machdep.c revision 1.31 1 /* $NetBSD: machdep.c,v 1.31 1996/06/15 03:55:17 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/conf.h>
40 #include <sys/file.h>
41 #ifdef REAL_CLISTS
42 #include <sys/clist.h>
43 #endif
44 #include <sys/callout.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/tty.h>
50 #include <sys/user.h>
51 #include <sys/exec.h>
52 #include <sys/exec_ecoff.h>
53 #include <sys/sysctl.h>
54 #ifdef SYSVMSG
55 #include <sys/msg.h>
56 #endif
57 #ifdef SYSVSEM
58 #include <sys/sem.h>
59 #endif
60 #ifdef SYSVSHM
61 #include <sys/shm.h>
62 #endif
63
64 #include <sys/mount.h>
65 #include <sys/syscallargs.h>
66
67 #include <vm/vm_kern.h>
68
69 #include <dev/cons.h>
70
71 #include <machine/cpu.h>
72 #include <machine/reg.h>
73 #include <machine/rpb.h>
74 #include <machine/prom.h>
75
76 #ifdef DEC_3000_500
77 #include <alpha/alpha/dec_3000_500.h>
78 #endif
79 #ifdef DEC_3000_300
80 #include <alpha/alpha/dec_3000_300.h>
81 #endif
82 #ifdef DEC_2100_A50
83 #include <alpha/alpha/dec_2100_a50.h>
84 #endif
85 #ifdef DEC_KN20AA
86 #include <alpha/alpha/dec_kn20aa.h>
87 #endif
88 #ifdef DEC_AXPPCI_33
89 #include <alpha/alpha/dec_axppci_33.h>
90 #endif
91 #ifdef DEC_21000
92 #include <alpha/alpha/dec_21000.h>
93 #endif
94
95 #include <net/netisr.h>
96 #include "ether.h"
97
98 #include "le_ioasic.h" /* for le_iomem creation */
99
100 vm_map_t buffer_map;
101
102 void dumpsys __P((void));
103
104 /*
105 * Declare these as initialized data so we can patch them.
106 */
107 int nswbuf = 0;
108 #ifdef NBUF
109 int nbuf = NBUF;
110 #else
111 int nbuf = 0;
112 #endif
113 #ifdef BUFPAGES
114 int bufpages = BUFPAGES;
115 #else
116 int bufpages = 0;
117 #endif
118 int msgbufmapped = 0; /* set when safe to use msgbuf */
119 int maxmem; /* max memory per process */
120
121 int totalphysmem; /* total amount of physical memory in system */
122 int physmem; /* physical memory used by NetBSD + some rsvd */
123 int firstusablepage; /* first usable memory page */
124 int lastusablepage; /* last usable memory page */
125 int resvmem; /* amount of memory reserved for PROM */
126 int unusedmem; /* amount of memory for OS that we don't use */
127 int unknownmem; /* amount of memory with an unknown use */
128
129 int cputype; /* system type, from the RPB */
130
131 /*
132 * XXX We need an address to which we can assign things so that they
133 * won't be optimized away because we didn't use the value.
134 */
135 u_int32_t no_optimize;
136
137 /* the following is used externally (sysctl_hw) */
138 char machine[] = "alpha";
139 char cpu_model[128];
140 char *model_names[] = {
141 "UNKNOWN (0)",
142 "Alpha Demonstration Unit",
143 "DEC 4000 (\"Cobra\")",
144 "DEC 7000 (\"Ruby\")",
145 "DEC 3000/500 (\"Flamingo\") family",
146 "UNKNOWN (5)",
147 "DEC 2000/300 (\"Jensen\")",
148 "DEC 3000/300 (\"Pelican\")",
149 "UNKNOWN (8)",
150 "DEC 2100/A500 (\"Sable\")",
151 "AXPvme 64",
152 "AXPpci 33 (\"NoName\")",
153 "DEC 21000 (\"TurboLaser\")",
154 "DEC 2100/A50 (\"Avanti\") family",
155 "Mustang",
156 "DEC KN20AA",
157 "UNKNOWN (16)",
158 "DEC 1000 (\"Mikasa\")",
159 };
160 int nmodel_names = sizeof model_names/sizeof model_names[0];
161
162 struct user *proc0paddr;
163
164 /* Number of machine cycles per microsecond */
165 u_int64_t cycles_per_usec;
166
167 /* some memory areas for device DMA. "ick." */
168 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
169
170 /* Interrupt vectors (in locore) */
171 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
172
173 /* number of cpus in the box. really! */
174 int ncpus;
175
176 /* various CPU-specific functions. */
177 char *(*cpu_modelname) __P((void));
178 void (*cpu_consinit) __P((void));
179 void (*cpu_device_register) __P((struct device *dev, void *aux));
180 char *cpu_iobus;
181
182 char boot_flags[64];
183
184 /* for cpu_sysctl() */
185 char root_device[17];
186
187 int
188 alpha_init(pfn, ptb)
189 u_long pfn; /* first free PFN number */
190 u_long ptb; /* PFN of current level 1 page table */
191 {
192 extern char _end[];
193 caddr_t start, v;
194 struct mddt *mddtp;
195 int i, mddtweird;
196 char *p;
197
198 /*
199 * Turn off interrupts and floating point.
200 * Make sure the instruction and data streams are consistent.
201 */
202 (void)splhigh();
203 pal_wrfen(0);
204 TBIA();
205 IMB();
206
207 /*
208 * get address of the restart block, while we the bootstrap
209 * mapping is still around.
210 */
211 hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
212
213 /*
214 * Remember how many cycles there are per microsecond,
215 * so that we can use delay(). Round up, for safety.
216 */
217 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
218
219 /*
220 * Init the PROM interface, so we can use printf
221 * until PROM mappings go away in consinit.
222 */
223 init_prom_interface();
224
225 /*
226 * Point interrupt/exception vectors to our own.
227 */
228 pal_wrent(XentInt, 0);
229 pal_wrent(XentArith, 1);
230 pal_wrent(XentMM, 2);
231 pal_wrent(XentIF, 3);
232 pal_wrent(XentUna, 4);
233 pal_wrent(XentSys, 5);
234
235 /*
236 * Find out how much memory is available, by looking at
237 * the memory cluster descriptors. This also tries to do
238 * its best to detect things things that have never been seen
239 * before...
240 *
241 * XXX Assumes that the first "system" cluster is the
242 * only one we can use. Is the second (etc.) system cluster
243 * (if one happens to exist) guaranteed to be contiguous? or...?
244 */
245 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
246
247 /*
248 * BEGIN MDDT WEIRDNESS CHECKING
249 */
250 mddtweird = 0;
251
252 #define cnt mddtp->mddt_cluster_cnt
253 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
254 if (cnt != 2 && cnt != 3) {
255 printf("WARNING: weird number (%d) of mem clusters\n", cnt);
256 mddtweird = 1;
257 } else if (usage(0) != MDDT_PALCODE ||
258 usage(1) != MDDT_SYSTEM ||
259 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
260 mddtweird = 1;
261 printf("WARNING: %d mem clusters, but weird config\n", cnt);
262 }
263
264 for (i = 0; i < cnt; i++) {
265 if ((usage(i) & MDDT_mbz) != 0) {
266 printf("WARNING: mem cluster %d has weird usage %lx\n",
267 i, usage(i));
268 mddtweird = 1;
269 }
270 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
271 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
272 mddtweird = 1;
273 }
274 /* XXX other things to check? */
275 }
276 #undef cnt
277 #undef usage
278
279 if (mddtweird) {
280 printf("\n");
281 printf("complete memory cluster information:\n");
282 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
283 printf("mddt %d:\n", i);
284 printf("\tpfn %lx\n",
285 mddtp->mddt_clusters[i].mddt_pfn);
286 printf("\tcnt %lx\n",
287 mddtp->mddt_clusters[i].mddt_pg_cnt);
288 printf("\ttest %lx\n",
289 mddtp->mddt_clusters[i].mddt_pg_test);
290 printf("\tbva %lx\n",
291 mddtp->mddt_clusters[i].mddt_v_bitaddr);
292 printf("\tbpa %lx\n",
293 mddtp->mddt_clusters[i].mddt_p_bitaddr);
294 printf("\tbcksum %lx\n",
295 mddtp->mddt_clusters[i].mddt_bit_cksum);
296 printf("\tusage %lx\n",
297 mddtp->mddt_clusters[i].mddt_usage);
298 }
299 printf("\n");
300 }
301 /*
302 * END MDDT WEIRDNESS CHECKING
303 */
304
305 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
306 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
307 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
308 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
309 if ((usage(i) & MDDT_mbz) != 0)
310 unknownmem += pgcnt(i);
311 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
312 resvmem += pgcnt(i);
313 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
314 /*
315 * assumes that the system cluster listed is
316 * one we're in...
317 */
318 if (physmem != resvmem) {
319 physmem += pgcnt(i);
320 firstusablepage =
321 mddtp->mddt_clusters[i].mddt_pfn;
322 lastusablepage = firstusablepage + pgcnt(i) - 1;
323 } else
324 unusedmem += pgcnt(i);
325 }
326 #undef usage
327 #undef pgcnt
328 }
329 if (totalphysmem == 0)
330 panic("can't happen: system seems to have no memory!");
331 maxmem = physmem;
332
333 #if 0
334 printf("totalphysmem = %d\n", totalphysmem);
335 printf("physmem = %d\n", physmem);
336 printf("firstusablepage = %d\n", firstusablepage);
337 printf("lastusablepage = %d\n", lastusablepage);
338 printf("resvmem = %d\n", resvmem);
339 printf("unusedmem = %d\n", unusedmem);
340 printf("unknownmem = %d\n", unknownmem);
341 #endif
342
343 /*
344 * find out this CPU's page size
345 */
346 PAGE_SIZE = hwrpb->rpb_page_size;
347 if (PAGE_SIZE != 8192)
348 panic("page size %d != 8192?!", PAGE_SIZE);
349
350 v = (caddr_t)alpha_round_page(_end);
351 /*
352 * Init mapping for u page(s) for proc 0
353 */
354 start = v;
355 curproc->p_addr = proc0paddr = (struct user *)v;
356 v += UPAGES * NBPG;
357
358 /*
359 * Find out what hardware we're on, and remember its type name.
360 */
361 cputype = hwrpb->rpb_type;
362 switch (cputype) {
363 #ifdef DEC_3000_500 /* and 400, [6-9]00 */
364 case ST_DEC_3000_500:
365 cpu_modelname = dec_3000_500_modelname;
366 cpu_consinit = dec_3000_500_consinit;
367 cpu_device_register = dec_3000_500_device_register;
368 cpu_iobus = "tcasic";
369 break;
370 #endif
371
372 #ifdef DEC_3000_300
373 case ST_DEC_3000_300:
374 cpu_modelname = dec_3000_300_modelname;
375 cpu_consinit = dec_3000_300_consinit;
376 cpu_device_register = dec_3000_300_device_register;
377 cpu_iobus = "tcasic";
378 break;
379 #endif
380
381 #ifdef DEC_2100_A50
382 case ST_DEC_2100_A50:
383 cpu_modelname = dec_2100_a50_modelname;
384 cpu_consinit = dec_2100_a50_consinit;
385 cpu_device_register = dec_2100_a50_device_register;
386 cpu_iobus = "apecs";
387 break;
388 #endif
389
390 #ifdef DEC_KN20AA
391 case ST_DEC_KN20AA:
392 cpu_modelname = dec_kn20aa_modelname;
393 cpu_consinit = dec_kn20aa_consinit;
394 cpu_device_register = dec_kn20aa_device_register;
395 cpu_iobus = "cia";
396 break;
397 #endif
398
399 #ifdef DEC_AXPPCI_33
400 case ST_DEC_AXPPCI_33:
401 cpu_modelname = dec_axppci_33_modelname;
402 cpu_consinit = dec_axppci_33_consinit;
403 cpu_device_register = dec_axppci_33_device_register;
404 cpu_iobus = "lca";
405 break;
406 #endif
407
408 #ifdef DEC_2000_300
409 case ST_DEC_2000_300:
410 cpu_modelname = dec_2000_300_modelname;
411 cpu_consinit = dec_2000_300_consinit;
412 cpu_device_register = dec_2000_300_device_register;
413 cpu_iobus = "ibus";
414 XXX DEC 2000/300 NOT SUPPORTED
415 break;
416 #endif
417
418 #ifdef DEC_21000
419 case ST_DEC_21000:
420 cpu_modelname = dec_21000_modelname;
421 cpu_consinit = dec_21000_consinit;
422 cpu_device_register = dec_21000_device_register;
423 cpu_iobus = "tlsb";
424 XXX DEC 21000 NOT SUPPORTED
425 break;
426 #endif
427
428 default:
429 if (cputype > nmodel_names)
430 panic("Unknown system type %d", cputype);
431 else
432 panic("Support for %s system type not in kernel.",
433 model_names[cputype]);
434 }
435
436 if ((*cpu_modelname)() != NULL)
437 strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
438 else
439 strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
440 cpu_model[sizeof cpu_model - 1] = '\0';
441
442 #if NLE_IOASIC > 0
443 /*
444 * Grab 128K at the top of physical memory for the lance chip
445 * on machines where it does dma through the I/O ASIC.
446 * It must be physically contiguous and aligned on a 128K boundary.
447 *
448 * Note that since this is conditional on the presence of
449 * IOASIC-attached 'le' units in the kernel config, the
450 * message buffer may move on these systems. This shouldn't
451 * be a problem, because once people have a kernel config that
452 * they use, they're going to stick with it.
453 */
454 if (cputype == ST_DEC_3000_500 ||
455 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
456 lastusablepage -= btoc(128 * 1024);
457 le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
458 }
459 #endif /* NLE_IOASIC */
460
461 /*
462 * Initialize error message buffer (at end of core).
463 */
464 lastusablepage -= btoc(sizeof (struct msgbuf));
465 msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
466 msgbufmapped = 1;
467
468 /*
469 * Allocate space for system data structures.
470 * The first available kernel virtual address is in "v".
471 * As pages of kernel virtual memory are allocated, "v" is incremented.
472 *
473 * These data structures are allocated here instead of cpu_startup()
474 * because physical memory is directly addressable. We don't have
475 * to map these into virtual address space.
476 */
477 #define valloc(name, type, num) \
478 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
479 #define valloclim(name, type, num, lim) \
480 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
481 #ifdef REAL_CLISTS
482 valloc(cfree, struct cblock, nclist);
483 #endif
484 valloc(callout, struct callout, ncallout);
485 valloc(swapmap, struct map, nswapmap = maxproc * 2);
486 #ifdef SYSVSHM
487 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
488 #endif
489 #ifdef SYSVSEM
490 valloc(sema, struct semid_ds, seminfo.semmni);
491 valloc(sem, struct sem, seminfo.semmns);
492 /* This is pretty disgusting! */
493 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
494 #endif
495 #ifdef SYSVMSG
496 valloc(msgpool, char, msginfo.msgmax);
497 valloc(msgmaps, struct msgmap, msginfo.msgseg);
498 valloc(msghdrs, struct msg, msginfo.msgtql);
499 valloc(msqids, struct msqid_ds, msginfo.msgmni);
500 #endif
501
502 /*
503 * Determine how many buffers to allocate.
504 * We allocate 10% of memory for buffer space. Insure a
505 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
506 * headers as file i/o buffers.
507 */
508 if (bufpages == 0)
509 bufpages = (physmem * 10) / (CLSIZE * 100);
510 if (nbuf == 0) {
511 nbuf = bufpages;
512 if (nbuf < 16)
513 nbuf = 16;
514 }
515 if (nswbuf == 0) {
516 nswbuf = (nbuf / 2) &~ 1; /* force even */
517 if (nswbuf > 256)
518 nswbuf = 256; /* sanity */
519 }
520 valloc(swbuf, struct buf, nswbuf);
521 valloc(buf, struct buf, nbuf);
522
523 /*
524 * Clear allocated memory.
525 */
526 bzero(start, v - start);
527
528 /*
529 * Initialize the virtual memory system, and set the
530 * page table base register in proc 0's PCB.
531 */
532 pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
533
534 /*
535 * Initialize the rest of proc 0's PCB, and cache its physical
536 * address.
537 */
538 proc0.p_md.md_pcbpaddr =
539 (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
540
541 /*
542 * Set the kernel sp, reserving space for an (empty) trapframe,
543 * and make proc0's trapframe pointer point to it for sanity.
544 */
545 proc0paddr->u_pcb.pcb_ksp =
546 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
547 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
548
549 /*
550 * Look at arguments passed to us and compute boothowto.
551 */
552 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
553 #if 0
554 printf("boot flags = \"%s\"\n", boot_flags);
555 #endif
556
557 boothowto = RB_SINGLE;
558 #ifdef KADB
559 boothowto |= RB_KDB;
560 #endif
561 for (p = boot_flags; p && *p != '\0'; p++) {
562 /*
563 * Note that we'd really like to differentiate case here,
564 * but the Alpha AXP Architecture Reference Manual
565 * says that we shouldn't.
566 */
567 switch (*p) {
568 case 'a': /* autoboot */
569 case 'A':
570 boothowto &= ~RB_SINGLE;
571 break;
572
573 case 'n': /* askname */
574 case 'N':
575 boothowto |= RB_ASKNAME;
576 break;
577
578 #if 0
579 case 'm': /* mini root present in memory */
580 case 'M':
581 boothowto |= RB_MINIROOT;
582 break;
583 #endif
584 }
585 }
586
587 /*
588 * Figure out the number of cpus in the box, from RPB fields.
589 * Really. We mean it.
590 */
591 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
592 struct pcs *pcsp;
593
594 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
595 (i * hwrpb->rpb_pcs_size));
596 if ((pcsp->pcs_flags & PCS_PP) != 0)
597 ncpus++;
598 }
599
600 return (0);
601 }
602
603 void
604 consinit()
605 {
606
607 (*cpu_consinit)();
608 pmap_unmap_prom();
609 }
610
611 void
612 cpu_startup()
613 {
614 register unsigned i;
615 register caddr_t v;
616 int base, residual;
617 vm_offset_t minaddr, maxaddr;
618 vm_size_t size;
619 #ifdef DEBUG
620 extern int pmapdebug;
621 int opmapdebug = pmapdebug;
622
623 pmapdebug = 0;
624 #endif
625
626 /*
627 * Good {morning,afternoon,evening,night}.
628 */
629 printf(version);
630 identifycpu();
631 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
632 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
633 if (unusedmem)
634 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
635 if (unknownmem)
636 printf("WARNING: %d bytes of memory with unknown purpose\n",
637 ctob(unknownmem));
638
639 /*
640 * Allocate virtual address space for file I/O buffers.
641 * Note they are different than the array of headers, 'buf',
642 * and usually occupy more virtual memory than physical.
643 */
644 size = MAXBSIZE * nbuf;
645 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
646 &maxaddr, size, TRUE);
647 minaddr = (vm_offset_t)buffers;
648 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
649 &minaddr, size, FALSE) != KERN_SUCCESS)
650 panic("startup: cannot allocate buffers");
651 base = bufpages / nbuf;
652 residual = bufpages % nbuf;
653 for (i = 0; i < nbuf; i++) {
654 vm_size_t curbufsize;
655 vm_offset_t curbuf;
656
657 /*
658 * First <residual> buffers get (base+1) physical pages
659 * allocated for them. The rest get (base) physical pages.
660 *
661 * The rest of each buffer occupies virtual space,
662 * but has no physical memory allocated for it.
663 */
664 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
665 curbufsize = CLBYTES * (i < residual ? base+1 : base);
666 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
667 vm_map_simplify(buffer_map, curbuf);
668 }
669 /*
670 * Allocate a submap for exec arguments. This map effectively
671 * limits the number of processes exec'ing at any time.
672 */
673 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
674 16 * NCARGS, TRUE);
675
676 /*
677 * Allocate a submap for physio
678 */
679 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
680 VM_PHYS_SIZE, TRUE);
681
682 /*
683 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
684 * we use the more space efficient malloc in place of kmem_alloc.
685 */
686 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
687 M_MBUF, M_NOWAIT);
688 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
689 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
690 VM_MBUF_SIZE, FALSE);
691 /*
692 * Initialize callouts
693 */
694 callfree = callout;
695 for (i = 1; i < ncallout; i++)
696 callout[i-1].c_next = &callout[i];
697 callout[i-1].c_next = NULL;
698
699 #ifdef DEBUG
700 pmapdebug = opmapdebug;
701 #endif
702 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
703 printf("using %ld buffers containing %ld bytes of memory\n",
704 (long)nbuf, (long)(bufpages * CLBYTES));
705
706 /*
707 * Set up buffers, so they can be used to read disk labels.
708 */
709 bufinit();
710
711 /*
712 * Configure the system.
713 */
714 configure();
715 }
716
717 identifycpu()
718 {
719
720 /*
721 * print out CPU identification information.
722 */
723 printf("%s, %dMHz\n", cpu_model,
724 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
725 printf("%d byte page size, %d processor%s.\n",
726 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
727 #if 0
728 /* this isn't defined for any systems that we run on? */
729 printf("serial number 0x%lx 0x%lx\n",
730 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
731
732 /* and these aren't particularly useful! */
733 printf("variation: 0x%lx, revision 0x%lx\n",
734 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
735 #endif
736 }
737
738 int waittime = -1;
739 struct pcb dumppcb;
740
741 void
742 boot(howto)
743 int howto;
744 {
745 extern int cold;
746
747 /* If system is cold, just halt. */
748 if (cold) {
749 howto |= RB_HALT;
750 goto haltsys;
751 }
752
753 boothowto = howto;
754 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
755 waittime = 0;
756 vfs_shutdown();
757 /*
758 * If we've been adjusting the clock, the todr
759 * will be out of synch; adjust it now.
760 */
761 resettodr();
762 }
763
764 /* Disable interrupts. */
765 splhigh();
766
767 /* If rebooting and a dump is requested do it. */
768 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
769 savectx(&dumppcb, 0);
770 dumpsys();
771 }
772
773 haltsys:
774
775 /* run any shutdown hooks */
776 doshutdownhooks();
777
778 #ifdef BOOTKEY
779 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
780 cngetc();
781 printf("\n");
782 #endif
783
784 /* Finally, halt/reboot the system. */
785 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
786 prom_halt(howto & RB_HALT);
787 /*NOTREACHED*/
788 }
789
790 /*
791 * These variables are needed by /sbin/savecore
792 */
793 u_long dumpmag = 0x8fca0101; /* magic number */
794 int dumpsize = 0; /* pages */
795 long dumplo = 0; /* blocks */
796
797 /*
798 * This is called by configure to set dumplo and dumpsize.
799 * Dumps always skip the first CLBYTES of disk space
800 * in case there might be a disk label stored there.
801 * If there is extra space, put dump at the end to
802 * reduce the chance that swapping trashes it.
803 */
804 void
805 dumpconf()
806 {
807 int nblks; /* size of dump area */
808 int maj;
809
810 if (dumpdev == NODEV)
811 return;
812 maj = major(dumpdev);
813 if (maj < 0 || maj >= nblkdev)
814 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
815 if (bdevsw[maj].d_psize == NULL)
816 return;
817 nblks = (*bdevsw[maj].d_psize)(dumpdev);
818 if (nblks <= ctod(1))
819 return;
820
821 /* XXX XXX XXX STARTING MEMORY LOCATION */
822 dumpsize = physmem;
823
824 /* Always skip the first CLBYTES, in case there is a label there. */
825 if (dumplo < ctod(1))
826 dumplo = ctod(1);
827
828 /* Put dump at end of partition, and make it fit. */
829 if (dumpsize > dtoc(nblks - dumplo))
830 dumpsize = dtoc(nblks - dumplo);
831 if (dumplo < nblks - ctod(dumpsize))
832 dumplo = nblks - ctod(dumpsize);
833 }
834
835 /*
836 * Doadump comes here after turning off memory management and
837 * getting on the dump stack, either when called above, or by
838 * the auto-restart code.
839 */
840 void
841 dumpsys()
842 {
843
844 msgbufmapped = 0;
845 if (dumpdev == NODEV)
846 return;
847 if (dumpsize == 0) {
848 dumpconf();
849 if (dumpsize == 0)
850 return;
851 }
852 printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
853
854 printf("dump ");
855 switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
856
857 case ENXIO:
858 printf("device bad\n");
859 break;
860
861 case EFAULT:
862 printf("device not ready\n");
863 break;
864
865 case EINVAL:
866 printf("area improper\n");
867 break;
868
869 case EIO:
870 printf("i/o error\n");
871 break;
872
873 case EINTR:
874 printf("aborted from console\n");
875 break;
876
877 default:
878 printf("succeeded\n");
879 break;
880 }
881 printf("\n\n");
882 delay(1000);
883 }
884
885 void
886 frametoreg(framep, regp)
887 struct trapframe *framep;
888 struct reg *regp;
889 {
890
891 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
892 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
893 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
894 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
895 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
896 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
897 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
898 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
899 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
900 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
901 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
902 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
903 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
904 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
905 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
906 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
907 regp->r_regs[R_A0] = framep->tf_a0;
908 regp->r_regs[R_A1] = framep->tf_a1;
909 regp->r_regs[R_A2] = framep->tf_a2;
910 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
911 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
912 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
913 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
914 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
915 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
916 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
917 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
918 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
919 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
920 regp->r_regs[R_GP] = framep->tf_gp;
921 regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
922 regp->r_regs[R_ZERO] = 0;
923 }
924
925 void
926 regtoframe(regp, framep)
927 struct reg *regp;
928 struct trapframe *framep;
929 {
930
931 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
932 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
933 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
934 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
935 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
936 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
937 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
938 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
939 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
940 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
941 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
942 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
943 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
944 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
945 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
946 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
947 framep->tf_a0 = regp->r_regs[R_A0];
948 framep->tf_a1 = regp->r_regs[R_A1];
949 framep->tf_a2 = regp->r_regs[R_A2];
950 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
951 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
952 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
953 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
954 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
955 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
956 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
957 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
958 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
959 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
960 framep->tf_gp = regp->r_regs[R_GP];
961 framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
962 /* ??? = regp->r_regs[R_ZERO]; */
963 }
964
965 void
966 printregs(regp)
967 struct reg *regp;
968 {
969 int i;
970
971 for (i = 0; i < 32; i++)
972 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
973 i & 1 ? "\n" : "\t");
974 }
975
976 void
977 regdump(framep)
978 struct trapframe *framep;
979 {
980 struct reg reg;
981
982 frametoreg(framep, ®);
983 printf("REGISTERS:\n");
984 printregs(®);
985 }
986
987 #ifdef DEBUG
988 int sigdebug = 0;
989 int sigpid = 0;
990 #define SDB_FOLLOW 0x01
991 #define SDB_KSTACK 0x02
992 #endif
993
994 /*
995 * Send an interrupt to process.
996 */
997 void
998 sendsig(catcher, sig, mask, code)
999 sig_t catcher;
1000 int sig, mask;
1001 u_long code;
1002 {
1003 struct proc *p = curproc;
1004 struct sigcontext *scp, ksc;
1005 struct trapframe *frame;
1006 struct sigacts *psp = p->p_sigacts;
1007 int oonstack, fsize, rndfsize;
1008 extern char sigcode[], esigcode[];
1009 extern struct proc *fpcurproc;
1010
1011 frame = p->p_md.md_tf;
1012 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1013 fsize = sizeof ksc;
1014 rndfsize = ((fsize + 15) / 16) * 16;
1015 /*
1016 * Allocate and validate space for the signal handler
1017 * context. Note that if the stack is in P0 space, the
1018 * call to grow() is a nop, and the useracc() check
1019 * will fail if the process has not already allocated
1020 * the space with a `brk'.
1021 */
1022 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1023 (psp->ps_sigonstack & sigmask(sig))) {
1024 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1025 psp->ps_sigstk.ss_size - rndfsize);
1026 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1027 } else
1028 scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1029 rndfsize);
1030 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1031 (void)grow(p, (u_long)scp);
1032 #ifdef DEBUG
1033 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1034 printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1035 sig, &oonstack, scp);
1036 #endif
1037 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1038 #ifdef DEBUG
1039 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1040 printf("sendsig(%d): useracc failed on sig %d\n",
1041 p->p_pid, sig);
1042 #endif
1043 /*
1044 * Process has trashed its stack; give it an illegal
1045 * instruction to halt it in its tracks.
1046 */
1047 SIGACTION(p, SIGILL) = SIG_DFL;
1048 sig = sigmask(SIGILL);
1049 p->p_sigignore &= ~sig;
1050 p->p_sigcatch &= ~sig;
1051 p->p_sigmask &= ~sig;
1052 psignal(p, SIGILL);
1053 return;
1054 }
1055
1056 /*
1057 * Build the signal context to be used by sigreturn.
1058 */
1059 ksc.sc_onstack = oonstack;
1060 ksc.sc_mask = mask;
1061 ksc.sc_pc = frame->tf_pc;
1062 ksc.sc_ps = frame->tf_ps;
1063
1064 /* copy the registers. */
1065 frametoreg(frame, (struct reg *)ksc.sc_regs);
1066 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1067
1068 /* save the floating-point state, if necessary, then copy it. */
1069 if (p == fpcurproc) {
1070 pal_wrfen(1);
1071 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1072 pal_wrfen(0);
1073 fpcurproc = NULL;
1074 }
1075 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1076 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1077 sizeof(struct fpreg));
1078 ksc.sc_fp_control = 0; /* XXX ? */
1079 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1080 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1081
1082
1083 #ifdef COMPAT_OSF1
1084 /*
1085 * XXX Create an OSF/1-style sigcontext and associated goo.
1086 */
1087 #endif
1088
1089 /*
1090 * copy the frame out to userland.
1091 */
1092 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1093 #ifdef DEBUG
1094 if (sigdebug & SDB_FOLLOW)
1095 printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1096 scp, code);
1097 #endif
1098
1099 /*
1100 * Set up the registers to return to sigcode.
1101 */
1102 frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1103 frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1104 frame->tf_a0 = sig;
1105 frame->tf_a1 = code;
1106 frame->tf_a2 = (u_int64_t)scp;
1107 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1108
1109 #ifdef DEBUG
1110 if (sigdebug & SDB_FOLLOW)
1111 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1112 frame->tf_pc, frame->tf_regs[FRAME_A3]);
1113 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1114 printf("sendsig(%d): sig %d returns\n",
1115 p->p_pid, sig);
1116 #endif
1117 }
1118
1119 /*
1120 * System call to cleanup state after a signal
1121 * has been taken. Reset signal mask and
1122 * stack state from context left by sendsig (above).
1123 * Return to previous pc and psl as specified by
1124 * context left by sendsig. Check carefully to
1125 * make sure that the user has not modified the
1126 * psl to gain improper priviledges or to cause
1127 * a machine fault.
1128 */
1129 /* ARGSUSED */
1130 int
1131 sys_sigreturn(p, v, retval)
1132 struct proc *p;
1133 void *v;
1134 register_t *retval;
1135 {
1136 struct sys_sigreturn_args /* {
1137 syscallarg(struct sigcontext *) sigcntxp;
1138 } */ *uap = v;
1139 struct sigcontext *scp, ksc;
1140 extern struct proc *fpcurproc;
1141
1142 scp = SCARG(uap, sigcntxp);
1143 #ifdef DEBUG
1144 if (sigdebug & SDB_FOLLOW)
1145 printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1146 #endif
1147
1148 if (ALIGN(scp) != (u_int64_t)scp)
1149 return (EINVAL);
1150
1151 /*
1152 * Test and fetch the context structure.
1153 * We grab it all at once for speed.
1154 */
1155 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1156 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1157 return (EINVAL);
1158
1159 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1160 return (EINVAL);
1161 /*
1162 * Restore the user-supplied information
1163 */
1164 if (ksc.sc_onstack)
1165 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1166 else
1167 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1168 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1169
1170 p->p_md.md_tf->tf_pc = ksc.sc_pc;
1171 p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
1172
1173 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1174
1175 /* XXX ksc.sc_ownedfp ? */
1176 if (p == fpcurproc)
1177 fpcurproc = NULL;
1178 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1179 sizeof(struct fpreg));
1180 /* XXX ksc.sc_fp_control ? */
1181
1182 #ifdef DEBUG
1183 if (sigdebug & SDB_FOLLOW)
1184 printf("sigreturn(%d): returns\n", p->p_pid);
1185 #endif
1186 return (EJUSTRETURN);
1187 }
1188
1189 /*
1190 * machine dependent system variables.
1191 */
1192 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1193 int *name;
1194 u_int namelen;
1195 void *oldp;
1196 size_t *oldlenp;
1197 void *newp;
1198 size_t newlen;
1199 struct proc *p;
1200 {
1201 dev_t consdev;
1202
1203 /* all sysctl names at this level are terminal */
1204 if (namelen != 1)
1205 return (ENOTDIR); /* overloaded */
1206
1207 switch (name[0]) {
1208 case CPU_CONSDEV:
1209 if (cn_tab != NULL)
1210 consdev = cn_tab->cn_dev;
1211 else
1212 consdev = NODEV;
1213 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1214 sizeof consdev));
1215
1216 case CPU_ROOT_DEVICE:
1217 return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1218
1219 default:
1220 return (EOPNOTSUPP);
1221 }
1222 /* NOTREACHED */
1223 }
1224
1225 /*
1226 * Set registers on exec.
1227 */
1228 void
1229 setregs(p, pack, stack, retval)
1230 register struct proc *p;
1231 struct exec_package *pack;
1232 u_long stack;
1233 register_t *retval;
1234 {
1235 struct trapframe *tfp = p->p_md.md_tf;
1236 int i;
1237 extern struct proc *fpcurproc;
1238
1239 #ifdef DEBUG
1240 for (i = 0; i < FRAME_NSAVEREGS; i++)
1241 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1242 tfp->tf_gp = 0xbabefacedeadbeef;
1243 tfp->tf_a0 = 0xbabefacedeadbeef;
1244 tfp->tf_a1 = 0xbabefacedeadbeef;
1245 tfp->tf_a2 = 0xbabefacedeadbeef;
1246 #else
1247 bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1248 tfp->tf_gp = 0;
1249 tfp->tf_a0 = 0;
1250 tfp->tf_a1 = 0;
1251 tfp->tf_a2 = 0;
1252 #endif
1253 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1254 #define FP_RN 2 /* XXX */
1255 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1256 tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1257 tfp->tf_ps = PSL_USERSET;
1258 tfp->tf_pc = pack->ep_entry & ~3;
1259
1260 p->p_md.md_flags & ~MDP_FPUSED;
1261 if (fpcurproc == p)
1262 fpcurproc = NULL;
1263
1264 retval[0] = retval[1] = 0;
1265 }
1266
1267 void
1268 netintr()
1269 {
1270 #ifdef INET
1271 #if NETHER > 0
1272 if (netisr & (1 << NETISR_ARP)) {
1273 netisr &= ~(1 << NETISR_ARP);
1274 arpintr();
1275 }
1276 #endif
1277 if (netisr & (1 << NETISR_IP)) {
1278 netisr &= ~(1 << NETISR_IP);
1279 ipintr();
1280 }
1281 #endif
1282 #ifdef NS
1283 if (netisr & (1 << NETISR_NS)) {
1284 netisr &= ~(1 << NETISR_NS);
1285 nsintr();
1286 }
1287 #endif
1288 #ifdef ISO
1289 if (netisr & (1 << NETISR_ISO)) {
1290 netisr &= ~(1 << NETISR_ISO);
1291 clnlintr();
1292 }
1293 #endif
1294 #ifdef CCITT
1295 if (netisr & (1 << NETISR_CCITT)) {
1296 netisr &= ~(1 << NETISR_CCITT);
1297 ccittintr();
1298 }
1299 #endif
1300 #ifdef PPP
1301 if (netisr & (1 << NETISR_PPP)) {
1302 netisr &= ~(1 << NETISR_PPP);
1303 pppintr();
1304 }
1305 #endif
1306 }
1307
1308 void
1309 do_sir()
1310 {
1311
1312 if (ssir & SIR_NET) {
1313 siroff(SIR_NET);
1314 cnt.v_soft++;
1315 netintr();
1316 }
1317 if (ssir & SIR_CLOCK) {
1318 siroff(SIR_CLOCK);
1319 cnt.v_soft++;
1320 softclock();
1321 }
1322 }
1323
1324 int
1325 spl0()
1326 {
1327
1328 if (ssir) {
1329 splsoft();
1330 do_sir();
1331 }
1332
1333 return (pal_swpipl(PSL_IPL_0));
1334 }
1335
1336 /*
1337 * The following primitives manipulate the run queues. _whichqs tells which
1338 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1339 * into queues, Remrq removes them from queues. The running process is on
1340 * no queue, other processes are on a queue related to p->p_priority, divided
1341 * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1342 * queues.
1343 */
1344 /*
1345 * setrunqueue(p)
1346 * proc *p;
1347 *
1348 * Call should be made at splclock(), and p->p_stat should be SRUN.
1349 */
1350
1351 void
1352 setrunqueue(p)
1353 struct proc *p;
1354 {
1355 int bit;
1356
1357 /* firewall: p->p_back must be NULL */
1358 if (p->p_back != NULL)
1359 panic("setrunqueue");
1360
1361 bit = p->p_priority >> 2;
1362 whichqs |= (1 << bit);
1363 p->p_forw = (struct proc *)&qs[bit];
1364 p->p_back = qs[bit].ph_rlink;
1365 p->p_back->p_forw = p;
1366 qs[bit].ph_rlink = p;
1367 }
1368
1369 /*
1370 * Remrq(p)
1371 *
1372 * Call should be made at splclock().
1373 */
1374 void
1375 remrq(p)
1376 struct proc *p;
1377 {
1378 int bit;
1379
1380 bit = p->p_priority >> 2;
1381 if ((whichqs & (1 << bit)) == 0)
1382 panic("remrq");
1383
1384 p->p_back->p_forw = p->p_forw;
1385 p->p_forw->p_back = p->p_back;
1386 p->p_back = NULL; /* for firewall checking. */
1387
1388 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1389 whichqs &= ~(1 << bit);
1390 }
1391
1392 /*
1393 * Return the best possible estimate of the time in the timeval
1394 * to which tvp points. Unfortunately, we can't read the hardware registers.
1395 * We guarantee that the time will be greater than the value obtained by a
1396 * previous call.
1397 */
1398 void
1399 microtime(tvp)
1400 register struct timeval *tvp;
1401 {
1402 int s = splclock();
1403 static struct timeval lasttime;
1404
1405 *tvp = time;
1406 #ifdef notdef
1407 tvp->tv_usec += clkread();
1408 while (tvp->tv_usec > 1000000) {
1409 tvp->tv_sec++;
1410 tvp->tv_usec -= 1000000;
1411 }
1412 #endif
1413 if (tvp->tv_sec == lasttime.tv_sec &&
1414 tvp->tv_usec <= lasttime.tv_usec &&
1415 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1416 tvp->tv_sec++;
1417 tvp->tv_usec -= 1000000;
1418 }
1419 lasttime = *tvp;
1420 splx(s);
1421 }
1422
1423 /*
1424 * Wait "n" microseconds.
1425 */
1426 int
1427 delay(n)
1428 int n;
1429 {
1430 long N = cycles_per_usec * (n);
1431
1432 while (N > 0) /* XXX */
1433 N -= 3; /* XXX */
1434 }
1435
1436 #if defined(COMPAT_OSF1) || 1 /* XXX */
1437 void
1438 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1439 struct proc *p;
1440 struct exec_package *epp;
1441 u_long stack;
1442 register_t *retval;
1443 {
1444 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1445
1446 setregs(p, epp, stack, retval);
1447 p->p_md.md_tf->tf_gp = execp->a.gp_value;
1448 }
1449
1450 /*
1451 * cpu_exec_ecoff_hook():
1452 * cpu-dependent ECOFF format hook for execve().
1453 *
1454 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1455 *
1456 */
1457 int
1458 cpu_exec_ecoff_hook(p, epp)
1459 struct proc *p;
1460 struct exec_package *epp;
1461 {
1462 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1463 extern struct emul emul_netbsd;
1464 #ifdef COMPAT_OSF1
1465 extern struct emul emul_osf1;
1466 #endif
1467
1468 switch (execp->f.f_magic) {
1469 #ifdef COMPAT_OSF1
1470 case ECOFF_MAGIC_ALPHA:
1471 epp->ep_emul = &emul_osf1;
1472 break;
1473 #endif
1474
1475 case ECOFF_MAGIC_NETBSD_ALPHA:
1476 epp->ep_emul = &emul_netbsd;
1477 break;
1478
1479 default:
1480 return ENOEXEC;
1481 }
1482 return 0;
1483 }
1484 #endif
1485
1486 vm_offset_t
1487 vtophys(vaddr)
1488 vm_offset_t vaddr;
1489 {
1490 vm_offset_t paddr;
1491
1492 if (vaddr < K0SEG_BEGIN) {
1493 printf("vtophys: invalid vaddr 0x%lx", vaddr);
1494 paddr = vaddr;
1495 } else if (vaddr < K0SEG_END)
1496 paddr = k0segtophys(vaddr);
1497 else
1498 paddr = vatopa(vaddr);
1499
1500 #if 0
1501 printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1502 #endif
1503
1504 return (paddr);
1505 }
1506