machdep.c revision 1.32 1 /* $NetBSD: machdep.c,v 1.32 1996/07/09 00:54:00 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/conf.h>
40 #include <sys/file.h>
41 #ifdef REAL_CLISTS
42 #include <sys/clist.h>
43 #endif
44 #include <sys/callout.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/tty.h>
50 #include <sys/user.h>
51 #include <sys/exec.h>
52 #include <sys/exec_ecoff.h>
53 #include <sys/sysctl.h>
54 #ifdef SYSVMSG
55 #include <sys/msg.h>
56 #endif
57 #ifdef SYSVSEM
58 #include <sys/sem.h>
59 #endif
60 #ifdef SYSVSHM
61 #include <sys/shm.h>
62 #endif
63
64 #include <sys/mount.h>
65 #include <sys/syscallargs.h>
66
67 #include <vm/vm_kern.h>
68
69 #include <dev/cons.h>
70
71 #include <machine/cpu.h>
72 #include <machine/reg.h>
73 #include <machine/rpb.h>
74 #include <machine/prom.h>
75
76 #ifdef DEC_3000_500
77 #include <alpha/alpha/dec_3000_500.h>
78 #endif
79 #ifdef DEC_3000_300
80 #include <alpha/alpha/dec_3000_300.h>
81 #endif
82 #ifdef DEC_2100_A50
83 #include <alpha/alpha/dec_2100_a50.h>
84 #endif
85 #ifdef DEC_KN20AA
86 #include <alpha/alpha/dec_kn20aa.h>
87 #endif
88 #ifdef DEC_AXPPCI_33
89 #include <alpha/alpha/dec_axppci_33.h>
90 #endif
91 #ifdef DEC_21000
92 #include <alpha/alpha/dec_21000.h>
93 #endif
94
95 #include <net/netisr.h>
96 #include "ether.h"
97
98 #include "le_ioasic.h" /* for le_iomem creation */
99
100 vm_map_t buffer_map;
101
102 void dumpsys __P((void));
103
104 /*
105 * Declare these as initialized data so we can patch them.
106 */
107 int nswbuf = 0;
108 #ifdef NBUF
109 int nbuf = NBUF;
110 #else
111 int nbuf = 0;
112 #endif
113 #ifdef BUFPAGES
114 int bufpages = BUFPAGES;
115 #else
116 int bufpages = 0;
117 #endif
118 int msgbufmapped = 0; /* set when safe to use msgbuf */
119 int maxmem; /* max memory per process */
120
121 int totalphysmem; /* total amount of physical memory in system */
122 int physmem; /* physical memory used by NetBSD + some rsvd */
123 int firstusablepage; /* first usable memory page */
124 int lastusablepage; /* last usable memory page */
125 int resvmem; /* amount of memory reserved for PROM */
126 int unusedmem; /* amount of memory for OS that we don't use */
127 int unknownmem; /* amount of memory with an unknown use */
128
129 int cputype; /* system type, from the RPB */
130
131 /*
132 * XXX We need an address to which we can assign things so that they
133 * won't be optimized away because we didn't use the value.
134 */
135 u_int32_t no_optimize;
136
137 /* the following is used externally (sysctl_hw) */
138 char machine[] = "alpha";
139 char cpu_model[128];
140 char *model_names[] = {
141 "UNKNOWN (0)",
142 "Alpha Demonstration Unit",
143 "DEC 4000 (\"Cobra\")",
144 "DEC 7000 (\"Ruby\")",
145 "DEC 3000/500 (\"Flamingo\") family",
146 "UNKNOWN (5)",
147 "DEC 2000/300 (\"Jensen\")",
148 "DEC 3000/300 (\"Pelican\")",
149 "UNKNOWN (8)",
150 "DEC 2100/A500 (\"Sable\")",
151 "AXPvme 64",
152 "AXPpci 33 (\"NoName\")",
153 "DEC 21000 (\"TurboLaser\")",
154 "DEC 2100/A50 (\"Avanti\") family",
155 "Mustang",
156 "DEC KN20AA",
157 "UNKNOWN (16)",
158 "DEC 1000 (\"Mikasa\")",
159 };
160 int nmodel_names = sizeof model_names/sizeof model_names[0];
161
162 struct user *proc0paddr;
163
164 /* Number of machine cycles per microsecond */
165 u_int64_t cycles_per_usec;
166
167 /* some memory areas for device DMA. "ick." */
168 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
169
170 /* Interrupt vectors (in locore) */
171 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
172
173 /* number of cpus in the box. really! */
174 int ncpus;
175
176 /* various CPU-specific functions. */
177 char *(*cpu_modelname) __P((void));
178 void (*cpu_consinit) __P((void));
179 void (*cpu_device_register) __P((struct device *dev, void *aux));
180 char *cpu_iobus;
181
182 char boot_flags[64];
183
184 /* for cpu_sysctl() */
185 char root_device[17];
186
187 int
188 alpha_init(pfn, ptb)
189 u_long pfn; /* first free PFN number */
190 u_long ptb; /* PFN of current level 1 page table */
191 {
192 extern char _end[];
193 caddr_t start, v;
194 struct mddt *mddtp;
195 int i, mddtweird;
196 char *p;
197
198 /*
199 * Turn off interrupts and floating point.
200 * Make sure the instruction and data streams are consistent.
201 */
202 (void)splhigh();
203 alpha_pal_wrfen(0);
204 TBIA();
205 alpha_pal_imb();
206
207 /*
208 * get address of the restart block, while we the bootstrap
209 * mapping is still around.
210 */
211 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
212 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
213
214 /*
215 * Remember how many cycles there are per microsecond,
216 * so that we can use delay(). Round up, for safety.
217 */
218 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
219
220 /*
221 * Init the PROM interface, so we can use printf
222 * until PROM mappings go away in consinit.
223 */
224 init_prom_interface();
225
226 /*
227 * Point interrupt/exception vectors to our own.
228 */
229 alpha_pal_wrent(XentInt, 0);
230 alpha_pal_wrent(XentArith, 1);
231 alpha_pal_wrent(XentMM, 2);
232 alpha_pal_wrent(XentIF, 3);
233 alpha_pal_wrent(XentUna, 4);
234 alpha_pal_wrent(XentSys, 5);
235
236 /*
237 * Find out how much memory is available, by looking at
238 * the memory cluster descriptors. This also tries to do
239 * its best to detect things things that have never been seen
240 * before...
241 *
242 * XXX Assumes that the first "system" cluster is the
243 * only one we can use. Is the second (etc.) system cluster
244 * (if one happens to exist) guaranteed to be contiguous? or...?
245 */
246 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
247
248 /*
249 * BEGIN MDDT WEIRDNESS CHECKING
250 */
251 mddtweird = 0;
252
253 #define cnt mddtp->mddt_cluster_cnt
254 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
255 if (cnt != 2 && cnt != 3) {
256 printf("WARNING: weird number (%d) of mem clusters\n", cnt);
257 mddtweird = 1;
258 } else if (usage(0) != MDDT_PALCODE ||
259 usage(1) != MDDT_SYSTEM ||
260 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
261 mddtweird = 1;
262 printf("WARNING: %d mem clusters, but weird config\n", cnt);
263 }
264
265 for (i = 0; i < cnt; i++) {
266 if ((usage(i) & MDDT_mbz) != 0) {
267 printf("WARNING: mem cluster %d has weird usage %lx\n",
268 i, usage(i));
269 mddtweird = 1;
270 }
271 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
272 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
273 mddtweird = 1;
274 }
275 /* XXX other things to check? */
276 }
277 #undef cnt
278 #undef usage
279
280 if (mddtweird) {
281 printf("\n");
282 printf("complete memory cluster information:\n");
283 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
284 printf("mddt %d:\n", i);
285 printf("\tpfn %lx\n",
286 mddtp->mddt_clusters[i].mddt_pfn);
287 printf("\tcnt %lx\n",
288 mddtp->mddt_clusters[i].mddt_pg_cnt);
289 printf("\ttest %lx\n",
290 mddtp->mddt_clusters[i].mddt_pg_test);
291 printf("\tbva %lx\n",
292 mddtp->mddt_clusters[i].mddt_v_bitaddr);
293 printf("\tbpa %lx\n",
294 mddtp->mddt_clusters[i].mddt_p_bitaddr);
295 printf("\tbcksum %lx\n",
296 mddtp->mddt_clusters[i].mddt_bit_cksum);
297 printf("\tusage %lx\n",
298 mddtp->mddt_clusters[i].mddt_usage);
299 }
300 printf("\n");
301 }
302 /*
303 * END MDDT WEIRDNESS CHECKING
304 */
305
306 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
307 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
308 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
309 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
310 if ((usage(i) & MDDT_mbz) != 0)
311 unknownmem += pgcnt(i);
312 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
313 resvmem += pgcnt(i);
314 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
315 /*
316 * assumes that the system cluster listed is
317 * one we're in...
318 */
319 if (physmem != resvmem) {
320 physmem += pgcnt(i);
321 firstusablepage =
322 mddtp->mddt_clusters[i].mddt_pfn;
323 lastusablepage = firstusablepage + pgcnt(i) - 1;
324 } else
325 unusedmem += pgcnt(i);
326 }
327 #undef usage
328 #undef pgcnt
329 }
330 if (totalphysmem == 0)
331 panic("can't happen: system seems to have no memory!");
332 maxmem = physmem;
333
334 #if 0
335 printf("totalphysmem = %d\n", totalphysmem);
336 printf("physmem = %d\n", physmem);
337 printf("firstusablepage = %d\n", firstusablepage);
338 printf("lastusablepage = %d\n", lastusablepage);
339 printf("resvmem = %d\n", resvmem);
340 printf("unusedmem = %d\n", unusedmem);
341 printf("unknownmem = %d\n", unknownmem);
342 #endif
343
344 /*
345 * find out this CPU's page size
346 */
347 PAGE_SIZE = hwrpb->rpb_page_size;
348 if (PAGE_SIZE != 8192)
349 panic("page size %d != 8192?!", PAGE_SIZE);
350
351 v = (caddr_t)alpha_round_page(_end);
352 /*
353 * Init mapping for u page(s) for proc 0
354 */
355 start = v;
356 curproc->p_addr = proc0paddr = (struct user *)v;
357 v += UPAGES * NBPG;
358
359 /*
360 * Find out what hardware we're on, and remember its type name.
361 */
362 cputype = hwrpb->rpb_type;
363 switch (cputype) {
364 #ifdef DEC_3000_500 /* and 400, [6-9]00 */
365 case ST_DEC_3000_500:
366 cpu_modelname = dec_3000_500_modelname;
367 cpu_consinit = dec_3000_500_consinit;
368 cpu_device_register = dec_3000_500_device_register;
369 cpu_iobus = "tcasic";
370 break;
371 #endif
372
373 #ifdef DEC_3000_300
374 case ST_DEC_3000_300:
375 cpu_modelname = dec_3000_300_modelname;
376 cpu_consinit = dec_3000_300_consinit;
377 cpu_device_register = dec_3000_300_device_register;
378 cpu_iobus = "tcasic";
379 break;
380 #endif
381
382 #ifdef DEC_2100_A50
383 case ST_DEC_2100_A50:
384 cpu_modelname = dec_2100_a50_modelname;
385 cpu_consinit = dec_2100_a50_consinit;
386 cpu_device_register = dec_2100_a50_device_register;
387 cpu_iobus = "apecs";
388 break;
389 #endif
390
391 #ifdef DEC_KN20AA
392 case ST_DEC_KN20AA:
393 cpu_modelname = dec_kn20aa_modelname;
394 cpu_consinit = dec_kn20aa_consinit;
395 cpu_device_register = dec_kn20aa_device_register;
396 cpu_iobus = "cia";
397 break;
398 #endif
399
400 #ifdef DEC_AXPPCI_33
401 case ST_DEC_AXPPCI_33:
402 cpu_modelname = dec_axppci_33_modelname;
403 cpu_consinit = dec_axppci_33_consinit;
404 cpu_device_register = dec_axppci_33_device_register;
405 cpu_iobus = "lca";
406 break;
407 #endif
408
409 #ifdef DEC_2000_300
410 case ST_DEC_2000_300:
411 cpu_modelname = dec_2000_300_modelname;
412 cpu_consinit = dec_2000_300_consinit;
413 cpu_device_register = dec_2000_300_device_register;
414 cpu_iobus = "ibus";
415 XXX DEC 2000/300 NOT SUPPORTED
416 break;
417 #endif
418
419 #ifdef DEC_21000
420 case ST_DEC_21000:
421 cpu_modelname = dec_21000_modelname;
422 cpu_consinit = dec_21000_consinit;
423 cpu_device_register = dec_21000_device_register;
424 cpu_iobus = "tlsb";
425 XXX DEC 21000 NOT SUPPORTED
426 break;
427 #endif
428
429 default:
430 if (cputype > nmodel_names)
431 panic("Unknown system type %d", cputype);
432 else
433 panic("Support for %s system type not in kernel.",
434 model_names[cputype]);
435 }
436
437 if ((*cpu_modelname)() != NULL)
438 strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
439 else
440 strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
441 cpu_model[sizeof cpu_model - 1] = '\0';
442
443 #if NLE_IOASIC > 0
444 /*
445 * Grab 128K at the top of physical memory for the lance chip
446 * on machines where it does dma through the I/O ASIC.
447 * It must be physically contiguous and aligned on a 128K boundary.
448 *
449 * Note that since this is conditional on the presence of
450 * IOASIC-attached 'le' units in the kernel config, the
451 * message buffer may move on these systems. This shouldn't
452 * be a problem, because once people have a kernel config that
453 * they use, they're going to stick with it.
454 */
455 if (cputype == ST_DEC_3000_500 ||
456 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
457 lastusablepage -= btoc(128 * 1024);
458 le_iomem =
459 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
460 }
461 #endif /* NLE_IOASIC */
462
463 /*
464 * Initialize error message buffer (at end of core).
465 */
466 lastusablepage -= btoc(sizeof (struct msgbuf));
467 msgbufp =
468 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
469 msgbufmapped = 1;
470
471 /*
472 * Allocate space for system data structures.
473 * The first available kernel virtual address is in "v".
474 * As pages of kernel virtual memory are allocated, "v" is incremented.
475 *
476 * These data structures are allocated here instead of cpu_startup()
477 * because physical memory is directly addressable. We don't have
478 * to map these into virtual address space.
479 */
480 #define valloc(name, type, num) \
481 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
482 #define valloclim(name, type, num, lim) \
483 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
484 #ifdef REAL_CLISTS
485 valloc(cfree, struct cblock, nclist);
486 #endif
487 valloc(callout, struct callout, ncallout);
488 valloc(swapmap, struct map, nswapmap = maxproc * 2);
489 #ifdef SYSVSHM
490 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
491 #endif
492 #ifdef SYSVSEM
493 valloc(sema, struct semid_ds, seminfo.semmni);
494 valloc(sem, struct sem, seminfo.semmns);
495 /* This is pretty disgusting! */
496 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
497 #endif
498 #ifdef SYSVMSG
499 valloc(msgpool, char, msginfo.msgmax);
500 valloc(msgmaps, struct msgmap, msginfo.msgseg);
501 valloc(msghdrs, struct msg, msginfo.msgtql);
502 valloc(msqids, struct msqid_ds, msginfo.msgmni);
503 #endif
504
505 /*
506 * Determine how many buffers to allocate.
507 * We allocate 10% of memory for buffer space. Insure a
508 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
509 * headers as file i/o buffers.
510 */
511 if (bufpages == 0)
512 bufpages = (physmem * 10) / (CLSIZE * 100);
513 if (nbuf == 0) {
514 nbuf = bufpages;
515 if (nbuf < 16)
516 nbuf = 16;
517 }
518 if (nswbuf == 0) {
519 nswbuf = (nbuf / 2) &~ 1; /* force even */
520 if (nswbuf > 256)
521 nswbuf = 256; /* sanity */
522 }
523 valloc(swbuf, struct buf, nswbuf);
524 valloc(buf, struct buf, nbuf);
525
526 /*
527 * Clear allocated memory.
528 */
529 bzero(start, v - start);
530
531 /*
532 * Initialize the virtual memory system, and set the
533 * page table base register in proc 0's PCB.
534 */
535 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
536
537 /*
538 * Initialize the rest of proc 0's PCB, and cache its physical
539 * address.
540 */
541 proc0.p_md.md_pcbpaddr =
542 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
543
544 /*
545 * Set the kernel sp, reserving space for an (empty) trapframe,
546 * and make proc0's trapframe pointer point to it for sanity.
547 */
548 proc0paddr->u_pcb.pcb_ksp =
549 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
550 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
551
552 /*
553 * Look at arguments passed to us and compute boothowto.
554 */
555 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
556 #if 0
557 printf("boot flags = \"%s\"\n", boot_flags);
558 #endif
559
560 boothowto = RB_SINGLE;
561 #ifdef KADB
562 boothowto |= RB_KDB;
563 #endif
564 for (p = boot_flags; p && *p != '\0'; p++) {
565 /*
566 * Note that we'd really like to differentiate case here,
567 * but the Alpha AXP Architecture Reference Manual
568 * says that we shouldn't.
569 */
570 switch (*p) {
571 case 'a': /* autoboot */
572 case 'A':
573 boothowto &= ~RB_SINGLE;
574 break;
575
576 case 'n': /* askname */
577 case 'N':
578 boothowto |= RB_ASKNAME;
579 break;
580
581 #if 0
582 case 'm': /* mini root present in memory */
583 case 'M':
584 boothowto |= RB_MINIROOT;
585 break;
586 #endif
587 }
588 }
589
590 /*
591 * Figure out the number of cpus in the box, from RPB fields.
592 * Really. We mean it.
593 */
594 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
595 struct pcs *pcsp;
596
597 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
598 (i * hwrpb->rpb_pcs_size));
599 if ((pcsp->pcs_flags & PCS_PP) != 0)
600 ncpus++;
601 }
602
603 return (0);
604 }
605
606 void
607 consinit()
608 {
609
610 (*cpu_consinit)();
611 pmap_unmap_prom();
612 }
613
614 void
615 cpu_startup()
616 {
617 register unsigned i;
618 register caddr_t v;
619 int base, residual;
620 vm_offset_t minaddr, maxaddr;
621 vm_size_t size;
622 #ifdef DEBUG
623 extern int pmapdebug;
624 int opmapdebug = pmapdebug;
625
626 pmapdebug = 0;
627 #endif
628
629 /*
630 * Good {morning,afternoon,evening,night}.
631 */
632 printf(version);
633 identifycpu();
634 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
635 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
636 if (unusedmem)
637 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
638 if (unknownmem)
639 printf("WARNING: %d bytes of memory with unknown purpose\n",
640 ctob(unknownmem));
641
642 /*
643 * Allocate virtual address space for file I/O buffers.
644 * Note they are different than the array of headers, 'buf',
645 * and usually occupy more virtual memory than physical.
646 */
647 size = MAXBSIZE * nbuf;
648 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
649 &maxaddr, size, TRUE);
650 minaddr = (vm_offset_t)buffers;
651 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
652 &minaddr, size, FALSE) != KERN_SUCCESS)
653 panic("startup: cannot allocate buffers");
654 base = bufpages / nbuf;
655 residual = bufpages % nbuf;
656 for (i = 0; i < nbuf; i++) {
657 vm_size_t curbufsize;
658 vm_offset_t curbuf;
659
660 /*
661 * First <residual> buffers get (base+1) physical pages
662 * allocated for them. The rest get (base) physical pages.
663 *
664 * The rest of each buffer occupies virtual space,
665 * but has no physical memory allocated for it.
666 */
667 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
668 curbufsize = CLBYTES * (i < residual ? base+1 : base);
669 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
670 vm_map_simplify(buffer_map, curbuf);
671 }
672 /*
673 * Allocate a submap for exec arguments. This map effectively
674 * limits the number of processes exec'ing at any time.
675 */
676 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
677 16 * NCARGS, TRUE);
678
679 /*
680 * Allocate a submap for physio
681 */
682 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
683 VM_PHYS_SIZE, TRUE);
684
685 /*
686 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
687 * we use the more space efficient malloc in place of kmem_alloc.
688 */
689 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
690 M_MBUF, M_NOWAIT);
691 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
692 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
693 VM_MBUF_SIZE, FALSE);
694 /*
695 * Initialize callouts
696 */
697 callfree = callout;
698 for (i = 1; i < ncallout; i++)
699 callout[i-1].c_next = &callout[i];
700 callout[i-1].c_next = NULL;
701
702 #ifdef DEBUG
703 pmapdebug = opmapdebug;
704 #endif
705 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
706 printf("using %ld buffers containing %ld bytes of memory\n",
707 (long)nbuf, (long)(bufpages * CLBYTES));
708
709 /*
710 * Set up buffers, so they can be used to read disk labels.
711 */
712 bufinit();
713
714 /*
715 * Configure the system.
716 */
717 configure();
718 }
719
720 identifycpu()
721 {
722
723 /*
724 * print out CPU identification information.
725 */
726 printf("%s, %dMHz\n", cpu_model,
727 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
728 printf("%d byte page size, %d processor%s.\n",
729 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
730 #if 0
731 /* this isn't defined for any systems that we run on? */
732 printf("serial number 0x%lx 0x%lx\n",
733 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
734
735 /* and these aren't particularly useful! */
736 printf("variation: 0x%lx, revision 0x%lx\n",
737 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
738 #endif
739 }
740
741 int waittime = -1;
742 struct pcb dumppcb;
743
744 void
745 boot(howto)
746 int howto;
747 {
748 extern int cold;
749
750 /* If system is cold, just halt. */
751 if (cold) {
752 howto |= RB_HALT;
753 goto haltsys;
754 }
755
756 boothowto = howto;
757 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
758 waittime = 0;
759 vfs_shutdown();
760 /*
761 * If we've been adjusting the clock, the todr
762 * will be out of synch; adjust it now.
763 */
764 resettodr();
765 }
766
767 /* Disable interrupts. */
768 splhigh();
769
770 /* If rebooting and a dump is requested do it. */
771 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
772 savectx(&dumppcb, 0);
773 dumpsys();
774 }
775
776 haltsys:
777
778 /* run any shutdown hooks */
779 doshutdownhooks();
780
781 #ifdef BOOTKEY
782 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
783 cngetc();
784 printf("\n");
785 #endif
786
787 /* Finally, halt/reboot the system. */
788 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
789 prom_halt(howto & RB_HALT);
790 /*NOTREACHED*/
791 }
792
793 /*
794 * These variables are needed by /sbin/savecore
795 */
796 u_long dumpmag = 0x8fca0101; /* magic number */
797 int dumpsize = 0; /* pages */
798 long dumplo = 0; /* blocks */
799
800 /*
801 * This is called by configure to set dumplo and dumpsize.
802 * Dumps always skip the first CLBYTES of disk space
803 * in case there might be a disk label stored there.
804 * If there is extra space, put dump at the end to
805 * reduce the chance that swapping trashes it.
806 */
807 void
808 dumpconf()
809 {
810 int nblks; /* size of dump area */
811 int maj;
812
813 if (dumpdev == NODEV)
814 return;
815 maj = major(dumpdev);
816 if (maj < 0 || maj >= nblkdev)
817 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
818 if (bdevsw[maj].d_psize == NULL)
819 return;
820 nblks = (*bdevsw[maj].d_psize)(dumpdev);
821 if (nblks <= ctod(1))
822 return;
823
824 /* XXX XXX XXX STARTING MEMORY LOCATION */
825 dumpsize = physmem;
826
827 /* Always skip the first CLBYTES, in case there is a label there. */
828 if (dumplo < ctod(1))
829 dumplo = ctod(1);
830
831 /* Put dump at end of partition, and make it fit. */
832 if (dumpsize > dtoc(nblks - dumplo))
833 dumpsize = dtoc(nblks - dumplo);
834 if (dumplo < nblks - ctod(dumpsize))
835 dumplo = nblks - ctod(dumpsize);
836 }
837
838 /*
839 * Doadump comes here after turning off memory management and
840 * getting on the dump stack, either when called above, or by
841 * the auto-restart code.
842 */
843 void
844 dumpsys()
845 {
846
847 msgbufmapped = 0;
848 if (dumpdev == NODEV)
849 return;
850 if (dumpsize == 0) {
851 dumpconf();
852 if (dumpsize == 0)
853 return;
854 }
855 printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
856
857 printf("dump ");
858 switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
859
860 case ENXIO:
861 printf("device bad\n");
862 break;
863
864 case EFAULT:
865 printf("device not ready\n");
866 break;
867
868 case EINVAL:
869 printf("area improper\n");
870 break;
871
872 case EIO:
873 printf("i/o error\n");
874 break;
875
876 case EINTR:
877 printf("aborted from console\n");
878 break;
879
880 default:
881 printf("succeeded\n");
882 break;
883 }
884 printf("\n\n");
885 delay(1000);
886 }
887
888 void
889 frametoreg(framep, regp)
890 struct trapframe *framep;
891 struct reg *regp;
892 {
893
894 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
895 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
896 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
897 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
898 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
899 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
900 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
901 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
902 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
903 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
904 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
905 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
906 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
907 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
908 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
909 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
910 regp->r_regs[R_A0] = framep->tf_a0;
911 regp->r_regs[R_A1] = framep->tf_a1;
912 regp->r_regs[R_A2] = framep->tf_a2;
913 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
914 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
915 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
916 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
917 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
918 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
919 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
920 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
921 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
922 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
923 regp->r_regs[R_GP] = framep->tf_gp;
924 regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
925 regp->r_regs[R_ZERO] = 0;
926 }
927
928 void
929 regtoframe(regp, framep)
930 struct reg *regp;
931 struct trapframe *framep;
932 {
933
934 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
935 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
936 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
937 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
938 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
939 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
940 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
941 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
942 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
943 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
944 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
945 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
946 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
947 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
948 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
949 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
950 framep->tf_a0 = regp->r_regs[R_A0];
951 framep->tf_a1 = regp->r_regs[R_A1];
952 framep->tf_a2 = regp->r_regs[R_A2];
953 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
954 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
955 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
956 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
957 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
958 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
959 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
960 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
961 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
962 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
963 framep->tf_gp = regp->r_regs[R_GP];
964 framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
965 /* ??? = regp->r_regs[R_ZERO]; */
966 }
967
968 void
969 printregs(regp)
970 struct reg *regp;
971 {
972 int i;
973
974 for (i = 0; i < 32; i++)
975 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
976 i & 1 ? "\n" : "\t");
977 }
978
979 void
980 regdump(framep)
981 struct trapframe *framep;
982 {
983 struct reg reg;
984
985 frametoreg(framep, ®);
986 printf("REGISTERS:\n");
987 printregs(®);
988 }
989
990 #ifdef DEBUG
991 int sigdebug = 0;
992 int sigpid = 0;
993 #define SDB_FOLLOW 0x01
994 #define SDB_KSTACK 0x02
995 #endif
996
997 /*
998 * Send an interrupt to process.
999 */
1000 void
1001 sendsig(catcher, sig, mask, code)
1002 sig_t catcher;
1003 int sig, mask;
1004 u_long code;
1005 {
1006 struct proc *p = curproc;
1007 struct sigcontext *scp, ksc;
1008 struct trapframe *frame;
1009 struct sigacts *psp = p->p_sigacts;
1010 int oonstack, fsize, rndfsize;
1011 extern char sigcode[], esigcode[];
1012 extern struct proc *fpcurproc;
1013
1014 frame = p->p_md.md_tf;
1015 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1016 fsize = sizeof ksc;
1017 rndfsize = ((fsize + 15) / 16) * 16;
1018 /*
1019 * Allocate and validate space for the signal handler
1020 * context. Note that if the stack is in P0 space, the
1021 * call to grow() is a nop, and the useracc() check
1022 * will fail if the process has not already allocated
1023 * the space with a `brk'.
1024 */
1025 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1026 (psp->ps_sigonstack & sigmask(sig))) {
1027 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1028 psp->ps_sigstk.ss_size - rndfsize);
1029 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1030 } else
1031 scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1032 rndfsize);
1033 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1034 (void)grow(p, (u_long)scp);
1035 #ifdef DEBUG
1036 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1037 printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1038 sig, &oonstack, scp);
1039 #endif
1040 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1041 #ifdef DEBUG
1042 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1043 printf("sendsig(%d): useracc failed on sig %d\n",
1044 p->p_pid, sig);
1045 #endif
1046 /*
1047 * Process has trashed its stack; give it an illegal
1048 * instruction to halt it in its tracks.
1049 */
1050 SIGACTION(p, SIGILL) = SIG_DFL;
1051 sig = sigmask(SIGILL);
1052 p->p_sigignore &= ~sig;
1053 p->p_sigcatch &= ~sig;
1054 p->p_sigmask &= ~sig;
1055 psignal(p, SIGILL);
1056 return;
1057 }
1058
1059 /*
1060 * Build the signal context to be used by sigreturn.
1061 */
1062 ksc.sc_onstack = oonstack;
1063 ksc.sc_mask = mask;
1064 ksc.sc_pc = frame->tf_pc;
1065 ksc.sc_ps = frame->tf_ps;
1066
1067 /* copy the registers. */
1068 frametoreg(frame, (struct reg *)ksc.sc_regs);
1069 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1070
1071 /* save the floating-point state, if necessary, then copy it. */
1072 if (p == fpcurproc) {
1073 alpha_pal_wrfen(1);
1074 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1075 alpha_pal_wrfen(0);
1076 fpcurproc = NULL;
1077 }
1078 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1079 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1080 sizeof(struct fpreg));
1081 ksc.sc_fp_control = 0; /* XXX ? */
1082 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1083 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1084
1085
1086 #ifdef COMPAT_OSF1
1087 /*
1088 * XXX Create an OSF/1-style sigcontext and associated goo.
1089 */
1090 #endif
1091
1092 /*
1093 * copy the frame out to userland.
1094 */
1095 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1096 #ifdef DEBUG
1097 if (sigdebug & SDB_FOLLOW)
1098 printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1099 scp, code);
1100 #endif
1101
1102 /*
1103 * Set up the registers to return to sigcode.
1104 */
1105 frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1106 frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1107 frame->tf_a0 = sig;
1108 frame->tf_a1 = code;
1109 frame->tf_a2 = (u_int64_t)scp;
1110 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1111
1112 #ifdef DEBUG
1113 if (sigdebug & SDB_FOLLOW)
1114 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1115 frame->tf_pc, frame->tf_regs[FRAME_A3]);
1116 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1117 printf("sendsig(%d): sig %d returns\n",
1118 p->p_pid, sig);
1119 #endif
1120 }
1121
1122 /*
1123 * System call to cleanup state after a signal
1124 * has been taken. Reset signal mask and
1125 * stack state from context left by sendsig (above).
1126 * Return to previous pc and psl as specified by
1127 * context left by sendsig. Check carefully to
1128 * make sure that the user has not modified the
1129 * psl to gain improper priviledges or to cause
1130 * a machine fault.
1131 */
1132 /* ARGSUSED */
1133 int
1134 sys_sigreturn(p, v, retval)
1135 struct proc *p;
1136 void *v;
1137 register_t *retval;
1138 {
1139 struct sys_sigreturn_args /* {
1140 syscallarg(struct sigcontext *) sigcntxp;
1141 } */ *uap = v;
1142 struct sigcontext *scp, ksc;
1143 extern struct proc *fpcurproc;
1144
1145 scp = SCARG(uap, sigcntxp);
1146 #ifdef DEBUG
1147 if (sigdebug & SDB_FOLLOW)
1148 printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1149 #endif
1150
1151 if (ALIGN(scp) != (u_int64_t)scp)
1152 return (EINVAL);
1153
1154 /*
1155 * Test and fetch the context structure.
1156 * We grab it all at once for speed.
1157 */
1158 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1159 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1160 return (EINVAL);
1161
1162 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1163 return (EINVAL);
1164 /*
1165 * Restore the user-supplied information
1166 */
1167 if (ksc.sc_onstack)
1168 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1169 else
1170 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1171 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1172
1173 p->p_md.md_tf->tf_pc = ksc.sc_pc;
1174 p->p_md.md_tf->tf_ps =
1175 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1176
1177 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1178
1179 /* XXX ksc.sc_ownedfp ? */
1180 if (p == fpcurproc)
1181 fpcurproc = NULL;
1182 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1183 sizeof(struct fpreg));
1184 /* XXX ksc.sc_fp_control ? */
1185
1186 #ifdef DEBUG
1187 if (sigdebug & SDB_FOLLOW)
1188 printf("sigreturn(%d): returns\n", p->p_pid);
1189 #endif
1190 return (EJUSTRETURN);
1191 }
1192
1193 /*
1194 * machine dependent system variables.
1195 */
1196 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1197 int *name;
1198 u_int namelen;
1199 void *oldp;
1200 size_t *oldlenp;
1201 void *newp;
1202 size_t newlen;
1203 struct proc *p;
1204 {
1205 dev_t consdev;
1206
1207 /* all sysctl names at this level are terminal */
1208 if (namelen != 1)
1209 return (ENOTDIR); /* overloaded */
1210
1211 switch (name[0]) {
1212 case CPU_CONSDEV:
1213 if (cn_tab != NULL)
1214 consdev = cn_tab->cn_dev;
1215 else
1216 consdev = NODEV;
1217 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1218 sizeof consdev));
1219
1220 case CPU_ROOT_DEVICE:
1221 return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1222
1223 default:
1224 return (EOPNOTSUPP);
1225 }
1226 /* NOTREACHED */
1227 }
1228
1229 /*
1230 * Set registers on exec.
1231 */
1232 void
1233 setregs(p, pack, stack, retval)
1234 register struct proc *p;
1235 struct exec_package *pack;
1236 u_long stack;
1237 register_t *retval;
1238 {
1239 struct trapframe *tfp = p->p_md.md_tf;
1240 int i;
1241 extern struct proc *fpcurproc;
1242
1243 #ifdef DEBUG
1244 for (i = 0; i < FRAME_NSAVEREGS; i++)
1245 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1246 tfp->tf_gp = 0xbabefacedeadbeef;
1247 tfp->tf_a0 = 0xbabefacedeadbeef;
1248 tfp->tf_a1 = 0xbabefacedeadbeef;
1249 tfp->tf_a2 = 0xbabefacedeadbeef;
1250 #else
1251 bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1252 tfp->tf_gp = 0;
1253 tfp->tf_a0 = 0;
1254 tfp->tf_a1 = 0;
1255 tfp->tf_a2 = 0;
1256 #endif
1257 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1258 #define FP_RN 2 /* XXX */
1259 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1260 tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1261 tfp->tf_ps = ALPHA_PSL_USERSET;
1262 tfp->tf_pc = pack->ep_entry & ~3;
1263
1264 p->p_md.md_flags & ~MDP_FPUSED;
1265 if (fpcurproc == p)
1266 fpcurproc = NULL;
1267
1268 retval[0] = retval[1] = 0;
1269 }
1270
1271 void
1272 netintr()
1273 {
1274 #ifdef INET
1275 #if NETHER > 0
1276 if (netisr & (1 << NETISR_ARP)) {
1277 netisr &= ~(1 << NETISR_ARP);
1278 arpintr();
1279 }
1280 #endif
1281 if (netisr & (1 << NETISR_IP)) {
1282 netisr &= ~(1 << NETISR_IP);
1283 ipintr();
1284 }
1285 #endif
1286 #ifdef NS
1287 if (netisr & (1 << NETISR_NS)) {
1288 netisr &= ~(1 << NETISR_NS);
1289 nsintr();
1290 }
1291 #endif
1292 #ifdef ISO
1293 if (netisr & (1 << NETISR_ISO)) {
1294 netisr &= ~(1 << NETISR_ISO);
1295 clnlintr();
1296 }
1297 #endif
1298 #ifdef CCITT
1299 if (netisr & (1 << NETISR_CCITT)) {
1300 netisr &= ~(1 << NETISR_CCITT);
1301 ccittintr();
1302 }
1303 #endif
1304 #ifdef PPP
1305 if (netisr & (1 << NETISR_PPP)) {
1306 netisr &= ~(1 << NETISR_PPP);
1307 pppintr();
1308 }
1309 #endif
1310 }
1311
1312 void
1313 do_sir()
1314 {
1315
1316 if (ssir & SIR_NET) {
1317 siroff(SIR_NET);
1318 cnt.v_soft++;
1319 netintr();
1320 }
1321 if (ssir & SIR_CLOCK) {
1322 siroff(SIR_CLOCK);
1323 cnt.v_soft++;
1324 softclock();
1325 }
1326 }
1327
1328 int
1329 spl0()
1330 {
1331
1332 if (ssir) {
1333 splsoft();
1334 do_sir();
1335 }
1336
1337 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1338 }
1339
1340 /*
1341 * The following primitives manipulate the run queues. _whichqs tells which
1342 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1343 * into queues, Remrq removes them from queues. The running process is on
1344 * no queue, other processes are on a queue related to p->p_priority, divided
1345 * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1346 * queues.
1347 */
1348 /*
1349 * setrunqueue(p)
1350 * proc *p;
1351 *
1352 * Call should be made at splclock(), and p->p_stat should be SRUN.
1353 */
1354
1355 void
1356 setrunqueue(p)
1357 struct proc *p;
1358 {
1359 int bit;
1360
1361 /* firewall: p->p_back must be NULL */
1362 if (p->p_back != NULL)
1363 panic("setrunqueue");
1364
1365 bit = p->p_priority >> 2;
1366 whichqs |= (1 << bit);
1367 p->p_forw = (struct proc *)&qs[bit];
1368 p->p_back = qs[bit].ph_rlink;
1369 p->p_back->p_forw = p;
1370 qs[bit].ph_rlink = p;
1371 }
1372
1373 /*
1374 * Remrq(p)
1375 *
1376 * Call should be made at splclock().
1377 */
1378 void
1379 remrq(p)
1380 struct proc *p;
1381 {
1382 int bit;
1383
1384 bit = p->p_priority >> 2;
1385 if ((whichqs & (1 << bit)) == 0)
1386 panic("remrq");
1387
1388 p->p_back->p_forw = p->p_forw;
1389 p->p_forw->p_back = p->p_back;
1390 p->p_back = NULL; /* for firewall checking. */
1391
1392 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1393 whichqs &= ~(1 << bit);
1394 }
1395
1396 /*
1397 * Return the best possible estimate of the time in the timeval
1398 * to which tvp points. Unfortunately, we can't read the hardware registers.
1399 * We guarantee that the time will be greater than the value obtained by a
1400 * previous call.
1401 */
1402 void
1403 microtime(tvp)
1404 register struct timeval *tvp;
1405 {
1406 int s = splclock();
1407 static struct timeval lasttime;
1408
1409 *tvp = time;
1410 #ifdef notdef
1411 tvp->tv_usec += clkread();
1412 while (tvp->tv_usec > 1000000) {
1413 tvp->tv_sec++;
1414 tvp->tv_usec -= 1000000;
1415 }
1416 #endif
1417 if (tvp->tv_sec == lasttime.tv_sec &&
1418 tvp->tv_usec <= lasttime.tv_usec &&
1419 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1420 tvp->tv_sec++;
1421 tvp->tv_usec -= 1000000;
1422 }
1423 lasttime = *tvp;
1424 splx(s);
1425 }
1426
1427 /*
1428 * Wait "n" microseconds.
1429 */
1430 void
1431 delay(n)
1432 unsigned long n;
1433 {
1434 long N = cycles_per_usec * (n);
1435
1436 while (N > 0) /* XXX */
1437 N -= 3; /* XXX */
1438 }
1439
1440 #if defined(COMPAT_OSF1) || 1 /* XXX */
1441 void
1442 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1443 struct proc *p;
1444 struct exec_package *epp;
1445 u_long stack;
1446 register_t *retval;
1447 {
1448 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1449
1450 setregs(p, epp, stack, retval);
1451 p->p_md.md_tf->tf_gp = execp->a.gp_value;
1452 }
1453
1454 /*
1455 * cpu_exec_ecoff_hook():
1456 * cpu-dependent ECOFF format hook for execve().
1457 *
1458 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1459 *
1460 */
1461 int
1462 cpu_exec_ecoff_hook(p, epp)
1463 struct proc *p;
1464 struct exec_package *epp;
1465 {
1466 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1467 extern struct emul emul_netbsd;
1468 #ifdef COMPAT_OSF1
1469 extern struct emul emul_osf1;
1470 #endif
1471
1472 switch (execp->f.f_magic) {
1473 #ifdef COMPAT_OSF1
1474 case ECOFF_MAGIC_ALPHA:
1475 epp->ep_emul = &emul_osf1;
1476 break;
1477 #endif
1478
1479 case ECOFF_MAGIC_NETBSD_ALPHA:
1480 epp->ep_emul = &emul_netbsd;
1481 break;
1482
1483 default:
1484 return ENOEXEC;
1485 }
1486 return 0;
1487 }
1488 #endif
1489
1490 vm_offset_t
1491 vtophys(vaddr)
1492 vm_offset_t vaddr;
1493 {
1494 vm_offset_t paddr;
1495
1496 if (vaddr < ALPHA_K0SEG_BASE) {
1497 printf("vtophys: invalid vaddr 0x%lx", vaddr);
1498 paddr = vaddr;
1499 } else if (vaddr <= ALPHA_K0SEG_END)
1500 paddr = ALPHA_K0SEG_TO_PHYS(vaddr);
1501 else
1502 paddr = vatopa(vaddr);
1503
1504 #if 0
1505 printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1506 #endif
1507
1508 return (paddr);
1509 }
1510