 	 * because physical memory is directly addressable. We don't have
    470 	 * to map these into virtual address space.
    471 	 */
    472 #define valloc(name, type, num) \
    473 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    474 #define valloclim(name, type, num, lim) \
    475 	    (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
    476 #ifdef REAL_CLISTS
    477 	valloc(cfree, struct cblock, nclist);
    478 #endif
    479 	valloc(callout, struct callout, ncallout);
    480 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    481 #ifdef SYSVSHM
    482 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    483 #endif
    484 #ifdef SYSVSEM
    485 	valloc(sema, struct semid_ds, seminfo.semmni);
    486 	valloc(sem, struct sem, seminfo.semmns);
    487 	/* This is pretty disgusting! */
    488 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    489 #endif
    490 #ifdef SYSVMSG
    491 	valloc(msgpool, char, msginfo.msgmax);
    492 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    493 	valloc(msghdrs, struct msg, msginfo.msgtql);
    494 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    495 #endif
    496 
    497 	/*
    498 	 * Determine how many buffers to allocate.
    499 	 * We allocate the BSD standard of 10% of memory for the first
    500 	 * 2 Meg, and 5% of remaining memory for buffer space.  Insure a
    501 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    502 	 * headers as file i/o buffers.
    503 	 */
    504 	if (bufpages == 0)
    505 		bufpages = (btoc(2 * 1024 * 1024) + physmem) /
    506 		    (20 * CLSIZE);
    507 	if (nbuf == 0) {
    508 		nbuf = bufpages;
    509 		if (nbuf < 16)
    510 			nbuf = 16;
    511 	}
    512 	if (nswbuf == 0) {
    513 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    514 		if (nswbuf > 256)
    515 			nswbuf = 256;		/* sanity */
    516 	}
    517 	valloc(swbuf, struct buf, nswbuf);
    518 	valloc(buf, struct buf, nbuf);
    519 
    520 	/*
    521 	 * Clear allocated memory.
    522 	 */
    523 	bzero(start, v - start);
    524 
    525 	/*
    526 	 * Initialize the virtual memory system, and set the
    527 	 * page table base register in proc 0's PCB.
    528 	 */
    529 	pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
    530 
    531 	/*
    532 	 * Initialize the rest of proc 0's PCB, and cache its physical
    533 	 * address.
    534 	 */
    535 	proc0.p_md.md_pcbpaddr =
    536 	    (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
    537 
    538 	/*
    539 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    540 	 * and make proc0's trapframe pointer point to it for sanity.
    541 	 */
    542 	proc0paddr->u_pcb.pcb_ksp =
    543 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    544 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
    545 
    546 	/*
    547 	 * Look at arguments passed to us and compute boothowto.
    548 	 */
    549 	prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
    550 #if 0
    551 	printf("boot flags = \"%s\"\n", boot_flags);
    552 #endif
    553 
    554 	boothowto = RB_SINGLE;
    555 #ifdef KADB
    556 	boothowto |= RB_KDB;
    557 #endif
    558 	for (p = boot_flags; p && *p != '\0'; p++) {
    559 		/*
    560 		 * Note that we'd really like to differentiate case here,
    561 		 * but the Alpha AXP Architecture Reference Manual
    562 		 * says that we shouldn't.
    563 		 */
    564 		switch (*p) {
    565 		case 'a': /* autoboot */
    566 		case 'A':
    567 			boothowto &= ~RB_SINGLE;
    568 			break;
    569 
    570 		case 'n': /* askname */
    571 		case 'N':
    572 			boothowto |= RB_ASKNAME;
    573 			break;
    574 
    575 #if 0
    576 		case 'm': /* mini root present in memory */
    577 		case 'M':
    578 			boothowto |= RB_MINIROOT;
    579 			break;
    580 #endif
    581 		}
    582 	}
    583 
    584 	/*
    585 	 * Figure out the number of cpus in the box, from RPB fields.
    586 	 * Really.  We mean it.
    587 	 */
    588 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    589 		struct pcs *pcsp;
    590 
    591 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    592 		    (i * hwrpb->rpb_pcs_size));
    593 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    594 			ncpus++;
    595 	}
    596 
    597 	return (0);
    598 }
    599 
    600 void
    601 consinit()
    602 {
    603 
    604 	(*cpu_consinit)();
    605 	pmap_unmap_prom();
    606 }
    607 
    608 void
    609 cpu_startup()
    610 {
    611 	register unsigned i;
    612 	register caddr_t v;
    613 	int base, residual;
    614 	vm_offset_t minaddr, maxaddr;
    615 	vm_size_t size;
    616 #ifdef DEBUG
    617 	extern int pmapdebug;
    618 	int opmapdebug = pmapdebug;
    619 
    620 	pmapdebug = 0;
    621 #endif
    622 
    623 	/*
    624 	 * Good {morning,afternoon,evening,night}.
    625 	 */
    626 	printf(version);
    627 	identifycpu();
    628 	printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
    629 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    630 	if (unusedmem)
    631 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    632 	if (unknownmem)
    633 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    634 		    ctob(unknownmem));
    635 
    636 	/*
    637 	 * Allocate virtual address space for file I/O buffers.
    638 	 * Note they are different than the array of headers, 'buf',
    639 	 * and usually occupy more virtual memory than physical.
    640 	 */
    641 	size = MAXBSIZE * nbuf;
    642 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    643 	    &maxaddr, size, TRUE);
    644 	minaddr = (vm_offset_t)buffers;
    645 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    646 			&minaddr, size, FALSE) != KERN_SUCCESS)
    647 		panic("startup: cannot allocate buffers");
    648 	base = bufpages / nbuf;
    649 	residual = bufpages % nbuf;
    650 	for (i = 0; i < nbuf; i++) {
    651 		vm_size_t curbufsize;
    652 		vm_offset_t curbuf;
    653 
    654 		/*
    655 		 * First <residual> buffers get (base+1) physical pages
    656 		 * allocated for them.  The rest get (base) physical pages.
    657 		 *
    658 		 * The rest of each buffer occupies virtual space,
    659 		 * but has no physical memory allocated for it.
    660 		 */
    661 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    662 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    663 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    664 		vm_map_simplify(buffer_map, curbuf);
    665 	}
    666 	/*
    667 	 * Allocate a submap for exec arguments.  This map effectively
    668 	 * limits the number of processes exec'ing at any time.
    669 	 */
    670 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    671 				 16 * NCARGS, TRUE);
    672 
    673 	/*
    674 	 * Allocate a submap for physio
    675 	 */
    676 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    677 				 VM_PHYS_SIZE, TRUE);
    678 
    679 	/*
    680 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    681 	 * we use the more space efficient malloc in place of kmem_alloc.
    682 	 */
    683 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    684 	    M_MBUF, M_NOWAIT);
    685 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    686 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    687 	    VM_MBUF_SIZE, FALSE);
    688 	/*
    689 	 * Initialize callouts
    690 	 */
    691 	callfree = callout;
    692 	for (i = 1; i < ncallout; i++)
    693 		callout[i-1].c_next = &callout[i];
    694 	callout[i-1].c_next = NULL;
    695 
    696 #ifdef DEBUG
    697 	pmapdebug = opmapdebug;
    698 #endif
    699 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    700 	printf("using %ld buffers containing %ld bytes of memory\n",
    701 		(long)nbuf, (long)(bufpages * CLBYTES));
    702 
    703 	/*
    704 	 * Set up buffers, so they can be used to read disk labels.
    705 	 */
    706 	bufinit();
    707 
    708 	/*
    709 	 * Configure the system.
    710 	 */
    711 	configure();
    712 }
    713 
    714 identifycpu()
    715 {
    716 
    717 	/*
    718 	 * print out CPU identification information.
    719 	 */
    720 	printf("%s, %dMHz\n", cpu_model,
    721 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    722 	printf("%d byte page size, %d processor%s.\n",
    723 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    724 #if 0
    725 	/* this isn't defined for any systems that we run on? */
    726 	printf("serial number 0x%lx 0x%lx\n",
    727 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    728 
    729 	/* and these aren't particularly useful! */
    730 	printf("variation: 0x%lx, revision 0x%lx\n",
    731 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    732 #endif
    733 }
    734 
    735 int	waittime = -1;
    736 struct pcb dumppcb;
    737 
    738 void
    739 boot(howto)
    740 	int howto;
    741 {
    742 	extern int cold;
    743 
    744 	/* If system is cold, just halt. */
    745 	if (cold) {
    746 		howto |= RB_HALT;
    747 		goto haltsys;
    748 	}
    749 
    750 	boothowto = howto;
    751 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    752 		waittime = 0;
    753 		vfs_shutdown();
    754 		/*
    755 		 * If we've been adjusting the clock, the todr
    756 		 * will be out of synch; adjust it now.
    757 		 */
    758 		resettodr();
    759 	}
    760 
    761 	/* Disable interrupts. */
    762 	splhigh();
    763 
    764 	/* If rebooting and a dump is requested do it. */
    765 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
    766 		savectx(&dumppcb, 0);
    767 		dumpsys();
    768 	}
    769 
    770 haltsys:
    771 
    772 	/* run any shutdown hooks */
    773 	doshutdownhooks();
    774 
    775 #ifdef BOOTKEY
    776 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    777 	cngetc();
    778 	printf("\n");
    779 #endif
    780 
    781 	/* Finally, halt/reboot the system. */
    782 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    783 	prom_halt(howto & RB_HALT);
    784 	/*NOTREACHED*/
    785 }
    786 
    787 /*
    788  * These variables are needed by /sbin/savecore
    789  */
    790 u_long	dumpmag = 0x8fca0101;	/* magic number */
    791 int 	dumpsize = 0;		/* pages */
    792 long	dumplo = 0; 		/* blocks */
    793 
    794 /*
    795  * This is called by configure to set dumplo and dumpsize.
    796  * Dumps always skip the first CLBYTES of disk space
    797  * in case there might be a disk label stored there.
    798  * If there is extra space, put dump at the end to
    799  * reduce the chance that swapping trashes it.
    800  */
    801 void
    802 dumpconf()
    803 {
    804 	int nblks;	/* size of dump area */
    805 	int maj;
    806 
    807 	if (dumpdev == NODEV)
    808 		return;
    809 	maj = major(dumpdev);
    810 	if (maj < 0 || maj >= nblkdev)
    811 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    812 	if (bdevsw[maj].d_psize == NULL)
    813 		return;
    814 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    815 	if (nblks <= ctod(1))
    816 		return;
    817 
    818 	/* XXX XXX XXX STARTING MEMORY LOCATION */
    819 	dumpsize = physmem;
    820 
    821 	/* Always skip the first CLBYTES, in case there is a label there. */
    822 	if (dumplo < ctod(1))
    823 		dumplo = ctod(1);
    824 
    825 	/* Put dump at end of partition, and make it fit. */
    826 	if (dumpsize > dtoc(nblks - dumplo))
    827 		dumpsize = dtoc(nblks - dumplo);
    828 	if (dumplo < nblks - ctod(dumpsize))
    829 		dumplo = nblks - ctod(dumpsize);
    830 }
    831 
    832 /*
    833  * Doadump comes here after turning off memory management and
    834  * getting on the dump stack, either when called above, or by
    835  * the auto-restart code.
    836  */
    837 void
    838 dumpsys()
    839 {
    840 
    841 	msgbufmapped = 0;
    842 	if (dumpdev == NODEV)
    843 		return;
    844 	if (dumpsize == 0) {
    845 		dumpconf();
    846 		if (dumpsize == 0)
    847 			return;
    848 	}
    849 	printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
    850 
    851 	printf("dump ");
    852 	switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
    853 
    854 	case ENXIO:
    855 		printf("device bad\n");
    856 		break;
    857 
    858 	case EFAULT:
    859 		printf("device not ready\n");
    860 		break;
    861 
    862 	case EINVAL:
    863 		printf("area improper\n");
    864 		break;
    865 
    866 	case EIO:
    867 		printf("i/o error\n");
    868 		break;
    869 
    870 	case EINTR:
    871 		printf("aborted from console\n");
    872 		break;
    873 
    874 	default:
    875 		printf("succeeded\n");
    876 		break;
    877 	}
    878 	printf("\n\n");
    879 	delay(1000);
    880 }
    881 
    882 void
    883 frametoreg(framep, regp)
    884 	struct trapframe *framep;
    885 	struct reg *regp;
    886 {
    887 
    888 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
    889 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
    890 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
    891 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
    892 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
    893 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
    894 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
    895 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
    896 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
    897 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
    898 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
    899 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
    900 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
    901 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
    902 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
    903 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
    904 	regp->r_regs[R_A0] = framep->tf_a0;
    905 	regp->r_regs[R_A1] = framep->tf_a1;
    906 	regp->r_regs[R_A2] = framep->tf_a2;
    907 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
    908 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
    909 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
    910 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
    911 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
    912 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
    913 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
    914 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
    915 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
    916 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
    917 	regp->r_regs[R_GP] = framep->tf_gp;
    918 	regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
    919 	regp->r_regs[R_ZERO] = 0;
    920 }
    921 
    922 void
    923 regtoframe(regp, framep)
    924 	struct reg *regp;
    925 	struct trapframe *framep;
    926 {
    927 
    928 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
    929 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
    930 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
    931 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
    932 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
    933 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
    934 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
    935 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
    936 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
    937 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
    938 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
    939 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
    940 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
    941 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
    942 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
    943 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
    944 	framep->tf_a0 = regp->r_regs[R_A0];
    945 	framep->tf_a1 = regp->r_regs[R_A1];
    946 	framep->tf_a2 = regp->r_regs[R_A2];
    947 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
    948 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
    949 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
    950 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
    951 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
    952 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
    953 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
    954 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
    955 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
    956 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
    957 	framep->tf_gp = regp->r_regs[R_GP];
    958 	framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
    959 	/* ??? = regp->r_regs[R_ZERO]; */
    960 }
    961 
    962 void
    963 printregs(regp)
    964 	struct reg *regp;
    965 {
    966 	int i;
    967 
    968 	for (i = 0; i < 32; i++)
    969 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
    970 		   i & 1 ? "\n" : "\t");
    971 }
    972 
    973 void
    974 regdump(framep)
    975 	struct trapframe *framep;
    976 {
    977 	struct reg reg;
    978 
    979 	frametoreg(framep, &reg);
    980 	printf("REGISTERS:\n");
    981 	printregs(&reg);
    982 }
    983 
    984 #ifdef DEBUG
    985 int sigdebug = 0;
    986 int sigpid = 0;
    987 #define	SDB_FOLLOW	0x01
    988 #define	SDB_KSTACK	0x02
    989 #endif
    990 
    991 /*
    992  * Send an interrupt to process.
    993  */
    994 void
    995 sendsig(catcher, sig, mask, code)
    996 	sig_t catcher;
    997 	int sig, mask;
    998 	u_long code;
    999 {
   1000 	struct proc *p = curproc;
   1001 	struct sigcontext *scp, ksc;
   1002 	struct trapframe *frame;
   1003 	struct sigacts *psp = p->p_sigacts;
   1004 	int oonstack, fsize, rndfsize;
   1005 	extern char sigcode[], esigcode[];
   1006 	extern struct proc *fpcurproc;
   1007 
   1008 	frame = p->p_md.md_tf;
   1009 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1010 	fsize = sizeof ksc;
   1011 	rndfsize = ((fsize + 15) / 16) * 16;
   1012 	/*
   1013 	 * Allocate and validate space for the signal handler
   1014 	 * context. Note that if the stack is in P0 space, the
   1015 	 * call to grow() is a nop, and the useracc() check
   1016 	 * will fail if the process has not already allocated
   1017 	 * the space with a `brk'.
   1018 	 */
   1019 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1020 	    (psp->ps_sigonstack & sigmask(sig))) {
   1021 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1022 		    psp->ps_sigstk.ss_size - rndfsize);
   1023 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1024 	} else
   1025 		scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
   1026 		    rndfsize);
   1027 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1028 		(void)grow(p, (u_long)scp);
   1029 #ifdef DEBUG
   1030 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1031 		printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
   1032 		    sig, &oonstack, scp);
   1033 #endif
   1034 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1035 #ifdef DEBUG
   1036 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1037 			printf("sendsig(%d): useracc failed on sig %d\n",
   1038 			    p->p_pid, sig);
   1039 #endif
   1040 		/*
   1041 		 * Process has trashed its stack; give it an illegal
   1042 		 * instruction to halt it in its tracks.
   1043 		 */
   1044 		SIGACTION(p, SIGILL) = SIG_DFL;
   1045 		sig = sigmask(SIGILL);
   1046 		p->p_sigignore &= ~sig;
   1047 		p->p_sigcatch &= ~sig;
   1048 		p->p_sigmask &= ~sig;
   1049 		psignal(p, SIGILL);
   1050 		return;
   1051 	}
   1052 
   1053 	/*
   1054 	 * Build the signal context to be used by sigreturn.
   1055 	 */
   1056 	ksc.sc_onstack = oonstack;
   1057 	ksc.sc_mask = mask;
   1058 	ksc.sc_pc = frame->tf_pc;
   1059 	ksc.sc_ps = frame->tf_ps;
   1060 
   1061 	/* copy the registers. */
   1062 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1063 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1064 
   1065 	/* save the floating-point state, if necessary, then copy it. */
   1066 	if (p == fpcurproc) {
   1067 		pal_wrfen(1);
   1068 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1069 		pal_wrfen(0);
   1070 		fpcurproc = NULL;
   1071 	}
   1072 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1073 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1074 	    sizeof(struct fpreg));
   1075 	ksc.sc_fp_control = 0;					/* XXX ? */
   1076 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1077 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1078 
   1079 
   1080 #ifdef COMPAT_OSF1
   1081 	/*
   1082 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1083 	 */
   1084 #endif
   1085 
   1086 	/*
   1087 	 * copy the frame out to userland.
   1088 	 */
   1089 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1090 #ifdef DEBUG
   1091 	if (sigdebug & SDB_FOLLOW)
   1092 		printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
   1093 		    scp, code);
   1094 #endif
   1095 
   1096 	/*
   1097 	 * Set up the registers to return to sigcode.
   1098 	 */
   1099 	frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1100 	frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
   1101 	frame->tf_a0 = sig;
   1102 	frame->tf_a1 = code;
   1103 	frame->tf_a2 = (u_int64_t)scp;
   1104 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1105 
   1106 #ifdef DEBUG
   1107 	if (sigdebug & SDB_FOLLOW)
   1108 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1109 		    frame->tf_pc, frame->tf_regs[FRAME_A3]);
   1110 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1111 		printf("sendsig(%d): sig %d returns\n",
   1112 		    p->p_pid, sig);
   1113 #endif
   1114 }
   1115 
   1116 /*
   1117  * System call to cleanup state after a signal
   1118  * has been taken.  Reset signal mask and
   1119  * stack state from context left by sendsig (above).
   1120  * Return to previous pc and psl as specified by
   1121  * context left by sendsig. Check carefully to
   1122  * make sure that the user has not modified the
   1123  * psl to gain improper priviledges or to cause
   1124  * a machine fault.
   1125  */
   1126 /* ARGSUSED */
   1127 int
   1128 sys_sigreturn(p, v, retval)
   1129 	struct proc *p;
   1130 	void *v;
   1131 	register_t *retval;
   1132 {
   1133 	struct sys_sigreturn_args /* {
   1134 		syscallarg(struct sigcontext *) sigcntxp;
   1135 	} */ *uap = v;
   1136 	struct sigcontext *scp, ksc;
   1137 	extern struct proc *fpcurproc;
   1138 
   1139 	scp = SCARG(uap, sigcntxp);
   1140 #ifdef DEBUG
   1141 	if (sigdebug & SDB_FOLLOW)
   1142 	    printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
   1143 #endif
   1144 
   1145 	if (ALIGN(scp) != (u_int64_t)scp)
   1146 		return (EINVAL);
   1147 
   1148 	/*
   1149 	 * Test and fetch the context structure.
   1150 	 * We grab it all at once for speed.
   1151 	 */
   1152 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1153 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1154 		return (EINVAL);
   1155 
   1156 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1157 		return (EINVAL);
   1158 	/*
   1159 	 * Restore the user-supplied information
   1160 	 */
   1161 	if (ksc.sc_onstack)
   1162 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1163 	else
   1164 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1165 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1166 
   1167 	p->p_md.md_tf->tf_pc = ksc.sc_pc;
   1168 	p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
   1169 
   1170 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1171 
   1172 	/* XXX ksc.sc_ownedfp ? */
   1173 	if (p == fpcurproc)
   1174 		fpcurproc = NULL;
   1175 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1176 	    sizeof(struct fpreg));
   1177 	/* XXX ksc.sc_fp_control ? */
   1178 
   1179 #ifdef DEBUG
   1180 	if (sigdebug & SDB_FOLLOW)
   1181 		printf("sigreturn(%d): returns\n", p->p_pid);
   1182 #endif
   1183 	return (EJUSTRETURN);
   1184 }
   1185 
   1186 /*
   1187  * machine dependent system variables.
   1188  */
   1189 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1190 	int *name;
   1191 	u_int namelen;
   1192 	void *oldp;
   1193 	size_t *oldlenp;
   1194 	void *newp;
   1195 	size_t newlen;
   1196 	struct proc *p;
   1197 {
   1198 	dev_t consdev;
   1199 
   1200 	/* all sysctl names at this level are terminal */
   1201 	if (namelen != 1)
   1202 		return (ENOTDIR);		/* overloaded */
   1203 
   1204 	switch (name[0]) {
   1205 	case CPU_CONSDEV:
   1206 		if (cn_tab != NULL)
   1207 			consdev = cn_tab->cn_dev;
   1208 		else
   1209 			consdev = NODEV;
   1210 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1211 			sizeof consdev));
   1212 	default:
   1213 		return (EOPNOTSUPP);
   1214 	}
   1215 	/* NOTREACHED */
   1216 }
   1217 
   1218 /*
   1219  * Set registers on exec.
   1220  */
   1221 void
   1222 setregs(p, pack, stack, retval)
   1223 	register struct proc *p;
   1224 	struct exec_package *pack;
   1225 	u_long stack;
   1226 	register_t *retval;
   1227 {
   1228 	struct trapframe *tfp = p->p_md.md_tf;
   1229 	int i;
   1230 	extern struct proc *fpcurproc;
   1231 
   1232 #ifdef DEBUG
   1233 	for (i = 0; i < FRAME_NSAVEREGS; i++)
   1234 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1235 	tfp->tf_gp = 0xbabefacedeadbeef;
   1236 	tfp->tf_a0 = 0xbabefacedeadbeef;
   1237 	tfp->tf_a1 = 0xbabefacedeadbeef;
   1238 	tfp->tf_a2 = 0xbabefacedeadbeef;
   1239 #else
   1240 	bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
   1241 	tfp->tf_gp = 0;
   1242 	tfp->tf_a0 = 0;
   1243 	tfp->tf_a1 = 0;
   1244 	tfp->tf_a2 = 0;
   1245 #endif
   1246 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1247 #define FP_RN 2 /* XXX */
   1248 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1249 	tfp->tf_regs[FRAME_SP] = stack;	/* restored to usp in trap return */
   1250 	tfp->tf_ps = PSL_USERSET;
   1251 	tfp->tf_pc = pack->ep_entry & ~3;
   1252 
   1253 	p->p_md.md_flags & ~MDP_FPUSED;
   1254 	if (fpcurproc == p)
   1255 		fpcurproc = NULL;
   1256 
   1257 	retval[0] = retval[1] = 0;
   1258 }
   1259 
   1260 void
   1261 netintr()
   1262 {
   1263 #ifdef INET
   1264 #if NETHER > 0
   1265 	if (netisr & (1 << NETISR_ARP)) {
   1266 		netisr &= ~(1 << NETISR_ARP);
   1267 		arpintr();
   1268 	}
   1269 #endif
   1270 	if (netisr & (1 << NETISR_IP)) {
   1271 		netisr &= ~(1 << NETISR_IP);
   1272 		ipintr();
   1273 	}
   1274 #endif
   1275 #ifdef NS
   1276 	if (netisr & (1 << NETISR_NS)) {
   1277 		netisr &= ~(1 << NETISR_NS);
   1278 		nsintr();
   1279 	}
   1280 #endif
   1281 #ifdef ISO
   1282 	if (netisr & (1 << NETISR_ISO)) {
   1283 		netisr &= ~(1 << NETISR_ISO);
   1284 		clnlintr();
   1285 	}
   1286 #endif
   1287 #ifdef CCITT
   1288 	if (netisr & (1 << NETISR_CCITT)) {
   1289 		netisr &= ~(1 << NETISR_CCITT);
   1290 		ccittintr();
   1291 	}
   1292 #endif
   1293 #ifdef PPP
   1294 	if (netisr & (1 << NETISR_PPP)) {
   1295 		netisr &= ~(1 << NETISR_PPP);
   1296 		pppintr();
   1297 	}
   1298 #endif
   1299 }
   1300 
   1301 void
   1302 do_sir()
   1303 {
   1304 
   1305 	if (ssir & SIR_NET) {
   1306 		siroff(SIR_NET);
   1307 		cnt.v_soft++;
   1308 		netintr();
   1309 	}
   1310 	if (ssir & SIR_CLOCK) {
   1311 		siroff(SIR_CLOCK);
   1312 		cnt.v_soft++;
   1313 		softclock();
   1314 	}
   1315 }
   1316 
   1317 int
   1318 spl0()
   1319 {
   1320 
   1321 	if (ssir) {
   1322 		splsoft();
   1323 		do_sir();
   1324 	}
   1325 
   1326 	return (pal_swpipl(PSL_IPL_0));
   1327 }
   1328 
   1329 /*
   1330  * The following primitives manipulate the run queues.  _whichqs tells which
   1331  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1332  * into queues, Remrq removes them from queues.  The running process is on
   1333  * no queue, other processes are on a queue related to p->p_priority, divided
   1334  * by 4 actually to shrink the 0-127 range of priorities into the 32 available
   1335  * queues.
   1336  */
   1337 /*
   1338  * setrunqueue(p)
   1339  *	proc *p;
   1340  *
   1341  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1342  */
   1343 
   1344 void
   1345 setrunqueue(p)
   1346 	struct proc *p;
   1347 {
   1348 	int bit;
   1349 
   1350 	/* firewall: p->p_back must be NULL */
   1351 	if (p->p_back != NULL)
   1352 		panic("setrunqueue");
   1353 
   1354 	bit = p->p_priority >> 2;
   1355 	whichqs |= (1 << bit);
   1356 	p->p_forw = (struct proc *)&qs[bit];
   1357 	p->p_back = qs[bit].ph_rlink;
   1358 	p->p_back->p_forw = p;
   1359 	qs[bit].ph_rlink = p;
   1360 }
   1361 
   1362 /*
   1363  * Remrq(p)
   1364  *
   1365  * Call should be made at splclock().
   1366  */
   1367 void
   1368 remrq(p)
   1369 	struct proc *p;
   1370 {
   1371 	int bit;
   1372 
   1373 	bit = p->p_priority >> 2;
   1374 	if ((whichqs & (1 << bit)) == 0)
   1375 		panic("remrq");
   1376 
   1377 	p->p_back->p_forw = p->p_forw;
   1378 	p->p_forw->p_back = p->p_back;
   1379 	p->p_back = NULL;	/* for firewall checking. */
   1380 
   1381 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1382 		whichqs &= ~(1 << bit);
   1383 }
   1384 
   1385 /*
   1386  * Return the best possible estimate of the time in the timeval
   1387  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1388  * We guarantee that the time will be greater than the value obtained by a
   1389  * previous call.
   1390  */
   1391 void
   1392 microtime(tvp)
   1393 	register struct timeval *tvp;
   1394 {
   1395 	int s = splclock();
   1396 	static struct timeval lasttime;
   1397 
   1398 	*tvp = time;
   1399 #ifdef notdef
   1400 	tvp->tv_usec += clkread();
   1401 	while (tvp->tv_usec > 1000000) {
   1402 		tvp->tv_sec++;
   1403 		tvp->tv_usec -= 1000000;
   1404 	}
   1405 #endif
   1406 	if (tvp->tv_sec == lasttime.tv_sec &&
   1407 	    tvp->tv_usec <= lasttime.tv_usec &&
   1408 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1409 		tvp->tv_sec++;
   1410 		tvp->tv_usec -= 1000000;
   1411 	}
   1412 	lasttime = *tvp;
   1413 	splx(s);
   1414 }
   1415 
   1416 /*
   1417  * Wait "n" microseconds.
   1418  */
   1419 int
   1420 delay(n)
   1421 	int n;
   1422 {
   1423 	long N = cycles_per_usec * (n);
   1424 
   1425 	while (N > 0)				/* XXX */
   1426 		N -= 3;				/* XXX */
   1427 }
   1428 
   1429 #if defined(COMPAT_OSF1) || 1		/* XXX */
   1430 void
   1431 cpu_exec_ecoff_setregs(p, epp, stack, retval)
   1432 	struct proc *p;
   1433 	struct exec_package *epp;
   1434 	u_long stack;
   1435 	register_t *retval;
   1436 {
   1437 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1438 
   1439 	setregs(p, epp, stack, retval);
   1440 	p->p_md.md_tf->tf_gp = execp->a.gp_value;
   1441 }
   1442 
   1443 /*
   1444  * cpu_exec_ecoff_hook():
   1445  *	cpu-dependent ECOFF format hook for execve().
   1446  *
   1447  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1448  *
   1449  */
   1450 int
   1451 cpu_exec_ecoff_hook(p, epp)
   1452 	struct proc *p;
   1453 	struct exec_package *epp;
   1454 {
   1455 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1456 	extern struct emul emul_netbsd;
   1457 #ifdef COMPAT_OSF1
   1458 	extern struct emul emul_osf1;
   1459 #endif
   1460 
   1461 	switch (execp->f.f_magic) {
   1462 #ifdef COMPAT_OSF1
   1463 	case ECOFF_MAGIC_ALPHA:
   1464 		epp->ep_emul = &emul_osf1;
   1465 		break;
   1466 #endif
   1467 
   1468 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1469 		epp->ep_emul = &emul_netbsd;
   1470 		break;
   1471 
   1472 	default:
   1473 		return ENOEXEC;
   1474 	}
   1475 	return 0;
   1476 }
   1477 #endif
   1478 
   1479 vm_offset_t
   1480 vtophys(vaddr)
   1481 	vm_offset_t vaddr;
   1482 {
   1483 	vm_offset_t paddr;
   1484 
   1485 	if (vaddr < K0SEG_BEGIN) {
   1486 		printf("vtophys: invalid vaddr 0x%lx", vaddr);
   1487 		paddr = vaddr;
   1488 	} else if (vaddr < K0SEG_END)
   1489 		paddr = k0segtophys(vaddr);
   1490 	else
   1491 		paddr = vatopa(vaddr);
   1492 
   1493 #if 0
   1494 	printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
   1495 #endif
   1496 
   1497 	return (paddr);
   1498 }
   1499