machdep.c revision 1.304 1 /* $NetBSD: machdep.c,v 1.304 2008/04/24 18:39:20 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Author: Chris G. Demetriou
45 *
46 * Permission to use, copy, modify and distribute this software and
47 * its documentation is hereby granted, provided that both the copyright
48 * notice and this permission notice appear in all copies of the
49 * software, derivative works or modified versions, and any portions
50 * thereof, and that both notices appear in supporting documentation.
51 *
52 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 *
56 * Carnegie Mellon requests users of this software to return to
57 *
58 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 * School of Computer Science
60 * Carnegie Mellon University
61 * Pittsburgh PA 15213-3890
62 *
63 * any improvements or extensions that they make and grant Carnegie the
64 * rights to redistribute these changes.
65 */
66
67 #include "opt_ddb.h"
68 #include "opt_kgdb.h"
69 #include "opt_multiprocessor.h"
70 #include "opt_dec_3000_300.h"
71 #include "opt_dec_3000_500.h"
72 #include "opt_compat_osf1.h"
73 #include "opt_compat_netbsd.h"
74 #include "opt_execfmt.h"
75
76 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77
78 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.304 2008/04/24 18:39:20 ad Exp $");
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/signalvar.h>
83 #include <sys/kernel.h>
84 #include <sys/cpu.h>
85 #include <sys/proc.h>
86 #include <sys/ras.h>
87 #include <sys/sched.h>
88 #include <sys/reboot.h>
89 #include <sys/device.h>
90 #include <sys/malloc.h>
91 #include <sys/mman.h>
92 #include <sys/msgbuf.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/user.h>
96 #include <sys/exec.h>
97 #include <sys/exec_ecoff.h>
98 #include <sys/core.h>
99 #include <sys/kcore.h>
100 #include <sys/ucontext.h>
101 #include <sys/conf.h>
102 #include <sys/ksyms.h>
103 #include <sys/kauth.h>
104 #include <sys/atomic.h>
105 #include <sys/cpu.h>
106
107 #include <machine/kcore.h>
108 #include <machine/fpu.h>
109
110 #include <sys/mount.h>
111 #include <sys/syscallargs.h>
112
113 #include <uvm/uvm_extern.h>
114 #include <sys/sysctl.h>
115
116 #include <dev/cons.h>
117
118 #include <machine/autoconf.h>
119 #include <machine/reg.h>
120 #include <machine/rpb.h>
121 #include <machine/prom.h>
122 #include <machine/cpuconf.h>
123 #include <machine/ieeefp.h>
124
125 #ifdef DDB
126 #include <machine/db_machdep.h>
127 #include <ddb/db_access.h>
128 #include <ddb/db_sym.h>
129 #include <ddb/db_extern.h>
130 #include <ddb/db_interface.h>
131 #endif
132
133 #ifdef KGDB
134 #include <sys/kgdb.h>
135 #endif
136
137 #ifdef DEBUG
138 #include <machine/sigdebug.h>
139 #endif
140
141 #include <machine/alpha.h>
142
143 #include "ksyms.h"
144
145 struct vm_map *exec_map = NULL;
146 struct vm_map *mb_map = NULL;
147 struct vm_map *phys_map = NULL;
148
149 void *msgbufaddr;
150
151 int maxmem; /* max memory per process */
152
153 int totalphysmem; /* total amount of physical memory in system */
154 int physmem; /* physical memory used by NetBSD + some rsvd */
155 int resvmem; /* amount of memory reserved for PROM */
156 int unusedmem; /* amount of memory for OS that we don't use */
157 int unknownmem; /* amount of memory with an unknown use */
158
159 int cputype; /* system type, from the RPB */
160
161 int bootdev_debug = 0; /* patchable, or from DDB */
162
163 /*
164 * XXX We need an address to which we can assign things so that they
165 * won't be optimized away because we didn't use the value.
166 */
167 u_int32_t no_optimize;
168
169 /* the following is used externally (sysctl_hw) */
170 char machine[] = MACHINE; /* from <machine/param.h> */
171 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
172 char cpu_model[128];
173
174 struct user *proc0paddr;
175
176 /* Number of machine cycles per microsecond */
177 u_int64_t cycles_per_usec;
178
179 /* number of CPUs in the box. really! */
180 int ncpus;
181
182 struct bootinfo_kernel bootinfo;
183
184 /* For built-in TCDS */
185 #if defined(DEC_3000_300) || defined(DEC_3000_500)
186 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
187 #endif
188
189 struct platform platform;
190
191 #if NKSYMS || defined(DDB) || defined(LKM)
192 /* start and end of kernel symbol table */
193 void *ksym_start, *ksym_end;
194 #endif
195
196 /* for cpu_sysctl() */
197 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
198 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
199 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
200 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
201
202 /*
203 * XXX This should be dynamically sized, but we have the chicken-egg problem!
204 * XXX it should also be larger than it is, because not all of the mddt
205 * XXX clusters end up being used for VM.
206 */
207 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
208 int mem_cluster_cnt;
209
210 int cpu_dump __P((void));
211 int cpu_dumpsize __P((void));
212 u_long cpu_dump_mempagecnt __P((void));
213 void dumpsys __P((void));
214 void identifycpu __P((void));
215 void printregs __P((struct reg *));
216
217 void
218 alpha_init(pfn, ptb, bim, bip, biv)
219 u_long pfn; /* first free PFN number */
220 u_long ptb; /* PFN of current level 1 page table */
221 u_long bim; /* bootinfo magic */
222 u_long bip; /* bootinfo pointer */
223 u_long biv; /* bootinfo version */
224 {
225 extern char kernel_text[], _end[];
226 struct mddt *mddtp;
227 struct mddt_cluster *memc;
228 int i, mddtweird;
229 struct vm_physseg *vps;
230 vaddr_t kernstart, kernend;
231 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
232 cpuid_t cpu_id;
233 struct cpu_info *ci;
234 char *p;
235 const char *bootinfo_msg;
236 const struct cpuinit *c;
237
238 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
239
240 /*
241 * Turn off interrupts (not mchecks) and floating point.
242 * Make sure the instruction and data streams are consistent.
243 */
244 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
245 alpha_pal_wrfen(0);
246 ALPHA_TBIA();
247 alpha_pal_imb();
248
249 /* Initialize the SCB. */
250 scb_init();
251
252 cpu_id = cpu_number();
253
254 #if defined(MULTIPROCESSOR)
255 /*
256 * Set our SysValue to the address of our cpu_info structure.
257 * Secondary processors do this in their spinup trampoline.
258 */
259 alpha_pal_wrval((u_long)&cpu_info_primary);
260 cpu_info[cpu_id] = &cpu_info_primary;
261 #endif
262
263 ci = curcpu();
264 ci->ci_cpuid = cpu_id;
265
266 /*
267 * Get critical system information (if possible, from the
268 * information provided by the boot program).
269 */
270 bootinfo_msg = NULL;
271 if (bim == BOOTINFO_MAGIC) {
272 if (biv == 0) { /* backward compat */
273 biv = *(u_long *)bip;
274 bip += 8;
275 }
276 switch (biv) {
277 case 1: {
278 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
279
280 bootinfo.ssym = v1p->ssym;
281 bootinfo.esym = v1p->esym;
282 /* hwrpb may not be provided by boot block in v1 */
283 if (v1p->hwrpb != NULL) {
284 bootinfo.hwrpb_phys =
285 ((struct rpb *)v1p->hwrpb)->rpb_phys;
286 bootinfo.hwrpb_size = v1p->hwrpbsize;
287 } else {
288 bootinfo.hwrpb_phys =
289 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
290 bootinfo.hwrpb_size =
291 ((struct rpb *)HWRPB_ADDR)->rpb_size;
292 }
293 memcpy(bootinfo.boot_flags, v1p->boot_flags,
294 min(sizeof v1p->boot_flags,
295 sizeof bootinfo.boot_flags));
296 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
297 min(sizeof v1p->booted_kernel,
298 sizeof bootinfo.booted_kernel));
299 /* booted dev not provided in bootinfo */
300 init_prom_interface((struct rpb *)
301 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
302 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
303 sizeof bootinfo.booted_dev);
304 break;
305 }
306 default:
307 bootinfo_msg = "unknown bootinfo version";
308 goto nobootinfo;
309 }
310 } else {
311 bootinfo_msg = "boot program did not pass bootinfo";
312 nobootinfo:
313 bootinfo.ssym = (u_long)_end;
314 bootinfo.esym = (u_long)_end;
315 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
316 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
317 init_prom_interface((struct rpb *)HWRPB_ADDR);
318 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
319 sizeof bootinfo.boot_flags);
320 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
321 sizeof bootinfo.booted_kernel);
322 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
323 sizeof bootinfo.booted_dev);
324 }
325
326 /*
327 * Initialize the kernel's mapping of the RPB. It's needed for
328 * lots of things.
329 */
330 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
331
332 #if defined(DEC_3000_300) || defined(DEC_3000_500)
333 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
334 hwrpb->rpb_type == ST_DEC_3000_500) {
335 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
336 sizeof(dec_3000_scsiid));
337 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
338 sizeof(dec_3000_scsifast));
339 }
340 #endif
341
342 /*
343 * Remember how many cycles there are per microsecond,
344 * so that we can use delay(). Round up, for safety.
345 */
346 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
347
348 /*
349 * Initialize the (temporary) bootstrap console interface, so
350 * we can use printf until the VM system starts being setup.
351 * The real console is initialized before then.
352 */
353 init_bootstrap_console();
354
355 /* OUTPUT NOW ALLOWED */
356
357 /* delayed from above */
358 if (bootinfo_msg)
359 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
360 bootinfo_msg, bim, bip, biv);
361
362 /* Initialize the trap vectors on the primary processor. */
363 trap_init();
364
365 /*
366 * Find out this system's page size, and initialize
367 * PAGE_SIZE-dependent variables.
368 */
369 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
370 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
371 ALPHA_PGBYTES);
372 uvmexp.pagesize = hwrpb->rpb_page_size;
373 uvm_setpagesize();
374
375 /*
376 * Find out what hardware we're on, and do basic initialization.
377 */
378 cputype = hwrpb->rpb_type;
379 if (cputype < 0) {
380 /*
381 * At least some white-box systems have SRM which
382 * reports a systype that's the negative of their
383 * blue-box counterpart.
384 */
385 cputype = -cputype;
386 }
387 c = platform_lookup(cputype);
388 if (c == NULL) {
389 platform_not_supported();
390 /* NOTREACHED */
391 }
392 (*c->init)();
393 strcpy(cpu_model, platform.model);
394
395 /*
396 * Initialize the real console, so that the bootstrap console is
397 * no longer necessary.
398 */
399 (*platform.cons_init)();
400
401 #ifdef DIAGNOSTIC
402 /* Paranoid sanity checking */
403
404 /* We should always be running on the primary. */
405 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
406
407 /*
408 * On single-CPU systypes, the primary should always be CPU 0,
409 * except on Alpha 8200 systems where the CPU id is related
410 * to the VID, which is related to the Turbo Laser node id.
411 */
412 if (cputype != ST_DEC_21000)
413 assert(hwrpb->rpb_primary_cpu_id == 0);
414 #endif
415
416 /* NO MORE FIRMWARE ACCESS ALLOWED */
417 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
418 /*
419 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
420 * XXX pmap_uses_prom_console() evaluates to non-zero.)
421 */
422 #endif
423
424 /*
425 * Find the beginning and end of the kernel (and leave a
426 * bit of space before the beginning for the bootstrap
427 * stack).
428 */
429 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
430 #if NKSYMS || defined(DDB) || defined(LKM)
431 ksym_start = (void *)bootinfo.ssym;
432 ksym_end = (void *)bootinfo.esym;
433 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
434 #else
435 kernend = (vaddr_t)round_page((vaddr_t)_end);
436 #endif
437
438 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
439 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
440
441 /*
442 * Find out how much memory is available, by looking at
443 * the memory cluster descriptors. This also tries to do
444 * its best to detect things things that have never been seen
445 * before...
446 */
447 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
448
449 /* MDDT SANITY CHECKING */
450 mddtweird = 0;
451 if (mddtp->mddt_cluster_cnt < 2) {
452 mddtweird = 1;
453 printf("WARNING: weird number of mem clusters: %lu\n",
454 mddtp->mddt_cluster_cnt);
455 }
456
457 #if 0
458 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
459 #endif
460
461 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
462 memc = &mddtp->mddt_clusters[i];
463 #if 0
464 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
465 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
466 #endif
467 totalphysmem += memc->mddt_pg_cnt;
468 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
469 mem_clusters[mem_cluster_cnt].start =
470 ptoa(memc->mddt_pfn);
471 mem_clusters[mem_cluster_cnt].size =
472 ptoa(memc->mddt_pg_cnt);
473 if (memc->mddt_usage & MDDT_mbz ||
474 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
475 memc->mddt_usage & MDDT_PALCODE)
476 mem_clusters[mem_cluster_cnt].size |=
477 PROT_READ;
478 else
479 mem_clusters[mem_cluster_cnt].size |=
480 PROT_READ | PROT_WRITE | PROT_EXEC;
481 mem_cluster_cnt++;
482 }
483
484 if (memc->mddt_usage & MDDT_mbz) {
485 mddtweird = 1;
486 printf("WARNING: mem cluster %d has weird "
487 "usage 0x%lx\n", i, memc->mddt_usage);
488 unknownmem += memc->mddt_pg_cnt;
489 continue;
490 }
491 if (memc->mddt_usage & MDDT_NONVOLATILE) {
492 /* XXX should handle these... */
493 printf("WARNING: skipping non-volatile mem "
494 "cluster %d\n", i);
495 unusedmem += memc->mddt_pg_cnt;
496 continue;
497 }
498 if (memc->mddt_usage & MDDT_PALCODE) {
499 resvmem += memc->mddt_pg_cnt;
500 continue;
501 }
502
503 /*
504 * We have a memory cluster available for system
505 * software use. We must determine if this cluster
506 * holds the kernel.
507 */
508 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
509 /*
510 * XXX If the kernel uses the PROM console, we only use the
511 * XXX memory after the kernel in the first system segment,
512 * XXX to avoid clobbering prom mapping, data, etc.
513 */
514 if (!pmap_uses_prom_console() || physmem == 0) {
515 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
516 physmem += memc->mddt_pg_cnt;
517 pfn0 = memc->mddt_pfn;
518 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
519 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
520 /*
521 * Must compute the location of the kernel
522 * within the segment.
523 */
524 #if 0
525 printf("Cluster %d contains kernel\n", i);
526 #endif
527 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
528 if (!pmap_uses_prom_console()) {
529 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
530 if (pfn0 < kernstartpfn) {
531 /*
532 * There is a chunk before the kernel.
533 */
534 #if 0
535 printf("Loading chunk before kernel: "
536 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
537 #endif
538 uvm_page_physload(pfn0, kernstartpfn,
539 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
540 }
541 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
542 }
543 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
544 if (kernendpfn < pfn1) {
545 /*
546 * There is a chunk after the kernel.
547 */
548 #if 0
549 printf("Loading chunk after kernel: "
550 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
551 #endif
552 uvm_page_physload(kernendpfn, pfn1,
553 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
554 }
555 } else {
556 /*
557 * Just load this cluster as one chunk.
558 */
559 #if 0
560 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
561 pfn0, pfn1);
562 #endif
563 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
564 VM_FREELIST_DEFAULT);
565 }
566 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
567 }
568 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
569 }
570
571 /*
572 * Dump out the MDDT if it looks odd...
573 */
574 if (mddtweird) {
575 printf("\n");
576 printf("complete memory cluster information:\n");
577 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
578 printf("mddt %d:\n", i);
579 printf("\tpfn %lx\n",
580 mddtp->mddt_clusters[i].mddt_pfn);
581 printf("\tcnt %lx\n",
582 mddtp->mddt_clusters[i].mddt_pg_cnt);
583 printf("\ttest %lx\n",
584 mddtp->mddt_clusters[i].mddt_pg_test);
585 printf("\tbva %lx\n",
586 mddtp->mddt_clusters[i].mddt_v_bitaddr);
587 printf("\tbpa %lx\n",
588 mddtp->mddt_clusters[i].mddt_p_bitaddr);
589 printf("\tbcksum %lx\n",
590 mddtp->mddt_clusters[i].mddt_bit_cksum);
591 printf("\tusage %lx\n",
592 mddtp->mddt_clusters[i].mddt_usage);
593 }
594 printf("\n");
595 }
596
597 if (totalphysmem == 0)
598 panic("can't happen: system seems to have no memory!");
599 maxmem = physmem;
600 #if 0
601 printf("totalphysmem = %d\n", totalphysmem);
602 printf("physmem = %d\n", physmem);
603 printf("resvmem = %d\n", resvmem);
604 printf("unusedmem = %d\n", unusedmem);
605 printf("unknownmem = %d\n", unknownmem);
606 #endif
607
608 /*
609 * Initialize error message buffer (at end of core).
610 */
611 {
612 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
613 vsize_t reqsz = sz;
614
615 vps = &vm_physmem[vm_nphysseg - 1];
616
617 /* shrink so that it'll fit in the last segment */
618 if ((vps->avail_end - vps->avail_start) < atop(sz))
619 sz = ptoa(vps->avail_end - vps->avail_start);
620
621 vps->end -= atop(sz);
622 vps->avail_end -= atop(sz);
623 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
624 initmsgbuf(msgbufaddr, sz);
625
626 /* Remove the last segment if it now has no pages. */
627 if (vps->start == vps->end)
628 vm_nphysseg--;
629
630 /* warn if the message buffer had to be shrunk */
631 if (sz != reqsz)
632 printf("WARNING: %ld bytes not available for msgbuf "
633 "in last cluster (%ld used)\n", reqsz, sz);
634
635 }
636
637 /*
638 * NOTE: It is safe to use uvm_pageboot_alloc() before
639 * pmap_bootstrap() because our pmap_virtual_space()
640 * returns compile-time constants.
641 */
642
643 /*
644 * Init mapping for u page(s) for proc 0
645 */
646 lwp0.l_addr = proc0paddr =
647 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
648
649 /*
650 * Initialize the virtual memory system, and set the
651 * page table base register in proc 0's PCB.
652 */
653 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
654 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
655
656 /*
657 * Initialize the rest of proc 0's PCB, and cache its physical
658 * address.
659 */
660 lwp0.l_md.md_pcbpaddr =
661 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
662
663 /*
664 * Set the kernel sp, reserving space for an (empty) trapframe,
665 * and make proc0's trapframe pointer point to it for sanity.
666 */
667 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
668 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
669 lwp0.l_md.md_tf =
670 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
671 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
672
673 /* Indicate that proc0 has a CPU. */
674 lwp0.l_cpu = ci;
675
676 /*
677 * Look at arguments passed to us and compute boothowto.
678 */
679
680 boothowto = RB_SINGLE;
681 #ifdef KADB
682 boothowto |= RB_KDB;
683 #endif
684 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
685 /*
686 * Note that we'd really like to differentiate case here,
687 * but the Alpha AXP Architecture Reference Manual
688 * says that we shouldn't.
689 */
690 switch (*p) {
691 case 'a': /* autoboot */
692 case 'A':
693 boothowto &= ~RB_SINGLE;
694 break;
695
696 #ifdef DEBUG
697 case 'c': /* crash dump immediately after autoconfig */
698 case 'C':
699 boothowto |= RB_DUMP;
700 break;
701 #endif
702
703 #if defined(KGDB) || defined(DDB)
704 case 'd': /* break into the kernel debugger ASAP */
705 case 'D':
706 boothowto |= RB_KDB;
707 break;
708 #endif
709
710 case 'h': /* always halt, never reboot */
711 case 'H':
712 boothowto |= RB_HALT;
713 break;
714
715 #if 0
716 case 'm': /* mini root present in memory */
717 case 'M':
718 boothowto |= RB_MINIROOT;
719 break;
720 #endif
721
722 case 'n': /* askname */
723 case 'N':
724 boothowto |= RB_ASKNAME;
725 break;
726
727 case 's': /* single-user (default, supported for sanity) */
728 case 'S':
729 boothowto |= RB_SINGLE;
730 break;
731
732 case 'q': /* quiet boot */
733 case 'Q':
734 boothowto |= AB_QUIET;
735 break;
736
737 case 'v': /* verbose boot */
738 case 'V':
739 boothowto |= AB_VERBOSE;
740 break;
741
742 case '-':
743 /*
744 * Just ignore this. It's not required, but it's
745 * common for it to be passed regardless.
746 */
747 break;
748
749 default:
750 printf("Unrecognized boot flag '%c'.\n", *p);
751 break;
752 }
753 }
754
755 /*
756 * Perform any initial kernel patches based on the running system.
757 * We may perform more later if we attach additional CPUs.
758 */
759 alpha_patch(false);
760
761 /*
762 * Figure out the number of CPUs in the box, from RPB fields.
763 * Really. We mean it.
764 */
765 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
766 struct pcs *pcsp;
767
768 pcsp = LOCATE_PCS(hwrpb, i);
769 if ((pcsp->pcs_flags & PCS_PP) != 0)
770 ncpus++;
771 }
772
773 /*
774 * Initialize debuggers, and break into them if appropriate.
775 */
776 #if NKSYMS || defined(DDB) || defined(LKM)
777 ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
778 ksym_start, ksym_end);
779 #endif
780
781 if (boothowto & RB_KDB) {
782 #if defined(KGDB)
783 kgdb_debug_init = 1;
784 kgdb_connect(1);
785 #elif defined(DDB)
786 Debugger();
787 #endif
788 }
789
790 #ifdef DIAGNOSTIC
791 /*
792 * Check our clock frequency, from RPB fields.
793 */
794 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
795 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
796 hwrpb->rpb_intr_freq, hz);
797 #endif
798 }
799
800 void
801 consinit()
802 {
803
804 /*
805 * Everything related to console initialization is done
806 * in alpha_init().
807 */
808 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
809 printf("consinit: %susing prom console\n",
810 pmap_uses_prom_console() ? "" : "not ");
811 #endif
812 }
813
814 void
815 cpu_startup()
816 {
817 vaddr_t minaddr, maxaddr;
818 char pbuf[9];
819 #if defined(DEBUG)
820 extern int pmapdebug;
821 int opmapdebug = pmapdebug;
822
823 pmapdebug = 0;
824 #endif
825
826 /*
827 * Good {morning,afternoon,evening,night}.
828 */
829 printf("%s%s", copyright, version);
830 identifycpu();
831 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
832 printf("total memory = %s\n", pbuf);
833 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
834 printf("(%s reserved for PROM, ", pbuf);
835 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
836 printf("%s used by NetBSD)\n", pbuf);
837 if (unusedmem) {
838 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
839 printf("WARNING: unused memory = %s\n", pbuf);
840 }
841 if (unknownmem) {
842 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
843 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
844 }
845
846 minaddr = 0;
847
848 /*
849 * Allocate a submap for exec arguments. This map effectively
850 * limits the number of processes exec'ing at any time.
851 */
852 exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
853 16 * NCARGS, VM_MAP_PAGEABLE, false, NULL);
854
855 /*
856 * Allocate a submap for physio
857 */
858 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
859 VM_PHYS_SIZE, 0, false, NULL);
860
861 /*
862 * No need to allocate an mbuf cluster submap. Mbuf clusters
863 * are allocated via the pool allocator, and we use K0SEG to
864 * map those pages.
865 */
866
867 #if defined(DEBUG)
868 pmapdebug = opmapdebug;
869 #endif
870 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
871 printf("avail memory = %s\n", pbuf);
872 #if 0
873 {
874 extern u_long pmap_pages_stolen;
875
876 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
877 printf("stolen memory for VM structures = %s\n", pbuf);
878 }
879 #endif
880
881 /*
882 * Set up the HWPCB so that it's safe to configure secondary
883 * CPUs.
884 */
885 hwrpb_primary_init();
886 }
887
888 /*
889 * Retrieve the platform name from the DSR.
890 */
891 const char *
892 alpha_dsr_sysname()
893 {
894 struct dsrdb *dsr;
895 const char *sysname;
896
897 /*
898 * DSR does not exist on early HWRPB versions.
899 */
900 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
901 return (NULL);
902
903 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
904 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
905 sizeof(u_int64_t)));
906 return (sysname);
907 }
908
909 /*
910 * Lookup the system specified system variation in the provided table,
911 * returning the model string on match.
912 */
913 const char *
914 alpha_variation_name(variation, avtp)
915 u_int64_t variation;
916 const struct alpha_variation_table *avtp;
917 {
918 int i;
919
920 for (i = 0; avtp[i].avt_model != NULL; i++)
921 if (avtp[i].avt_variation == variation)
922 return (avtp[i].avt_model);
923 return (NULL);
924 }
925
926 /*
927 * Generate a default platform name based for unknown system variations.
928 */
929 const char *
930 alpha_unknown_sysname()
931 {
932 static char s[128]; /* safe size */
933
934 sprintf(s, "%s family, unknown model variation 0x%lx",
935 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
936 return ((const char *)s);
937 }
938
939 void
940 identifycpu()
941 {
942 char *s;
943 int i;
944
945 /*
946 * print out CPU identification information.
947 */
948 printf("%s", cpu_model);
949 for(s = cpu_model; *s; ++s)
950 if(strncasecmp(s, "MHz", 3) == 0)
951 goto skipMHz;
952 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
953 skipMHz:
954 printf(", s/n ");
955 for (i = 0; i < 10; i++)
956 printf("%c", hwrpb->rpb_ssn[i]);
957 printf("\n");
958 printf("%ld byte page size, %d processor%s.\n",
959 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
960 #if 0
961 /* this isn't defined for any systems that we run on? */
962 printf("serial number 0x%lx 0x%lx\n",
963 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
964
965 /* and these aren't particularly useful! */
966 printf("variation: 0x%lx, revision 0x%lx\n",
967 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
968 #endif
969 }
970
971 int waittime = -1;
972 struct pcb dumppcb;
973
974 void
975 cpu_reboot(howto, bootstr)
976 int howto;
977 char *bootstr;
978 {
979 #if defined(MULTIPROCESSOR)
980 u_long cpu_id = cpu_number();
981 u_long wait_mask = (1UL << cpu_id) |
982 (1UL << hwrpb->rpb_primary_cpu_id);
983 int i;
984 #endif
985
986 /* If "always halt" was specified as a boot flag, obey. */
987 if ((boothowto & RB_HALT) != 0)
988 howto |= RB_HALT;
989
990 boothowto = howto;
991
992 /* If system is cold, just halt. */
993 if (cold) {
994 boothowto |= RB_HALT;
995 goto haltsys;
996 }
997
998 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
999 waittime = 0;
1000 vfs_shutdown();
1001 /*
1002 * If we've been adjusting the clock, the todr
1003 * will be out of synch; adjust it now.
1004 */
1005 resettodr();
1006 }
1007
1008 /* Disable interrupts. */
1009 splhigh();
1010
1011 #if defined(MULTIPROCESSOR)
1012 /*
1013 * Halt all other CPUs. If we're not the primary, the
1014 * primary will spin, waiting for us to halt.
1015 */
1016 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1017
1018 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1019 cpus_paused = 0;
1020
1021 for (i = 0; i < 10000; i++) {
1022 alpha_mb();
1023 if (cpus_running == wait_mask)
1024 break;
1025 delay(1000);
1026 }
1027 alpha_mb();
1028 if (cpus_running != wait_mask)
1029 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1030 cpus_running);
1031 #endif /* MULTIPROCESSOR */
1032
1033 /* If rebooting and a dump is requested do it. */
1034 #if 0
1035 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1036 #else
1037 if (boothowto & RB_DUMP)
1038 #endif
1039 dumpsys();
1040
1041 haltsys:
1042
1043 /* run any shutdown hooks */
1044 doshutdownhooks();
1045
1046 #ifdef BOOTKEY
1047 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1048 cnpollc(1); /* for proper keyboard command handling */
1049 cngetc();
1050 cnpollc(0);
1051 printf("\n");
1052 #endif
1053
1054 /* Finally, powerdown/halt/reboot the system. */
1055 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1056 platform.powerdown != NULL) {
1057 (*platform.powerdown)();
1058 printf("WARNING: powerdown failed!\n");
1059 }
1060 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1061 #if defined(MULTIPROCESSOR)
1062 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1063 cpu_halt();
1064 else
1065 #endif
1066 prom_halt(boothowto & RB_HALT);
1067 /*NOTREACHED*/
1068 }
1069
1070 /*
1071 * These variables are needed by /sbin/savecore
1072 */
1073 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1074 int dumpsize = 0; /* pages */
1075 long dumplo = 0; /* blocks */
1076
1077 /*
1078 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1079 */
1080 int
1081 cpu_dumpsize()
1082 {
1083 int size;
1084
1085 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1086 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1087 if (roundup(size, dbtob(1)) != dbtob(1))
1088 return -1;
1089
1090 return (1);
1091 }
1092
1093 /*
1094 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1095 */
1096 u_long
1097 cpu_dump_mempagecnt()
1098 {
1099 u_long i, n;
1100
1101 n = 0;
1102 for (i = 0; i < mem_cluster_cnt; i++)
1103 n += atop(mem_clusters[i].size);
1104 return (n);
1105 }
1106
1107 /*
1108 * cpu_dump: dump machine-dependent kernel core dump headers.
1109 */
1110 int
1111 cpu_dump()
1112 {
1113 int (*dump) __P((dev_t, daddr_t, void *, size_t));
1114 char buf[dbtob(1)];
1115 kcore_seg_t *segp;
1116 cpu_kcore_hdr_t *cpuhdrp;
1117 phys_ram_seg_t *memsegp;
1118 const struct bdevsw *bdev;
1119 int i;
1120
1121 bdev = bdevsw_lookup(dumpdev);
1122 if (bdev == NULL)
1123 return (ENXIO);
1124 dump = bdev->d_dump;
1125
1126 memset(buf, 0, sizeof buf);
1127 segp = (kcore_seg_t *)buf;
1128 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1129 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1130 ALIGN(sizeof(*cpuhdrp))];
1131
1132 /*
1133 * Generate a segment header.
1134 */
1135 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1136 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1137
1138 /*
1139 * Add the machine-dependent header info.
1140 */
1141 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1142 cpuhdrp->page_size = PAGE_SIZE;
1143 cpuhdrp->nmemsegs = mem_cluster_cnt;
1144
1145 /*
1146 * Fill in the memory segment descriptors.
1147 */
1148 for (i = 0; i < mem_cluster_cnt; i++) {
1149 memsegp[i].start = mem_clusters[i].start;
1150 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1151 }
1152
1153 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1154 }
1155
1156 /*
1157 * This is called by main to set dumplo and dumpsize.
1158 * Dumps always skip the first PAGE_SIZE of disk space
1159 * in case there might be a disk label stored there.
1160 * If there is extra space, put dump at the end to
1161 * reduce the chance that swapping trashes it.
1162 */
1163 void
1164 cpu_dumpconf()
1165 {
1166 const struct bdevsw *bdev;
1167 int nblks, dumpblks; /* size of dump area */
1168
1169 if (dumpdev == NODEV)
1170 goto bad;
1171 bdev = bdevsw_lookup(dumpdev);
1172 if (bdev == NULL) {
1173 dumpdev = NODEV;
1174 goto bad;
1175 }
1176 if (bdev->d_psize == NULL)
1177 goto bad;
1178 nblks = (*bdev->d_psize)(dumpdev);
1179 if (nblks <= ctod(1))
1180 goto bad;
1181
1182 dumpblks = cpu_dumpsize();
1183 if (dumpblks < 0)
1184 goto bad;
1185 dumpblks += ctod(cpu_dump_mempagecnt());
1186
1187 /* If dump won't fit (incl. room for possible label), punt. */
1188 if (dumpblks > (nblks - ctod(1)))
1189 goto bad;
1190
1191 /* Put dump at end of partition */
1192 dumplo = nblks - dumpblks;
1193
1194 /* dumpsize is in page units, and doesn't include headers. */
1195 dumpsize = cpu_dump_mempagecnt();
1196 return;
1197
1198 bad:
1199 dumpsize = 0;
1200 return;
1201 }
1202
1203 /*
1204 * Dump the kernel's image to the swap partition.
1205 */
1206 #define BYTES_PER_DUMP PAGE_SIZE
1207
1208 void
1209 dumpsys()
1210 {
1211 const struct bdevsw *bdev;
1212 u_long totalbytesleft, bytes, i, n, memcl;
1213 u_long maddr;
1214 int psize;
1215 daddr_t blkno;
1216 int (*dump) __P((dev_t, daddr_t, void *, size_t));
1217 int error;
1218
1219 /* Save registers. */
1220 savectx(&dumppcb);
1221
1222 if (dumpdev == NODEV)
1223 return;
1224 bdev = bdevsw_lookup(dumpdev);
1225 if (bdev == NULL || bdev->d_psize == NULL)
1226 return;
1227
1228 /*
1229 * For dumps during autoconfiguration,
1230 * if dump device has already configured...
1231 */
1232 if (dumpsize == 0)
1233 cpu_dumpconf();
1234 if (dumplo <= 0) {
1235 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1236 minor(dumpdev));
1237 return;
1238 }
1239 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1240 minor(dumpdev), dumplo);
1241
1242 psize = (*bdev->d_psize)(dumpdev);
1243 printf("dump ");
1244 if (psize == -1) {
1245 printf("area unavailable\n");
1246 return;
1247 }
1248
1249 /* XXX should purge all outstanding keystrokes. */
1250
1251 if ((error = cpu_dump()) != 0)
1252 goto err;
1253
1254 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1255 blkno = dumplo + cpu_dumpsize();
1256 dump = bdev->d_dump;
1257 error = 0;
1258
1259 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1260 maddr = mem_clusters[memcl].start;
1261 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1262
1263 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1264
1265 /* Print out how many MBs we to go. */
1266 if ((totalbytesleft % (1024*1024)) == 0)
1267 printf("%ld ", totalbytesleft / (1024 * 1024));
1268
1269 /* Limit size for next transfer. */
1270 n = bytes - i;
1271 if (n > BYTES_PER_DUMP)
1272 n = BYTES_PER_DUMP;
1273
1274 error = (*dump)(dumpdev, blkno,
1275 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1276 if (error)
1277 goto err;
1278 maddr += n;
1279 blkno += btodb(n); /* XXX? */
1280
1281 /* XXX should look for keystrokes, to cancel. */
1282 }
1283 }
1284
1285 err:
1286 switch (error) {
1287
1288 case ENXIO:
1289 printf("device bad\n");
1290 break;
1291
1292 case EFAULT:
1293 printf("device not ready\n");
1294 break;
1295
1296 case EINVAL:
1297 printf("area improper\n");
1298 break;
1299
1300 case EIO:
1301 printf("i/o error\n");
1302 break;
1303
1304 case EINTR:
1305 printf("aborted from console\n");
1306 break;
1307
1308 case 0:
1309 printf("succeeded\n");
1310 break;
1311
1312 default:
1313 printf("error %d\n", error);
1314 break;
1315 }
1316 printf("\n\n");
1317 delay(1000);
1318 }
1319
1320 void
1321 frametoreg(framep, regp)
1322 const struct trapframe *framep;
1323 struct reg *regp;
1324 {
1325
1326 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1327 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1328 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1329 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1330 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1331 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1332 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1333 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1334 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1335 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1336 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1337 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1338 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1339 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1340 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1341 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1342 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1343 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1344 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1345 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1346 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1347 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1348 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1349 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1350 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1351 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1352 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1353 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1354 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1355 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1356 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1357 regp->r_regs[R_ZERO] = 0;
1358 }
1359
1360 void
1361 regtoframe(regp, framep)
1362 const struct reg *regp;
1363 struct trapframe *framep;
1364 {
1365
1366 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1367 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1368 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1369 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1370 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1371 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1372 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1373 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1374 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1375 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1376 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1377 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1378 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1379 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1380 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1381 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1382 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1383 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1384 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1385 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1386 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1387 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1388 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1389 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1390 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1391 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1392 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1393 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1394 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1395 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1396 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1397 /* ??? = regp->r_regs[R_ZERO]; */
1398 }
1399
1400 void
1401 printregs(regp)
1402 struct reg *regp;
1403 {
1404 int i;
1405
1406 for (i = 0; i < 32; i++)
1407 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1408 i & 1 ? "\n" : "\t");
1409 }
1410
1411 void
1412 regdump(framep)
1413 struct trapframe *framep;
1414 {
1415 struct reg reg;
1416
1417 frametoreg(framep, ®);
1418 reg.r_regs[R_SP] = alpha_pal_rdusp();
1419
1420 printf("REGISTERS:\n");
1421 printregs(®);
1422 }
1423
1424
1425
1426 void *
1427 getframe(const struct lwp *l, int sig, int *onstack)
1428 {
1429 void *frame;
1430
1431 /* Do we need to jump onto the signal stack? */
1432 *onstack =
1433 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1434 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1435
1436 if (*onstack)
1437 frame = (void *)((char *)l->l_sigstk.ss_sp +
1438 l->l_sigstk.ss_size);
1439 else
1440 frame = (void *)(alpha_pal_rdusp());
1441 return (frame);
1442 }
1443
1444 void
1445 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1446 {
1447 struct trapframe *tf = l->l_md.md_tf;
1448
1449 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1450 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1451 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1452 alpha_pal_wrusp((unsigned long)fp);
1453 }
1454
1455
1456 /*
1457 * Send an interrupt to process, new style
1458 */
1459 void
1460 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1461 {
1462 struct lwp *l = curlwp;
1463 struct proc *p = l->l_proc;
1464 struct sigacts *ps = p->p_sigacts;
1465 int onstack, sig = ksi->ksi_signo, error;
1466 struct sigframe_siginfo *fp, frame;
1467 struct trapframe *tf;
1468 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1469
1470 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1471 tf = l->l_md.md_tf;
1472
1473 /* Allocate space for the signal handler context. */
1474 fp--;
1475
1476 /* Build stack frame for signal trampoline. */
1477 switch (ps->sa_sigdesc[sig].sd_vers) {
1478 case 0: /* handled by sendsig_sigcontext */
1479 case 1: /* handled by sendsig_sigcontext */
1480 default: /* unknown version */
1481 printf("nsendsig: bad version %d\n",
1482 ps->sa_sigdesc[sig].sd_vers);
1483 sigexit(l, SIGILL);
1484 case 2:
1485 break;
1486 }
1487
1488 #ifdef DEBUG
1489 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1490 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1491 sig, &onstack, fp);
1492 #endif
1493
1494 /* Build stack frame for signal trampoline. */
1495
1496 frame.sf_si._info = ksi->ksi_info;
1497 frame.sf_uc.uc_flags = _UC_SIGMASK;
1498 frame.sf_uc.uc_sigmask = *mask;
1499 frame.sf_uc.uc_link = l->l_ctxlink;
1500 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1501 sendsig_reset(l, sig);
1502 mutex_exit(p->p_lock);
1503 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1504 error = copyout(&frame, fp, sizeof(frame));
1505 mutex_enter(p->p_lock);
1506
1507 if (error != 0) {
1508 /*
1509 * Process has trashed its stack; give it an illegal
1510 * instruction to halt it in its tracks.
1511 */
1512 #ifdef DEBUG
1513 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1514 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1515 p->p_pid, sig);
1516 #endif
1517 sigexit(l, SIGILL);
1518 /* NOTREACHED */
1519 }
1520
1521 #ifdef DEBUG
1522 if (sigdebug & SDB_FOLLOW)
1523 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1524 p->p_pid, sig, fp, ksi->ksi_code);
1525 #endif
1526
1527 /*
1528 * Set up the registers to directly invoke the signal handler. The
1529 * signal trampoline is then used to return from the signal. Note
1530 * the trampoline version numbers are coordinated with machine-
1531 * dependent code in libc.
1532 */
1533
1534 tf->tf_regs[FRAME_A0] = sig;
1535 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1536 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1537
1538 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1539
1540 /* Remember that we're now on the signal stack. */
1541 if (onstack)
1542 l->l_sigstk.ss_flags |= SS_ONSTACK;
1543
1544 #ifdef DEBUG
1545 if (sigdebug & SDB_FOLLOW)
1546 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1547 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1548 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1549 printf("sendsig_siginfo(%d): sig %d returns\n",
1550 p->p_pid, sig);
1551 #endif
1552 }
1553
1554
1555 void
1556 sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
1557 {
1558 #ifdef COMPAT_16
1559 if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) {
1560 sendsig_sigcontext(ksi, mask);
1561 } else {
1562 #endif
1563 #ifdef DEBUG
1564 if (sigdebug & SDB_FOLLOW)
1565 printf("sendsig: sendsig called: sig %d vers %d\n",
1566 ksi->ksi_signo,
1567 curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers);
1568 #endif
1569 sendsig_siginfo(ksi, mask);
1570 #ifdef COMPAT_16
1571 }
1572 #endif
1573 }
1574
1575 /*
1576 * machine dependent system variables.
1577 */
1578 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1579 {
1580
1581 sysctl_createv(clog, 0, NULL, NULL,
1582 CTLFLAG_PERMANENT,
1583 CTLTYPE_NODE, "machdep", NULL,
1584 NULL, 0, NULL, 0,
1585 CTL_MACHDEP, CTL_EOL);
1586
1587 sysctl_createv(clog, 0, NULL, NULL,
1588 CTLFLAG_PERMANENT,
1589 CTLTYPE_STRUCT, "console_device", NULL,
1590 sysctl_consdev, 0, NULL, sizeof(dev_t),
1591 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1592 sysctl_createv(clog, 0, NULL, NULL,
1593 CTLFLAG_PERMANENT,
1594 CTLTYPE_STRING, "root_device", NULL,
1595 sysctl_root_device, 0, NULL, 0,
1596 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1597 sysctl_createv(clog, 0, NULL, NULL,
1598 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1599 CTLTYPE_INT, "unaligned_print", NULL,
1600 NULL, 0, &alpha_unaligned_print, 0,
1601 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1602 sysctl_createv(clog, 0, NULL, NULL,
1603 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1604 CTLTYPE_INT, "unaligned_fix", NULL,
1605 NULL, 0, &alpha_unaligned_fix, 0,
1606 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1607 sysctl_createv(clog, 0, NULL, NULL,
1608 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1609 CTLTYPE_INT, "unaligned_sigbus", NULL,
1610 NULL, 0, &alpha_unaligned_sigbus, 0,
1611 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1612 sysctl_createv(clog, 0, NULL, NULL,
1613 CTLFLAG_PERMANENT,
1614 CTLTYPE_STRING, "booted_kernel", NULL,
1615 NULL, 0, bootinfo.booted_kernel, 0,
1616 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1617 sysctl_createv(clog, 0, NULL, NULL,
1618 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1619 CTLTYPE_INT, "fp_sync_complete", NULL,
1620 NULL, 0, &alpha_fp_sync_complete, 0,
1621 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1622 }
1623
1624 /*
1625 * Set registers on exec.
1626 */
1627 void
1628 setregs(l, pack, stack)
1629 register struct lwp *l;
1630 struct exec_package *pack;
1631 u_long stack;
1632 {
1633 struct trapframe *tfp = l->l_md.md_tf;
1634 #ifdef DEBUG
1635 int i;
1636 #endif
1637
1638 #ifdef DEBUG
1639 /*
1640 * Crash and dump, if the user requested it.
1641 */
1642 if (boothowto & RB_DUMP)
1643 panic("crash requested by boot flags");
1644 #endif
1645
1646 #ifdef DEBUG
1647 for (i = 0; i < FRAME_SIZE; i++)
1648 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1649 #else
1650 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1651 #endif
1652 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1653 alpha_pal_wrusp(stack);
1654 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1655 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1656
1657 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1658 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1659 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1660 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1661 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1662
1663 l->l_md.md_flags &= ~MDP_FPUSED;
1664 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1665 l->l_md.md_flags &= ~MDP_FP_C;
1666 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1667 }
1668 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1669 fpusave_proc(l, 0);
1670 }
1671
1672 /*
1673 * Release the FPU.
1674 */
1675 void
1676 fpusave_cpu(struct cpu_info *ci, int save)
1677 {
1678 struct lwp *l;
1679 #if defined(MULTIPROCESSOR)
1680 int s;
1681 #endif
1682
1683 KDASSERT(ci == curcpu());
1684
1685 #if defined(MULTIPROCESSOR)
1686 s = splhigh(); /* block IPIs for the duration */
1687 atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1688 #endif
1689
1690 l = ci->ci_fpcurlwp;
1691 if (l == NULL)
1692 goto out;
1693
1694 if (save) {
1695 alpha_pal_wrfen(1);
1696 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1697 }
1698
1699 alpha_pal_wrfen(0);
1700
1701 FPCPU_LOCK(&l->l_addr->u_pcb);
1702
1703 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1704 ci->ci_fpcurlwp = NULL;
1705
1706 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1707
1708 out:
1709 #if defined(MULTIPROCESSOR)
1710 atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1711 splx(s);
1712 #endif
1713 return;
1714 }
1715
1716 /*
1717 * Synchronize FP state for this process.
1718 */
1719 void
1720 fpusave_proc(struct lwp *l, int save)
1721 {
1722 struct cpu_info *ci = curcpu();
1723 struct cpu_info *oci;
1724 #if defined(MULTIPROCESSOR)
1725 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1726 int s, spincount;
1727 #endif
1728
1729 KDASSERT(l->l_addr != NULL);
1730
1731 #if defined(MULTIPROCESSOR)
1732 s = splhigh(); /* block IPIs for the duration */
1733 #endif
1734 FPCPU_LOCK(&l->l_addr->u_pcb);
1735
1736 oci = l->l_addr->u_pcb.pcb_fpcpu;
1737 if (oci == NULL) {
1738 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1739 #if defined(MULTIPROCESSOR)
1740 splx(s);
1741 #endif
1742 return;
1743 }
1744
1745 #if defined(MULTIPROCESSOR)
1746 if (oci == ci) {
1747 KASSERT(ci->ci_fpcurlwp == l);
1748 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1749 splx(s);
1750 fpusave_cpu(ci, save);
1751 return;
1752 }
1753
1754 KASSERT(oci->ci_fpcurlwp == l);
1755 alpha_send_ipi(oci->ci_cpuid, ipi);
1756 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1757
1758 spincount = 0;
1759 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1760 spincount++;
1761 delay(1000); /* XXX */
1762 if (spincount > 10000)
1763 panic("fpsave ipi didn't");
1764 }
1765 #else
1766 KASSERT(ci->ci_fpcurlwp == l);
1767 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1768 fpusave_cpu(ci, save);
1769 #endif /* MULTIPROCESSOR */
1770 }
1771
1772 /*
1773 * Wait "n" microseconds.
1774 */
1775 void
1776 delay(n)
1777 unsigned long n;
1778 {
1779 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1780
1781 if (n == 0)
1782 return;
1783
1784 pcc0 = alpha_rpcc() & 0xffffffffUL;
1785 cycles = 0;
1786 usec = 0;
1787
1788 while (usec <= n) {
1789 /*
1790 * Get the next CPU cycle count- assumes that we cannot
1791 * have had more than one 32 bit overflow.
1792 */
1793 pcc1 = alpha_rpcc() & 0xffffffffUL;
1794 if (pcc1 < pcc0)
1795 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1796 else
1797 curcycle = pcc1 - pcc0;
1798
1799 /*
1800 * We now have the number of processor cycles since we
1801 * last checked. Add the current cycle count to the
1802 * running total. If it's over cycles_per_usec, increment
1803 * the usec counter.
1804 */
1805 cycles += curcycle;
1806 while (cycles > cycles_per_usec) {
1807 usec++;
1808 cycles -= cycles_per_usec;
1809 }
1810 pcc0 = pcc1;
1811 }
1812 }
1813
1814 #ifdef EXEC_ECOFF
1815 void
1816 cpu_exec_ecoff_setregs(l, epp, stack)
1817 struct lwp *l;
1818 struct exec_package *epp;
1819 u_long stack;
1820 {
1821 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1822
1823 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1824 }
1825
1826 /*
1827 * cpu_exec_ecoff_hook():
1828 * cpu-dependent ECOFF format hook for execve().
1829 *
1830 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1831 *
1832 */
1833 int
1834 cpu_exec_ecoff_probe(l, epp)
1835 struct lwp *l;
1836 struct exec_package *epp;
1837 {
1838 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1839 int error;
1840
1841 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1842 error = 0;
1843 else
1844 error = ENOEXEC;
1845
1846 return (error);
1847 }
1848 #endif /* EXEC_ECOFF */
1849
1850 int
1851 alpha_pa_access(pa)
1852 u_long pa;
1853 {
1854 int i;
1855
1856 for (i = 0; i < mem_cluster_cnt; i++) {
1857 if (pa < mem_clusters[i].start)
1858 continue;
1859 if ((pa - mem_clusters[i].start) >=
1860 (mem_clusters[i].size & ~PAGE_MASK))
1861 continue;
1862 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1863 }
1864
1865 /*
1866 * Address is not a memory address. If we're secure, disallow
1867 * access. Otherwise, grant read/write.
1868 */
1869 if (kauth_authorize_machdep(kauth_cred_get(),
1870 KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1871 return (PROT_NONE);
1872 else
1873 return (PROT_READ | PROT_WRITE);
1874 }
1875
1876 /* XXX XXX BEGIN XXX XXX */
1877 paddr_t alpha_XXX_dmamap_or; /* XXX */
1878 /* XXX */
1879 paddr_t /* XXX */
1880 alpha_XXX_dmamap(v) /* XXX */
1881 vaddr_t v; /* XXX */
1882 { /* XXX */
1883 /* XXX */
1884 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1885 } /* XXX */
1886 /* XXX XXX END XXX XXX */
1887
1888 char *
1889 dot_conv(x)
1890 unsigned long x;
1891 {
1892 int i;
1893 char *xc;
1894 static int next;
1895 static char space[2][20];
1896
1897 xc = space[next ^= 1] + sizeof space[0];
1898 *--xc = '\0';
1899 for (i = 0;; ++i) {
1900 if (i && (i & 3) == 0)
1901 *--xc = '.';
1902 *--xc = hexdigits[x & 0xf];
1903 x >>= 4;
1904 if (x == 0)
1905 break;
1906 }
1907 return xc;
1908 }
1909
1910 void
1911 cpu_getmcontext(l, mcp, flags)
1912 struct lwp *l;
1913 mcontext_t *mcp;
1914 unsigned int *flags;
1915 {
1916 struct trapframe *frame = l->l_md.md_tf;
1917 __greg_t *gr = mcp->__gregs;
1918 __greg_t ras_pc;
1919
1920 /* Save register context. */
1921 frametoreg(frame, (struct reg *)gr);
1922 /* XXX if there's a better, general way to get the USP of
1923 * an LWP that might or might not be curlwp, I'd like to know
1924 * about it.
1925 */
1926 if (l == curlwp) {
1927 gr[_REG_SP] = alpha_pal_rdusp();
1928 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1929 } else {
1930 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
1931 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
1932 }
1933 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1934 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1935
1936 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1937 (void *) gr[_REG_PC])) != -1)
1938 gr[_REG_PC] = ras_pc;
1939
1940 *flags |= _UC_CPU | _UC_UNIQUE;
1941
1942 /* Save floating point register context, if any, and copy it. */
1943 if (l->l_md.md_flags & MDP_FPUSED) {
1944 fpusave_proc(l, 1);
1945 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
1946 sizeof (mcp->__fpregs));
1947 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1948 *flags |= _UC_FPU;
1949 }
1950 }
1951
1952
1953 int
1954 cpu_setmcontext(l, mcp, flags)
1955 struct lwp *l;
1956 const mcontext_t *mcp;
1957 unsigned int flags;
1958 {
1959 struct trapframe *frame = l->l_md.md_tf;
1960 const __greg_t *gr = mcp->__gregs;
1961
1962 /* Restore register context, if any. */
1963 if (flags & _UC_CPU) {
1964 /* Check for security violations first. */
1965 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1966 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1967 return (EINVAL);
1968
1969 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1970 if (l == curlwp)
1971 alpha_pal_wrusp(gr[_REG_SP]);
1972 else
1973 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
1974 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1975 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1976 }
1977 if (flags & _UC_UNIQUE) {
1978 if (l == curlwp)
1979 alpha_pal_wrunique(gr[_REG_UNIQUE]);
1980 else
1981 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1982 }
1983 /* Restore floating point register context, if any. */
1984 if (flags & _UC_FPU) {
1985 /* If we have an FP register context, get rid of it. */
1986 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1987 fpusave_proc(l, 0);
1988 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
1989 sizeof (l->l_addr->u_pcb.pcb_fp));
1990 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1991 l->l_md.md_flags |= MDP_FPUSED;
1992 }
1993
1994 return (0);
1995 }
1996
1997 /*
1998 * Preempt the current process if in interrupt from user mode,
1999 * or after the current trap/syscall if in system mode.
2000 */
2001 void
2002 cpu_need_resched(struct cpu_info *ci, int flags)
2003 {
2004 #if defined(MULTIPROCESSOR)
2005 bool immed = (flags & RESCHED_IMMED) != 0;
2006 #endif /* defined(MULTIPROCESSOR) */
2007
2008 aston(ci->ci_data.cpu_onproc);
2009 ci->ci_want_resched = 1;
2010 if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
2011 #if defined(MULTIPROCESSOR)
2012 if (immed && ci != curcpu()) {
2013 alpha_send_ipi(ci->ci_cpuid, 0);
2014 }
2015 #endif /* defined(MULTIPROCESSOR) */
2016 }
2017 }
2018