machdep.c revision 1.293 1 /* $NetBSD: machdep.c,v 1.293 2007/02/09 21:55:01 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.293 2007/02/09 21:55:01 ad Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/ras.h>
86 #include <sys/sched.h>
87 #include <sys/buf.h>
88 #include <sys/reboot.h>
89 #include <sys/device.h>
90 #include <sys/file.h>
91 #include <sys/malloc.h>
92 #include <sys/mbuf.h>
93 #include <sys/mman.h>
94 #include <sys/msgbuf.h>
95 #include <sys/ioctl.h>
96 #include <sys/tty.h>
97 #include <sys/user.h>
98 #include <sys/exec.h>
99 #include <sys/exec_ecoff.h>
100 #include <sys/core.h>
101 #include <sys/kcore.h>
102 #include <sys/ucontext.h>
103 #include <sys/conf.h>
104 #include <sys/ksyms.h>
105 #include <sys/kauth.h>
106 #include <machine/kcore.h>
107 #include <machine/fpu.h>
108
109 #include <sys/mount.h>
110 #include <sys/syscallargs.h>
111
112 #include <uvm/uvm_extern.h>
113 #include <sys/sysctl.h>
114
115 #include <dev/cons.h>
116
117 #include <machine/autoconf.h>
118 #include <machine/cpu.h>
119 #include <machine/reg.h>
120 #include <machine/rpb.h>
121 #include <machine/prom.h>
122 #include <machine/cpuconf.h>
123 #include <machine/ieeefp.h>
124
125 #ifdef DDB
126 #include <machine/db_machdep.h>
127 #include <ddb/db_access.h>
128 #include <ddb/db_sym.h>
129 #include <ddb/db_extern.h>
130 #include <ddb/db_interface.h>
131 #endif
132
133 #ifdef KGDB
134 #include <sys/kgdb.h>
135 #endif
136
137 #ifdef DEBUG
138 #include <machine/sigdebug.h>
139 #endif
140
141 #include <machine/alpha.h>
142
143 #include "ksyms.h"
144
145 struct vm_map *exec_map = NULL;
146 struct vm_map *mb_map = NULL;
147 struct vm_map *phys_map = NULL;
148
149 caddr_t msgbufaddr;
150
151 int maxmem; /* max memory per process */
152
153 int totalphysmem; /* total amount of physical memory in system */
154 int physmem; /* physical memory used by NetBSD + some rsvd */
155 int resvmem; /* amount of memory reserved for PROM */
156 int unusedmem; /* amount of memory for OS that we don't use */
157 int unknownmem; /* amount of memory with an unknown use */
158
159 int cputype; /* system type, from the RPB */
160
161 int bootdev_debug = 0; /* patchable, or from DDB */
162
163 /*
164 * XXX We need an address to which we can assign things so that they
165 * won't be optimized away because we didn't use the value.
166 */
167 u_int32_t no_optimize;
168
169 /* the following is used externally (sysctl_hw) */
170 char machine[] = MACHINE; /* from <machine/param.h> */
171 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
172 char cpu_model[128];
173
174 struct user *proc0paddr;
175
176 /* Number of machine cycles per microsecond */
177 u_int64_t cycles_per_usec;
178
179 /* number of CPUs in the box. really! */
180 int ncpus;
181
182 struct bootinfo_kernel bootinfo;
183
184 /* For built-in TCDS */
185 #if defined(DEC_3000_300) || defined(DEC_3000_500)
186 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
187 #endif
188
189 struct platform platform;
190
191 #if NKSYMS || defined(DDB) || defined(LKM)
192 /* start and end of kernel symbol table */
193 void *ksym_start, *ksym_end;
194 #endif
195
196 /* for cpu_sysctl() */
197 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
198 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
199 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
200 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
201
202 /*
203 * XXX This should be dynamically sized, but we have the chicken-egg problem!
204 * XXX it should also be larger than it is, because not all of the mddt
205 * XXX clusters end up being used for VM.
206 */
207 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
208 int mem_cluster_cnt;
209
210 int cpu_dump __P((void));
211 int cpu_dumpsize __P((void));
212 u_long cpu_dump_mempagecnt __P((void));
213 void dumpsys __P((void));
214 void identifycpu __P((void));
215 void printregs __P((struct reg *));
216
217 void
218 alpha_init(pfn, ptb, bim, bip, biv)
219 u_long pfn; /* first free PFN number */
220 u_long ptb; /* PFN of current level 1 page table */
221 u_long bim; /* bootinfo magic */
222 u_long bip; /* bootinfo pointer */
223 u_long biv; /* bootinfo version */
224 {
225 extern char kernel_text[], _end[];
226 struct mddt *mddtp;
227 struct mddt_cluster *memc;
228 int i, mddtweird;
229 struct vm_physseg *vps;
230 vaddr_t kernstart, kernend;
231 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
232 cpuid_t cpu_id;
233 struct cpu_info *ci;
234 char *p;
235 const char *bootinfo_msg;
236 const struct cpuinit *c;
237
238 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
239
240 /*
241 * Turn off interrupts (not mchecks) and floating point.
242 * Make sure the instruction and data streams are consistent.
243 */
244 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
245 alpha_pal_wrfen(0);
246 ALPHA_TBIA();
247 alpha_pal_imb();
248
249 /* Initialize the SCB. */
250 scb_init();
251
252 cpu_id = cpu_number();
253
254 #if defined(MULTIPROCESSOR)
255 /*
256 * Set our SysValue to the address of our cpu_info structure.
257 * Secondary processors do this in their spinup trampoline.
258 */
259 alpha_pal_wrval((u_long)&cpu_info_primary);
260 cpu_info[cpu_id] = &cpu_info_primary;
261 #endif
262
263 ci = curcpu();
264 ci->ci_cpuid = cpu_id;
265
266 /*
267 * Get critical system information (if possible, from the
268 * information provided by the boot program).
269 */
270 bootinfo_msg = NULL;
271 if (bim == BOOTINFO_MAGIC) {
272 if (biv == 0) { /* backward compat */
273 biv = *(u_long *)bip;
274 bip += 8;
275 }
276 switch (biv) {
277 case 1: {
278 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
279
280 bootinfo.ssym = v1p->ssym;
281 bootinfo.esym = v1p->esym;
282 /* hwrpb may not be provided by boot block in v1 */
283 if (v1p->hwrpb != NULL) {
284 bootinfo.hwrpb_phys =
285 ((struct rpb *)v1p->hwrpb)->rpb_phys;
286 bootinfo.hwrpb_size = v1p->hwrpbsize;
287 } else {
288 bootinfo.hwrpb_phys =
289 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
290 bootinfo.hwrpb_size =
291 ((struct rpb *)HWRPB_ADDR)->rpb_size;
292 }
293 memcpy(bootinfo.boot_flags, v1p->boot_flags,
294 min(sizeof v1p->boot_flags,
295 sizeof bootinfo.boot_flags));
296 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
297 min(sizeof v1p->booted_kernel,
298 sizeof bootinfo.booted_kernel));
299 /* booted dev not provided in bootinfo */
300 init_prom_interface((struct rpb *)
301 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
302 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
303 sizeof bootinfo.booted_dev);
304 break;
305 }
306 default:
307 bootinfo_msg = "unknown bootinfo version";
308 goto nobootinfo;
309 }
310 } else {
311 bootinfo_msg = "boot program did not pass bootinfo";
312 nobootinfo:
313 bootinfo.ssym = (u_long)_end;
314 bootinfo.esym = (u_long)_end;
315 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
316 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
317 init_prom_interface((struct rpb *)HWRPB_ADDR);
318 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
319 sizeof bootinfo.boot_flags);
320 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
321 sizeof bootinfo.booted_kernel);
322 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
323 sizeof bootinfo.booted_dev);
324 }
325
326 /*
327 * Initialize the kernel's mapping of the RPB. It's needed for
328 * lots of things.
329 */
330 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
331
332 #if defined(DEC_3000_300) || defined(DEC_3000_500)
333 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
334 hwrpb->rpb_type == ST_DEC_3000_500) {
335 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
336 sizeof(dec_3000_scsiid));
337 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
338 sizeof(dec_3000_scsifast));
339 }
340 #endif
341
342 /*
343 * Remember how many cycles there are per microsecond,
344 * so that we can use delay(). Round up, for safety.
345 */
346 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
347
348 /*
349 * Initialize the (temporary) bootstrap console interface, so
350 * we can use printf until the VM system starts being setup.
351 * The real console is initialized before then.
352 */
353 init_bootstrap_console();
354
355 /* OUTPUT NOW ALLOWED */
356
357 /* delayed from above */
358 if (bootinfo_msg)
359 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
360 bootinfo_msg, bim, bip, biv);
361
362 /* Initialize the trap vectors on the primary processor. */
363 trap_init();
364
365 /*
366 * Find out this system's page size, and initialize
367 * PAGE_SIZE-dependent variables.
368 */
369 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
370 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
371 ALPHA_PGBYTES);
372 uvmexp.pagesize = hwrpb->rpb_page_size;
373 uvm_setpagesize();
374
375 /*
376 * Find out what hardware we're on, and do basic initialization.
377 */
378 cputype = hwrpb->rpb_type;
379 if (cputype < 0) {
380 /*
381 * At least some white-box systems have SRM which
382 * reports a systype that's the negative of their
383 * blue-box counterpart.
384 */
385 cputype = -cputype;
386 }
387 c = platform_lookup(cputype);
388 if (c == NULL) {
389 platform_not_supported();
390 /* NOTREACHED */
391 }
392 (*c->init)();
393 strcpy(cpu_model, platform.model);
394
395 /*
396 * Initialize the real console, so that the bootstrap console is
397 * no longer necessary.
398 */
399 (*platform.cons_init)();
400
401 #ifdef DIAGNOSTIC
402 /* Paranoid sanity checking */
403
404 /* We should always be running on the primary. */
405 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
406
407 /*
408 * On single-CPU systypes, the primary should always be CPU 0,
409 * except on Alpha 8200 systems where the CPU id is related
410 * to the VID, which is related to the Turbo Laser node id.
411 */
412 if (cputype != ST_DEC_21000)
413 assert(hwrpb->rpb_primary_cpu_id == 0);
414 #endif
415
416 /* NO MORE FIRMWARE ACCESS ALLOWED */
417 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
418 /*
419 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
420 * XXX pmap_uses_prom_console() evaluates to non-zero.)
421 */
422 #endif
423
424 /*
425 * Find the beginning and end of the kernel (and leave a
426 * bit of space before the beginning for the bootstrap
427 * stack).
428 */
429 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
430 #if NKSYMS || defined(DDB) || defined(LKM)
431 ksym_start = (void *)bootinfo.ssym;
432 ksym_end = (void *)bootinfo.esym;
433 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
434 #else
435 kernend = (vaddr_t)round_page((vaddr_t)_end);
436 #endif
437
438 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
439 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
440
441 /*
442 * Find out how much memory is available, by looking at
443 * the memory cluster descriptors. This also tries to do
444 * its best to detect things things that have never been seen
445 * before...
446 */
447 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
448
449 /* MDDT SANITY CHECKING */
450 mddtweird = 0;
451 if (mddtp->mddt_cluster_cnt < 2) {
452 mddtweird = 1;
453 printf("WARNING: weird number of mem clusters: %lu\n",
454 mddtp->mddt_cluster_cnt);
455 }
456
457 #if 0
458 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
459 #endif
460
461 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
462 memc = &mddtp->mddt_clusters[i];
463 #if 0
464 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
465 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
466 #endif
467 totalphysmem += memc->mddt_pg_cnt;
468 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
469 mem_clusters[mem_cluster_cnt].start =
470 ptoa(memc->mddt_pfn);
471 mem_clusters[mem_cluster_cnt].size =
472 ptoa(memc->mddt_pg_cnt);
473 if (memc->mddt_usage & MDDT_mbz ||
474 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
475 memc->mddt_usage & MDDT_PALCODE)
476 mem_clusters[mem_cluster_cnt].size |=
477 PROT_READ;
478 else
479 mem_clusters[mem_cluster_cnt].size |=
480 PROT_READ | PROT_WRITE | PROT_EXEC;
481 mem_cluster_cnt++;
482 }
483
484 if (memc->mddt_usage & MDDT_mbz) {
485 mddtweird = 1;
486 printf("WARNING: mem cluster %d has weird "
487 "usage 0x%lx\n", i, memc->mddt_usage);
488 unknownmem += memc->mddt_pg_cnt;
489 continue;
490 }
491 if (memc->mddt_usage & MDDT_NONVOLATILE) {
492 /* XXX should handle these... */
493 printf("WARNING: skipping non-volatile mem "
494 "cluster %d\n", i);
495 unusedmem += memc->mddt_pg_cnt;
496 continue;
497 }
498 if (memc->mddt_usage & MDDT_PALCODE) {
499 resvmem += memc->mddt_pg_cnt;
500 continue;
501 }
502
503 /*
504 * We have a memory cluster available for system
505 * software use. We must determine if this cluster
506 * holds the kernel.
507 */
508 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
509 /*
510 * XXX If the kernel uses the PROM console, we only use the
511 * XXX memory after the kernel in the first system segment,
512 * XXX to avoid clobbering prom mapping, data, etc.
513 */
514 if (!pmap_uses_prom_console() || physmem == 0) {
515 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
516 physmem += memc->mddt_pg_cnt;
517 pfn0 = memc->mddt_pfn;
518 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
519 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
520 /*
521 * Must compute the location of the kernel
522 * within the segment.
523 */
524 #if 0
525 printf("Cluster %d contains kernel\n", i);
526 #endif
527 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
528 if (!pmap_uses_prom_console()) {
529 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
530 if (pfn0 < kernstartpfn) {
531 /*
532 * There is a chunk before the kernel.
533 */
534 #if 0
535 printf("Loading chunk before kernel: "
536 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
537 #endif
538 uvm_page_physload(pfn0, kernstartpfn,
539 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
540 }
541 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
542 }
543 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
544 if (kernendpfn < pfn1) {
545 /*
546 * There is a chunk after the kernel.
547 */
548 #if 0
549 printf("Loading chunk after kernel: "
550 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
551 #endif
552 uvm_page_physload(kernendpfn, pfn1,
553 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
554 }
555 } else {
556 /*
557 * Just load this cluster as one chunk.
558 */
559 #if 0
560 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
561 pfn0, pfn1);
562 #endif
563 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
564 VM_FREELIST_DEFAULT);
565 }
566 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
567 }
568 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
569 }
570
571 /*
572 * Dump out the MDDT if it looks odd...
573 */
574 if (mddtweird) {
575 printf("\n");
576 printf("complete memory cluster information:\n");
577 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
578 printf("mddt %d:\n", i);
579 printf("\tpfn %lx\n",
580 mddtp->mddt_clusters[i].mddt_pfn);
581 printf("\tcnt %lx\n",
582 mddtp->mddt_clusters[i].mddt_pg_cnt);
583 printf("\ttest %lx\n",
584 mddtp->mddt_clusters[i].mddt_pg_test);
585 printf("\tbva %lx\n",
586 mddtp->mddt_clusters[i].mddt_v_bitaddr);
587 printf("\tbpa %lx\n",
588 mddtp->mddt_clusters[i].mddt_p_bitaddr);
589 printf("\tbcksum %lx\n",
590 mddtp->mddt_clusters[i].mddt_bit_cksum);
591 printf("\tusage %lx\n",
592 mddtp->mddt_clusters[i].mddt_usage);
593 }
594 printf("\n");
595 }
596
597 if (totalphysmem == 0)
598 panic("can't happen: system seems to have no memory!");
599 maxmem = physmem;
600 #if 0
601 printf("totalphysmem = %d\n", totalphysmem);
602 printf("physmem = %d\n", physmem);
603 printf("resvmem = %d\n", resvmem);
604 printf("unusedmem = %d\n", unusedmem);
605 printf("unknownmem = %d\n", unknownmem);
606 #endif
607
608 /*
609 * Initialize error message buffer (at end of core).
610 */
611 {
612 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
613 vsize_t reqsz = sz;
614
615 vps = &vm_physmem[vm_nphysseg - 1];
616
617 /* shrink so that it'll fit in the last segment */
618 if ((vps->avail_end - vps->avail_start) < atop(sz))
619 sz = ptoa(vps->avail_end - vps->avail_start);
620
621 vps->end -= atop(sz);
622 vps->avail_end -= atop(sz);
623 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
624 initmsgbuf(msgbufaddr, sz);
625
626 /* Remove the last segment if it now has no pages. */
627 if (vps->start == vps->end)
628 vm_nphysseg--;
629
630 /* warn if the message buffer had to be shrunk */
631 if (sz != reqsz)
632 printf("WARNING: %ld bytes not available for msgbuf "
633 "in last cluster (%ld used)\n", reqsz, sz);
634
635 }
636
637 /*
638 * NOTE: It is safe to use uvm_pageboot_alloc() before
639 * pmap_bootstrap() because our pmap_virtual_space()
640 * returns compile-time constants.
641 */
642
643 /*
644 * Init mapping for u page(s) for proc 0
645 */
646 lwp0.l_addr = proc0paddr =
647 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
648
649 /*
650 * Initialize the virtual memory system, and set the
651 * page table base register in proc 0's PCB.
652 */
653 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
654 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
655
656 /*
657 * Initialize the rest of proc 0's PCB, and cache its physical
658 * address.
659 */
660 lwp0.l_md.md_pcbpaddr =
661 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
662
663 /*
664 * Set the kernel sp, reserving space for an (empty) trapframe,
665 * and make proc0's trapframe pointer point to it for sanity.
666 */
667 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
668 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
669 lwp0.l_md.md_tf =
670 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
671 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
672
673 /*
674 * Initialize the primary CPU's idle PCB to proc0's. In a
675 * MULTIPROCESSOR configuration, each CPU will later get
676 * its own idle PCB when autoconfiguration runs.
677 */
678 ci->ci_idle_pcb = &proc0paddr->u_pcb;
679 ci->ci_idle_pcb_paddr = (u_long)lwp0.l_md.md_pcbpaddr;
680
681 /* Indicate that proc0 has a CPU. */
682 lwp0.l_cpu = ci;
683
684 /*
685 * Look at arguments passed to us and compute boothowto.
686 */
687
688 boothowto = RB_SINGLE;
689 #ifdef KADB
690 boothowto |= RB_KDB;
691 #endif
692 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
693 /*
694 * Note that we'd really like to differentiate case here,
695 * but the Alpha AXP Architecture Reference Manual
696 * says that we shouldn't.
697 */
698 switch (*p) {
699 case 'a': /* autoboot */
700 case 'A':
701 boothowto &= ~RB_SINGLE;
702 break;
703
704 #ifdef DEBUG
705 case 'c': /* crash dump immediately after autoconfig */
706 case 'C':
707 boothowto |= RB_DUMP;
708 break;
709 #endif
710
711 #if defined(KGDB) || defined(DDB)
712 case 'd': /* break into the kernel debugger ASAP */
713 case 'D':
714 boothowto |= RB_KDB;
715 break;
716 #endif
717
718 case 'h': /* always halt, never reboot */
719 case 'H':
720 boothowto |= RB_HALT;
721 break;
722
723 #if 0
724 case 'm': /* mini root present in memory */
725 case 'M':
726 boothowto |= RB_MINIROOT;
727 break;
728 #endif
729
730 case 'n': /* askname */
731 case 'N':
732 boothowto |= RB_ASKNAME;
733 break;
734
735 case 's': /* single-user (default, supported for sanity) */
736 case 'S':
737 boothowto |= RB_SINGLE;
738 break;
739
740 case 'q': /* quiet boot */
741 case 'Q':
742 boothowto |= AB_QUIET;
743 break;
744
745 case 'v': /* verbose boot */
746 case 'V':
747 boothowto |= AB_VERBOSE;
748 break;
749
750 case '-':
751 /*
752 * Just ignore this. It's not required, but it's
753 * common for it to be passed regardless.
754 */
755 break;
756
757 default:
758 printf("Unrecognized boot flag '%c'.\n", *p);
759 break;
760 }
761 }
762
763
764 /*
765 * Figure out the number of CPUs in the box, from RPB fields.
766 * Really. We mean it.
767 */
768 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
769 struct pcs *pcsp;
770
771 pcsp = LOCATE_PCS(hwrpb, i);
772 if ((pcsp->pcs_flags & PCS_PP) != 0)
773 ncpus++;
774 }
775
776 /*
777 * Initialize debuggers, and break into them if appropriate.
778 */
779 #if NKSYMS || defined(DDB) || defined(LKM)
780 ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
781 ksym_start, ksym_end);
782 #endif
783
784 if (boothowto & RB_KDB) {
785 #if defined(KGDB)
786 kgdb_debug_init = 1;
787 kgdb_connect(1);
788 #elif defined(DDB)
789 Debugger();
790 #endif
791 }
792
793 /*
794 * Figure out our clock frequency, from RPB fields.
795 */
796 hz = hwrpb->rpb_intr_freq >> 12;
797 if (!(60 <= hz && hz <= 10240)) {
798 hz = 1024;
799 #ifdef DIAGNOSTIC
800 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
801 hwrpb->rpb_intr_freq, hz);
802 #endif
803 }
804 }
805
806 void
807 consinit()
808 {
809
810 /*
811 * Everything related to console initialization is done
812 * in alpha_init().
813 */
814 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
815 printf("consinit: %susing prom console\n",
816 pmap_uses_prom_console() ? "" : "not ");
817 #endif
818 }
819
820 void
821 cpu_startup()
822 {
823 vaddr_t minaddr, maxaddr;
824 char pbuf[9];
825 #if defined(DEBUG)
826 extern int pmapdebug;
827 int opmapdebug = pmapdebug;
828
829 pmapdebug = 0;
830 #endif
831
832 /*
833 * Good {morning,afternoon,evening,night}.
834 */
835 printf("%s%s", copyright, version);
836 identifycpu();
837 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
838 printf("total memory = %s\n", pbuf);
839 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
840 printf("(%s reserved for PROM, ", pbuf);
841 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
842 printf("%s used by NetBSD)\n", pbuf);
843 if (unusedmem) {
844 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
845 printf("WARNING: unused memory = %s\n", pbuf);
846 }
847 if (unknownmem) {
848 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
849 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
850 }
851
852 minaddr = 0;
853
854 /*
855 * Allocate a submap for exec arguments. This map effectively
856 * limits the number of processes exec'ing at any time.
857 */
858 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
859 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
860
861 /*
862 * Allocate a submap for physio
863 */
864 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
865 VM_PHYS_SIZE, 0, FALSE, NULL);
866
867 /*
868 * No need to allocate an mbuf cluster submap. Mbuf clusters
869 * are allocated via the pool allocator, and we use K0SEG to
870 * map those pages.
871 */
872
873 #if defined(DEBUG)
874 pmapdebug = opmapdebug;
875 #endif
876 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
877 printf("avail memory = %s\n", pbuf);
878 #if 0
879 {
880 extern u_long pmap_pages_stolen;
881
882 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
883 printf("stolen memory for VM structures = %s\n", pbuf);
884 }
885 #endif
886
887 /*
888 * Set up the HWPCB so that it's safe to configure secondary
889 * CPUs.
890 */
891 hwrpb_primary_init();
892 }
893
894 /*
895 * Retrieve the platform name from the DSR.
896 */
897 const char *
898 alpha_dsr_sysname()
899 {
900 struct dsrdb *dsr;
901 const char *sysname;
902
903 /*
904 * DSR does not exist on early HWRPB versions.
905 */
906 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
907 return (NULL);
908
909 dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
910 sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
911 sizeof(u_int64_t)));
912 return (sysname);
913 }
914
915 /*
916 * Lookup the system specified system variation in the provided table,
917 * returning the model string on match.
918 */
919 const char *
920 alpha_variation_name(variation, avtp)
921 u_int64_t variation;
922 const struct alpha_variation_table *avtp;
923 {
924 int i;
925
926 for (i = 0; avtp[i].avt_model != NULL; i++)
927 if (avtp[i].avt_variation == variation)
928 return (avtp[i].avt_model);
929 return (NULL);
930 }
931
932 /*
933 * Generate a default platform name based for unknown system variations.
934 */
935 const char *
936 alpha_unknown_sysname()
937 {
938 static char s[128]; /* safe size */
939
940 sprintf(s, "%s family, unknown model variation 0x%lx",
941 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
942 return ((const char *)s);
943 }
944
945 void
946 identifycpu()
947 {
948 char *s;
949 int i;
950
951 /*
952 * print out CPU identification information.
953 */
954 printf("%s", cpu_model);
955 for(s = cpu_model; *s; ++s)
956 if(strncasecmp(s, "MHz", 3) == 0)
957 goto skipMHz;
958 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
959 skipMHz:
960 printf(", s/n ");
961 for (i = 0; i < 10; i++)
962 printf("%c", hwrpb->rpb_ssn[i]);
963 printf("\n");
964 printf("%ld byte page size, %d processor%s.\n",
965 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
966 #if 0
967 /* this isn't defined for any systems that we run on? */
968 printf("serial number 0x%lx 0x%lx\n",
969 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
970
971 /* and these aren't particularly useful! */
972 printf("variation: 0x%lx, revision 0x%lx\n",
973 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
974 #endif
975 }
976
977 int waittime = -1;
978 struct pcb dumppcb;
979
980 void
981 cpu_reboot(howto, bootstr)
982 int howto;
983 char *bootstr;
984 {
985 #if defined(MULTIPROCESSOR)
986 u_long cpu_id = cpu_number();
987 u_long wait_mask = (1UL << cpu_id) |
988 (1UL << hwrpb->rpb_primary_cpu_id);
989 int i;
990 #endif
991
992 /* If "always halt" was specified as a boot flag, obey. */
993 if ((boothowto & RB_HALT) != 0)
994 howto |= RB_HALT;
995
996 boothowto = howto;
997
998 /* If system is cold, just halt. */
999 if (cold) {
1000 boothowto |= RB_HALT;
1001 goto haltsys;
1002 }
1003
1004 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1005 waittime = 0;
1006 vfs_shutdown();
1007 /*
1008 * If we've been adjusting the clock, the todr
1009 * will be out of synch; adjust it now.
1010 */
1011 resettodr();
1012 }
1013
1014 /* Disable interrupts. */
1015 splhigh();
1016
1017 #if defined(MULTIPROCESSOR)
1018 /*
1019 * Halt all other CPUs. If we're not the primary, the
1020 * primary will spin, waiting for us to halt.
1021 */
1022 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1023
1024 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1025 cpus_paused = 0;
1026
1027 for (i = 0; i < 10000; i++) {
1028 alpha_mb();
1029 if (cpus_running == wait_mask)
1030 break;
1031 delay(1000);
1032 }
1033 alpha_mb();
1034 if (cpus_running != wait_mask)
1035 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1036 cpus_running);
1037 #endif /* MULTIPROCESSOR */
1038
1039 /* If rebooting and a dump is requested do it. */
1040 #if 0
1041 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1042 #else
1043 if (boothowto & RB_DUMP)
1044 #endif
1045 dumpsys();
1046
1047 haltsys:
1048
1049 /* run any shutdown hooks */
1050 doshutdownhooks();
1051
1052 #ifdef BOOTKEY
1053 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1054 cnpollc(1); /* for proper keyboard command handling */
1055 cngetc();
1056 cnpollc(0);
1057 printf("\n");
1058 #endif
1059
1060 /* Finally, powerdown/halt/reboot the system. */
1061 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1062 platform.powerdown != NULL) {
1063 (*platform.powerdown)();
1064 printf("WARNING: powerdown failed!\n");
1065 }
1066 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1067 #if defined(MULTIPROCESSOR)
1068 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1069 cpu_halt();
1070 else
1071 #endif
1072 prom_halt(boothowto & RB_HALT);
1073 /*NOTREACHED*/
1074 }
1075
1076 /*
1077 * These variables are needed by /sbin/savecore
1078 */
1079 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1080 int dumpsize = 0; /* pages */
1081 long dumplo = 0; /* blocks */
1082
1083 /*
1084 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1085 */
1086 int
1087 cpu_dumpsize()
1088 {
1089 int size;
1090
1091 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1092 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1093 if (roundup(size, dbtob(1)) != dbtob(1))
1094 return -1;
1095
1096 return (1);
1097 }
1098
1099 /*
1100 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1101 */
1102 u_long
1103 cpu_dump_mempagecnt()
1104 {
1105 u_long i, n;
1106
1107 n = 0;
1108 for (i = 0; i < mem_cluster_cnt; i++)
1109 n += atop(mem_clusters[i].size);
1110 return (n);
1111 }
1112
1113 /*
1114 * cpu_dump: dump machine-dependent kernel core dump headers.
1115 */
1116 int
1117 cpu_dump()
1118 {
1119 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1120 char buf[dbtob(1)];
1121 kcore_seg_t *segp;
1122 cpu_kcore_hdr_t *cpuhdrp;
1123 phys_ram_seg_t *memsegp;
1124 const struct bdevsw *bdev;
1125 int i;
1126
1127 bdev = bdevsw_lookup(dumpdev);
1128 if (bdev == NULL)
1129 return (ENXIO);
1130 dump = bdev->d_dump;
1131
1132 memset(buf, 0, sizeof buf);
1133 segp = (kcore_seg_t *)buf;
1134 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1135 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1136 ALIGN(sizeof(*cpuhdrp))];
1137
1138 /*
1139 * Generate a segment header.
1140 */
1141 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1142 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1143
1144 /*
1145 * Add the machine-dependent header info.
1146 */
1147 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1148 cpuhdrp->page_size = PAGE_SIZE;
1149 cpuhdrp->nmemsegs = mem_cluster_cnt;
1150
1151 /*
1152 * Fill in the memory segment descriptors.
1153 */
1154 for (i = 0; i < mem_cluster_cnt; i++) {
1155 memsegp[i].start = mem_clusters[i].start;
1156 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1157 }
1158
1159 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1160 }
1161
1162 /*
1163 * This is called by main to set dumplo and dumpsize.
1164 * Dumps always skip the first PAGE_SIZE of disk space
1165 * in case there might be a disk label stored there.
1166 * If there is extra space, put dump at the end to
1167 * reduce the chance that swapping trashes it.
1168 */
1169 void
1170 cpu_dumpconf()
1171 {
1172 const struct bdevsw *bdev;
1173 int nblks, dumpblks; /* size of dump area */
1174
1175 if (dumpdev == NODEV)
1176 goto bad;
1177 bdev = bdevsw_lookup(dumpdev);
1178 if (bdev == NULL) {
1179 dumpdev = NODEV;
1180 goto bad;
1181 }
1182 if (bdev->d_psize == NULL)
1183 goto bad;
1184 nblks = (*bdev->d_psize)(dumpdev);
1185 if (nblks <= ctod(1))
1186 goto bad;
1187
1188 dumpblks = cpu_dumpsize();
1189 if (dumpblks < 0)
1190 goto bad;
1191 dumpblks += ctod(cpu_dump_mempagecnt());
1192
1193 /* If dump won't fit (incl. room for possible label), punt. */
1194 if (dumpblks > (nblks - ctod(1)))
1195 goto bad;
1196
1197 /* Put dump at end of partition */
1198 dumplo = nblks - dumpblks;
1199
1200 /* dumpsize is in page units, and doesn't include headers. */
1201 dumpsize = cpu_dump_mempagecnt();
1202 return;
1203
1204 bad:
1205 dumpsize = 0;
1206 return;
1207 }
1208
1209 /*
1210 * Dump the kernel's image to the swap partition.
1211 */
1212 #define BYTES_PER_DUMP PAGE_SIZE
1213
1214 void
1215 dumpsys()
1216 {
1217 const struct bdevsw *bdev;
1218 u_long totalbytesleft, bytes, i, n, memcl;
1219 u_long maddr;
1220 int psize;
1221 daddr_t blkno;
1222 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1223 int error;
1224
1225 /* Save registers. */
1226 savectx(&dumppcb);
1227
1228 if (dumpdev == NODEV)
1229 return;
1230 bdev = bdevsw_lookup(dumpdev);
1231 if (bdev == NULL || bdev->d_psize == NULL)
1232 return;
1233
1234 /*
1235 * For dumps during autoconfiguration,
1236 * if dump device has already configured...
1237 */
1238 if (dumpsize == 0)
1239 cpu_dumpconf();
1240 if (dumplo <= 0) {
1241 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1242 minor(dumpdev));
1243 return;
1244 }
1245 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1246 minor(dumpdev), dumplo);
1247
1248 psize = (*bdev->d_psize)(dumpdev);
1249 printf("dump ");
1250 if (psize == -1) {
1251 printf("area unavailable\n");
1252 return;
1253 }
1254
1255 /* XXX should purge all outstanding keystrokes. */
1256
1257 if ((error = cpu_dump()) != 0)
1258 goto err;
1259
1260 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1261 blkno = dumplo + cpu_dumpsize();
1262 dump = bdev->d_dump;
1263 error = 0;
1264
1265 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1266 maddr = mem_clusters[memcl].start;
1267 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1268
1269 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1270
1271 /* Print out how many MBs we to go. */
1272 if ((totalbytesleft % (1024*1024)) == 0)
1273 printf("%ld ", totalbytesleft / (1024 * 1024));
1274
1275 /* Limit size for next transfer. */
1276 n = bytes - i;
1277 if (n > BYTES_PER_DUMP)
1278 n = BYTES_PER_DUMP;
1279
1280 error = (*dump)(dumpdev, blkno,
1281 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1282 if (error)
1283 goto err;
1284 maddr += n;
1285 blkno += btodb(n); /* XXX? */
1286
1287 /* XXX should look for keystrokes, to cancel. */
1288 }
1289 }
1290
1291 err:
1292 switch (error) {
1293
1294 case ENXIO:
1295 printf("device bad\n");
1296 break;
1297
1298 case EFAULT:
1299 printf("device not ready\n");
1300 break;
1301
1302 case EINVAL:
1303 printf("area improper\n");
1304 break;
1305
1306 case EIO:
1307 printf("i/o error\n");
1308 break;
1309
1310 case EINTR:
1311 printf("aborted from console\n");
1312 break;
1313
1314 case 0:
1315 printf("succeeded\n");
1316 break;
1317
1318 default:
1319 printf("error %d\n", error);
1320 break;
1321 }
1322 printf("\n\n");
1323 delay(1000);
1324 }
1325
1326 void
1327 frametoreg(framep, regp)
1328 const struct trapframe *framep;
1329 struct reg *regp;
1330 {
1331
1332 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1333 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1334 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1335 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1336 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1337 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1338 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1339 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1340 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1341 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1342 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1343 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1344 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1345 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1346 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1347 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1348 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1349 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1350 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1351 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1352 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1353 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1354 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1355 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1356 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1357 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1358 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1359 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1360 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1361 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1362 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1363 regp->r_regs[R_ZERO] = 0;
1364 }
1365
1366 void
1367 regtoframe(regp, framep)
1368 const struct reg *regp;
1369 struct trapframe *framep;
1370 {
1371
1372 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1373 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1374 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1375 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1376 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1377 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1378 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1379 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1380 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1381 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1382 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1383 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1384 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1385 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1386 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1387 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1388 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1389 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1390 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1391 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1392 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1393 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1394 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1395 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1396 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1397 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1398 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1399 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1400 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1401 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1402 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1403 /* ??? = regp->r_regs[R_ZERO]; */
1404 }
1405
1406 void
1407 printregs(regp)
1408 struct reg *regp;
1409 {
1410 int i;
1411
1412 for (i = 0; i < 32; i++)
1413 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1414 i & 1 ? "\n" : "\t");
1415 }
1416
1417 void
1418 regdump(framep)
1419 struct trapframe *framep;
1420 {
1421 struct reg reg;
1422
1423 frametoreg(framep, ®);
1424 reg.r_regs[R_SP] = alpha_pal_rdusp();
1425
1426 printf("REGISTERS:\n");
1427 printregs(®);
1428 }
1429
1430
1431
1432 void *
1433 getframe(const struct lwp *l, int sig, int *onstack)
1434 {
1435 void * frame;
1436
1437 /* Do we need to jump onto the signal stack? */
1438 *onstack =
1439 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1440 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1441
1442 if (*onstack)
1443 frame = (void *)((caddr_t)l->l_sigstk.ss_sp +
1444 l->l_sigstk.ss_size);
1445 else
1446 frame = (void *)(alpha_pal_rdusp());
1447 return (frame);
1448 }
1449
1450 void
1451 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1452 {
1453 struct trapframe *tf = l->l_md.md_tf;
1454
1455 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1456 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1457 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1458 alpha_pal_wrusp((unsigned long)fp);
1459 }
1460
1461
1462 /*
1463 * Send an interrupt to process, new style
1464 */
1465 void
1466 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1467 {
1468 struct lwp *l = curlwp;
1469 struct proc *p = l->l_proc;
1470 struct sigacts *ps = p->p_sigacts;
1471 int onstack, sig = ksi->ksi_signo, error;
1472 struct sigframe_siginfo *fp, frame;
1473 struct trapframe *tf;
1474 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1475
1476 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1477 tf = l->l_md.md_tf;
1478
1479 /* Allocate space for the signal handler context. */
1480 fp--;
1481
1482 /* Build stack frame for signal trampoline. */
1483 switch (ps->sa_sigdesc[sig].sd_vers) {
1484 case 0: /* handled by sendsig_sigcontext */
1485 case 1: /* handled by sendsig_sigcontext */
1486 default: /* unknown version */
1487 printf("nsendsig: bad version %d\n",
1488 ps->sa_sigdesc[sig].sd_vers);
1489 sigexit(l, SIGILL);
1490 case 2:
1491 break;
1492 }
1493
1494 #ifdef DEBUG
1495 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1496 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1497 sig, &onstack, fp);
1498 #endif
1499
1500 /* Build stack frame for signal trampoline. */
1501
1502 frame.sf_si._info = ksi->ksi_info;
1503 frame.sf_uc.uc_flags = _UC_SIGMASK;
1504 frame.sf_uc.uc_sigmask = *mask;
1505 frame.sf_uc.uc_link = NULL;
1506 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1507 sendsig_reset(l, sig);
1508 mutex_exit(&p->p_smutex);
1509 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1510 error = copyout(&frame, fp, sizeof(frame));
1511 mutex_enter(&p->p_smutex);
1512
1513 if (error != 0) {
1514 /*
1515 * Process has trashed its stack; give it an illegal
1516 * instruction to halt it in its tracks.
1517 */
1518 #ifdef DEBUG
1519 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1520 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1521 p->p_pid, sig);
1522 #endif
1523 sigexit(l, SIGILL);
1524 /* NOTREACHED */
1525 }
1526
1527 #ifdef DEBUG
1528 if (sigdebug & SDB_FOLLOW)
1529 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1530 p->p_pid, sig, fp, ksi->ksi_code);
1531 #endif
1532
1533 /*
1534 * Set up the registers to directly invoke the signal handler. The
1535 * signal trampoline is then used to return from the signal. Note
1536 * the trampoline version numbers are coordinated with machine-
1537 * dependent code in libc.
1538 */
1539
1540 tf->tf_regs[FRAME_A0] = sig;
1541 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1542 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1543
1544 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1545
1546 /* Remember that we're now on the signal stack. */
1547 if (onstack)
1548 l->l_sigstk.ss_flags |= SS_ONSTACK;
1549
1550 #ifdef DEBUG
1551 if (sigdebug & SDB_FOLLOW)
1552 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1553 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1554 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1555 printf("sendsig_siginfo(%d): sig %d returns\n",
1556 p->p_pid, sig);
1557 #endif
1558 }
1559
1560
1561 void
1562 sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
1563 {
1564 #ifdef COMPAT_16
1565 if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) {
1566 sendsig_sigcontext(ksi, mask);
1567 } else {
1568 #endif
1569 #ifdef DEBUG
1570 if (sigdebug & SDB_FOLLOW)
1571 printf("sendsig: sendsig called: sig %d vers %d\n",
1572 ksi->ksi_signo,
1573 curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers);
1574 #endif
1575 sendsig_siginfo(ksi, mask);
1576 #ifdef COMPAT_16
1577 }
1578 #endif
1579 }
1580
1581 /*
1582 * machine dependent system variables.
1583 */
1584 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1585 {
1586
1587 sysctl_createv(clog, 0, NULL, NULL,
1588 CTLFLAG_PERMANENT,
1589 CTLTYPE_NODE, "machdep", NULL,
1590 NULL, 0, NULL, 0,
1591 CTL_MACHDEP, CTL_EOL);
1592
1593 sysctl_createv(clog, 0, NULL, NULL,
1594 CTLFLAG_PERMANENT,
1595 CTLTYPE_STRUCT, "console_device", NULL,
1596 sysctl_consdev, 0, NULL, sizeof(dev_t),
1597 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1598 sysctl_createv(clog, 0, NULL, NULL,
1599 CTLFLAG_PERMANENT,
1600 CTLTYPE_STRING, "root_device", NULL,
1601 sysctl_root_device, 0, NULL, 0,
1602 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1603 sysctl_createv(clog, 0, NULL, NULL,
1604 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1605 CTLTYPE_INT, "unaligned_print", NULL,
1606 NULL, 0, &alpha_unaligned_print, 0,
1607 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1608 sysctl_createv(clog, 0, NULL, NULL,
1609 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1610 CTLTYPE_INT, "unaligned_fix", NULL,
1611 NULL, 0, &alpha_unaligned_fix, 0,
1612 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1613 sysctl_createv(clog, 0, NULL, NULL,
1614 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1615 CTLTYPE_INT, "unaligned_sigbus", NULL,
1616 NULL, 0, &alpha_unaligned_sigbus, 0,
1617 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1618 sysctl_createv(clog, 0, NULL, NULL,
1619 CTLFLAG_PERMANENT,
1620 CTLTYPE_STRING, "booted_kernel", NULL,
1621 NULL, 0, bootinfo.booted_kernel, 0,
1622 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1623 sysctl_createv(clog, 0, NULL, NULL,
1624 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1625 CTLTYPE_INT, "fp_sync_complete", NULL,
1626 NULL, 0, &alpha_fp_sync_complete, 0,
1627 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1628 }
1629
1630 /*
1631 * Set registers on exec.
1632 */
1633 void
1634 setregs(l, pack, stack)
1635 register struct lwp *l;
1636 struct exec_package *pack;
1637 u_long stack;
1638 {
1639 struct trapframe *tfp = l->l_md.md_tf;
1640 #ifdef DEBUG
1641 int i;
1642 #endif
1643
1644 #ifdef DEBUG
1645 /*
1646 * Crash and dump, if the user requested it.
1647 */
1648 if (boothowto & RB_DUMP)
1649 panic("crash requested by boot flags");
1650 #endif
1651
1652 #ifdef DEBUG
1653 for (i = 0; i < FRAME_SIZE; i++)
1654 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1655 #else
1656 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1657 #endif
1658 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1659 alpha_pal_wrusp(stack);
1660 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1661 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1662
1663 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1664 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1665 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1666 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1667 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1668
1669 l->l_md.md_flags &= ~MDP_FPUSED;
1670 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1671 l->l_md.md_flags &= ~MDP_FP_C;
1672 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1673 }
1674 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1675 fpusave_proc(l, 0);
1676 }
1677
1678 /*
1679 * Release the FPU.
1680 */
1681 void
1682 fpusave_cpu(struct cpu_info *ci, int save)
1683 {
1684 struct lwp *l;
1685 #if defined(MULTIPROCESSOR)
1686 int s;
1687 #endif
1688
1689 KDASSERT(ci == curcpu());
1690
1691 #if defined(MULTIPROCESSOR)
1692 s = splhigh(); /* block IPIs for the duration */
1693 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1694 #endif
1695
1696 l = ci->ci_fpcurlwp;
1697 if (l == NULL)
1698 goto out;
1699
1700 if (save) {
1701 alpha_pal_wrfen(1);
1702 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1703 }
1704
1705 alpha_pal_wrfen(0);
1706
1707 FPCPU_LOCK(&l->l_addr->u_pcb);
1708
1709 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1710 ci->ci_fpcurlwp = NULL;
1711
1712 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1713
1714 out:
1715 #if defined(MULTIPROCESSOR)
1716 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1717 splx(s);
1718 #endif
1719 return;
1720 }
1721
1722 /*
1723 * Synchronize FP state for this process.
1724 */
1725 void
1726 fpusave_proc(struct lwp *l, int save)
1727 {
1728 struct cpu_info *ci = curcpu();
1729 struct cpu_info *oci;
1730 #if defined(MULTIPROCESSOR)
1731 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1732 int s, spincount;
1733 #endif
1734
1735 KDASSERT(l->l_addr != NULL);
1736
1737 #if defined(MULTIPROCESSOR)
1738 s = splhigh(); /* block IPIs for the duration */
1739 #endif
1740 FPCPU_LOCK(&l->l_addr->u_pcb);
1741
1742 oci = l->l_addr->u_pcb.pcb_fpcpu;
1743 if (oci == NULL) {
1744 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1745 #if defined(MULTIPROCESSOR)
1746 splx(s);
1747 #endif
1748 return;
1749 }
1750
1751 #if defined(MULTIPROCESSOR)
1752 if (oci == ci) {
1753 KASSERT(ci->ci_fpcurlwp == l);
1754 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1755 splx(s);
1756 fpusave_cpu(ci, save);
1757 return;
1758 }
1759
1760 KASSERT(oci->ci_fpcurlwp == l);
1761 alpha_send_ipi(oci->ci_cpuid, ipi);
1762 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1763
1764 spincount = 0;
1765 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1766 spincount++;
1767 delay(1000); /* XXX */
1768 if (spincount > 10000)
1769 panic("fpsave ipi didn't");
1770 }
1771 #else
1772 KASSERT(ci->ci_fpcurlwp == l);
1773 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1774 fpusave_cpu(ci, save);
1775 #endif /* MULTIPROCESSOR */
1776 }
1777
1778 /*
1779 * Wait "n" microseconds.
1780 */
1781 void
1782 delay(n)
1783 unsigned long n;
1784 {
1785 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1786
1787 if (n == 0)
1788 return;
1789
1790 pcc0 = alpha_rpcc() & 0xffffffffUL;
1791 cycles = 0;
1792 usec = 0;
1793
1794 while (usec <= n) {
1795 /*
1796 * Get the next CPU cycle count- assumes that we cannot
1797 * have had more than one 32 bit overflow.
1798 */
1799 pcc1 = alpha_rpcc() & 0xffffffffUL;
1800 if (pcc1 < pcc0)
1801 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1802 else
1803 curcycle = pcc1 - pcc0;
1804
1805 /*
1806 * We now have the number of processor cycles since we
1807 * last checked. Add the current cycle count to the
1808 * running total. If it's over cycles_per_usec, increment
1809 * the usec counter.
1810 */
1811 cycles += curcycle;
1812 while (cycles > cycles_per_usec) {
1813 usec++;
1814 cycles -= cycles_per_usec;
1815 }
1816 pcc0 = pcc1;
1817 }
1818 }
1819
1820 #ifdef EXEC_ECOFF
1821 void
1822 cpu_exec_ecoff_setregs(l, epp, stack)
1823 struct lwp *l;
1824 struct exec_package *epp;
1825 u_long stack;
1826 {
1827 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1828
1829 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1830 }
1831
1832 /*
1833 * cpu_exec_ecoff_hook():
1834 * cpu-dependent ECOFF format hook for execve().
1835 *
1836 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1837 *
1838 */
1839 int
1840 cpu_exec_ecoff_probe(l, epp)
1841 struct lwp *l;
1842 struct exec_package *epp;
1843 {
1844 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1845 int error;
1846
1847 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1848 error = 0;
1849 else
1850 error = ENOEXEC;
1851
1852 return (error);
1853 }
1854 #endif /* EXEC_ECOFF */
1855
1856 int
1857 alpha_pa_access(pa)
1858 u_long pa;
1859 {
1860 int i;
1861
1862 for (i = 0; i < mem_cluster_cnt; i++) {
1863 if (pa < mem_clusters[i].start)
1864 continue;
1865 if ((pa - mem_clusters[i].start) >=
1866 (mem_clusters[i].size & ~PAGE_MASK))
1867 continue;
1868 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1869 }
1870
1871 /*
1872 * Address is not a memory address. If we're secure, disallow
1873 * access. Otherwise, grant read/write.
1874 */
1875 if (kauth_authorize_machdep(kauth_cred_get(),
1876 KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1877 return (PROT_NONE);
1878 else
1879 return (PROT_READ | PROT_WRITE);
1880 }
1881
1882 /* XXX XXX BEGIN XXX XXX */
1883 paddr_t alpha_XXX_dmamap_or; /* XXX */
1884 /* XXX */
1885 paddr_t /* XXX */
1886 alpha_XXX_dmamap(v) /* XXX */
1887 vaddr_t v; /* XXX */
1888 { /* XXX */
1889 /* XXX */
1890 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1891 } /* XXX */
1892 /* XXX XXX END XXX XXX */
1893
1894 char *
1895 dot_conv(x)
1896 unsigned long x;
1897 {
1898 int i;
1899 char *xc;
1900 static int next;
1901 static char space[2][20];
1902
1903 xc = space[next ^= 1] + sizeof space[0];
1904 *--xc = '\0';
1905 for (i = 0;; ++i) {
1906 if (i && (i & 3) == 0)
1907 *--xc = '.';
1908 *--xc = hexdigits[x & 0xf];
1909 x >>= 4;
1910 if (x == 0)
1911 break;
1912 }
1913 return xc;
1914 }
1915
1916 void
1917 cpu_getmcontext(l, mcp, flags)
1918 struct lwp *l;
1919 mcontext_t *mcp;
1920 unsigned int *flags;
1921 {
1922 struct trapframe *frame = l->l_md.md_tf;
1923 __greg_t *gr = mcp->__gregs;
1924 __greg_t ras_pc;
1925
1926 /* Save register context. */
1927 frametoreg(frame, (struct reg *)gr);
1928 /* XXX if there's a better, general way to get the USP of
1929 * an LWP that might or might not be curlwp, I'd like to know
1930 * about it.
1931 */
1932 if (l == curlwp) {
1933 gr[_REG_SP] = alpha_pal_rdusp();
1934 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1935 } else {
1936 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
1937 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
1938 }
1939 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1940 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1941
1942 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1943 (caddr_t) gr[_REG_PC])) != -1)
1944 gr[_REG_PC] = ras_pc;
1945
1946 *flags |= _UC_CPU | _UC_UNIQUE;
1947
1948 /* Save floating point register context, if any, and copy it. */
1949 if (l->l_md.md_flags & MDP_FPUSED) {
1950 fpusave_proc(l, 1);
1951 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
1952 sizeof (mcp->__fpregs));
1953 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1954 *flags |= _UC_FPU;
1955 }
1956 }
1957
1958
1959 int
1960 cpu_setmcontext(l, mcp, flags)
1961 struct lwp *l;
1962 const mcontext_t *mcp;
1963 unsigned int flags;
1964 {
1965 struct trapframe *frame = l->l_md.md_tf;
1966 const __greg_t *gr = mcp->__gregs;
1967
1968 /* Restore register context, if any. */
1969 if (flags & _UC_CPU) {
1970 /* Check for security violations first. */
1971 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1972 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1973 return (EINVAL);
1974
1975 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1976 if (l == curlwp)
1977 alpha_pal_wrusp(gr[_REG_SP]);
1978 else
1979 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
1980 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1981 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1982 }
1983 if (flags & _UC_UNIQUE) {
1984 if (l == curlwp)
1985 alpha_pal_wrunique(gr[_REG_UNIQUE]);
1986 else
1987 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1988 }
1989 /* Restore floating point register context, if any. */
1990 if (flags & _UC_FPU) {
1991 /* If we have an FP register context, get rid of it. */
1992 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1993 fpusave_proc(l, 0);
1994 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
1995 sizeof (l->l_addr->u_pcb.pcb_fp));
1996 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1997 l->l_md.md_flags |= MDP_FPUSED;
1998 }
1999
2000 return (0);
2001 }
2002