machdep.c revision 1.309 1 /* $NetBSD: machdep.c,v 1.309 2008/11/12 12:35:55 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_multiprocessor.h"
63 #include "opt_dec_3000_300.h"
64 #include "opt_dec_3000_500.h"
65 #include "opt_compat_osf1.h"
66 #include "opt_compat_netbsd.h"
67 #include "opt_execfmt.h"
68
69 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
70
71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.309 2008/11/12 12:35:55 ad Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/signalvar.h>
76 #include <sys/kernel.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/ras.h>
80 #include <sys/sa.h>
81 #include <sys/savar.h>
82 #include <sys/sched.h>
83 #include <sys/reboot.h>
84 #include <sys/device.h>
85 #include <sys/malloc.h>
86 #include <sys/mman.h>
87 #include <sys/msgbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/exec_ecoff.h>
93 #include <sys/core.h>
94 #include <sys/kcore.h>
95 #include <sys/ucontext.h>
96 #include <sys/conf.h>
97 #include <sys/ksyms.h>
98 #include <sys/kauth.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101
102 #include <machine/kcore.h>
103 #include <machine/fpu.h>
104
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107
108 #include <uvm/uvm_extern.h>
109 #include <sys/sysctl.h>
110
111 #include <dev/cons.h>
112
113 #include <machine/autoconf.h>
114 #include <machine/reg.h>
115 #include <machine/rpb.h>
116 #include <machine/prom.h>
117 #include <machine/cpuconf.h>
118 #include <machine/ieeefp.h>
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 #ifdef KGDB
129 #include <sys/kgdb.h>
130 #endif
131
132 #ifdef DEBUG
133 #include <machine/sigdebug.h>
134 #endif
135
136 #include <machine/alpha.h>
137
138 #include "ksyms.h"
139
140 struct vm_map *mb_map = NULL;
141 struct vm_map *phys_map = NULL;
142
143 void *msgbufaddr;
144
145 int maxmem; /* max memory per process */
146
147 int totalphysmem; /* total amount of physical memory in system */
148 int physmem; /* physical memory used by NetBSD + some rsvd */
149 int resvmem; /* amount of memory reserved for PROM */
150 int unusedmem; /* amount of memory for OS that we don't use */
151 int unknownmem; /* amount of memory with an unknown use */
152
153 int cputype; /* system type, from the RPB */
154
155 int bootdev_debug = 0; /* patchable, or from DDB */
156
157 /*
158 * XXX We need an address to which we can assign things so that they
159 * won't be optimized away because we didn't use the value.
160 */
161 u_int32_t no_optimize;
162
163 /* the following is used externally (sysctl_hw) */
164 char machine[] = MACHINE; /* from <machine/param.h> */
165 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
166 char cpu_model[128];
167
168 struct user *proc0paddr;
169
170 /* Number of machine cycles per microsecond */
171 u_int64_t cycles_per_usec;
172
173 /* number of CPUs in the box. really! */
174 int ncpus;
175
176 struct bootinfo_kernel bootinfo;
177
178 /* For built-in TCDS */
179 #if defined(DEC_3000_300) || defined(DEC_3000_500)
180 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
181 #endif
182
183 struct platform platform;
184
185 #if NKSYMS || defined(DDB) || defined(MODULAR)
186 /* start and end of kernel symbol table */
187 void *ksym_start, *ksym_end;
188 #endif
189
190 /* for cpu_sysctl() */
191 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
192 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
193 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
194 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
195
196 /*
197 * XXX This should be dynamically sized, but we have the chicken-egg problem!
198 * XXX it should also be larger than it is, because not all of the mddt
199 * XXX clusters end up being used for VM.
200 */
201 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
202 int mem_cluster_cnt;
203
204 int cpu_dump __P((void));
205 int cpu_dumpsize __P((void));
206 u_long cpu_dump_mempagecnt __P((void));
207 void dumpsys __P((void));
208 void identifycpu __P((void));
209 void printregs __P((struct reg *));
210
211 void
212 alpha_init(pfn, ptb, bim, bip, biv)
213 u_long pfn; /* first free PFN number */
214 u_long ptb; /* PFN of current level 1 page table */
215 u_long bim; /* bootinfo magic */
216 u_long bip; /* bootinfo pointer */
217 u_long biv; /* bootinfo version */
218 {
219 extern char kernel_text[], _end[];
220 struct mddt *mddtp;
221 struct mddt_cluster *memc;
222 int i, mddtweird;
223 struct vm_physseg *vps;
224 vaddr_t kernstart, kernend;
225 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
226 cpuid_t cpu_id;
227 struct cpu_info *ci;
228 char *p;
229 const char *bootinfo_msg;
230 const struct cpuinit *c;
231
232 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
233
234 /*
235 * Turn off interrupts (not mchecks) and floating point.
236 * Make sure the instruction and data streams are consistent.
237 */
238 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
239 alpha_pal_wrfen(0);
240 ALPHA_TBIA();
241 alpha_pal_imb();
242
243 /* Initialize the SCB. */
244 scb_init();
245
246 cpu_id = cpu_number();
247
248 #if defined(MULTIPROCESSOR)
249 /*
250 * Set our SysValue to the address of our cpu_info structure.
251 * Secondary processors do this in their spinup trampoline.
252 */
253 alpha_pal_wrval((u_long)&cpu_info_primary);
254 cpu_info[cpu_id] = &cpu_info_primary;
255 #endif
256
257 ci = curcpu();
258 ci->ci_cpuid = cpu_id;
259
260 /*
261 * Get critical system information (if possible, from the
262 * information provided by the boot program).
263 */
264 bootinfo_msg = NULL;
265 if (bim == BOOTINFO_MAGIC) {
266 if (biv == 0) { /* backward compat */
267 biv = *(u_long *)bip;
268 bip += 8;
269 }
270 switch (biv) {
271 case 1: {
272 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
273
274 bootinfo.ssym = v1p->ssym;
275 bootinfo.esym = v1p->esym;
276 /* hwrpb may not be provided by boot block in v1 */
277 if (v1p->hwrpb != NULL) {
278 bootinfo.hwrpb_phys =
279 ((struct rpb *)v1p->hwrpb)->rpb_phys;
280 bootinfo.hwrpb_size = v1p->hwrpbsize;
281 } else {
282 bootinfo.hwrpb_phys =
283 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
284 bootinfo.hwrpb_size =
285 ((struct rpb *)HWRPB_ADDR)->rpb_size;
286 }
287 memcpy(bootinfo.boot_flags, v1p->boot_flags,
288 min(sizeof v1p->boot_flags,
289 sizeof bootinfo.boot_flags));
290 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
291 min(sizeof v1p->booted_kernel,
292 sizeof bootinfo.booted_kernel));
293 /* booted dev not provided in bootinfo */
294 init_prom_interface((struct rpb *)
295 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
296 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
297 sizeof bootinfo.booted_dev);
298 break;
299 }
300 default:
301 bootinfo_msg = "unknown bootinfo version";
302 goto nobootinfo;
303 }
304 } else {
305 bootinfo_msg = "boot program did not pass bootinfo";
306 nobootinfo:
307 bootinfo.ssym = (u_long)_end;
308 bootinfo.esym = (u_long)_end;
309 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
310 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
311 init_prom_interface((struct rpb *)HWRPB_ADDR);
312 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
313 sizeof bootinfo.boot_flags);
314 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
315 sizeof bootinfo.booted_kernel);
316 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
317 sizeof bootinfo.booted_dev);
318 }
319
320 /*
321 * Initialize the kernel's mapping of the RPB. It's needed for
322 * lots of things.
323 */
324 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
325
326 #if defined(DEC_3000_300) || defined(DEC_3000_500)
327 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
328 hwrpb->rpb_type == ST_DEC_3000_500) {
329 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
330 sizeof(dec_3000_scsiid));
331 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
332 sizeof(dec_3000_scsifast));
333 }
334 #endif
335
336 /*
337 * Remember how many cycles there are per microsecond,
338 * so that we can use delay(). Round up, for safety.
339 */
340 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
341
342 /*
343 * Initialize the (temporary) bootstrap console interface, so
344 * we can use printf until the VM system starts being setup.
345 * The real console is initialized before then.
346 */
347 init_bootstrap_console();
348
349 /* OUTPUT NOW ALLOWED */
350
351 /* delayed from above */
352 if (bootinfo_msg)
353 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
354 bootinfo_msg, bim, bip, biv);
355
356 /* Initialize the trap vectors on the primary processor. */
357 trap_init();
358
359 /*
360 * Find out this system's page size, and initialize
361 * PAGE_SIZE-dependent variables.
362 */
363 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
364 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
365 ALPHA_PGBYTES);
366 uvmexp.pagesize = hwrpb->rpb_page_size;
367 uvm_setpagesize();
368
369 /*
370 * Find out what hardware we're on, and do basic initialization.
371 */
372 cputype = hwrpb->rpb_type;
373 if (cputype < 0) {
374 /*
375 * At least some white-box systems have SRM which
376 * reports a systype that's the negative of their
377 * blue-box counterpart.
378 */
379 cputype = -cputype;
380 }
381 c = platform_lookup(cputype);
382 if (c == NULL) {
383 platform_not_supported();
384 /* NOTREACHED */
385 }
386 (*c->init)();
387 strcpy(cpu_model, platform.model);
388
389 /*
390 * Initialize the real console, so that the bootstrap console is
391 * no longer necessary.
392 */
393 (*platform.cons_init)();
394
395 #ifdef DIAGNOSTIC
396 /* Paranoid sanity checking */
397
398 /* We should always be running on the primary. */
399 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
400
401 /*
402 * On single-CPU systypes, the primary should always be CPU 0,
403 * except on Alpha 8200 systems where the CPU id is related
404 * to the VID, which is related to the Turbo Laser node id.
405 */
406 if (cputype != ST_DEC_21000)
407 assert(hwrpb->rpb_primary_cpu_id == 0);
408 #endif
409
410 /* NO MORE FIRMWARE ACCESS ALLOWED */
411 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
412 /*
413 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
414 * XXX pmap_uses_prom_console() evaluates to non-zero.)
415 */
416 #endif
417
418 /*
419 * Find the beginning and end of the kernel (and leave a
420 * bit of space before the beginning for the bootstrap
421 * stack).
422 */
423 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
424 #if NKSYMS || defined(DDB) || defined(MODULAR)
425 ksym_start = (void *)bootinfo.ssym;
426 ksym_end = (void *)bootinfo.esym;
427 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
428 #else
429 kernend = (vaddr_t)round_page((vaddr_t)_end);
430 #endif
431
432 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
433 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
434
435 /*
436 * Find out how much memory is available, by looking at
437 * the memory cluster descriptors. This also tries to do
438 * its best to detect things things that have never been seen
439 * before...
440 */
441 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
442
443 /* MDDT SANITY CHECKING */
444 mddtweird = 0;
445 if (mddtp->mddt_cluster_cnt < 2) {
446 mddtweird = 1;
447 printf("WARNING: weird number of mem clusters: %lu\n",
448 mddtp->mddt_cluster_cnt);
449 }
450
451 #if 0
452 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
453 #endif
454
455 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
456 memc = &mddtp->mddt_clusters[i];
457 #if 0
458 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
459 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
460 #endif
461 totalphysmem += memc->mddt_pg_cnt;
462 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
463 mem_clusters[mem_cluster_cnt].start =
464 ptoa(memc->mddt_pfn);
465 mem_clusters[mem_cluster_cnt].size =
466 ptoa(memc->mddt_pg_cnt);
467 if (memc->mddt_usage & MDDT_mbz ||
468 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
469 memc->mddt_usage & MDDT_PALCODE)
470 mem_clusters[mem_cluster_cnt].size |=
471 PROT_READ;
472 else
473 mem_clusters[mem_cluster_cnt].size |=
474 PROT_READ | PROT_WRITE | PROT_EXEC;
475 mem_cluster_cnt++;
476 }
477
478 if (memc->mddt_usage & MDDT_mbz) {
479 mddtweird = 1;
480 printf("WARNING: mem cluster %d has weird "
481 "usage 0x%lx\n", i, memc->mddt_usage);
482 unknownmem += memc->mddt_pg_cnt;
483 continue;
484 }
485 if (memc->mddt_usage & MDDT_NONVOLATILE) {
486 /* XXX should handle these... */
487 printf("WARNING: skipping non-volatile mem "
488 "cluster %d\n", i);
489 unusedmem += memc->mddt_pg_cnt;
490 continue;
491 }
492 if (memc->mddt_usage & MDDT_PALCODE) {
493 resvmem += memc->mddt_pg_cnt;
494 continue;
495 }
496
497 /*
498 * We have a memory cluster available for system
499 * software use. We must determine if this cluster
500 * holds the kernel.
501 */
502 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
503 /*
504 * XXX If the kernel uses the PROM console, we only use the
505 * XXX memory after the kernel in the first system segment,
506 * XXX to avoid clobbering prom mapping, data, etc.
507 */
508 if (!pmap_uses_prom_console() || physmem == 0) {
509 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
510 physmem += memc->mddt_pg_cnt;
511 pfn0 = memc->mddt_pfn;
512 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
513 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
514 /*
515 * Must compute the location of the kernel
516 * within the segment.
517 */
518 #if 0
519 printf("Cluster %d contains kernel\n", i);
520 #endif
521 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
522 if (!pmap_uses_prom_console()) {
523 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
524 if (pfn0 < kernstartpfn) {
525 /*
526 * There is a chunk before the kernel.
527 */
528 #if 0
529 printf("Loading chunk before kernel: "
530 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
531 #endif
532 uvm_page_physload(pfn0, kernstartpfn,
533 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
534 }
535 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
536 }
537 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
538 if (kernendpfn < pfn1) {
539 /*
540 * There is a chunk after the kernel.
541 */
542 #if 0
543 printf("Loading chunk after kernel: "
544 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
545 #endif
546 uvm_page_physload(kernendpfn, pfn1,
547 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
548 }
549 } else {
550 /*
551 * Just load this cluster as one chunk.
552 */
553 #if 0
554 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
555 pfn0, pfn1);
556 #endif
557 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
558 VM_FREELIST_DEFAULT);
559 }
560 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
561 }
562 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
563 }
564
565 /*
566 * Dump out the MDDT if it looks odd...
567 */
568 if (mddtweird) {
569 printf("\n");
570 printf("complete memory cluster information:\n");
571 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
572 printf("mddt %d:\n", i);
573 printf("\tpfn %lx\n",
574 mddtp->mddt_clusters[i].mddt_pfn);
575 printf("\tcnt %lx\n",
576 mddtp->mddt_clusters[i].mddt_pg_cnt);
577 printf("\ttest %lx\n",
578 mddtp->mddt_clusters[i].mddt_pg_test);
579 printf("\tbva %lx\n",
580 mddtp->mddt_clusters[i].mddt_v_bitaddr);
581 printf("\tbpa %lx\n",
582 mddtp->mddt_clusters[i].mddt_p_bitaddr);
583 printf("\tbcksum %lx\n",
584 mddtp->mddt_clusters[i].mddt_bit_cksum);
585 printf("\tusage %lx\n",
586 mddtp->mddt_clusters[i].mddt_usage);
587 }
588 printf("\n");
589 }
590
591 if (totalphysmem == 0)
592 panic("can't happen: system seems to have no memory!");
593 maxmem = physmem;
594 #if 0
595 printf("totalphysmem = %d\n", totalphysmem);
596 printf("physmem = %d\n", physmem);
597 printf("resvmem = %d\n", resvmem);
598 printf("unusedmem = %d\n", unusedmem);
599 printf("unknownmem = %d\n", unknownmem);
600 #endif
601
602 /*
603 * Initialize error message buffer (at end of core).
604 */
605 {
606 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
607 vsize_t reqsz = sz;
608
609 vps = &vm_physmem[vm_nphysseg - 1];
610
611 /* shrink so that it'll fit in the last segment */
612 if ((vps->avail_end - vps->avail_start) < atop(sz))
613 sz = ptoa(vps->avail_end - vps->avail_start);
614
615 vps->end -= atop(sz);
616 vps->avail_end -= atop(sz);
617 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
618 initmsgbuf(msgbufaddr, sz);
619
620 /* Remove the last segment if it now has no pages. */
621 if (vps->start == vps->end)
622 vm_nphysseg--;
623
624 /* warn if the message buffer had to be shrunk */
625 if (sz != reqsz)
626 printf("WARNING: %ld bytes not available for msgbuf "
627 "in last cluster (%ld used)\n", reqsz, sz);
628
629 }
630
631 /*
632 * NOTE: It is safe to use uvm_pageboot_alloc() before
633 * pmap_bootstrap() because our pmap_virtual_space()
634 * returns compile-time constants.
635 */
636
637 /*
638 * Init mapping for u page(s) for proc 0
639 */
640 lwp0.l_addr = proc0paddr =
641 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
642
643 /*
644 * Initialize the virtual memory system, and set the
645 * page table base register in proc 0's PCB.
646 */
647 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
648 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
649
650 /*
651 * Initialize the rest of proc 0's PCB, and cache its physical
652 * address.
653 */
654 lwp0.l_md.md_pcbpaddr =
655 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
656
657 /*
658 * Set the kernel sp, reserving space for an (empty) trapframe,
659 * and make proc0's trapframe pointer point to it for sanity.
660 */
661 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
662 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
663 lwp0.l_md.md_tf =
664 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
665 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
666
667 /* Indicate that proc0 has a CPU. */
668 lwp0.l_cpu = ci;
669
670 /*
671 * Look at arguments passed to us and compute boothowto.
672 */
673
674 boothowto = RB_SINGLE;
675 #ifdef KADB
676 boothowto |= RB_KDB;
677 #endif
678 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
679 /*
680 * Note that we'd really like to differentiate case here,
681 * but the Alpha AXP Architecture Reference Manual
682 * says that we shouldn't.
683 */
684 switch (*p) {
685 case 'a': /* autoboot */
686 case 'A':
687 boothowto &= ~RB_SINGLE;
688 break;
689
690 #ifdef DEBUG
691 case 'c': /* crash dump immediately after autoconfig */
692 case 'C':
693 boothowto |= RB_DUMP;
694 break;
695 #endif
696
697 #if defined(KGDB) || defined(DDB)
698 case 'd': /* break into the kernel debugger ASAP */
699 case 'D':
700 boothowto |= RB_KDB;
701 break;
702 #endif
703
704 case 'h': /* always halt, never reboot */
705 case 'H':
706 boothowto |= RB_HALT;
707 break;
708
709 #if 0
710 case 'm': /* mini root present in memory */
711 case 'M':
712 boothowto |= RB_MINIROOT;
713 break;
714 #endif
715
716 case 'n': /* askname */
717 case 'N':
718 boothowto |= RB_ASKNAME;
719 break;
720
721 case 's': /* single-user (default, supported for sanity) */
722 case 'S':
723 boothowto |= RB_SINGLE;
724 break;
725
726 case 'q': /* quiet boot */
727 case 'Q':
728 boothowto |= AB_QUIET;
729 break;
730
731 case 'v': /* verbose boot */
732 case 'V':
733 boothowto |= AB_VERBOSE;
734 break;
735
736 case '-':
737 /*
738 * Just ignore this. It's not required, but it's
739 * common for it to be passed regardless.
740 */
741 break;
742
743 default:
744 printf("Unrecognized boot flag '%c'.\n", *p);
745 break;
746 }
747 }
748
749 /*
750 * Perform any initial kernel patches based on the running system.
751 * We may perform more later if we attach additional CPUs.
752 */
753 alpha_patch(false);
754
755 /*
756 * Figure out the number of CPUs in the box, from RPB fields.
757 * Really. We mean it.
758 */
759 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
760 struct pcs *pcsp;
761
762 pcsp = LOCATE_PCS(hwrpb, i);
763 if ((pcsp->pcs_flags & PCS_PP) != 0)
764 ncpus++;
765 }
766
767 /*
768 * Initialize debuggers, and break into them if appropriate.
769 */
770 #if NKSYMS || defined(DDB) || defined(MODULAR)
771 ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
772 ksym_start, ksym_end);
773 #endif
774
775 if (boothowto & RB_KDB) {
776 #if defined(KGDB)
777 kgdb_debug_init = 1;
778 kgdb_connect(1);
779 #elif defined(DDB)
780 Debugger();
781 #endif
782 }
783
784 #ifdef DIAGNOSTIC
785 /*
786 * Check our clock frequency, from RPB fields.
787 */
788 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
789 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
790 hwrpb->rpb_intr_freq, hz);
791 #endif
792 }
793
794 void
795 consinit()
796 {
797
798 /*
799 * Everything related to console initialization is done
800 * in alpha_init().
801 */
802 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
803 printf("consinit: %susing prom console\n",
804 pmap_uses_prom_console() ? "" : "not ");
805 #endif
806 }
807
808 void
809 cpu_startup()
810 {
811 vaddr_t minaddr, maxaddr;
812 char pbuf[9];
813 #if defined(DEBUG)
814 extern int pmapdebug;
815 int opmapdebug = pmapdebug;
816
817 pmapdebug = 0;
818 #endif
819
820 /*
821 * Good {morning,afternoon,evening,night}.
822 */
823 printf("%s%s", copyright, version);
824 identifycpu();
825 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
826 printf("total memory = %s\n", pbuf);
827 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
828 printf("(%s reserved for PROM, ", pbuf);
829 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
830 printf("%s used by NetBSD)\n", pbuf);
831 if (unusedmem) {
832 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
833 printf("WARNING: unused memory = %s\n", pbuf);
834 }
835 if (unknownmem) {
836 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
837 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
838 }
839
840 minaddr = 0;
841
842 /*
843 * Allocate a submap for physio
844 */
845 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
846 VM_PHYS_SIZE, 0, false, NULL);
847
848 /*
849 * No need to allocate an mbuf cluster submap. Mbuf clusters
850 * are allocated via the pool allocator, and we use K0SEG to
851 * map those pages.
852 */
853
854 #if defined(DEBUG)
855 pmapdebug = opmapdebug;
856 #endif
857 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
858 printf("avail memory = %s\n", pbuf);
859 #if 0
860 {
861 extern u_long pmap_pages_stolen;
862
863 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
864 printf("stolen memory for VM structures = %s\n", pbuf);
865 }
866 #endif
867
868 /*
869 * Set up the HWPCB so that it's safe to configure secondary
870 * CPUs.
871 */
872 hwrpb_primary_init();
873 }
874
875 /*
876 * Retrieve the platform name from the DSR.
877 */
878 const char *
879 alpha_dsr_sysname()
880 {
881 struct dsrdb *dsr;
882 const char *sysname;
883
884 /*
885 * DSR does not exist on early HWRPB versions.
886 */
887 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
888 return (NULL);
889
890 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
891 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
892 sizeof(u_int64_t)));
893 return (sysname);
894 }
895
896 /*
897 * Lookup the system specified system variation in the provided table,
898 * returning the model string on match.
899 */
900 const char *
901 alpha_variation_name(variation, avtp)
902 u_int64_t variation;
903 const struct alpha_variation_table *avtp;
904 {
905 int i;
906
907 for (i = 0; avtp[i].avt_model != NULL; i++)
908 if (avtp[i].avt_variation == variation)
909 return (avtp[i].avt_model);
910 return (NULL);
911 }
912
913 /*
914 * Generate a default platform name based for unknown system variations.
915 */
916 const char *
917 alpha_unknown_sysname()
918 {
919 static char s[128]; /* safe size */
920
921 sprintf(s, "%s family, unknown model variation 0x%lx",
922 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
923 return ((const char *)s);
924 }
925
926 void
927 identifycpu()
928 {
929 char *s;
930 int i;
931
932 /*
933 * print out CPU identification information.
934 */
935 printf("%s", cpu_model);
936 for(s = cpu_model; *s; ++s)
937 if(strncasecmp(s, "MHz", 3) == 0)
938 goto skipMHz;
939 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
940 skipMHz:
941 printf(", s/n ");
942 for (i = 0; i < 10; i++)
943 printf("%c", hwrpb->rpb_ssn[i]);
944 printf("\n");
945 printf("%ld byte page size, %d processor%s.\n",
946 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
947 #if 0
948 /* this isn't defined for any systems that we run on? */
949 printf("serial number 0x%lx 0x%lx\n",
950 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
951
952 /* and these aren't particularly useful! */
953 printf("variation: 0x%lx, revision 0x%lx\n",
954 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
955 #endif
956 }
957
958 int waittime = -1;
959 struct pcb dumppcb;
960
961 void
962 cpu_reboot(howto, bootstr)
963 int howto;
964 char *bootstr;
965 {
966 #if defined(MULTIPROCESSOR)
967 u_long cpu_id = cpu_number();
968 u_long wait_mask = (1UL << cpu_id) |
969 (1UL << hwrpb->rpb_primary_cpu_id);
970 int i;
971 #endif
972
973 /* If "always halt" was specified as a boot flag, obey. */
974 if ((boothowto & RB_HALT) != 0)
975 howto |= RB_HALT;
976
977 boothowto = howto;
978
979 /* If system is cold, just halt. */
980 if (cold) {
981 boothowto |= RB_HALT;
982 goto haltsys;
983 }
984
985 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
986 waittime = 0;
987 vfs_shutdown();
988 /*
989 * If we've been adjusting the clock, the todr
990 * will be out of synch; adjust it now.
991 */
992 resettodr();
993 }
994
995 /* Disable interrupts. */
996 splhigh();
997
998 #if defined(MULTIPROCESSOR)
999 /*
1000 * Halt all other CPUs. If we're not the primary, the
1001 * primary will spin, waiting for us to halt.
1002 */
1003 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1004
1005 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1006 cpus_paused = 0;
1007
1008 for (i = 0; i < 10000; i++) {
1009 alpha_mb();
1010 if (cpus_running == wait_mask)
1011 break;
1012 delay(1000);
1013 }
1014 alpha_mb();
1015 if (cpus_running != wait_mask)
1016 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1017 cpus_running);
1018 #endif /* MULTIPROCESSOR */
1019
1020 /* If rebooting and a dump is requested do it. */
1021 #if 0
1022 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1023 #else
1024 if (boothowto & RB_DUMP)
1025 #endif
1026 dumpsys();
1027
1028 haltsys:
1029
1030 /* run any shutdown hooks */
1031 doshutdownhooks();
1032
1033 pmf_system_shutdown(boothowto);
1034
1035 #ifdef BOOTKEY
1036 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1037 cnpollc(1); /* for proper keyboard command handling */
1038 cngetc();
1039 cnpollc(0);
1040 printf("\n");
1041 #endif
1042
1043 /* Finally, powerdown/halt/reboot the system. */
1044 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1045 platform.powerdown != NULL) {
1046 (*platform.powerdown)();
1047 printf("WARNING: powerdown failed!\n");
1048 }
1049 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1050 #if defined(MULTIPROCESSOR)
1051 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1052 cpu_halt();
1053 else
1054 #endif
1055 prom_halt(boothowto & RB_HALT);
1056 /*NOTREACHED*/
1057 }
1058
1059 /*
1060 * These variables are needed by /sbin/savecore
1061 */
1062 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1063 int dumpsize = 0; /* pages */
1064 long dumplo = 0; /* blocks */
1065
1066 /*
1067 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1068 */
1069 int
1070 cpu_dumpsize()
1071 {
1072 int size;
1073
1074 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1075 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1076 if (roundup(size, dbtob(1)) != dbtob(1))
1077 return -1;
1078
1079 return (1);
1080 }
1081
1082 /*
1083 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1084 */
1085 u_long
1086 cpu_dump_mempagecnt()
1087 {
1088 u_long i, n;
1089
1090 n = 0;
1091 for (i = 0; i < mem_cluster_cnt; i++)
1092 n += atop(mem_clusters[i].size);
1093 return (n);
1094 }
1095
1096 /*
1097 * cpu_dump: dump machine-dependent kernel core dump headers.
1098 */
1099 int
1100 cpu_dump()
1101 {
1102 int (*dump) __P((dev_t, daddr_t, void *, size_t));
1103 char buf[dbtob(1)];
1104 kcore_seg_t *segp;
1105 cpu_kcore_hdr_t *cpuhdrp;
1106 phys_ram_seg_t *memsegp;
1107 const struct bdevsw *bdev;
1108 int i;
1109
1110 bdev = bdevsw_lookup(dumpdev);
1111 if (bdev == NULL)
1112 return (ENXIO);
1113 dump = bdev->d_dump;
1114
1115 memset(buf, 0, sizeof buf);
1116 segp = (kcore_seg_t *)buf;
1117 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1118 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1119 ALIGN(sizeof(*cpuhdrp))];
1120
1121 /*
1122 * Generate a segment header.
1123 */
1124 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1125 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1126
1127 /*
1128 * Add the machine-dependent header info.
1129 */
1130 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1131 cpuhdrp->page_size = PAGE_SIZE;
1132 cpuhdrp->nmemsegs = mem_cluster_cnt;
1133
1134 /*
1135 * Fill in the memory segment descriptors.
1136 */
1137 for (i = 0; i < mem_cluster_cnt; i++) {
1138 memsegp[i].start = mem_clusters[i].start;
1139 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1140 }
1141
1142 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1143 }
1144
1145 /*
1146 * This is called by main to set dumplo and dumpsize.
1147 * Dumps always skip the first PAGE_SIZE of disk space
1148 * in case there might be a disk label stored there.
1149 * If there is extra space, put dump at the end to
1150 * reduce the chance that swapping trashes it.
1151 */
1152 void
1153 cpu_dumpconf()
1154 {
1155 const struct bdevsw *bdev;
1156 int nblks, dumpblks; /* size of dump area */
1157
1158 if (dumpdev == NODEV)
1159 goto bad;
1160 bdev = bdevsw_lookup(dumpdev);
1161 if (bdev == NULL) {
1162 dumpdev = NODEV;
1163 goto bad;
1164 }
1165 if (bdev->d_psize == NULL)
1166 goto bad;
1167 nblks = (*bdev->d_psize)(dumpdev);
1168 if (nblks <= ctod(1))
1169 goto bad;
1170
1171 dumpblks = cpu_dumpsize();
1172 if (dumpblks < 0)
1173 goto bad;
1174 dumpblks += ctod(cpu_dump_mempagecnt());
1175
1176 /* If dump won't fit (incl. room for possible label), punt. */
1177 if (dumpblks > (nblks - ctod(1)))
1178 goto bad;
1179
1180 /* Put dump at end of partition */
1181 dumplo = nblks - dumpblks;
1182
1183 /* dumpsize is in page units, and doesn't include headers. */
1184 dumpsize = cpu_dump_mempagecnt();
1185 return;
1186
1187 bad:
1188 dumpsize = 0;
1189 return;
1190 }
1191
1192 /*
1193 * Dump the kernel's image to the swap partition.
1194 */
1195 #define BYTES_PER_DUMP PAGE_SIZE
1196
1197 void
1198 dumpsys()
1199 {
1200 const struct bdevsw *bdev;
1201 u_long totalbytesleft, bytes, i, n, memcl;
1202 u_long maddr;
1203 int psize;
1204 daddr_t blkno;
1205 int (*dump) __P((dev_t, daddr_t, void *, size_t));
1206 int error;
1207
1208 /* Save registers. */
1209 savectx(&dumppcb);
1210
1211 if (dumpdev == NODEV)
1212 return;
1213 bdev = bdevsw_lookup(dumpdev);
1214 if (bdev == NULL || bdev->d_psize == NULL)
1215 return;
1216
1217 /*
1218 * For dumps during autoconfiguration,
1219 * if dump device has already configured...
1220 */
1221 if (dumpsize == 0)
1222 cpu_dumpconf();
1223 if (dumplo <= 0) {
1224 printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1225 minor(dumpdev));
1226 return;
1227 }
1228 printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1229 minor(dumpdev), dumplo);
1230
1231 psize = (*bdev->d_psize)(dumpdev);
1232 printf("dump ");
1233 if (psize == -1) {
1234 printf("area unavailable\n");
1235 return;
1236 }
1237
1238 /* XXX should purge all outstanding keystrokes. */
1239
1240 if ((error = cpu_dump()) != 0)
1241 goto err;
1242
1243 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1244 blkno = dumplo + cpu_dumpsize();
1245 dump = bdev->d_dump;
1246 error = 0;
1247
1248 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1249 maddr = mem_clusters[memcl].start;
1250 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1251
1252 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1253
1254 /* Print out how many MBs we to go. */
1255 if ((totalbytesleft % (1024*1024)) == 0)
1256 printf("%ld ", totalbytesleft / (1024 * 1024));
1257
1258 /* Limit size for next transfer. */
1259 n = bytes - i;
1260 if (n > BYTES_PER_DUMP)
1261 n = BYTES_PER_DUMP;
1262
1263 error = (*dump)(dumpdev, blkno,
1264 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1265 if (error)
1266 goto err;
1267 maddr += n;
1268 blkno += btodb(n); /* XXX? */
1269
1270 /* XXX should look for keystrokes, to cancel. */
1271 }
1272 }
1273
1274 err:
1275 switch (error) {
1276
1277 case ENXIO:
1278 printf("device bad\n");
1279 break;
1280
1281 case EFAULT:
1282 printf("device not ready\n");
1283 break;
1284
1285 case EINVAL:
1286 printf("area improper\n");
1287 break;
1288
1289 case EIO:
1290 printf("i/o error\n");
1291 break;
1292
1293 case EINTR:
1294 printf("aborted from console\n");
1295 break;
1296
1297 case 0:
1298 printf("succeeded\n");
1299 break;
1300
1301 default:
1302 printf("error %d\n", error);
1303 break;
1304 }
1305 printf("\n\n");
1306 delay(1000);
1307 }
1308
1309 void
1310 frametoreg(framep, regp)
1311 const struct trapframe *framep;
1312 struct reg *regp;
1313 {
1314
1315 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1316 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1317 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1318 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1319 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1320 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1321 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1322 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1323 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1324 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1325 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1326 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1327 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1328 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1329 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1330 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1331 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1332 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1333 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1334 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1335 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1336 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1337 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1338 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1339 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1340 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1341 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1342 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1343 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1344 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1345 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1346 regp->r_regs[R_ZERO] = 0;
1347 }
1348
1349 void
1350 regtoframe(regp, framep)
1351 const struct reg *regp;
1352 struct trapframe *framep;
1353 {
1354
1355 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1356 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1357 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1358 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1359 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1360 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1361 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1362 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1363 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1364 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1365 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1366 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1367 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1368 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1369 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1370 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1371 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1372 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1373 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1374 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1375 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1376 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1377 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1378 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1379 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1380 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1381 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1382 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1383 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1384 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1385 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1386 /* ??? = regp->r_regs[R_ZERO]; */
1387 }
1388
1389 void
1390 printregs(regp)
1391 struct reg *regp;
1392 {
1393 int i;
1394
1395 for (i = 0; i < 32; i++)
1396 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1397 i & 1 ? "\n" : "\t");
1398 }
1399
1400 void
1401 regdump(framep)
1402 struct trapframe *framep;
1403 {
1404 struct reg reg;
1405
1406 frametoreg(framep, ®);
1407 reg.r_regs[R_SP] = alpha_pal_rdusp();
1408
1409 printf("REGISTERS:\n");
1410 printregs(®);
1411 }
1412
1413
1414
1415 void *
1416 getframe(const struct lwp *l, int sig, int *onstack)
1417 {
1418 void *frame;
1419
1420 /* Do we need to jump onto the signal stack? */
1421 *onstack =
1422 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1423 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1424
1425 if (*onstack)
1426 frame = (void *)((char *)l->l_sigstk.ss_sp +
1427 l->l_sigstk.ss_size);
1428 else
1429 frame = (void *)(alpha_pal_rdusp());
1430 return (frame);
1431 }
1432
1433 void
1434 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1435 {
1436 struct trapframe *tf = l->l_md.md_tf;
1437
1438 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1439 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1440 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1441 alpha_pal_wrusp((unsigned long)fp);
1442 }
1443
1444
1445 /*
1446 * Send an interrupt to process, new style
1447 */
1448 void
1449 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1450 {
1451 struct lwp *l = curlwp;
1452 struct proc *p = l->l_proc;
1453 struct sigacts *ps = p->p_sigacts;
1454 int onstack, sig = ksi->ksi_signo, error;
1455 struct sigframe_siginfo *fp, frame;
1456 struct trapframe *tf;
1457 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1458
1459 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1460 tf = l->l_md.md_tf;
1461
1462 /* Allocate space for the signal handler context. */
1463 fp--;
1464
1465 /* Build stack frame for signal trampoline. */
1466 switch (ps->sa_sigdesc[sig].sd_vers) {
1467 case 0: /* handled by sendsig_sigcontext */
1468 case 1: /* handled by sendsig_sigcontext */
1469 default: /* unknown version */
1470 printf("nsendsig: bad version %d\n",
1471 ps->sa_sigdesc[sig].sd_vers);
1472 sigexit(l, SIGILL);
1473 case 2:
1474 break;
1475 }
1476
1477 #ifdef DEBUG
1478 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1479 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1480 sig, &onstack, fp);
1481 #endif
1482
1483 /* Build stack frame for signal trampoline. */
1484
1485 frame.sf_si._info = ksi->ksi_info;
1486 frame.sf_uc.uc_flags = _UC_SIGMASK;
1487 frame.sf_uc.uc_sigmask = *mask;
1488 frame.sf_uc.uc_link = l->l_ctxlink;
1489 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1490 sendsig_reset(l, sig);
1491 mutex_exit(p->p_lock);
1492 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1493 error = copyout(&frame, fp, sizeof(frame));
1494 mutex_enter(p->p_lock);
1495
1496 if (error != 0) {
1497 /*
1498 * Process has trashed its stack; give it an illegal
1499 * instruction to halt it in its tracks.
1500 */
1501 #ifdef DEBUG
1502 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1503 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1504 p->p_pid, sig);
1505 #endif
1506 sigexit(l, SIGILL);
1507 /* NOTREACHED */
1508 }
1509
1510 #ifdef DEBUG
1511 if (sigdebug & SDB_FOLLOW)
1512 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1513 p->p_pid, sig, fp, ksi->ksi_code);
1514 #endif
1515
1516 /*
1517 * Set up the registers to directly invoke the signal handler. The
1518 * signal trampoline is then used to return from the signal. Note
1519 * the trampoline version numbers are coordinated with machine-
1520 * dependent code in libc.
1521 */
1522
1523 tf->tf_regs[FRAME_A0] = sig;
1524 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1525 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1526
1527 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1528
1529 /* Remember that we're now on the signal stack. */
1530 if (onstack)
1531 l->l_sigstk.ss_flags |= SS_ONSTACK;
1532
1533 #ifdef DEBUG
1534 if (sigdebug & SDB_FOLLOW)
1535 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1536 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1537 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1538 printf("sendsig_siginfo(%d): sig %d returns\n",
1539 p->p_pid, sig);
1540 #endif
1541 }
1542
1543
1544 void
1545 sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
1546 {
1547 #ifdef COMPAT_16
1548 if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) {
1549 sendsig_sigcontext(ksi, mask);
1550 } else {
1551 #endif
1552 #ifdef DEBUG
1553 if (sigdebug & SDB_FOLLOW)
1554 printf("sendsig: sendsig called: sig %d vers %d\n",
1555 ksi->ksi_signo,
1556 curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers);
1557 #endif
1558 sendsig_siginfo(ksi, mask);
1559 #ifdef COMPAT_16
1560 }
1561 #endif
1562 }
1563
1564 void
1565 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1566 {
1567 struct trapframe *tf;
1568
1569 tf = l->l_md.md_tf;
1570
1571 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1572 tf->tf_regs[FRAME_RA] = 0;
1573 tf->tf_regs[FRAME_A0] = type;
1574 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1575 tf->tf_regs[FRAME_A2] = nevents;
1576 tf->tf_regs[FRAME_A3] = ninterrupted;
1577 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1578 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1579 alpha_pal_wrusp((unsigned long)sp);
1580 }
1581
1582 /*
1583 * machine dependent system variables.
1584 */
1585 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1586 {
1587
1588 sysctl_createv(clog, 0, NULL, NULL,
1589 CTLFLAG_PERMANENT,
1590 CTLTYPE_NODE, "machdep", NULL,
1591 NULL, 0, NULL, 0,
1592 CTL_MACHDEP, CTL_EOL);
1593
1594 sysctl_createv(clog, 0, NULL, NULL,
1595 CTLFLAG_PERMANENT,
1596 CTLTYPE_STRUCT, "console_device", NULL,
1597 sysctl_consdev, 0, NULL, sizeof(dev_t),
1598 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1599 sysctl_createv(clog, 0, NULL, NULL,
1600 CTLFLAG_PERMANENT,
1601 CTLTYPE_STRING, "root_device", NULL,
1602 sysctl_root_device, 0, NULL, 0,
1603 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1604 sysctl_createv(clog, 0, NULL, NULL,
1605 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1606 CTLTYPE_INT, "unaligned_print", NULL,
1607 NULL, 0, &alpha_unaligned_print, 0,
1608 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1609 sysctl_createv(clog, 0, NULL, NULL,
1610 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1611 CTLTYPE_INT, "unaligned_fix", NULL,
1612 NULL, 0, &alpha_unaligned_fix, 0,
1613 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1614 sysctl_createv(clog, 0, NULL, NULL,
1615 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1616 CTLTYPE_INT, "unaligned_sigbus", NULL,
1617 NULL, 0, &alpha_unaligned_sigbus, 0,
1618 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1619 sysctl_createv(clog, 0, NULL, NULL,
1620 CTLFLAG_PERMANENT,
1621 CTLTYPE_STRING, "booted_kernel", NULL,
1622 NULL, 0, bootinfo.booted_kernel, 0,
1623 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1624 sysctl_createv(clog, 0, NULL, NULL,
1625 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1626 CTLTYPE_INT, "fp_sync_complete", NULL,
1627 NULL, 0, &alpha_fp_sync_complete, 0,
1628 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1629 }
1630
1631 /*
1632 * Set registers on exec.
1633 */
1634 void
1635 setregs(l, pack, stack)
1636 register struct lwp *l;
1637 struct exec_package *pack;
1638 u_long stack;
1639 {
1640 struct trapframe *tfp = l->l_md.md_tf;
1641 #ifdef DEBUG
1642 int i;
1643 #endif
1644
1645 #ifdef DEBUG
1646 /*
1647 * Crash and dump, if the user requested it.
1648 */
1649 if (boothowto & RB_DUMP)
1650 panic("crash requested by boot flags");
1651 #endif
1652
1653 #ifdef DEBUG
1654 for (i = 0; i < FRAME_SIZE; i++)
1655 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1656 #else
1657 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1658 #endif
1659 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1660 alpha_pal_wrusp(stack);
1661 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1662 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1663
1664 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1665 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1666 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1667 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1668 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1669
1670 l->l_md.md_flags &= ~MDP_FPUSED;
1671 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1672 l->l_md.md_flags &= ~MDP_FP_C;
1673 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1674 }
1675 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1676 fpusave_proc(l, 0);
1677 }
1678
1679 /*
1680 * Release the FPU.
1681 */
1682 void
1683 fpusave_cpu(struct cpu_info *ci, int save)
1684 {
1685 struct lwp *l;
1686 #if defined(MULTIPROCESSOR)
1687 int s;
1688 #endif
1689
1690 KDASSERT(ci == curcpu());
1691
1692 #if defined(MULTIPROCESSOR)
1693 s = splhigh(); /* block IPIs for the duration */
1694 atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1695 #endif
1696
1697 l = ci->ci_fpcurlwp;
1698 if (l == NULL)
1699 goto out;
1700
1701 if (save) {
1702 alpha_pal_wrfen(1);
1703 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1704 }
1705
1706 alpha_pal_wrfen(0);
1707
1708 FPCPU_LOCK(&l->l_addr->u_pcb);
1709
1710 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1711 ci->ci_fpcurlwp = NULL;
1712
1713 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1714
1715 out:
1716 #if defined(MULTIPROCESSOR)
1717 atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1718 splx(s);
1719 #endif
1720 return;
1721 }
1722
1723 /*
1724 * Synchronize FP state for this process.
1725 */
1726 void
1727 fpusave_proc(struct lwp *l, int save)
1728 {
1729 struct cpu_info *ci = curcpu();
1730 struct cpu_info *oci;
1731 #if defined(MULTIPROCESSOR)
1732 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1733 int s, spincount;
1734 #endif
1735
1736 KDASSERT(l->l_addr != NULL);
1737
1738 #if defined(MULTIPROCESSOR)
1739 s = splhigh(); /* block IPIs for the duration */
1740 #endif
1741 FPCPU_LOCK(&l->l_addr->u_pcb);
1742
1743 oci = l->l_addr->u_pcb.pcb_fpcpu;
1744 if (oci == NULL) {
1745 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1746 #if defined(MULTIPROCESSOR)
1747 splx(s);
1748 #endif
1749 return;
1750 }
1751
1752 #if defined(MULTIPROCESSOR)
1753 if (oci == ci) {
1754 KASSERT(ci->ci_fpcurlwp == l);
1755 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1756 splx(s);
1757 fpusave_cpu(ci, save);
1758 return;
1759 }
1760
1761 KASSERT(oci->ci_fpcurlwp == l);
1762 alpha_send_ipi(oci->ci_cpuid, ipi);
1763 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1764
1765 spincount = 0;
1766 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1767 spincount++;
1768 delay(1000); /* XXX */
1769 if (spincount > 10000)
1770 panic("fpsave ipi didn't");
1771 }
1772 #else
1773 KASSERT(ci->ci_fpcurlwp == l);
1774 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1775 fpusave_cpu(ci, save);
1776 #endif /* MULTIPROCESSOR */
1777 }
1778
1779 /*
1780 * Wait "n" microseconds.
1781 */
1782 void
1783 delay(n)
1784 unsigned long n;
1785 {
1786 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1787
1788 if (n == 0)
1789 return;
1790
1791 pcc0 = alpha_rpcc() & 0xffffffffUL;
1792 cycles = 0;
1793 usec = 0;
1794
1795 while (usec <= n) {
1796 /*
1797 * Get the next CPU cycle count- assumes that we cannot
1798 * have had more than one 32 bit overflow.
1799 */
1800 pcc1 = alpha_rpcc() & 0xffffffffUL;
1801 if (pcc1 < pcc0)
1802 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1803 else
1804 curcycle = pcc1 - pcc0;
1805
1806 /*
1807 * We now have the number of processor cycles since we
1808 * last checked. Add the current cycle count to the
1809 * running total. If it's over cycles_per_usec, increment
1810 * the usec counter.
1811 */
1812 cycles += curcycle;
1813 while (cycles > cycles_per_usec) {
1814 usec++;
1815 cycles -= cycles_per_usec;
1816 }
1817 pcc0 = pcc1;
1818 }
1819 }
1820
1821 #ifdef EXEC_ECOFF
1822 void
1823 cpu_exec_ecoff_setregs(l, epp, stack)
1824 struct lwp *l;
1825 struct exec_package *epp;
1826 u_long stack;
1827 {
1828 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1829
1830 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1831 }
1832
1833 /*
1834 * cpu_exec_ecoff_hook():
1835 * cpu-dependent ECOFF format hook for execve().
1836 *
1837 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1838 *
1839 */
1840 int
1841 cpu_exec_ecoff_probe(l, epp)
1842 struct lwp *l;
1843 struct exec_package *epp;
1844 {
1845 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1846 int error;
1847
1848 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1849 error = 0;
1850 else
1851 error = ENOEXEC;
1852
1853 return (error);
1854 }
1855 #endif /* EXEC_ECOFF */
1856
1857 int
1858 alpha_pa_access(pa)
1859 u_long pa;
1860 {
1861 int i;
1862
1863 for (i = 0; i < mem_cluster_cnt; i++) {
1864 if (pa < mem_clusters[i].start)
1865 continue;
1866 if ((pa - mem_clusters[i].start) >=
1867 (mem_clusters[i].size & ~PAGE_MASK))
1868 continue;
1869 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1870 }
1871
1872 /*
1873 * Address is not a memory address. If we're secure, disallow
1874 * access. Otherwise, grant read/write.
1875 */
1876 if (kauth_authorize_machdep(kauth_cred_get(),
1877 KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1878 return (PROT_NONE);
1879 else
1880 return (PROT_READ | PROT_WRITE);
1881 }
1882
1883 /* XXX XXX BEGIN XXX XXX */
1884 paddr_t alpha_XXX_dmamap_or; /* XXX */
1885 /* XXX */
1886 paddr_t /* XXX */
1887 alpha_XXX_dmamap(v) /* XXX */
1888 vaddr_t v; /* XXX */
1889 { /* XXX */
1890 /* XXX */
1891 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1892 } /* XXX */
1893 /* XXX XXX END XXX XXX */
1894
1895 char *
1896 dot_conv(x)
1897 unsigned long x;
1898 {
1899 int i;
1900 char *xc;
1901 static int next;
1902 static char space[2][20];
1903
1904 xc = space[next ^= 1] + sizeof space[0];
1905 *--xc = '\0';
1906 for (i = 0;; ++i) {
1907 if (i && (i & 3) == 0)
1908 *--xc = '.';
1909 *--xc = hexdigits[x & 0xf];
1910 x >>= 4;
1911 if (x == 0)
1912 break;
1913 }
1914 return xc;
1915 }
1916
1917 void
1918 cpu_getmcontext(l, mcp, flags)
1919 struct lwp *l;
1920 mcontext_t *mcp;
1921 unsigned int *flags;
1922 {
1923 struct trapframe *frame = l->l_md.md_tf;
1924 __greg_t *gr = mcp->__gregs;
1925 __greg_t ras_pc;
1926
1927 /* Save register context. */
1928 frametoreg(frame, (struct reg *)gr);
1929 /* XXX if there's a better, general way to get the USP of
1930 * an LWP that might or might not be curlwp, I'd like to know
1931 * about it.
1932 */
1933 if (l == curlwp) {
1934 gr[_REG_SP] = alpha_pal_rdusp();
1935 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1936 } else {
1937 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
1938 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
1939 }
1940 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1941 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1942
1943 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1944 (void *) gr[_REG_PC])) != -1)
1945 gr[_REG_PC] = ras_pc;
1946
1947 *flags |= _UC_CPU | _UC_UNIQUE;
1948
1949 /* Save floating point register context, if any, and copy it. */
1950 if (l->l_md.md_flags & MDP_FPUSED) {
1951 fpusave_proc(l, 1);
1952 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
1953 sizeof (mcp->__fpregs));
1954 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1955 *flags |= _UC_FPU;
1956 }
1957 }
1958
1959
1960 int
1961 cpu_setmcontext(l, mcp, flags)
1962 struct lwp *l;
1963 const mcontext_t *mcp;
1964 unsigned int flags;
1965 {
1966 struct trapframe *frame = l->l_md.md_tf;
1967 const __greg_t *gr = mcp->__gregs;
1968
1969 /* Restore register context, if any. */
1970 if (flags & _UC_CPU) {
1971 /* Check for security violations first. */
1972 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1973 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1974 return (EINVAL);
1975
1976 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1977 if (l == curlwp)
1978 alpha_pal_wrusp(gr[_REG_SP]);
1979 else
1980 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
1981 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1982 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1983 }
1984 if (flags & _UC_UNIQUE) {
1985 if (l == curlwp)
1986 alpha_pal_wrunique(gr[_REG_UNIQUE]);
1987 else
1988 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1989 }
1990 /* Restore floating point register context, if any. */
1991 if (flags & _UC_FPU) {
1992 /* If we have an FP register context, get rid of it. */
1993 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1994 fpusave_proc(l, 0);
1995 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
1996 sizeof (l->l_addr->u_pcb.pcb_fp));
1997 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1998 l->l_md.md_flags |= MDP_FPUSED;
1999 }
2000
2001 return (0);
2002 }
2003
2004 /*
2005 * Preempt the current process if in interrupt from user mode,
2006 * or after the current trap/syscall if in system mode.
2007 */
2008 void
2009 cpu_need_resched(struct cpu_info *ci, int flags)
2010 {
2011 #if defined(MULTIPROCESSOR)
2012 bool immed = (flags & RESCHED_IMMED) != 0;
2013 #endif /* defined(MULTIPROCESSOR) */
2014
2015 aston(ci->ci_data.cpu_onproc);
2016 ci->ci_want_resched = 1;
2017 if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
2018 #if defined(MULTIPROCESSOR)
2019 if (immed && ci != curcpu()) {
2020 alpha_send_ipi(ci->ci_cpuid, 0);
2021 }
2022 #endif /* defined(MULTIPROCESSOR) */
2023 }
2024 }
2025