machdep.c revision 1.302 1 /* $NetBSD: machdep.c,v 1.302 2007/11/28 17:40:03 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.302 2007/11/28 17:40:03 ad Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/cpu.h>
85 #include <sys/proc.h>
86 #include <sys/ras.h>
87 #include <sys/sched.h>
88 #include <sys/reboot.h>
89 #include <sys/device.h>
90 #include <sys/malloc.h>
91 #include <sys/mman.h>
92 #include <sys/msgbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/user.h>
96 #include <sys/exec.h>
97 #include <sys/exec_ecoff.h>
98 #include <sys/core.h>
99 #include <sys/kcore.h>
100 #include <sys/ucontext.h>
101 #include <sys/conf.h>
102 #include <sys/ksyms.h>
103 #include <sys/kauth.h>
104 #include <machine/kcore.h>
105 #include <machine/fpu.h>
106
107 #include <sys/mount.h>
108 #include <sys/syscallargs.h>
109
110 #include <uvm/uvm_extern.h>
111 #include <sys/sysctl.h>
112
113 #include <dev/cons.h>
114
115 #include <machine/autoconf.h>
116 #include <machine/cpu.h>
117 #include <machine/reg.h>
118 #include <machine/rpb.h>
119 #include <machine/prom.h>
120 #include <machine/cpuconf.h>
121 #include <machine/ieeefp.h>
122
123 #ifdef DDB
124 #include <machine/db_machdep.h>
125 #include <ddb/db_access.h>
126 #include <ddb/db_sym.h>
127 #include <ddb/db_extern.h>
128 #include <ddb/db_interface.h>
129 #endif
130
131 #ifdef KGDB
132 #include <sys/kgdb.h>
133 #endif
134
135 #ifdef DEBUG
136 #include <machine/sigdebug.h>
137 #endif
138
139 #include <machine/alpha.h>
140
141 #include "ksyms.h"
142
143 struct vm_map *exec_map = NULL;
144 struct vm_map *mb_map = NULL;
145 struct vm_map *phys_map = NULL;
146
147 void *msgbufaddr;
148
149 int maxmem; /* max memory per process */
150
151 int totalphysmem; /* total amount of physical memory in system */
152 int physmem; /* physical memory used by NetBSD + some rsvd */
153 int resvmem; /* amount of memory reserved for PROM */
154 int unusedmem; /* amount of memory for OS that we don't use */
155 int unknownmem; /* amount of memory with an unknown use */
156
157 int cputype; /* system type, from the RPB */
158
159 int bootdev_debug = 0; /* patchable, or from DDB */
160
161 /*
162 * XXX We need an address to which we can assign things so that they
163 * won't be optimized away because we didn't use the value.
164 */
165 u_int32_t no_optimize;
166
167 /* the following is used externally (sysctl_hw) */
168 char machine[] = MACHINE; /* from <machine/param.h> */
169 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
170 char cpu_model[128];
171
172 struct user *proc0paddr;
173
174 /* Number of machine cycles per microsecond */
175 u_int64_t cycles_per_usec;
176
177 /* number of CPUs in the box. really! */
178 int ncpus;
179
180 struct bootinfo_kernel bootinfo;
181
182 /* For built-in TCDS */
183 #if defined(DEC_3000_300) || defined(DEC_3000_500)
184 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
185 #endif
186
187 struct platform platform;
188
189 #if NKSYMS || defined(DDB) || defined(LKM)
190 /* start and end of kernel symbol table */
191 void *ksym_start, *ksym_end;
192 #endif
193
194 /* for cpu_sysctl() */
195 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
196 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
197 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
198 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
199
200 /*
201 * XXX This should be dynamically sized, but we have the chicken-egg problem!
202 * XXX it should also be larger than it is, because not all of the mddt
203 * XXX clusters end up being used for VM.
204 */
205 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
206 int mem_cluster_cnt;
207
208 int cpu_dump __P((void));
209 int cpu_dumpsize __P((void));
210 u_long cpu_dump_mempagecnt __P((void));
211 void dumpsys __P((void));
212 void identifycpu __P((void));
213 void printregs __P((struct reg *));
214
215 void
216 alpha_init(pfn, ptb, bim, bip, biv)
217 u_long pfn; /* first free PFN number */
218 u_long ptb; /* PFN of current level 1 page table */
219 u_long bim; /* bootinfo magic */
220 u_long bip; /* bootinfo pointer */
221 u_long biv; /* bootinfo version */
222 {
223 extern char kernel_text[], _end[];
224 struct mddt *mddtp;
225 struct mddt_cluster *memc;
226 int i, mddtweird;
227 struct vm_physseg *vps;
228 vaddr_t kernstart, kernend;
229 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
230 cpuid_t cpu_id;
231 struct cpu_info *ci;
232 char *p;
233 const char *bootinfo_msg;
234 const struct cpuinit *c;
235
236 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
237
238 /*
239 * Turn off interrupts (not mchecks) and floating point.
240 * Make sure the instruction and data streams are consistent.
241 */
242 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
243 alpha_pal_wrfen(0);
244 ALPHA_TBIA();
245 alpha_pal_imb();
246
247 /* Initialize the SCB. */
248 scb_init();
249
250 cpu_id = cpu_number();
251
252 #if defined(MULTIPROCESSOR)
253 /*
254 * Set our SysValue to the address of our cpu_info structure.
255 * Secondary processors do this in their spinup trampoline.
256 */
257 alpha_pal_wrval((u_long)&cpu_info_primary);
258 cpu_info[cpu_id] = &cpu_info_primary;
259 #endif
260
261 ci = curcpu();
262 ci->ci_cpuid = cpu_id;
263
264 /*
265 * Get critical system information (if possible, from the
266 * information provided by the boot program).
267 */
268 bootinfo_msg = NULL;
269 if (bim == BOOTINFO_MAGIC) {
270 if (biv == 0) { /* backward compat */
271 biv = *(u_long *)bip;
272 bip += 8;
273 }
274 switch (biv) {
275 case 1: {
276 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
277
278 bootinfo.ssym = v1p->ssym;
279 bootinfo.esym = v1p->esym;
280 /* hwrpb may not be provided by boot block in v1 */
281 if (v1p->hwrpb != NULL) {
282 bootinfo.hwrpb_phys =
283 ((struct rpb *)v1p->hwrpb)->rpb_phys;
284 bootinfo.hwrpb_size = v1p->hwrpbsize;
285 } else {
286 bootinfo.hwrpb_phys =
287 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
288 bootinfo.hwrpb_size =
289 ((struct rpb *)HWRPB_ADDR)->rpb_size;
290 }
291 memcpy(bootinfo.boot_flags, v1p->boot_flags,
292 min(sizeof v1p->boot_flags,
293 sizeof bootinfo.boot_flags));
294 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
295 min(sizeof v1p->booted_kernel,
296 sizeof bootinfo.booted_kernel));
297 /* booted dev not provided in bootinfo */
298 init_prom_interface((struct rpb *)
299 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
300 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
301 sizeof bootinfo.booted_dev);
302 break;
303 }
304 default:
305 bootinfo_msg = "unknown bootinfo version";
306 goto nobootinfo;
307 }
308 } else {
309 bootinfo_msg = "boot program did not pass bootinfo";
310 nobootinfo:
311 bootinfo.ssym = (u_long)_end;
312 bootinfo.esym = (u_long)_end;
313 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
314 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
315 init_prom_interface((struct rpb *)HWRPB_ADDR);
316 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
317 sizeof bootinfo.boot_flags);
318 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
319 sizeof bootinfo.booted_kernel);
320 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
321 sizeof bootinfo.booted_dev);
322 }
323
324 /*
325 * Initialize the kernel's mapping of the RPB. It's needed for
326 * lots of things.
327 */
328 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
329
330 #if defined(DEC_3000_300) || defined(DEC_3000_500)
331 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
332 hwrpb->rpb_type == ST_DEC_3000_500) {
333 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
334 sizeof(dec_3000_scsiid));
335 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
336 sizeof(dec_3000_scsifast));
337 }
338 #endif
339
340 /*
341 * Remember how many cycles there are per microsecond,
342 * so that we can use delay(). Round up, for safety.
343 */
344 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
345
346 /*
347 * Initialize the (temporary) bootstrap console interface, so
348 * we can use printf until the VM system starts being setup.
349 * The real console is initialized before then.
350 */
351 init_bootstrap_console();
352
353 /* OUTPUT NOW ALLOWED */
354
355 /* delayed from above */
356 if (bootinfo_msg)
357 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
358 bootinfo_msg, bim, bip, biv);
359
360 /* Initialize the trap vectors on the primary processor. */
361 trap_init();
362
363 /*
364 * Find out this system's page size, and initialize
365 * PAGE_SIZE-dependent variables.
366 */
367 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
368 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
369 ALPHA_PGBYTES);
370 uvmexp.pagesize = hwrpb->rpb_page_size;
371 uvm_setpagesize();
372
373 /*
374 * Find out what hardware we're on, and do basic initialization.
375 */
376 cputype = hwrpb->rpb_type;
377 if (cputype < 0) {
378 /*
379 * At least some white-box systems have SRM which
380 * reports a systype that's the negative of their
381 * blue-box counterpart.
382 */
383 cputype = -cputype;
384 }
385 c = platform_lookup(cputype);
386 if (c == NULL) {
387 platform_not_supported();
388 /* NOTREACHED */
389 }
390 (*c->init)();
391 strcpy(cpu_model, platform.model);
392
393 /*
394 * Initialize the real console, so that the bootstrap console is
395 * no longer necessary.
396 */
397 (*platform.cons_init)();
398
399 #ifdef DIAGNOSTIC
400 /* Paranoid sanity checking */
401
402 /* We should always be running on the primary. */
403 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
404
405 /*
406 * On single-CPU systypes, the primary should always be CPU 0,
407 * except on Alpha 8200 systems where the CPU id is related
408 * to the VID, which is related to the Turbo Laser node id.
409 */
410 if (cputype != ST_DEC_21000)
411 assert(hwrpb->rpb_primary_cpu_id == 0);
412 #endif
413
414 /* NO MORE FIRMWARE ACCESS ALLOWED */
415 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
416 /*
417 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
418 * XXX pmap_uses_prom_console() evaluates to non-zero.)
419 */
420 #endif
421
422 /*
423 * Find the beginning and end of the kernel (and leave a
424 * bit of space before the beginning for the bootstrap
425 * stack).
426 */
427 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
428 #if NKSYMS || defined(DDB) || defined(LKM)
429 ksym_start = (void *)bootinfo.ssym;
430 ksym_end = (void *)bootinfo.esym;
431 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
432 #else
433 kernend = (vaddr_t)round_page((vaddr_t)_end);
434 #endif
435
436 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
437 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
438
439 /*
440 * Find out how much memory is available, by looking at
441 * the memory cluster descriptors. This also tries to do
442 * its best to detect things things that have never been seen
443 * before...
444 */
445 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
446
447 /* MDDT SANITY CHECKING */
448 mddtweird = 0;
449 if (mddtp->mddt_cluster_cnt < 2) {
450 mddtweird = 1;
451 printf("WARNING: weird number of mem clusters: %lu\n",
452 mddtp->mddt_cluster_cnt);
453 }
454
455 #if 0
456 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
457 #endif
458
459 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
460 memc = &mddtp->mddt_clusters[i];
461 #if 0
462 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
463 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
464 #endif
465 totalphysmem += memc->mddt_pg_cnt;
466 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
467 mem_clusters[mem_cluster_cnt].start =
468 ptoa(memc->mddt_pfn);
469 mem_clusters[mem_cluster_cnt].size =
470 ptoa(memc->mddt_pg_cnt);
471 if (memc->mddt_usage & MDDT_mbz ||
472 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
473 memc->mddt_usage & MDDT_PALCODE)
474 mem_clusters[mem_cluster_cnt].size |=
475 PROT_READ;
476 else
477 mem_clusters[mem_cluster_cnt].size |=
478 PROT_READ | PROT_WRITE | PROT_EXEC;
479 mem_cluster_cnt++;
480 }
481
482 if (memc->mddt_usage & MDDT_mbz) {
483 mddtweird = 1;
484 printf("WARNING: mem cluster %d has weird "
485 "usage 0x%lx\n", i, memc->mddt_usage);
486 unknownmem += memc->mddt_pg_cnt;
487 continue;
488 }
489 if (memc->mddt_usage & MDDT_NONVOLATILE) {
490 /* XXX should handle these... */
491 printf("WARNING: skipping non-volatile mem "
492 "cluster %d\n", i);
493 unusedmem += memc->mddt_pg_cnt;
494 continue;
495 }
496 if (memc->mddt_usage & MDDT_PALCODE) {
497 resvmem += memc->mddt_pg_cnt;
498 continue;
499 }
500
501 /*
502 * We have a memory cluster available for system
503 * software use. We must determine if this cluster
504 * holds the kernel.
505 */
506 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
507 /*
508 * XXX If the kernel uses the PROM console, we only use the
509 * XXX memory after the kernel in the first system segment,
510 * XXX to avoid clobbering prom mapping, data, etc.
511 */
512 if (!pmap_uses_prom_console() || physmem == 0) {
513 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
514 physmem += memc->mddt_pg_cnt;
515 pfn0 = memc->mddt_pfn;
516 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
517 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
518 /*
519 * Must compute the location of the kernel
520 * within the segment.
521 */
522 #if 0
523 printf("Cluster %d contains kernel\n", i);
524 #endif
525 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
526 if (!pmap_uses_prom_console()) {
527 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
528 if (pfn0 < kernstartpfn) {
529 /*
530 * There is a chunk before the kernel.
531 */
532 #if 0
533 printf("Loading chunk before kernel: "
534 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
535 #endif
536 uvm_page_physload(pfn0, kernstartpfn,
537 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
538 }
539 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
540 }
541 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
542 if (kernendpfn < pfn1) {
543 /*
544 * There is a chunk after the kernel.
545 */
546 #if 0
547 printf("Loading chunk after kernel: "
548 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
549 #endif
550 uvm_page_physload(kernendpfn, pfn1,
551 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
552 }
553 } else {
554 /*
555 * Just load this cluster as one chunk.
556 */
557 #if 0
558 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
559 pfn0, pfn1);
560 #endif
561 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
562 VM_FREELIST_DEFAULT);
563 }
564 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
565 }
566 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
567 }
568
569 /*
570 * Dump out the MDDT if it looks odd...
571 */
572 if (mddtweird) {
573 printf("\n");
574 printf("complete memory cluster information:\n");
575 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
576 printf("mddt %d:\n", i);
577 printf("\tpfn %lx\n",
578 mddtp->mddt_clusters[i].mddt_pfn);
579 printf("\tcnt %lx\n",
580 mddtp->mddt_clusters[i].mddt_pg_cnt);
581 printf("\ttest %lx\n",
582 mddtp->mddt_clusters[i].mddt_pg_test);
583 printf("\tbva %lx\n",
584 mddtp->mddt_clusters[i].mddt_v_bitaddr);
585 printf("\tbpa %lx\n",
586 mddtp->mddt_clusters[i].mddt_p_bitaddr);
587 printf("\tbcksum %lx\n",
588 mddtp->mddt_clusters[i].mddt_bit_cksum);
589 printf("\tusage %lx\n",
590 mddtp->mddt_clusters[i].mddt_usage);
591 }
592 printf("\n");
593 }
594
595 if (totalphysmem == 0)
596 panic("can't happen: system seems to have no memory!");
597 maxmem = physmem;
598 #if 0
599 printf("totalphysmem = %d\n", totalphysmem);
600 printf("physmem = %d\n", physmem);
601 printf("resvmem = %d\n", resvmem);
602 printf("unusedmem = %d\n", unusedmem);
603 printf("unknownmem = %d\n", unknownmem);
604 #endif
605
606 /*
607 * Initialize error message buffer (at end of core).
608 */
609 {
610 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
611 vsize_t reqsz = sz;
612
613 vps = &vm_physmem[vm_nphysseg - 1];
614
615 /* shrink so that it'll fit in the last segment */
616 if ((vps->avail_end - vps->avail_start) < atop(sz))
617 sz = ptoa(vps->avail_end - vps->avail_start);
618
619 vps->end -= atop(sz);
620 vps->avail_end -= atop(sz);
621 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
622 initmsgbuf(msgbufaddr, sz);
623
624 /* Remove the last segment if it now has no pages. */
625 if (vps->start == vps->end)
626 vm_nphysseg--;
627
628 /* warn if the message buffer had to be shrunk */
629 if (sz != reqsz)
630 printf("WARNING: %ld bytes not available for msgbuf "
631 "in last cluster (%ld used)\n", reqsz, sz);
632
633 }
634
635 /*
636 * NOTE: It is safe to use uvm_pageboot_alloc() before
637 * pmap_bootstrap() because our pmap_virtual_space()
638 * returns compile-time constants.
639 */
640
641 /*
642 * Init mapping for u page(s) for proc 0
643 */
644 lwp0.l_addr = proc0paddr =
645 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
646
647 /*
648 * Initialize the virtual memory system, and set the
649 * page table base register in proc 0's PCB.
650 */
651 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
652 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
653
654 /*
655 * Initialize the rest of proc 0's PCB, and cache its physical
656 * address.
657 */
658 lwp0.l_md.md_pcbpaddr =
659 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
660
661 /*
662 * Set the kernel sp, reserving space for an (empty) trapframe,
663 * and make proc0's trapframe pointer point to it for sanity.
664 */
665 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
666 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
667 lwp0.l_md.md_tf =
668 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
669 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
670
671 /* Indicate that proc0 has a CPU. */
672 lwp0.l_cpu = ci;
673
674 /*
675 * Look at arguments passed to us and compute boothowto.
676 */
677
678 boothowto = RB_SINGLE;
679 #ifdef KADB
680 boothowto |= RB_KDB;
681 #endif
682 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
683 /*
684 * Note that we'd really like to differentiate case here,
685 * but the Alpha AXP Architecture Reference Manual
686 * says that we shouldn't.
687 */
688 switch (*p) {
689 case 'a': /* autoboot */
690 case 'A':
691 boothowto &= ~RB_SINGLE;
692 break;
693
694 #ifdef DEBUG
695 case 'c': /* crash dump immediately after autoconfig */
696 case 'C':
697 boothowto |= RB_DUMP;
698 break;
699 #endif
700
701 #if defined(KGDB) || defined(DDB)
702 case 'd': /* break into the kernel debugger ASAP */
703 case 'D':
704 boothowto |= RB_KDB;
705 break;
706 #endif
707
708 case 'h': /* always halt, never reboot */
709 case 'H':
710 boothowto |= RB_HALT;
711 break;
712
713 #if 0
714 case 'm': /* mini root present in memory */
715 case 'M':
716 boothowto |= RB_MINIROOT;
717 break;
718 #endif
719
720 case 'n': /* askname */
721 case 'N':
722 boothowto |= RB_ASKNAME;
723 break;
724
725 case 's': /* single-user (default, supported for sanity) */
726 case 'S':
727 boothowto |= RB_SINGLE;
728 break;
729
730 case 'q': /* quiet boot */
731 case 'Q':
732 boothowto |= AB_QUIET;
733 break;
734
735 case 'v': /* verbose boot */
736 case 'V':
737 boothowto |= AB_VERBOSE;
738 break;
739
740 case '-':
741 /*
742 * Just ignore this. It's not required, but it's
743 * common for it to be passed regardless.
744 */
745 break;
746
747 default:
748 printf("Unrecognized boot flag '%c'.\n", *p);
749 break;
750 }
751 }
752
753 /*
754 * Perform any initial kernel patches based on the running system.
755 * We may perform more later if we attach additional CPUs.
756 */
757 alpha_patch(false);
758
759 /*
760 * Figure out the number of CPUs in the box, from RPB fields.
761 * Really. We mean it.
762 */
763 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
764 struct pcs *pcsp;
765
766 pcsp = LOCATE_PCS(hwrpb, i);
767 if ((pcsp->pcs_flags & PCS_PP) != 0)
768 ncpus++;
769 }
770
771 /*
772 * Initialize debuggers, and break into them if appropriate.
773 */
774 #if NKSYMS || defined(DDB) || defined(LKM)
775 ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
776 ksym_start, ksym_end);
777 #endif
778
779 if (boothowto & RB_KDB) {
780 #if defined(KGDB)
781 kgdb_debug_init = 1;
782 kgdb_connect(1);
783 #elif defined(DDB)
784 Debugger();
785 #endif
786 }
787
788 #ifdef DIAGNOSTIC
789 /*
790 * Check our clock frequency, from RPB fields.
791 */
792 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
793 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
794 hwrpb->rpb_intr_freq, hz);
795 #endif
796 }
797
798 void
799 consinit()
800 {
801
802 /*
803 * Everything related to console initialization is done
804 * in alpha_init().
805 */
806 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
807 printf("consinit: %susing prom console\n",
808 pmap_uses_prom_console() ? "" : "not ");
809 #endif
810 }
811
812 void
813 cpu_startup()
814 {
815 vaddr_t minaddr, maxaddr;
816 char pbuf[9];
817 #if defined(DEBUG)
818 extern int pmapdebug;
819 int opmapdebug = pmapdebug;
820
821 pmapdebug = 0;
822 #endif
823
824 /*
825 * Good {morning,afternoon,evening,night}.
826 */
827 printf("%s%s", copyright, version);
828 identifycpu();
829 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
830 printf("total memory = %s\n", pbuf);
831 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
832 printf("(%s reserved for PROM, ", pbuf);
833 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
834 printf("%s used by NetBSD)\n", pbuf);
835 if (unusedmem) {
836 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
837 printf("WARNING: unused memory = %s\n", pbuf);
838 }
839 if (unknownmem) {
840 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
841 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
842 }
843
844 minaddr = 0;
845
846 /*
847 * Allocate a submap for exec arguments. This map effectively
848 * limits the number of processes exec'ing at any time.
849 */
850 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
851 16 * NCARGS, VM_MAP_PAGEABLE, false, NULL);
852
853 /*
854 * Allocate a submap for physio
855 */
856 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
857 VM_PHYS_SIZE, 0, false, NULL);
858
859 /*
860 * No need to allocate an mbuf cluster submap. Mbuf clusters
861 * are allocated via the pool allocator, and we use K0SEG to
862 * map those pages.
863 */
864
865 #if defined(DEBUG)
866 pmapdebug = opmapdebug;
867 #endif
868 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
869 printf("avail memory = %s\n", pbuf);
870 #if 0
871 {
872 extern u_long pmap_pages_stolen;
873
874 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
875 printf("stolen memory for VM structures = %s\n", pbuf);
876 }
877 #endif
878
879 /*
880 * Set up the HWPCB so that it's safe to configure secondary
881 * CPUs.
882 */
883 hwrpb_primary_init();
884 }
885
886 /*
887 * Retrieve the platform name from the DSR.
888 */
889 const char *
890 alpha_dsr_sysname()
891 {
892 struct dsrdb *dsr;
893 const char *sysname;
894
895 /*
896 * DSR does not exist on early HWRPB versions.
897 */
898 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
899 return (NULL);
900
901 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
902 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
903 sizeof(u_int64_t)));
904 return (sysname);
905 }
906
907 /*
908 * Lookup the system specified system variation in the provided table,
909 * returning the model string on match.
910 */
911 const char *
912 alpha_variation_name(variation, avtp)
913 u_int64_t variation;
914 const struct alpha_variation_table *avtp;
915 {
916 int i;
917
918 for (i = 0; avtp[i].avt_model != NULL; i++)
919 if (avtp[i].avt_variation == variation)
920 return (avtp[i].avt_model);
921 return (NULL);
922 }
923
924 /*
925 * Generate a default platform name based for unknown system variations.
926 */
927 const char *
928 alpha_unknown_sysname()
929 {
930 static char s[128]; /* safe size */
931
932 sprintf(s, "%s family, unknown model variation 0x%lx",
933 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
934 return ((const char *)s);
935 }
936
937 void
938 identifycpu()
939 {
940 char *s;
941 int i;
942
943 /*
944 * print out CPU identification information.
945 */
946 printf("%s", cpu_model);
947 for(s = cpu_model; *s; ++s)
948 if(strncasecmp(s, "MHz", 3) == 0)
949 goto skipMHz;
950 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
951 skipMHz:
952 printf(", s/n ");
953 for (i = 0; i < 10; i++)
954 printf("%c", hwrpb->rpb_ssn[i]);
955 printf("\n");
956 printf("%ld byte page size, %d processor%s.\n",
957 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
958 #if 0
959 /* this isn't defined for any systems that we run on? */
960 printf("serial number 0x%lx 0x%lx\n",
961 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
962
963 /* and these aren't particularly useful! */
964 printf("variation: 0x%lx, revision 0x%lx\n",
965 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
966 #endif
967 }
968
969 int waittime = -1;
970 struct pcb dumppcb;
971
972 void
973 cpu_reboot(howto, bootstr)
974 int howto;
975 char *bootstr;
976 {
977 #if defined(MULTIPROCESSOR)
978 u_long cpu_id = cpu_number();
979 u_long wait_mask = (1UL << cpu_id) |
980 (1UL << hwrpb->rpb_primary_cpu_id);
981 int i;
982 #endif
983
984 /* If "always halt" was specified as a boot flag, obey. */
985 if ((boothowto & RB_HALT) != 0)
986 howto |= RB_HALT;
987
988 boothowto = howto;
989
990 /* If system is cold, just halt. */
991 if (cold) {
992 boothowto |= RB_HALT;
993 goto haltsys;
994 }
995
996 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
997 waittime = 0;
998 vfs_shutdown();
999 /*
1000 * If we've been adjusting the clock, the todr
1001 * will be out of synch; adjust it now.
1002 */
1003 resettodr();
1004 }
1005
1006 /* Disable interrupts. */
1007 splhigh();
1008
1009 #if defined(MULTIPROCESSOR)
1010 /*
1011 * Halt all other CPUs. If we're not the primary, the
1012 * primary will spin, waiting for us to halt.
1013 */
1014 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1015
1016 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1017 cpus_paused = 0;
1018
1019 for (i = 0; i < 10000; i++) {
1020 alpha_mb();
1021 if (cpus_running == wait_mask)
1022 break;
1023 delay(1000);
1024 }
1025 alpha_mb();
1026 if (cpus_running != wait_mask)
1027 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1028 cpus_running);
1029 #endif /* MULTIPROCESSOR */
1030
1031 /* If rebooting and a dump is requested do it. */
1032 #if 0
1033 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1034 #else
1035 if (boothowto & RB_DUMP)
1036 #endif
1037 dumpsys();
1038
1039 haltsys:
1040
1041 /* run any shutdown hooks */
1042 doshutdownhooks();
1043
1044 #ifdef BOOTKEY
1045 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1046 cnpollc(1); /* for proper keyboard command handling */
1047 cngetc();
1048 cnpollc(0);
1049 printf("\n");
1050 #endif
1051
1052 /* Finally, powerdown/halt/reboot the system. */
1053 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1054 platform.powerdown != NULL) {
1055 (*platform.powerdown)();
1056 printf("WARNING: powerdown failed!\n");
1057 }
1058 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1059 #if defined(MULTIPROCESSOR)
1060 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1061 cpu_halt();
1062 else
1063 #endif
1064 prom_halt(boothowto & RB_HALT);
1065 /*NOTREACHED*/
1066 }
1067
1068 /*
1069 * These variables are needed by /sbin/savecore
1070 */
1071 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1072 int dumpsize = 0; /* pages */
1073 long dumplo = 0; /* blocks */
1074
1075 /*
1076 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1077 */
1078 int
1079 cpu_dumpsize()
1080 {
1081 int size;
1082
1083 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1084 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1085 if (roundup(size, dbtob(1)) != dbtob(1))
1086 return -1;
1087
1088 return (1);
1089 }
1090
1091 /*
1092 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1093 */
1094 u_long
1095 cpu_dump_mempagecnt()
1096 {
1097 u_long i, n;
1098
1099 n = 0;
1100 for (i = 0; i < mem_cluster_cnt; i++)
1101 n += atop(mem_clusters[i].size);
1102 return (n);
1103 }
1104
1105 /*
1106 * cpu_dump: dump machine-dependent kernel core dump headers.
1107 */
1108 int
1109 cpu_dump()
1110 {
1111 int (*dump) __P((dev_t, daddr_t, void *, size_t));
1112 char buf[dbtob(1)];
1113 kcore_seg_t *segp;
1114 cpu_kcore_hdr_t *cpuhdrp;
1115 phys_ram_seg_t *memsegp;
1116 const struct bdevsw *bdev;
1117 int i;
1118
1119 bdev = bdevsw_lookup(dumpdev);
1120 if (bdev == NULL)
1121 return (ENXIO);
1122 dump = bdev->d_dump;
1123
1124 memset(buf, 0, sizeof buf);
1125 segp = (kcore_seg_t *)buf;
1126 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1127 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1128 ALIGN(sizeof(*cpuhdrp))];
1129
1130 /*
1131 * Generate a segment header.
1132 */
1133 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1134 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1135
1136 /*
1137 * Add the machine-dependent header info.
1138 */
1139 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1140 cpuhdrp->page_size = PAGE_SIZE;
1141 cpuhdrp->nmemsegs = mem_cluster_cnt;
1142
1143 /*
1144 * Fill in the memory segment descriptors.
1145 */
1146 for (i = 0; i < mem_cluster_cnt; i++) {
1147 memsegp[i].start = mem_clusters[i].start;
1148 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1149 }
1150
1151 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1152 }
1153
1154 /*
1155 * This is called by main to set dumplo and dumpsize.
1156 * Dumps always skip the first PAGE_SIZE of disk space
1157 * in case there might be a disk label stored there.
1158 * If there is extra space, put dump at the end to
1159 * reduce the chance that swapping trashes it.
1160 */
1161 void
1162 cpu_dumpconf()
1163 {
1164 const struct bdevsw *bdev;
1165 int nblks, dumpblks; /* size of dump area */
1166
1167 if (dumpdev == NODEV)
1168 goto bad;
1169 bdev = bdevsw_lookup(dumpdev);
1170 if (bdev == NULL) {
1171 dumpdev = NODEV;
1172 goto bad;
1173 }
1174 if (bdev->d_psize == NULL)
1175 goto bad;
1176 nblks = (*bdev->d_psize)(dumpdev);
1177 if (nblks <= ctod(1))
1178 goto bad;
1179
1180 dumpblks = cpu_dumpsize();
1181 if (dumpblks < 0)
1182 goto bad;
1183 dumpblks += ctod(cpu_dump_mempagecnt());
1184
1185 /* If dump won't fit (incl. room for possible label), punt. */
1186 if (dumpblks > (nblks - ctod(1)))
1187 goto bad;
1188
1189 /* Put dump at end of partition */
1190 dumplo = nblks - dumpblks;
1191
1192 /* dumpsize is in page units, and doesn't include headers. */
1193 dumpsize = cpu_dump_mempagecnt();
1194 return;
1195
1196 bad:
1197 dumpsize = 0;
1198 return;
1199 }
1200
1201 /*
1202 * Dump the kernel's image to the swap partition.
1203 */
1204 #define BYTES_PER_DUMP PAGE_SIZE
1205
1206 void
1207 dumpsys()
1208 {
1209 const struct bdevsw *bdev;
1210 u_long totalbytesleft, bytes, i, n, memcl;
1211 u_long maddr;
1212 int psize;
1213 daddr_t blkno;
1214 int (*dump) __P((dev_t, daddr_t, void *, size_t));
1215 int error;
1216
1217 /* Save registers. */
1218 savectx(&dumppcb);
1219
1220 if (dumpdev == NODEV)
1221 return;
1222 bdev = bdevsw_lookup(dumpdev);
1223 if (bdev == NULL || bdev->d_psize == NULL)
1224 return;
1225
1226 /*
1227 * For dumps during autoconfiguration,
1228 * if dump device has already configured...
1229 */
1230 if (dumpsize == 0)
1231 cpu_dumpconf();
1232 if (dumplo <= 0) {
1233 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1234 minor(dumpdev));
1235 return;
1236 }
1237 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1238 minor(dumpdev), dumplo);
1239
1240 psize = (*bdev->d_psize)(dumpdev);
1241 printf("dump ");
1242 if (psize == -1) {
1243 printf("area unavailable\n");
1244 return;
1245 }
1246
1247 /* XXX should purge all outstanding keystrokes. */
1248
1249 if ((error = cpu_dump()) != 0)
1250 goto err;
1251
1252 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1253 blkno = dumplo + cpu_dumpsize();
1254 dump = bdev->d_dump;
1255 error = 0;
1256
1257 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1258 maddr = mem_clusters[memcl].start;
1259 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1260
1261 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1262
1263 /* Print out how many MBs we to go. */
1264 if ((totalbytesleft % (1024*1024)) == 0)
1265 printf("%ld ", totalbytesleft / (1024 * 1024));
1266
1267 /* Limit size for next transfer. */
1268 n = bytes - i;
1269 if (n > BYTES_PER_DUMP)
1270 n = BYTES_PER_DUMP;
1271
1272 error = (*dump)(dumpdev, blkno,
1273 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1274 if (error)
1275 goto err;
1276 maddr += n;
1277 blkno += btodb(n); /* XXX? */
1278
1279 /* XXX should look for keystrokes, to cancel. */
1280 }
1281 }
1282
1283 err:
1284 switch (error) {
1285
1286 case ENXIO:
1287 printf("device bad\n");
1288 break;
1289
1290 case EFAULT:
1291 printf("device not ready\n");
1292 break;
1293
1294 case EINVAL:
1295 printf("area improper\n");
1296 break;
1297
1298 case EIO:
1299 printf("i/o error\n");
1300 break;
1301
1302 case EINTR:
1303 printf("aborted from console\n");
1304 break;
1305
1306 case 0:
1307 printf("succeeded\n");
1308 break;
1309
1310 default:
1311 printf("error %d\n", error);
1312 break;
1313 }
1314 printf("\n\n");
1315 delay(1000);
1316 }
1317
1318 void
1319 frametoreg(framep, regp)
1320 const struct trapframe *framep;
1321 struct reg *regp;
1322 {
1323
1324 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1325 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1326 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1327 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1328 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1329 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1330 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1331 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1332 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1333 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1334 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1335 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1336 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1337 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1338 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1339 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1340 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1341 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1342 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1343 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1344 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1345 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1346 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1347 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1348 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1349 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1350 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1351 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1352 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1353 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1354 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1355 regp->r_regs[R_ZERO] = 0;
1356 }
1357
1358 void
1359 regtoframe(regp, framep)
1360 const struct reg *regp;
1361 struct trapframe *framep;
1362 {
1363
1364 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1365 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1366 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1367 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1368 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1369 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1370 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1371 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1372 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1373 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1374 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1375 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1376 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1377 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1378 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1379 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1380 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1381 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1382 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1383 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1384 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1385 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1386 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1387 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1388 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1389 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1390 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1391 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1392 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1393 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1394 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1395 /* ??? = regp->r_regs[R_ZERO]; */
1396 }
1397
1398 void
1399 printregs(regp)
1400 struct reg *regp;
1401 {
1402 int i;
1403
1404 for (i = 0; i < 32; i++)
1405 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1406 i & 1 ? "\n" : "\t");
1407 }
1408
1409 void
1410 regdump(framep)
1411 struct trapframe *framep;
1412 {
1413 struct reg reg;
1414
1415 frametoreg(framep, ®);
1416 reg.r_regs[R_SP] = alpha_pal_rdusp();
1417
1418 printf("REGISTERS:\n");
1419 printregs(®);
1420 }
1421
1422
1423
1424 void *
1425 getframe(const struct lwp *l, int sig, int *onstack)
1426 {
1427 void *frame;
1428
1429 /* Do we need to jump onto the signal stack? */
1430 *onstack =
1431 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1432 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1433
1434 if (*onstack)
1435 frame = (void *)((char *)l->l_sigstk.ss_sp +
1436 l->l_sigstk.ss_size);
1437 else
1438 frame = (void *)(alpha_pal_rdusp());
1439 return (frame);
1440 }
1441
1442 void
1443 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1444 {
1445 struct trapframe *tf = l->l_md.md_tf;
1446
1447 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1448 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1449 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1450 alpha_pal_wrusp((unsigned long)fp);
1451 }
1452
1453
1454 /*
1455 * Send an interrupt to process, new style
1456 */
1457 void
1458 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1459 {
1460 struct lwp *l = curlwp;
1461 struct proc *p = l->l_proc;
1462 struct sigacts *ps = p->p_sigacts;
1463 int onstack, sig = ksi->ksi_signo, error;
1464 struct sigframe_siginfo *fp, frame;
1465 struct trapframe *tf;
1466 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1467
1468 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1469 tf = l->l_md.md_tf;
1470
1471 /* Allocate space for the signal handler context. */
1472 fp--;
1473
1474 /* Build stack frame for signal trampoline. */
1475 switch (ps->sa_sigdesc[sig].sd_vers) {
1476 case 0: /* handled by sendsig_sigcontext */
1477 case 1: /* handled by sendsig_sigcontext */
1478 default: /* unknown version */
1479 printf("nsendsig: bad version %d\n",
1480 ps->sa_sigdesc[sig].sd_vers);
1481 sigexit(l, SIGILL);
1482 case 2:
1483 break;
1484 }
1485
1486 #ifdef DEBUG
1487 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1488 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1489 sig, &onstack, fp);
1490 #endif
1491
1492 /* Build stack frame for signal trampoline. */
1493
1494 frame.sf_si._info = ksi->ksi_info;
1495 frame.sf_uc.uc_flags = _UC_SIGMASK;
1496 frame.sf_uc.uc_sigmask = *mask;
1497 frame.sf_uc.uc_link = l->l_ctxlink;
1498 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1499 sendsig_reset(l, sig);
1500 mutex_exit(&p->p_smutex);
1501 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1502 error = copyout(&frame, fp, sizeof(frame));
1503 mutex_enter(&p->p_smutex);
1504
1505 if (error != 0) {
1506 /*
1507 * Process has trashed its stack; give it an illegal
1508 * instruction to halt it in its tracks.
1509 */
1510 #ifdef DEBUG
1511 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1512 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1513 p->p_pid, sig);
1514 #endif
1515 sigexit(l, SIGILL);
1516 /* NOTREACHED */
1517 }
1518
1519 #ifdef DEBUG
1520 if (sigdebug & SDB_FOLLOW)
1521 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1522 p->p_pid, sig, fp, ksi->ksi_code);
1523 #endif
1524
1525 /*
1526 * Set up the registers to directly invoke the signal handler. The
1527 * signal trampoline is then used to return from the signal. Note
1528 * the trampoline version numbers are coordinated with machine-
1529 * dependent code in libc.
1530 */
1531
1532 tf->tf_regs[FRAME_A0] = sig;
1533 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1534 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1535
1536 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1537
1538 /* Remember that we're now on the signal stack. */
1539 if (onstack)
1540 l->l_sigstk.ss_flags |= SS_ONSTACK;
1541
1542 #ifdef DEBUG
1543 if (sigdebug & SDB_FOLLOW)
1544 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1545 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1546 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1547 printf("sendsig_siginfo(%d): sig %d returns\n",
1548 p->p_pid, sig);
1549 #endif
1550 }
1551
1552
1553 void
1554 sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
1555 {
1556 #ifdef COMPAT_16
1557 if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) {
1558 sendsig_sigcontext(ksi, mask);
1559 } else {
1560 #endif
1561 #ifdef DEBUG
1562 if (sigdebug & SDB_FOLLOW)
1563 printf("sendsig: sendsig called: sig %d vers %d\n",
1564 ksi->ksi_signo,
1565 curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers);
1566 #endif
1567 sendsig_siginfo(ksi, mask);
1568 #ifdef COMPAT_16
1569 }
1570 #endif
1571 }
1572
1573 /*
1574 * machine dependent system variables.
1575 */
1576 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1577 {
1578
1579 sysctl_createv(clog, 0, NULL, NULL,
1580 CTLFLAG_PERMANENT,
1581 CTLTYPE_NODE, "machdep", NULL,
1582 NULL, 0, NULL, 0,
1583 CTL_MACHDEP, CTL_EOL);
1584
1585 sysctl_createv(clog, 0, NULL, NULL,
1586 CTLFLAG_PERMANENT,
1587 CTLTYPE_STRUCT, "console_device", NULL,
1588 sysctl_consdev, 0, NULL, sizeof(dev_t),
1589 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1590 sysctl_createv(clog, 0, NULL, NULL,
1591 CTLFLAG_PERMANENT,
1592 CTLTYPE_STRING, "root_device", NULL,
1593 sysctl_root_device, 0, NULL, 0,
1594 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1595 sysctl_createv(clog, 0, NULL, NULL,
1596 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1597 CTLTYPE_INT, "unaligned_print", NULL,
1598 NULL, 0, &alpha_unaligned_print, 0,
1599 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1600 sysctl_createv(clog, 0, NULL, NULL,
1601 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1602 CTLTYPE_INT, "unaligned_fix", NULL,
1603 NULL, 0, &alpha_unaligned_fix, 0,
1604 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1605 sysctl_createv(clog, 0, NULL, NULL,
1606 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1607 CTLTYPE_INT, "unaligned_sigbus", NULL,
1608 NULL, 0, &alpha_unaligned_sigbus, 0,
1609 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1610 sysctl_createv(clog, 0, NULL, NULL,
1611 CTLFLAG_PERMANENT,
1612 CTLTYPE_STRING, "booted_kernel", NULL,
1613 NULL, 0, bootinfo.booted_kernel, 0,
1614 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1615 sysctl_createv(clog, 0, NULL, NULL,
1616 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1617 CTLTYPE_INT, "fp_sync_complete", NULL,
1618 NULL, 0, &alpha_fp_sync_complete, 0,
1619 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1620 }
1621
1622 /*
1623 * Set registers on exec.
1624 */
1625 void
1626 setregs(l, pack, stack)
1627 register struct lwp *l;
1628 struct exec_package *pack;
1629 u_long stack;
1630 {
1631 struct trapframe *tfp = l->l_md.md_tf;
1632 #ifdef DEBUG
1633 int i;
1634 #endif
1635
1636 #ifdef DEBUG
1637 /*
1638 * Crash and dump, if the user requested it.
1639 */
1640 if (boothowto & RB_DUMP)
1641 panic("crash requested by boot flags");
1642 #endif
1643
1644 #ifdef DEBUG
1645 for (i = 0; i < FRAME_SIZE; i++)
1646 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1647 #else
1648 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1649 #endif
1650 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1651 alpha_pal_wrusp(stack);
1652 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1653 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1654
1655 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1656 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1657 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1658 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1659 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1660
1661 l->l_md.md_flags &= ~MDP_FPUSED;
1662 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1663 l->l_md.md_flags &= ~MDP_FP_C;
1664 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1665 }
1666 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1667 fpusave_proc(l, 0);
1668 }
1669
1670 /*
1671 * Release the FPU.
1672 */
1673 void
1674 fpusave_cpu(struct cpu_info *ci, int save)
1675 {
1676 struct lwp *l;
1677 #if defined(MULTIPROCESSOR)
1678 int s;
1679 #endif
1680
1681 KDASSERT(ci == curcpu());
1682
1683 #if defined(MULTIPROCESSOR)
1684 s = splhigh(); /* block IPIs for the duration */
1685 atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1686 #endif
1687
1688 l = ci->ci_fpcurlwp;
1689 if (l == NULL)
1690 goto out;
1691
1692 if (save) {
1693 alpha_pal_wrfen(1);
1694 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1695 }
1696
1697 alpha_pal_wrfen(0);
1698
1699 FPCPU_LOCK(&l->l_addr->u_pcb);
1700
1701 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1702 ci->ci_fpcurlwp = NULL;
1703
1704 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1705
1706 out:
1707 #if defined(MULTIPROCESSOR)
1708 atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1709 splx(s);
1710 #endif
1711 return;
1712 }
1713
1714 /*
1715 * Synchronize FP state for this process.
1716 */
1717 void
1718 fpusave_proc(struct lwp *l, int save)
1719 {
1720 struct cpu_info *ci = curcpu();
1721 struct cpu_info *oci;
1722 #if defined(MULTIPROCESSOR)
1723 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1724 int s, spincount;
1725 #endif
1726
1727 KDASSERT(l->l_addr != NULL);
1728
1729 #if defined(MULTIPROCESSOR)
1730 s = splhigh(); /* block IPIs for the duration */
1731 #endif
1732 FPCPU_LOCK(&l->l_addr->u_pcb);
1733
1734 oci = l->l_addr->u_pcb.pcb_fpcpu;
1735 if (oci == NULL) {
1736 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1737 #if defined(MULTIPROCESSOR)
1738 splx(s);
1739 #endif
1740 return;
1741 }
1742
1743 #if defined(MULTIPROCESSOR)
1744 if (oci == ci) {
1745 KASSERT(ci->ci_fpcurlwp == l);
1746 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1747 splx(s);
1748 fpusave_cpu(ci, save);
1749 return;
1750 }
1751
1752 KASSERT(oci->ci_fpcurlwp == l);
1753 alpha_send_ipi(oci->ci_cpuid, ipi);
1754 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1755
1756 spincount = 0;
1757 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1758 spincount++;
1759 delay(1000); /* XXX */
1760 if (spincount > 10000)
1761 panic("fpsave ipi didn't");
1762 }
1763 #else
1764 KASSERT(ci->ci_fpcurlwp == l);
1765 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1766 fpusave_cpu(ci, save);
1767 #endif /* MULTIPROCESSOR */
1768 }
1769
1770 /*
1771 * Wait "n" microseconds.
1772 */
1773 void
1774 delay(n)
1775 unsigned long n;
1776 {
1777 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1778
1779 if (n == 0)
1780 return;
1781
1782 pcc0 = alpha_rpcc() & 0xffffffffUL;
1783 cycles = 0;
1784 usec = 0;
1785
1786 while (usec <= n) {
1787 /*
1788 * Get the next CPU cycle count- assumes that we cannot
1789 * have had more than one 32 bit overflow.
1790 */
1791 pcc1 = alpha_rpcc() & 0xffffffffUL;
1792 if (pcc1 < pcc0)
1793 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1794 else
1795 curcycle = pcc1 - pcc0;
1796
1797 /*
1798 * We now have the number of processor cycles since we
1799 * last checked. Add the current cycle count to the
1800 * running total. If it's over cycles_per_usec, increment
1801 * the usec counter.
1802 */
1803 cycles += curcycle;
1804 while (cycles > cycles_per_usec) {
1805 usec++;
1806 cycles -= cycles_per_usec;
1807 }
1808 pcc0 = pcc1;
1809 }
1810 }
1811
1812 #ifdef EXEC_ECOFF
1813 void
1814 cpu_exec_ecoff_setregs(l, epp, stack)
1815 struct lwp *l;
1816 struct exec_package *epp;
1817 u_long stack;
1818 {
1819 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1820
1821 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1822 }
1823
1824 /*
1825 * cpu_exec_ecoff_hook():
1826 * cpu-dependent ECOFF format hook for execve().
1827 *
1828 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1829 *
1830 */
1831 int
1832 cpu_exec_ecoff_probe(l, epp)
1833 struct lwp *l;
1834 struct exec_package *epp;
1835 {
1836 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1837 int error;
1838
1839 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1840 error = 0;
1841 else
1842 error = ENOEXEC;
1843
1844 return (error);
1845 }
1846 #endif /* EXEC_ECOFF */
1847
1848 int
1849 alpha_pa_access(pa)
1850 u_long pa;
1851 {
1852 int i;
1853
1854 for (i = 0; i < mem_cluster_cnt; i++) {
1855 if (pa < mem_clusters[i].start)
1856 continue;
1857 if ((pa - mem_clusters[i].start) >=
1858 (mem_clusters[i].size & ~PAGE_MASK))
1859 continue;
1860 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1861 }
1862
1863 /*
1864 * Address is not a memory address. If we're secure, disallow
1865 * access. Otherwise, grant read/write.
1866 */
1867 if (kauth_authorize_machdep(kauth_cred_get(),
1868 KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1869 return (PROT_NONE);
1870 else
1871 return (PROT_READ | PROT_WRITE);
1872 }
1873
1874 /* XXX XXX BEGIN XXX XXX */
1875 paddr_t alpha_XXX_dmamap_or; /* XXX */
1876 /* XXX */
1877 paddr_t /* XXX */
1878 alpha_XXX_dmamap(v) /* XXX */
1879 vaddr_t v; /* XXX */
1880 { /* XXX */
1881 /* XXX */
1882 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1883 } /* XXX */
1884 /* XXX XXX END XXX XXX */
1885
1886 char *
1887 dot_conv(x)
1888 unsigned long x;
1889 {
1890 int i;
1891 char *xc;
1892 static int next;
1893 static char space[2][20];
1894
1895 xc = space[next ^= 1] + sizeof space[0];
1896 *--xc = '\0';
1897 for (i = 0;; ++i) {
1898 if (i && (i & 3) == 0)
1899 *--xc = '.';
1900 *--xc = hexdigits[x & 0xf];
1901 x >>= 4;
1902 if (x == 0)
1903 break;
1904 }
1905 return xc;
1906 }
1907
1908 void
1909 cpu_getmcontext(l, mcp, flags)
1910 struct lwp *l;
1911 mcontext_t *mcp;
1912 unsigned int *flags;
1913 {
1914 struct trapframe *frame = l->l_md.md_tf;
1915 __greg_t *gr = mcp->__gregs;
1916 __greg_t ras_pc;
1917
1918 /* Save register context. */
1919 frametoreg(frame, (struct reg *)gr);
1920 /* XXX if there's a better, general way to get the USP of
1921 * an LWP that might or might not be curlwp, I'd like to know
1922 * about it.
1923 */
1924 if (l == curlwp) {
1925 gr[_REG_SP] = alpha_pal_rdusp();
1926 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1927 } else {
1928 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
1929 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
1930 }
1931 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1932 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1933
1934 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1935 (void *) gr[_REG_PC])) != -1)
1936 gr[_REG_PC] = ras_pc;
1937
1938 *flags |= _UC_CPU | _UC_UNIQUE;
1939
1940 /* Save floating point register context, if any, and copy it. */
1941 if (l->l_md.md_flags & MDP_FPUSED) {
1942 fpusave_proc(l, 1);
1943 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
1944 sizeof (mcp->__fpregs));
1945 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1946 *flags |= _UC_FPU;
1947 }
1948 }
1949
1950
1951 int
1952 cpu_setmcontext(l, mcp, flags)
1953 struct lwp *l;
1954 const mcontext_t *mcp;
1955 unsigned int flags;
1956 {
1957 struct trapframe *frame = l->l_md.md_tf;
1958 const __greg_t *gr = mcp->__gregs;
1959
1960 /* Restore register context, if any. */
1961 if (flags & _UC_CPU) {
1962 /* Check for security violations first. */
1963 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1964 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1965 return (EINVAL);
1966
1967 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1968 if (l == curlwp)
1969 alpha_pal_wrusp(gr[_REG_SP]);
1970 else
1971 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
1972 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1973 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1974 }
1975 if (flags & _UC_UNIQUE) {
1976 if (l == curlwp)
1977 alpha_pal_wrunique(gr[_REG_UNIQUE]);
1978 else
1979 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1980 }
1981 /* Restore floating point register context, if any. */
1982 if (flags & _UC_FPU) {
1983 /* If we have an FP register context, get rid of it. */
1984 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1985 fpusave_proc(l, 0);
1986 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
1987 sizeof (l->l_addr->u_pcb.pcb_fp));
1988 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1989 l->l_md.md_flags |= MDP_FPUSED;
1990 }
1991
1992 return (0);
1993 }
1994
1995 /*
1996 * Preempt the current process if in interrupt from user mode,
1997 * or after the current trap/syscall if in system mode.
1998 */
1999 void
2000 cpu_need_resched(struct cpu_info *ci, int flags)
2001 {
2002 #if defined(MULTIPROCESSOR)
2003 bool immed = (flags & RESCHED_IMMED) != 0;
2004 #endif /* defined(MULTIPROCESSOR) */
2005
2006 aston(ci->ci_data.cpu_onproc);
2007 ci->ci_want_resched = 1;
2008 if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
2009 #if defined(MULTIPROCESSOR)
2010 if (immed && ci != curcpu()) {
2011 alpha_send_ipi(ci->ci_cpuid, 0);
2012 }
2013 #endif /* defined(MULTIPROCESSOR) */
2014 }
2015 }
2016