machdep.c revision 1.291 1 /* $NetBSD: machdep.c,v 1.291 2006/12/26 10:43:43 elad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.291 2006/12/26 10:43:43 elad Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/ras.h>
86 #include <sys/sa.h>
87 #include <sys/savar.h>
88 #include <sys/sched.h>
89 #include <sys/buf.h>
90 #include <sys/reboot.h>
91 #include <sys/device.h>
92 #include <sys/file.h>
93 #include <sys/malloc.h>
94 #include <sys/mbuf.h>
95 #include <sys/mman.h>
96 #include <sys/msgbuf.h>
97 #include <sys/ioctl.h>
98 #include <sys/tty.h>
99 #include <sys/user.h>
100 #include <sys/exec.h>
101 #include <sys/exec_ecoff.h>
102 #include <sys/core.h>
103 #include <sys/kcore.h>
104 #include <sys/ucontext.h>
105 #include <sys/conf.h>
106 #include <sys/ksyms.h>
107 #include <sys/kauth.h>
108 #include <machine/kcore.h>
109 #include <machine/fpu.h>
110
111 #include <sys/mount.h>
112 #include <sys/sa.h>
113 #include <sys/syscallargs.h>
114
115 #include <uvm/uvm_extern.h>
116 #include <sys/sysctl.h>
117
118 #include <dev/cons.h>
119
120 #include <machine/autoconf.h>
121 #include <machine/cpu.h>
122 #include <machine/reg.h>
123 #include <machine/rpb.h>
124 #include <machine/prom.h>
125 #include <machine/cpuconf.h>
126 #include <machine/ieeefp.h>
127
128 #ifdef DDB
129 #include <machine/db_machdep.h>
130 #include <ddb/db_access.h>
131 #include <ddb/db_sym.h>
132 #include <ddb/db_extern.h>
133 #include <ddb/db_interface.h>
134 #endif
135
136 #ifdef KGDB
137 #include <sys/kgdb.h>
138 #endif
139
140 #ifdef DEBUG
141 #include <machine/sigdebug.h>
142 #endif
143
144 #include <machine/alpha.h>
145
146 #include "ksyms.h"
147
148 struct vm_map *exec_map = NULL;
149 struct vm_map *mb_map = NULL;
150 struct vm_map *phys_map = NULL;
151
152 caddr_t msgbufaddr;
153
154 int maxmem; /* max memory per process */
155
156 int totalphysmem; /* total amount of physical memory in system */
157 int physmem; /* physical memory used by NetBSD + some rsvd */
158 int resvmem; /* amount of memory reserved for PROM */
159 int unusedmem; /* amount of memory for OS that we don't use */
160 int unknownmem; /* amount of memory with an unknown use */
161
162 int cputype; /* system type, from the RPB */
163
164 int bootdev_debug = 0; /* patchable, or from DDB */
165
166 /*
167 * XXX We need an address to which we can assign things so that they
168 * won't be optimized away because we didn't use the value.
169 */
170 u_int32_t no_optimize;
171
172 /* the following is used externally (sysctl_hw) */
173 char machine[] = MACHINE; /* from <machine/param.h> */
174 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
175 char cpu_model[128];
176
177 struct user *proc0paddr;
178
179 /* Number of machine cycles per microsecond */
180 u_int64_t cycles_per_usec;
181
182 /* number of CPUs in the box. really! */
183 int ncpus;
184
185 struct bootinfo_kernel bootinfo;
186
187 /* For built-in TCDS */
188 #if defined(DEC_3000_300) || defined(DEC_3000_500)
189 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
190 #endif
191
192 struct platform platform;
193
194 #if NKSYMS || defined(DDB) || defined(LKM)
195 /* start and end of kernel symbol table */
196 void *ksym_start, *ksym_end;
197 #endif
198
199 /* for cpu_sysctl() */
200 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
201 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
202 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
203 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
204
205 /*
206 * XXX This should be dynamically sized, but we have the chicken-egg problem!
207 * XXX it should also be larger than it is, because not all of the mddt
208 * XXX clusters end up being used for VM.
209 */
210 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
211 int mem_cluster_cnt;
212
213 int cpu_dump __P((void));
214 int cpu_dumpsize __P((void));
215 u_long cpu_dump_mempagecnt __P((void));
216 void dumpsys __P((void));
217 void identifycpu __P((void));
218 void printregs __P((struct reg *));
219
220 void
221 alpha_init(pfn, ptb, bim, bip, biv)
222 u_long pfn; /* first free PFN number */
223 u_long ptb; /* PFN of current level 1 page table */
224 u_long bim; /* bootinfo magic */
225 u_long bip; /* bootinfo pointer */
226 u_long biv; /* bootinfo version */
227 {
228 extern char kernel_text[], _end[];
229 struct mddt *mddtp;
230 struct mddt_cluster *memc;
231 int i, mddtweird;
232 struct vm_physseg *vps;
233 vaddr_t kernstart, kernend;
234 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
235 cpuid_t cpu_id;
236 struct cpu_info *ci;
237 char *p;
238 const char *bootinfo_msg;
239 const struct cpuinit *c;
240
241 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
242
243 /*
244 * Turn off interrupts (not mchecks) and floating point.
245 * Make sure the instruction and data streams are consistent.
246 */
247 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
248 alpha_pal_wrfen(0);
249 ALPHA_TBIA();
250 alpha_pal_imb();
251
252 /* Initialize the SCB. */
253 scb_init();
254
255 cpu_id = cpu_number();
256
257 #if defined(MULTIPROCESSOR)
258 /*
259 * Set our SysValue to the address of our cpu_info structure.
260 * Secondary processors do this in their spinup trampoline.
261 */
262 alpha_pal_wrval((u_long)&cpu_info_primary);
263 cpu_info[cpu_id] = &cpu_info_primary;
264 #endif
265
266 ci = curcpu();
267 ci->ci_cpuid = cpu_id;
268
269 /*
270 * Get critical system information (if possible, from the
271 * information provided by the boot program).
272 */
273 bootinfo_msg = NULL;
274 if (bim == BOOTINFO_MAGIC) {
275 if (biv == 0) { /* backward compat */
276 biv = *(u_long *)bip;
277 bip += 8;
278 }
279 switch (biv) {
280 case 1: {
281 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
282
283 bootinfo.ssym = v1p->ssym;
284 bootinfo.esym = v1p->esym;
285 /* hwrpb may not be provided by boot block in v1 */
286 if (v1p->hwrpb != NULL) {
287 bootinfo.hwrpb_phys =
288 ((struct rpb *)v1p->hwrpb)->rpb_phys;
289 bootinfo.hwrpb_size = v1p->hwrpbsize;
290 } else {
291 bootinfo.hwrpb_phys =
292 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
293 bootinfo.hwrpb_size =
294 ((struct rpb *)HWRPB_ADDR)->rpb_size;
295 }
296 memcpy(bootinfo.boot_flags, v1p->boot_flags,
297 min(sizeof v1p->boot_flags,
298 sizeof bootinfo.boot_flags));
299 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
300 min(sizeof v1p->booted_kernel,
301 sizeof bootinfo.booted_kernel));
302 /* booted dev not provided in bootinfo */
303 init_prom_interface((struct rpb *)
304 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
305 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
306 sizeof bootinfo.booted_dev);
307 break;
308 }
309 default:
310 bootinfo_msg = "unknown bootinfo version";
311 goto nobootinfo;
312 }
313 } else {
314 bootinfo_msg = "boot program did not pass bootinfo";
315 nobootinfo:
316 bootinfo.ssym = (u_long)_end;
317 bootinfo.esym = (u_long)_end;
318 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
319 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
320 init_prom_interface((struct rpb *)HWRPB_ADDR);
321 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
322 sizeof bootinfo.boot_flags);
323 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
324 sizeof bootinfo.booted_kernel);
325 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
326 sizeof bootinfo.booted_dev);
327 }
328
329 /*
330 * Initialize the kernel's mapping of the RPB. It's needed for
331 * lots of things.
332 */
333 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
334
335 #if defined(DEC_3000_300) || defined(DEC_3000_500)
336 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
337 hwrpb->rpb_type == ST_DEC_3000_500) {
338 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
339 sizeof(dec_3000_scsiid));
340 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
341 sizeof(dec_3000_scsifast));
342 }
343 #endif
344
345 /*
346 * Remember how many cycles there are per microsecond,
347 * so that we can use delay(). Round up, for safety.
348 */
349 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
350
351 /*
352 * Initialize the (temporary) bootstrap console interface, so
353 * we can use printf until the VM system starts being setup.
354 * The real console is initialized before then.
355 */
356 init_bootstrap_console();
357
358 /* OUTPUT NOW ALLOWED */
359
360 /* delayed from above */
361 if (bootinfo_msg)
362 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
363 bootinfo_msg, bim, bip, biv);
364
365 /* Initialize the trap vectors on the primary processor. */
366 trap_init();
367
368 /*
369 * Find out this system's page size, and initialize
370 * PAGE_SIZE-dependent variables.
371 */
372 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
373 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
374 ALPHA_PGBYTES);
375 uvmexp.pagesize = hwrpb->rpb_page_size;
376 uvm_setpagesize();
377
378 /*
379 * Find out what hardware we're on, and do basic initialization.
380 */
381 cputype = hwrpb->rpb_type;
382 if (cputype < 0) {
383 /*
384 * At least some white-box systems have SRM which
385 * reports a systype that's the negative of their
386 * blue-box counterpart.
387 */
388 cputype = -cputype;
389 }
390 c = platform_lookup(cputype);
391 if (c == NULL) {
392 platform_not_supported();
393 /* NOTREACHED */
394 }
395 (*c->init)();
396 strcpy(cpu_model, platform.model);
397
398 /*
399 * Initialize the real console, so that the bootstrap console is
400 * no longer necessary.
401 */
402 (*platform.cons_init)();
403
404 #ifdef DIAGNOSTIC
405 /* Paranoid sanity checking */
406
407 /* We should always be running on the primary. */
408 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
409
410 /*
411 * On single-CPU systypes, the primary should always be CPU 0,
412 * except on Alpha 8200 systems where the CPU id is related
413 * to the VID, which is related to the Turbo Laser node id.
414 */
415 if (cputype != ST_DEC_21000)
416 assert(hwrpb->rpb_primary_cpu_id == 0);
417 #endif
418
419 /* NO MORE FIRMWARE ACCESS ALLOWED */
420 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
421 /*
422 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
423 * XXX pmap_uses_prom_console() evaluates to non-zero.)
424 */
425 #endif
426
427 /*
428 * Find the beginning and end of the kernel (and leave a
429 * bit of space before the beginning for the bootstrap
430 * stack).
431 */
432 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
433 #if NKSYMS || defined(DDB) || defined(LKM)
434 ksym_start = (void *)bootinfo.ssym;
435 ksym_end = (void *)bootinfo.esym;
436 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
437 #else
438 kernend = (vaddr_t)round_page((vaddr_t)_end);
439 #endif
440
441 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
442 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
443
444 /*
445 * Find out how much memory is available, by looking at
446 * the memory cluster descriptors. This also tries to do
447 * its best to detect things things that have never been seen
448 * before...
449 */
450 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
451
452 /* MDDT SANITY CHECKING */
453 mddtweird = 0;
454 if (mddtp->mddt_cluster_cnt < 2) {
455 mddtweird = 1;
456 printf("WARNING: weird number of mem clusters: %lu\n",
457 mddtp->mddt_cluster_cnt);
458 }
459
460 #if 0
461 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
462 #endif
463
464 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
465 memc = &mddtp->mddt_clusters[i];
466 #if 0
467 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
468 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
469 #endif
470 totalphysmem += memc->mddt_pg_cnt;
471 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
472 mem_clusters[mem_cluster_cnt].start =
473 ptoa(memc->mddt_pfn);
474 mem_clusters[mem_cluster_cnt].size =
475 ptoa(memc->mddt_pg_cnt);
476 if (memc->mddt_usage & MDDT_mbz ||
477 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
478 memc->mddt_usage & MDDT_PALCODE)
479 mem_clusters[mem_cluster_cnt].size |=
480 PROT_READ;
481 else
482 mem_clusters[mem_cluster_cnt].size |=
483 PROT_READ | PROT_WRITE | PROT_EXEC;
484 mem_cluster_cnt++;
485 }
486
487 if (memc->mddt_usage & MDDT_mbz) {
488 mddtweird = 1;
489 printf("WARNING: mem cluster %d has weird "
490 "usage 0x%lx\n", i, memc->mddt_usage);
491 unknownmem += memc->mddt_pg_cnt;
492 continue;
493 }
494 if (memc->mddt_usage & MDDT_NONVOLATILE) {
495 /* XXX should handle these... */
496 printf("WARNING: skipping non-volatile mem "
497 "cluster %d\n", i);
498 unusedmem += memc->mddt_pg_cnt;
499 continue;
500 }
501 if (memc->mddt_usage & MDDT_PALCODE) {
502 resvmem += memc->mddt_pg_cnt;
503 continue;
504 }
505
506 /*
507 * We have a memory cluster available for system
508 * software use. We must determine if this cluster
509 * holds the kernel.
510 */
511 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
512 /*
513 * XXX If the kernel uses the PROM console, we only use the
514 * XXX memory after the kernel in the first system segment,
515 * XXX to avoid clobbering prom mapping, data, etc.
516 */
517 if (!pmap_uses_prom_console() || physmem == 0) {
518 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
519 physmem += memc->mddt_pg_cnt;
520 pfn0 = memc->mddt_pfn;
521 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
522 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
523 /*
524 * Must compute the location of the kernel
525 * within the segment.
526 */
527 #if 0
528 printf("Cluster %d contains kernel\n", i);
529 #endif
530 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
531 if (!pmap_uses_prom_console()) {
532 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
533 if (pfn0 < kernstartpfn) {
534 /*
535 * There is a chunk before the kernel.
536 */
537 #if 0
538 printf("Loading chunk before kernel: "
539 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
540 #endif
541 uvm_page_physload(pfn0, kernstartpfn,
542 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
543 }
544 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
545 }
546 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
547 if (kernendpfn < pfn1) {
548 /*
549 * There is a chunk after the kernel.
550 */
551 #if 0
552 printf("Loading chunk after kernel: "
553 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
554 #endif
555 uvm_page_physload(kernendpfn, pfn1,
556 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
557 }
558 } else {
559 /*
560 * Just load this cluster as one chunk.
561 */
562 #if 0
563 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
564 pfn0, pfn1);
565 #endif
566 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
567 VM_FREELIST_DEFAULT);
568 }
569 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
570 }
571 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
572 }
573
574 /*
575 * Dump out the MDDT if it looks odd...
576 */
577 if (mddtweird) {
578 printf("\n");
579 printf("complete memory cluster information:\n");
580 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
581 printf("mddt %d:\n", i);
582 printf("\tpfn %lx\n",
583 mddtp->mddt_clusters[i].mddt_pfn);
584 printf("\tcnt %lx\n",
585 mddtp->mddt_clusters[i].mddt_pg_cnt);
586 printf("\ttest %lx\n",
587 mddtp->mddt_clusters[i].mddt_pg_test);
588 printf("\tbva %lx\n",
589 mddtp->mddt_clusters[i].mddt_v_bitaddr);
590 printf("\tbpa %lx\n",
591 mddtp->mddt_clusters[i].mddt_p_bitaddr);
592 printf("\tbcksum %lx\n",
593 mddtp->mddt_clusters[i].mddt_bit_cksum);
594 printf("\tusage %lx\n",
595 mddtp->mddt_clusters[i].mddt_usage);
596 }
597 printf("\n");
598 }
599
600 if (totalphysmem == 0)
601 panic("can't happen: system seems to have no memory!");
602 maxmem = physmem;
603 #if 0
604 printf("totalphysmem = %d\n", totalphysmem);
605 printf("physmem = %d\n", physmem);
606 printf("resvmem = %d\n", resvmem);
607 printf("unusedmem = %d\n", unusedmem);
608 printf("unknownmem = %d\n", unknownmem);
609 #endif
610
611 /*
612 * Initialize error message buffer (at end of core).
613 */
614 {
615 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
616 vsize_t reqsz = sz;
617
618 vps = &vm_physmem[vm_nphysseg - 1];
619
620 /* shrink so that it'll fit in the last segment */
621 if ((vps->avail_end - vps->avail_start) < atop(sz))
622 sz = ptoa(vps->avail_end - vps->avail_start);
623
624 vps->end -= atop(sz);
625 vps->avail_end -= atop(sz);
626 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
627 initmsgbuf(msgbufaddr, sz);
628
629 /* Remove the last segment if it now has no pages. */
630 if (vps->start == vps->end)
631 vm_nphysseg--;
632
633 /* warn if the message buffer had to be shrunk */
634 if (sz != reqsz)
635 printf("WARNING: %ld bytes not available for msgbuf "
636 "in last cluster (%ld used)\n", reqsz, sz);
637
638 }
639
640 /*
641 * NOTE: It is safe to use uvm_pageboot_alloc() before
642 * pmap_bootstrap() because our pmap_virtual_space()
643 * returns compile-time constants.
644 */
645
646 /*
647 * Init mapping for u page(s) for proc 0
648 */
649 lwp0.l_addr = proc0paddr =
650 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
651
652 /*
653 * Initialize the virtual memory system, and set the
654 * page table base register in proc 0's PCB.
655 */
656 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
657 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
658
659 /*
660 * Initialize the rest of proc 0's PCB, and cache its physical
661 * address.
662 */
663 lwp0.l_md.md_pcbpaddr =
664 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
665
666 /*
667 * Set the kernel sp, reserving space for an (empty) trapframe,
668 * and make proc0's trapframe pointer point to it for sanity.
669 */
670 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
671 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
672 lwp0.l_md.md_tf =
673 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
674 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
675
676 /*
677 * Initialize the primary CPU's idle PCB to proc0's. In a
678 * MULTIPROCESSOR configuration, each CPU will later get
679 * its own idle PCB when autoconfiguration runs.
680 */
681 ci->ci_idle_pcb = &proc0paddr->u_pcb;
682 ci->ci_idle_pcb_paddr = (u_long)lwp0.l_md.md_pcbpaddr;
683
684 /* Indicate that proc0 has a CPU. */
685 lwp0.l_cpu = ci;
686
687 /*
688 * Look at arguments passed to us and compute boothowto.
689 */
690
691 boothowto = RB_SINGLE;
692 #ifdef KADB
693 boothowto |= RB_KDB;
694 #endif
695 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
696 /*
697 * Note that we'd really like to differentiate case here,
698 * but the Alpha AXP Architecture Reference Manual
699 * says that we shouldn't.
700 */
701 switch (*p) {
702 case 'a': /* autoboot */
703 case 'A':
704 boothowto &= ~RB_SINGLE;
705 break;
706
707 #ifdef DEBUG
708 case 'c': /* crash dump immediately after autoconfig */
709 case 'C':
710 boothowto |= RB_DUMP;
711 break;
712 #endif
713
714 #if defined(KGDB) || defined(DDB)
715 case 'd': /* break into the kernel debugger ASAP */
716 case 'D':
717 boothowto |= RB_KDB;
718 break;
719 #endif
720
721 case 'h': /* always halt, never reboot */
722 case 'H':
723 boothowto |= RB_HALT;
724 break;
725
726 #if 0
727 case 'm': /* mini root present in memory */
728 case 'M':
729 boothowto |= RB_MINIROOT;
730 break;
731 #endif
732
733 case 'n': /* askname */
734 case 'N':
735 boothowto |= RB_ASKNAME;
736 break;
737
738 case 's': /* single-user (default, supported for sanity) */
739 case 'S':
740 boothowto |= RB_SINGLE;
741 break;
742
743 case 'q': /* quiet boot */
744 case 'Q':
745 boothowto |= AB_QUIET;
746 break;
747
748 case 'v': /* verbose boot */
749 case 'V':
750 boothowto |= AB_VERBOSE;
751 break;
752
753 case '-':
754 /*
755 * Just ignore this. It's not required, but it's
756 * common for it to be passed regardless.
757 */
758 break;
759
760 default:
761 printf("Unrecognized boot flag '%c'.\n", *p);
762 break;
763 }
764 }
765
766
767 /*
768 * Figure out the number of CPUs in the box, from RPB fields.
769 * Really. We mean it.
770 */
771 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
772 struct pcs *pcsp;
773
774 pcsp = LOCATE_PCS(hwrpb, i);
775 if ((pcsp->pcs_flags & PCS_PP) != 0)
776 ncpus++;
777 }
778
779 /*
780 * Initialize debuggers, and break into them if appropriate.
781 */
782 #if NKSYMS || defined(DDB) || defined(LKM)
783 ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
784 ksym_start, ksym_end);
785 #endif
786
787 if (boothowto & RB_KDB) {
788 #if defined(KGDB)
789 kgdb_debug_init = 1;
790 kgdb_connect(1);
791 #elif defined(DDB)
792 Debugger();
793 #endif
794 }
795
796 /*
797 * Figure out our clock frequency, from RPB fields.
798 */
799 hz = hwrpb->rpb_intr_freq >> 12;
800 if (!(60 <= hz && hz <= 10240)) {
801 hz = 1024;
802 #ifdef DIAGNOSTIC
803 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
804 hwrpb->rpb_intr_freq, hz);
805 #endif
806 }
807 }
808
809 void
810 consinit()
811 {
812
813 /*
814 * Everything related to console initialization is done
815 * in alpha_init().
816 */
817 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
818 printf("consinit: %susing prom console\n",
819 pmap_uses_prom_console() ? "" : "not ");
820 #endif
821 }
822
823 void
824 cpu_startup()
825 {
826 vaddr_t minaddr, maxaddr;
827 char pbuf[9];
828 #if defined(DEBUG)
829 extern int pmapdebug;
830 int opmapdebug = pmapdebug;
831
832 pmapdebug = 0;
833 #endif
834
835 /*
836 * Good {morning,afternoon,evening,night}.
837 */
838 printf("%s%s", copyright, version);
839 identifycpu();
840 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
841 printf("total memory = %s\n", pbuf);
842 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
843 printf("(%s reserved for PROM, ", pbuf);
844 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
845 printf("%s used by NetBSD)\n", pbuf);
846 if (unusedmem) {
847 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
848 printf("WARNING: unused memory = %s\n", pbuf);
849 }
850 if (unknownmem) {
851 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
852 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
853 }
854
855 minaddr = 0;
856
857 /*
858 * Allocate a submap for exec arguments. This map effectively
859 * limits the number of processes exec'ing at any time.
860 */
861 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
862 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
863
864 /*
865 * Allocate a submap for physio
866 */
867 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
868 VM_PHYS_SIZE, 0, FALSE, NULL);
869
870 /*
871 * No need to allocate an mbuf cluster submap. Mbuf clusters
872 * are allocated via the pool allocator, and we use K0SEG to
873 * map those pages.
874 */
875
876 #if defined(DEBUG)
877 pmapdebug = opmapdebug;
878 #endif
879 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
880 printf("avail memory = %s\n", pbuf);
881 #if 0
882 {
883 extern u_long pmap_pages_stolen;
884
885 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
886 printf("stolen memory for VM structures = %s\n", pbuf);
887 }
888 #endif
889
890 /*
891 * Set up the HWPCB so that it's safe to configure secondary
892 * CPUs.
893 */
894 hwrpb_primary_init();
895 }
896
897 /*
898 * Retrieve the platform name from the DSR.
899 */
900 const char *
901 alpha_dsr_sysname()
902 {
903 struct dsrdb *dsr;
904 const char *sysname;
905
906 /*
907 * DSR does not exist on early HWRPB versions.
908 */
909 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
910 return (NULL);
911
912 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
913 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
914 sizeof(u_int64_t)));
915 return (sysname);
916 }
917
918 /*
919 * Lookup the system specified system variation in the provided table,
920 * returning the model string on match.
921 */
922 const char *
923 alpha_variation_name(variation, avtp)
924 u_int64_t variation;
925 const struct alpha_variation_table *avtp;
926 {
927 int i;
928
929 for (i = 0; avtp[i].avt_model != NULL; i++)
930 if (avtp[i].avt_variation == variation)
931 return (avtp[i].avt_model);
932 return (NULL);
933 }
934
935 /*
936 * Generate a default platform name based for unknown system variations.
937 */
938 const char *
939 alpha_unknown_sysname()
940 {
941 static char s[128]; /* safe size */
942
943 sprintf(s, "%s family, unknown model variation 0x%lx",
944 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
945 return ((const char *)s);
946 }
947
948 void
949 identifycpu()
950 {
951 char *s;
952 int i;
953
954 /*
955 * print out CPU identification information.
956 */
957 printf("%s", cpu_model);
958 for(s = cpu_model; *s; ++s)
959 if(strncasecmp(s, "MHz", 3) == 0)
960 goto skipMHz;
961 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
962 skipMHz:
963 printf(", s/n ");
964 for (i = 0; i < 10; i++)
965 printf("%c", hwrpb->rpb_ssn[i]);
966 printf("\n");
967 printf("%ld byte page size, %d processor%s.\n",
968 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
969 #if 0
970 /* this isn't defined for any systems that we run on? */
971 printf("serial number 0x%lx 0x%lx\n",
972 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
973
974 /* and these aren't particularly useful! */
975 printf("variation: 0x%lx, revision 0x%lx\n",
976 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
977 #endif
978 }
979
980 int waittime = -1;
981 struct pcb dumppcb;
982
983 void
984 cpu_reboot(howto, bootstr)
985 int howto;
986 char *bootstr;
987 {
988 #if defined(MULTIPROCESSOR)
989 u_long cpu_id = cpu_number();
990 u_long wait_mask = (1UL << cpu_id) |
991 (1UL << hwrpb->rpb_primary_cpu_id);
992 int i;
993 #endif
994
995 /* If "always halt" was specified as a boot flag, obey. */
996 if ((boothowto & RB_HALT) != 0)
997 howto |= RB_HALT;
998
999 boothowto = howto;
1000
1001 /* If system is cold, just halt. */
1002 if (cold) {
1003 boothowto |= RB_HALT;
1004 goto haltsys;
1005 }
1006
1007 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1008 waittime = 0;
1009 vfs_shutdown();
1010 /*
1011 * If we've been adjusting the clock, the todr
1012 * will be out of synch; adjust it now.
1013 */
1014 resettodr();
1015 }
1016
1017 /* Disable interrupts. */
1018 splhigh();
1019
1020 #if defined(MULTIPROCESSOR)
1021 /*
1022 * Halt all other CPUs. If we're not the primary, the
1023 * primary will spin, waiting for us to halt.
1024 */
1025 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1026
1027 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1028 cpus_paused = 0;
1029
1030 for (i = 0; i < 10000; i++) {
1031 alpha_mb();
1032 if (cpus_running == wait_mask)
1033 break;
1034 delay(1000);
1035 }
1036 alpha_mb();
1037 if (cpus_running != wait_mask)
1038 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1039 cpus_running);
1040 #endif /* MULTIPROCESSOR */
1041
1042 /* If rebooting and a dump is requested do it. */
1043 #if 0
1044 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1045 #else
1046 if (boothowto & RB_DUMP)
1047 #endif
1048 dumpsys();
1049
1050 haltsys:
1051
1052 /* run any shutdown hooks */
1053 doshutdownhooks();
1054
1055 #ifdef BOOTKEY
1056 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1057 cnpollc(1); /* for proper keyboard command handling */
1058 cngetc();
1059 cnpollc(0);
1060 printf("\n");
1061 #endif
1062
1063 /* Finally, powerdown/halt/reboot the system. */
1064 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1065 platform.powerdown != NULL) {
1066 (*platform.powerdown)();
1067 printf("WARNING: powerdown failed!\n");
1068 }
1069 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1070 #if defined(MULTIPROCESSOR)
1071 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1072 cpu_halt();
1073 else
1074 #endif
1075 prom_halt(boothowto & RB_HALT);
1076 /*NOTREACHED*/
1077 }
1078
1079 /*
1080 * These variables are needed by /sbin/savecore
1081 */
1082 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1083 int dumpsize = 0; /* pages */
1084 long dumplo = 0; /* blocks */
1085
1086 /*
1087 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1088 */
1089 int
1090 cpu_dumpsize()
1091 {
1092 int size;
1093
1094 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1095 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1096 if (roundup(size, dbtob(1)) != dbtob(1))
1097 return -1;
1098
1099 return (1);
1100 }
1101
1102 /*
1103 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1104 */
1105 u_long
1106 cpu_dump_mempagecnt()
1107 {
1108 u_long i, n;
1109
1110 n = 0;
1111 for (i = 0; i < mem_cluster_cnt; i++)
1112 n += atop(mem_clusters[i].size);
1113 return (n);
1114 }
1115
1116 /*
1117 * cpu_dump: dump machine-dependent kernel core dump headers.
1118 */
1119 int
1120 cpu_dump()
1121 {
1122 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1123 char buf[dbtob(1)];
1124 kcore_seg_t *segp;
1125 cpu_kcore_hdr_t *cpuhdrp;
1126 phys_ram_seg_t *memsegp;
1127 const struct bdevsw *bdev;
1128 int i;
1129
1130 bdev = bdevsw_lookup(dumpdev);
1131 if (bdev == NULL)
1132 return (ENXIO);
1133 dump = bdev->d_dump;
1134
1135 memset(buf, 0, sizeof buf);
1136 segp = (kcore_seg_t *)buf;
1137 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1138 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1139 ALIGN(sizeof(*cpuhdrp))];
1140
1141 /*
1142 * Generate a segment header.
1143 */
1144 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1145 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1146
1147 /*
1148 * Add the machine-dependent header info.
1149 */
1150 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1151 cpuhdrp->page_size = PAGE_SIZE;
1152 cpuhdrp->nmemsegs = mem_cluster_cnt;
1153
1154 /*
1155 * Fill in the memory segment descriptors.
1156 */
1157 for (i = 0; i < mem_cluster_cnt; i++) {
1158 memsegp[i].start = mem_clusters[i].start;
1159 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1160 }
1161
1162 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1163 }
1164
1165 /*
1166 * This is called by main to set dumplo and dumpsize.
1167 * Dumps always skip the first PAGE_SIZE of disk space
1168 * in case there might be a disk label stored there.
1169 * If there is extra space, put dump at the end to
1170 * reduce the chance that swapping trashes it.
1171 */
1172 void
1173 cpu_dumpconf()
1174 {
1175 const struct bdevsw *bdev;
1176 int nblks, dumpblks; /* size of dump area */
1177
1178 if (dumpdev == NODEV)
1179 goto bad;
1180 bdev = bdevsw_lookup(dumpdev);
1181 if (bdev == NULL) {
1182 dumpdev = NODEV;
1183 goto bad;
1184 }
1185 if (bdev->d_psize == NULL)
1186 goto bad;
1187 nblks = (*bdev->d_psize)(dumpdev);
1188 if (nblks <= ctod(1))
1189 goto bad;
1190
1191 dumpblks = cpu_dumpsize();
1192 if (dumpblks < 0)
1193 goto bad;
1194 dumpblks += ctod(cpu_dump_mempagecnt());
1195
1196 /* If dump won't fit (incl. room for possible label), punt. */
1197 if (dumpblks > (nblks - ctod(1)))
1198 goto bad;
1199
1200 /* Put dump at end of partition */
1201 dumplo = nblks - dumpblks;
1202
1203 /* dumpsize is in page units, and doesn't include headers. */
1204 dumpsize = cpu_dump_mempagecnt();
1205 return;
1206
1207 bad:
1208 dumpsize = 0;
1209 return;
1210 }
1211
1212 /*
1213 * Dump the kernel's image to the swap partition.
1214 */
1215 #define BYTES_PER_DUMP PAGE_SIZE
1216
1217 void
1218 dumpsys()
1219 {
1220 const struct bdevsw *bdev;
1221 u_long totalbytesleft, bytes, i, n, memcl;
1222 u_long maddr;
1223 int psize;
1224 daddr_t blkno;
1225 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1226 int error;
1227
1228 /* Save registers. */
1229 savectx(&dumppcb);
1230
1231 if (dumpdev == NODEV)
1232 return;
1233 bdev = bdevsw_lookup(dumpdev);
1234 if (bdev == NULL || bdev->d_psize == NULL)
1235 return;
1236
1237 /*
1238 * For dumps during autoconfiguration,
1239 * if dump device has already configured...
1240 */
1241 if (dumpsize == 0)
1242 cpu_dumpconf();
1243 if (dumplo <= 0) {
1244 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1245 minor(dumpdev));
1246 return;
1247 }
1248 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1249 minor(dumpdev), dumplo);
1250
1251 psize = (*bdev->d_psize)(dumpdev);
1252 printf("dump ");
1253 if (psize == -1) {
1254 printf("area unavailable\n");
1255 return;
1256 }
1257
1258 /* XXX should purge all outstanding keystrokes. */
1259
1260 if ((error = cpu_dump()) != 0)
1261 goto err;
1262
1263 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1264 blkno = dumplo + cpu_dumpsize();
1265 dump = bdev->d_dump;
1266 error = 0;
1267
1268 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1269 maddr = mem_clusters[memcl].start;
1270 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1271
1272 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1273
1274 /* Print out how many MBs we to go. */
1275 if ((totalbytesleft % (1024*1024)) == 0)
1276 printf("%ld ", totalbytesleft / (1024 * 1024));
1277
1278 /* Limit size for next transfer. */
1279 n = bytes - i;
1280 if (n > BYTES_PER_DUMP)
1281 n = BYTES_PER_DUMP;
1282
1283 error = (*dump)(dumpdev, blkno,
1284 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1285 if (error)
1286 goto err;
1287 maddr += n;
1288 blkno += btodb(n); /* XXX? */
1289
1290 /* XXX should look for keystrokes, to cancel. */
1291 }
1292 }
1293
1294 err:
1295 switch (error) {
1296
1297 case ENXIO:
1298 printf("device bad\n");
1299 break;
1300
1301 case EFAULT:
1302 printf("device not ready\n");
1303 break;
1304
1305 case EINVAL:
1306 printf("area improper\n");
1307 break;
1308
1309 case EIO:
1310 printf("i/o error\n");
1311 break;
1312
1313 case EINTR:
1314 printf("aborted from console\n");
1315 break;
1316
1317 case 0:
1318 printf("succeeded\n");
1319 break;
1320
1321 default:
1322 printf("error %d\n", error);
1323 break;
1324 }
1325 printf("\n\n");
1326 delay(1000);
1327 }
1328
1329 void
1330 frametoreg(framep, regp)
1331 const struct trapframe *framep;
1332 struct reg *regp;
1333 {
1334
1335 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1336 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1337 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1338 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1339 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1340 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1341 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1342 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1343 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1344 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1345 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1346 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1347 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1348 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1349 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1350 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1351 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1352 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1353 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1354 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1355 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1356 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1357 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1358 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1359 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1360 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1361 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1362 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1363 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1364 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1365 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1366 regp->r_regs[R_ZERO] = 0;
1367 }
1368
1369 void
1370 regtoframe(regp, framep)
1371 const struct reg *regp;
1372 struct trapframe *framep;
1373 {
1374
1375 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1376 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1377 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1378 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1379 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1380 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1381 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1382 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1383 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1384 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1385 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1386 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1387 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1388 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1389 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1390 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1391 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1392 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1393 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1394 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1395 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1396 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1397 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1398 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1399 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1400 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1401 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1402 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1403 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1404 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1405 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1406 /* ??? = regp->r_regs[R_ZERO]; */
1407 }
1408
1409 void
1410 printregs(regp)
1411 struct reg *regp;
1412 {
1413 int i;
1414
1415 for (i = 0; i < 32; i++)
1416 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1417 i & 1 ? "\n" : "\t");
1418 }
1419
1420 void
1421 regdump(framep)
1422 struct trapframe *framep;
1423 {
1424 struct reg reg;
1425
1426 frametoreg(framep, ®);
1427 reg.r_regs[R_SP] = alpha_pal_rdusp();
1428
1429 printf("REGISTERS:\n");
1430 printregs(®);
1431 }
1432
1433
1434
1435 void *
1436 getframe(const struct lwp *l, int sig, int *onstack)
1437 {
1438 void * frame;
1439 struct proc *p;
1440
1441 p = l->l_proc;
1442
1443 /* Do we need to jump onto the signal stack? */
1444 *onstack =
1445 (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1446 (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1447
1448 if (*onstack)
1449 frame = (void *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1450 p->p_sigctx.ps_sigstk.ss_size);
1451 else
1452 frame = (void *)(alpha_pal_rdusp());
1453 return (frame);
1454 }
1455
1456 void
1457 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1458 {
1459 struct trapframe *tf = l->l_md.md_tf;
1460
1461 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1462 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1463 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1464 alpha_pal_wrusp((unsigned long)fp);
1465 }
1466
1467
1468 /*
1469 * Send an interrupt to process, new style
1470 */
1471 void
1472 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1473 {
1474 struct lwp *l = curlwp;
1475 struct proc *p = l->l_proc;
1476 struct sigacts *ps = p->p_sigacts;
1477 int onstack, sig = ksi->ksi_signo;
1478 struct sigframe_siginfo *fp, frame;
1479 struct trapframe *tf;
1480 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1481
1482 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1483 tf = l->l_md.md_tf;
1484
1485 /* Allocate space for the signal handler context. */
1486 fp--;
1487
1488 /* Build stack frame for signal trampoline. */
1489 switch (ps->sa_sigdesc[sig].sd_vers) {
1490 case 0: /* handled by sendsig_sigcontext */
1491 case 1: /* handled by sendsig_sigcontext */
1492 default: /* unknown version */
1493 printf("nsendsig: bad version %d\n",
1494 ps->sa_sigdesc[sig].sd_vers);
1495 sigexit(l, SIGILL);
1496 case 2:
1497 break;
1498 }
1499
1500 #ifdef DEBUG
1501 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1502 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1503 sig, &onstack, fp);
1504 #endif
1505
1506 /* Build stack frame for signal trampoline. */
1507
1508 frame.sf_si._info = ksi->ksi_info;
1509 frame.sf_uc.uc_flags = _UC_SIGMASK;
1510 frame.sf_uc.uc_sigmask = *mask;
1511 frame.sf_uc.uc_link = NULL;
1512 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1513 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1514
1515 if (copyout(&frame, fp, sizeof(frame)) != 0) {
1516 /*
1517 * Process has trashed its stack; give it an illegal
1518 * instruction to halt it in its tracks.
1519 */
1520 #ifdef DEBUG
1521 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1522 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1523 p->p_pid, sig);
1524 #endif
1525 sigexit(l, SIGILL);
1526 /* NOTREACHED */
1527 }
1528
1529 #ifdef DEBUG
1530 if (sigdebug & SDB_FOLLOW)
1531 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1532 p->p_pid, sig, fp, ksi->ksi_code);
1533 #endif
1534
1535 /*
1536 * Set up the registers to directly invoke the signal handler. The
1537 * signal trampoline is then used to return from the signal. Note
1538 * the trampoline version numbers are coordinated with machine-
1539 * dependent code in libc.
1540 */
1541
1542 tf->tf_regs[FRAME_A0] = sig;
1543 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1544 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1545
1546 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1547
1548 /* Remember that we're now on the signal stack. */
1549 if (onstack)
1550 p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1551
1552 #ifdef DEBUG
1553 if (sigdebug & SDB_FOLLOW)
1554 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1555 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1556 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1557 printf("sendsig_siginfo(%d): sig %d returns\n",
1558 p->p_pid, sig);
1559 #endif
1560 }
1561
1562
1563 void
1564 sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
1565 {
1566 #ifdef COMPAT_16
1567 if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) {
1568 sendsig_sigcontext(ksi, mask);
1569 } else {
1570 #endif
1571 #ifdef DEBUG
1572 if (sigdebug & SDB_FOLLOW)
1573 printf("sendsig: sendsig called: sig %d vers %d\n",
1574 ksi->ksi_signo,
1575 curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers);
1576 #endif
1577 sendsig_siginfo(ksi, mask);
1578 #ifdef COMPAT_16
1579 }
1580 #endif
1581 }
1582
1583 void
1584 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1585 {
1586 struct trapframe *tf;
1587
1588 tf = l->l_md.md_tf;
1589
1590 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1591 tf->tf_regs[FRAME_RA] = 0;
1592 tf->tf_regs[FRAME_A0] = type;
1593 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1594 tf->tf_regs[FRAME_A2] = nevents;
1595 tf->tf_regs[FRAME_A3] = ninterrupted;
1596 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1597 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1598 alpha_pal_wrusp((unsigned long)sp);
1599 }
1600
1601 /*
1602 * machine dependent system variables.
1603 */
1604 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1605 {
1606
1607 sysctl_createv(clog, 0, NULL, NULL,
1608 CTLFLAG_PERMANENT,
1609 CTLTYPE_NODE, "machdep", NULL,
1610 NULL, 0, NULL, 0,
1611 CTL_MACHDEP, CTL_EOL);
1612
1613 sysctl_createv(clog, 0, NULL, NULL,
1614 CTLFLAG_PERMANENT,
1615 CTLTYPE_STRUCT, "console_device", NULL,
1616 sysctl_consdev, 0, NULL, sizeof(dev_t),
1617 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1618 sysctl_createv(clog, 0, NULL, NULL,
1619 CTLFLAG_PERMANENT,
1620 CTLTYPE_STRING, "root_device", NULL,
1621 sysctl_root_device, 0, NULL, 0,
1622 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1623 sysctl_createv(clog, 0, NULL, NULL,
1624 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1625 CTLTYPE_INT, "unaligned_print", NULL,
1626 NULL, 0, &alpha_unaligned_print, 0,
1627 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1628 sysctl_createv(clog, 0, NULL, NULL,
1629 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1630 CTLTYPE_INT, "unaligned_fix", NULL,
1631 NULL, 0, &alpha_unaligned_fix, 0,
1632 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1633 sysctl_createv(clog, 0, NULL, NULL,
1634 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1635 CTLTYPE_INT, "unaligned_sigbus", NULL,
1636 NULL, 0, &alpha_unaligned_sigbus, 0,
1637 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1638 sysctl_createv(clog, 0, NULL, NULL,
1639 CTLFLAG_PERMANENT,
1640 CTLTYPE_STRING, "booted_kernel", NULL,
1641 NULL, 0, bootinfo.booted_kernel, 0,
1642 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1643 sysctl_createv(clog, 0, NULL, NULL,
1644 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1645 CTLTYPE_INT, "fp_sync_complete", NULL,
1646 NULL, 0, &alpha_fp_sync_complete, 0,
1647 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1648 }
1649
1650 /*
1651 * Set registers on exec.
1652 */
1653 void
1654 setregs(l, pack, stack)
1655 register struct lwp *l;
1656 struct exec_package *pack;
1657 u_long stack;
1658 {
1659 struct trapframe *tfp = l->l_md.md_tf;
1660 #ifdef DEBUG
1661 int i;
1662 #endif
1663
1664 #ifdef DEBUG
1665 /*
1666 * Crash and dump, if the user requested it.
1667 */
1668 if (boothowto & RB_DUMP)
1669 panic("crash requested by boot flags");
1670 #endif
1671
1672 #ifdef DEBUG
1673 for (i = 0; i < FRAME_SIZE; i++)
1674 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1675 #else
1676 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1677 #endif
1678 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1679 alpha_pal_wrusp(stack);
1680 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1681 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1682
1683 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1684 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1685 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1686 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1687 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1688
1689 l->l_md.md_flags &= ~MDP_FPUSED;
1690 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1691 l->l_md.md_flags &= ~MDP_FP_C;
1692 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1693 }
1694 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1695 fpusave_proc(l, 0);
1696 }
1697
1698 /*
1699 * Release the FPU.
1700 */
1701 void
1702 fpusave_cpu(struct cpu_info *ci, int save)
1703 {
1704 struct lwp *l;
1705 #if defined(MULTIPROCESSOR)
1706 int s;
1707 #endif
1708
1709 KDASSERT(ci == curcpu());
1710
1711 #if defined(MULTIPROCESSOR)
1712 s = splhigh(); /* block IPIs for the duration */
1713 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1714 #endif
1715
1716 l = ci->ci_fpcurlwp;
1717 if (l == NULL)
1718 goto out;
1719
1720 if (save) {
1721 alpha_pal_wrfen(1);
1722 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1723 }
1724
1725 alpha_pal_wrfen(0);
1726
1727 FPCPU_LOCK(&l->l_addr->u_pcb);
1728
1729 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1730 ci->ci_fpcurlwp = NULL;
1731
1732 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1733
1734 out:
1735 #if defined(MULTIPROCESSOR)
1736 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1737 splx(s);
1738 #endif
1739 return;
1740 }
1741
1742 /*
1743 * Synchronize FP state for this process.
1744 */
1745 void
1746 fpusave_proc(struct lwp *l, int save)
1747 {
1748 struct cpu_info *ci = curcpu();
1749 struct cpu_info *oci;
1750 #if defined(MULTIPROCESSOR)
1751 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1752 int s, spincount;
1753 #endif
1754
1755 KDASSERT(l->l_addr != NULL);
1756
1757 #if defined(MULTIPROCESSOR)
1758 s = splhigh(); /* block IPIs for the duration */
1759 #endif
1760 FPCPU_LOCK(&l->l_addr->u_pcb);
1761
1762 oci = l->l_addr->u_pcb.pcb_fpcpu;
1763 if (oci == NULL) {
1764 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1765 #if defined(MULTIPROCESSOR)
1766 splx(s);
1767 #endif
1768 return;
1769 }
1770
1771 #if defined(MULTIPROCESSOR)
1772 if (oci == ci) {
1773 KASSERT(ci->ci_fpcurlwp == l);
1774 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1775 splx(s);
1776 fpusave_cpu(ci, save);
1777 return;
1778 }
1779
1780 KASSERT(oci->ci_fpcurlwp == l);
1781 alpha_send_ipi(oci->ci_cpuid, ipi);
1782 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1783
1784 spincount = 0;
1785 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1786 spincount++;
1787 delay(1000); /* XXX */
1788 if (spincount > 10000)
1789 panic("fpsave ipi didn't");
1790 }
1791 #else
1792 KASSERT(ci->ci_fpcurlwp == l);
1793 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1794 fpusave_cpu(ci, save);
1795 #endif /* MULTIPROCESSOR */
1796 }
1797
1798 /*
1799 * Wait "n" microseconds.
1800 */
1801 void
1802 delay(n)
1803 unsigned long n;
1804 {
1805 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1806
1807 if (n == 0)
1808 return;
1809
1810 pcc0 = alpha_rpcc() & 0xffffffffUL;
1811 cycles = 0;
1812 usec = 0;
1813
1814 while (usec <= n) {
1815 /*
1816 * Get the next CPU cycle count- assumes that we cannot
1817 * have had more than one 32 bit overflow.
1818 */
1819 pcc1 = alpha_rpcc() & 0xffffffffUL;
1820 if (pcc1 < pcc0)
1821 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1822 else
1823 curcycle = pcc1 - pcc0;
1824
1825 /*
1826 * We now have the number of processor cycles since we
1827 * last checked. Add the current cycle count to the
1828 * running total. If it's over cycles_per_usec, increment
1829 * the usec counter.
1830 */
1831 cycles += curcycle;
1832 while (cycles > cycles_per_usec) {
1833 usec++;
1834 cycles -= cycles_per_usec;
1835 }
1836 pcc0 = pcc1;
1837 }
1838 }
1839
1840 #ifdef EXEC_ECOFF
1841 void
1842 cpu_exec_ecoff_setregs(l, epp, stack)
1843 struct lwp *l;
1844 struct exec_package *epp;
1845 u_long stack;
1846 {
1847 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1848
1849 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1850 }
1851
1852 /*
1853 * cpu_exec_ecoff_hook():
1854 * cpu-dependent ECOFF format hook for execve().
1855 *
1856 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1857 *
1858 */
1859 int
1860 cpu_exec_ecoff_probe(l, epp)
1861 struct lwp *l;
1862 struct exec_package *epp;
1863 {
1864 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1865 int error;
1866
1867 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1868 error = 0;
1869 else
1870 error = ENOEXEC;
1871
1872 return (error);
1873 }
1874 #endif /* EXEC_ECOFF */
1875
1876 int
1877 alpha_pa_access(pa)
1878 u_long pa;
1879 {
1880 int i;
1881
1882 for (i = 0; i < mem_cluster_cnt; i++) {
1883 if (pa < mem_clusters[i].start)
1884 continue;
1885 if ((pa - mem_clusters[i].start) >=
1886 (mem_clusters[i].size & ~PAGE_MASK))
1887 continue;
1888 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1889 }
1890
1891 /*
1892 * Address is not a memory address. If we're secure, disallow
1893 * access. Otherwise, grant read/write.
1894 */
1895 if (kauth_authorize_machdep(kauth_cred_get(),
1896 KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1897 return (PROT_NONE);
1898 else
1899 return (PROT_READ | PROT_WRITE);
1900 }
1901
1902 /* XXX XXX BEGIN XXX XXX */
1903 paddr_t alpha_XXX_dmamap_or; /* XXX */
1904 /* XXX */
1905 paddr_t /* XXX */
1906 alpha_XXX_dmamap(v) /* XXX */
1907 vaddr_t v; /* XXX */
1908 { /* XXX */
1909 /* XXX */
1910 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1911 } /* XXX */
1912 /* XXX XXX END XXX XXX */
1913
1914 char *
1915 dot_conv(x)
1916 unsigned long x;
1917 {
1918 int i;
1919 char *xc;
1920 static int next;
1921 static char space[2][20];
1922
1923 xc = space[next ^= 1] + sizeof space[0];
1924 *--xc = '\0';
1925 for (i = 0;; ++i) {
1926 if (i && (i & 3) == 0)
1927 *--xc = '.';
1928 *--xc = hexdigits[x & 0xf];
1929 x >>= 4;
1930 if (x == 0)
1931 break;
1932 }
1933 return xc;
1934 }
1935
1936 void
1937 cpu_getmcontext(l, mcp, flags)
1938 struct lwp *l;
1939 mcontext_t *mcp;
1940 unsigned int *flags;
1941 {
1942 struct trapframe *frame = l->l_md.md_tf;
1943 __greg_t *gr = mcp->__gregs;
1944 __greg_t ras_pc;
1945
1946 /* Save register context. */
1947 frametoreg(frame, (struct reg *)gr);
1948 /* XXX if there's a better, general way to get the USP of
1949 * an LWP that might or might not be curlwp, I'd like to know
1950 * about it.
1951 */
1952 if (l == curlwp) {
1953 gr[_REG_SP] = alpha_pal_rdusp();
1954 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1955 } else {
1956 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
1957 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
1958 }
1959 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1960 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1961
1962 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1963 (caddr_t) gr[_REG_PC])) != -1)
1964 gr[_REG_PC] = ras_pc;
1965
1966 *flags |= _UC_CPU | _UC_UNIQUE;
1967
1968 /* Save floating point register context, if any, and copy it. */
1969 if (l->l_md.md_flags & MDP_FPUSED) {
1970 fpusave_proc(l, 1);
1971 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
1972 sizeof (mcp->__fpregs));
1973 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1974 *flags |= _UC_FPU;
1975 }
1976 }
1977
1978
1979 int
1980 cpu_setmcontext(l, mcp, flags)
1981 struct lwp *l;
1982 const mcontext_t *mcp;
1983 unsigned int flags;
1984 {
1985 struct trapframe *frame = l->l_md.md_tf;
1986 const __greg_t *gr = mcp->__gregs;
1987
1988 /* Restore register context, if any. */
1989 if (flags & _UC_CPU) {
1990 /* Check for security violations first. */
1991 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1992 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1993 return (EINVAL);
1994
1995 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1996 if (l == curlwp)
1997 alpha_pal_wrusp(gr[_REG_SP]);
1998 else
1999 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
2000 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
2001 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
2002 }
2003 if (flags & _UC_UNIQUE) {
2004 if (l == curlwp)
2005 alpha_pal_wrunique(gr[_REG_UNIQUE]);
2006 else
2007 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
2008 }
2009 /* Restore floating point register context, if any. */
2010 if (flags & _UC_FPU) {
2011 /* If we have an FP register context, get rid of it. */
2012 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
2013 fpusave_proc(l, 0);
2014 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
2015 sizeof (l->l_addr->u_pcb.pcb_fp));
2016 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
2017 l->l_md.md_flags |= MDP_FPUSED;
2018 }
2019
2020 return (0);
2021 }
2022