machdep.c revision 1.321 1 /* $NetBSD: machdep.c,v 1.321 2009/10/25 20:39:45 mhitch Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_compat_osf1.h"
67 #include "opt_execfmt.h"
68
69 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
70
71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.321 2009/10/25 20:39:45 mhitch Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/signalvar.h>
76 #include <sys/kernel.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/ras.h>
80 #include <sys/sa.h>
81 #include <sys/savar.h>
82 #include <sys/sched.h>
83 #include <sys/reboot.h>
84 #include <sys/device.h>
85 #include <sys/malloc.h>
86 #include <sys/mman.h>
87 #include <sys/msgbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/exec_aout.h> /* for MID_* */
93 #include <sys/exec_ecoff.h>
94 #include <sys/core.h>
95 #include <sys/kcore.h>
96 #include <sys/ucontext.h>
97 #include <sys/conf.h>
98 #include <sys/ksyms.h>
99 #include <sys/kauth.h>
100 #include <sys/atomic.h>
101 #include <sys/cpu.h>
102
103 #include <machine/kcore.h>
104 #include <machine/fpu.h>
105
106 #include <sys/mount.h>
107 #include <sys/syscallargs.h>
108
109 #include <uvm/uvm_extern.h>
110 #include <sys/sysctl.h>
111
112 #include <dev/cons.h>
113
114 #include <machine/autoconf.h>
115 #include <machine/reg.h>
116 #include <machine/rpb.h>
117 #include <machine/prom.h>
118 #include <machine/cpuconf.h>
119 #include <machine/ieeefp.h>
120
121 #ifdef DDB
122 #include <machine/db_machdep.h>
123 #include <ddb/db_access.h>
124 #include <ddb/db_sym.h>
125 #include <ddb/db_extern.h>
126 #include <ddb/db_interface.h>
127 #endif
128
129 #ifdef KGDB
130 #include <sys/kgdb.h>
131 #endif
132
133 #ifdef DEBUG
134 #include <machine/sigdebug.h>
135 #endif
136
137 #include <machine/alpha.h>
138
139 #include "ksyms.h"
140
141 struct vm_map *mb_map = NULL;
142 struct vm_map *phys_map = NULL;
143
144 void *msgbufaddr;
145
146 int maxmem; /* max memory per process */
147
148 int totalphysmem; /* total amount of physical memory in system */
149 int physmem; /* physical memory used by NetBSD + some rsvd */
150 int resvmem; /* amount of memory reserved for PROM */
151 int unusedmem; /* amount of memory for OS that we don't use */
152 int unknownmem; /* amount of memory with an unknown use */
153
154 int cputype; /* system type, from the RPB */
155
156 int bootdev_debug = 0; /* patchable, or from DDB */
157
158 /*
159 * XXX We need an address to which we can assign things so that they
160 * won't be optimized away because we didn't use the value.
161 */
162 u_int32_t no_optimize;
163
164 /* the following is used externally (sysctl_hw) */
165 char machine[] = MACHINE; /* from <machine/param.h> */
166 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 char cpu_model[128];
168
169 struct user *proc0paddr;
170
171 /* Number of machine cycles per microsecond */
172 u_int64_t cycles_per_usec;
173
174 /* number of CPUs in the box. really! */
175 int ncpus;
176
177 struct bootinfo_kernel bootinfo;
178
179 /* For built-in TCDS */
180 #if defined(DEC_3000_300) || defined(DEC_3000_500)
181 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
182 #endif
183
184 struct platform platform;
185
186 #if NKSYMS || defined(DDB) || defined(MODULAR)
187 /* start and end of kernel symbol table */
188 void *ksym_start, *ksym_end;
189 #endif
190
191 /* for cpu_sysctl() */
192 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
193 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
194 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
195 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
196
197 /*
198 * XXX This should be dynamically sized, but we have the chicken-egg problem!
199 * XXX it should also be larger than it is, because not all of the mddt
200 * XXX clusters end up being used for VM.
201 */
202 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
203 int mem_cluster_cnt;
204
205 int cpu_dump(void);
206 int cpu_dumpsize(void);
207 u_long cpu_dump_mempagecnt(void);
208 void dumpsys(void);
209 void identifycpu(void);
210 void printregs(struct reg *);
211
212 void
213 alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
214 /* pfn: first free PFN number */
215 /* ptb: PFN of current level 1 page table */
216 /* bim: bootinfo magic */
217 /* bip: bootinfo pointer */
218 /* biv: bootinfo version */
219 {
220 extern char kernel_text[], _end[];
221 struct mddt *mddtp;
222 struct mddt_cluster *memc;
223 int i, mddtweird;
224 struct vm_physseg *vps;
225 vaddr_t kernstart, kernend;
226 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
227 cpuid_t cpu_id;
228 struct cpu_info *ci;
229 char *p;
230 const char *bootinfo_msg;
231 const struct cpuinit *c;
232
233 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
234
235 /*
236 * Turn off interrupts (not mchecks) and floating point.
237 * Make sure the instruction and data streams are consistent.
238 */
239 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
240 alpha_pal_wrfen(0);
241 ALPHA_TBIA();
242 alpha_pal_imb();
243
244 /* Initialize the SCB. */
245 scb_init();
246
247 cpu_id = cpu_number();
248
249 #if defined(MULTIPROCESSOR)
250 /*
251 * Set our SysValue to the address of our cpu_info structure.
252 * Secondary processors do this in their spinup trampoline.
253 */
254 alpha_pal_wrval((u_long)&cpu_info_primary);
255 cpu_info[cpu_id] = &cpu_info_primary;
256 #endif
257
258 ci = curcpu();
259 ci->ci_cpuid = cpu_id;
260
261 /*
262 * Get critical system information (if possible, from the
263 * information provided by the boot program).
264 */
265 bootinfo_msg = NULL;
266 if (bim == BOOTINFO_MAGIC) {
267 if (biv == 0) { /* backward compat */
268 biv = *(u_long *)bip;
269 bip += 8;
270 }
271 switch (biv) {
272 case 1: {
273 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
274
275 bootinfo.ssym = v1p->ssym;
276 bootinfo.esym = v1p->esym;
277 /* hwrpb may not be provided by boot block in v1 */
278 if (v1p->hwrpb != NULL) {
279 bootinfo.hwrpb_phys =
280 ((struct rpb *)v1p->hwrpb)->rpb_phys;
281 bootinfo.hwrpb_size = v1p->hwrpbsize;
282 } else {
283 bootinfo.hwrpb_phys =
284 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
285 bootinfo.hwrpb_size =
286 ((struct rpb *)HWRPB_ADDR)->rpb_size;
287 }
288 memcpy(bootinfo.boot_flags, v1p->boot_flags,
289 min(sizeof v1p->boot_flags,
290 sizeof bootinfo.boot_flags));
291 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
292 min(sizeof v1p->booted_kernel,
293 sizeof bootinfo.booted_kernel));
294 /* booted dev not provided in bootinfo */
295 init_prom_interface((struct rpb *)
296 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
297 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
298 sizeof bootinfo.booted_dev);
299 break;
300 }
301 default:
302 bootinfo_msg = "unknown bootinfo version";
303 goto nobootinfo;
304 }
305 } else {
306 bootinfo_msg = "boot program did not pass bootinfo";
307 nobootinfo:
308 bootinfo.ssym = (u_long)_end;
309 bootinfo.esym = (u_long)_end;
310 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
311 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
312 init_prom_interface((struct rpb *)HWRPB_ADDR);
313 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
314 sizeof bootinfo.boot_flags);
315 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
316 sizeof bootinfo.booted_kernel);
317 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
318 sizeof bootinfo.booted_dev);
319 }
320
321 /*
322 * Initialize the kernel's mapping of the RPB. It's needed for
323 * lots of things.
324 */
325 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
326
327 #if defined(DEC_3000_300) || defined(DEC_3000_500)
328 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
329 hwrpb->rpb_type == ST_DEC_3000_500) {
330 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
331 sizeof(dec_3000_scsiid));
332 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
333 sizeof(dec_3000_scsifast));
334 }
335 #endif
336
337 /*
338 * Remember how many cycles there are per microsecond,
339 * so that we can use delay(). Round up, for safety.
340 */
341 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
342
343 /*
344 * Initialize the (temporary) bootstrap console interface, so
345 * we can use printf until the VM system starts being setup.
346 * The real console is initialized before then.
347 */
348 init_bootstrap_console();
349
350 /* OUTPUT NOW ALLOWED */
351
352 /* delayed from above */
353 if (bootinfo_msg)
354 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
355 bootinfo_msg, bim, bip, biv);
356
357 /* Initialize the trap vectors on the primary processor. */
358 trap_init();
359
360 /*
361 * Find out this system's page size, and initialize
362 * PAGE_SIZE-dependent variables.
363 */
364 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
365 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
366 ALPHA_PGBYTES);
367 uvmexp.pagesize = hwrpb->rpb_page_size;
368 uvm_setpagesize();
369
370 /*
371 * Find out what hardware we're on, and do basic initialization.
372 */
373 cputype = hwrpb->rpb_type;
374 if (cputype < 0) {
375 /*
376 * At least some white-box systems have SRM which
377 * reports a systype that's the negative of their
378 * blue-box counterpart.
379 */
380 cputype = -cputype;
381 }
382 c = platform_lookup(cputype);
383 if (c == NULL) {
384 platform_not_supported();
385 /* NOTREACHED */
386 }
387 (*c->init)();
388 strcpy(cpu_model, platform.model);
389
390 /*
391 * Initialize the real console, so that the bootstrap console is
392 * no longer necessary.
393 */
394 (*platform.cons_init)();
395
396 #ifdef DIAGNOSTIC
397 /* Paranoid sanity checking */
398
399 /* We should always be running on the primary. */
400 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
401
402 /*
403 * On single-CPU systypes, the primary should always be CPU 0,
404 * except on Alpha 8200 systems where the CPU id is related
405 * to the VID, which is related to the Turbo Laser node id.
406 */
407 if (cputype != ST_DEC_21000)
408 assert(hwrpb->rpb_primary_cpu_id == 0);
409 #endif
410
411 /* NO MORE FIRMWARE ACCESS ALLOWED */
412 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
413 /*
414 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
415 * XXX pmap_uses_prom_console() evaluates to non-zero.)
416 */
417 #endif
418
419 /*
420 * Find the beginning and end of the kernel (and leave a
421 * bit of space before the beginning for the bootstrap
422 * stack).
423 */
424 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
425 #if NKSYMS || defined(DDB) || defined(MODULAR)
426 ksym_start = (void *)bootinfo.ssym;
427 ksym_end = (void *)bootinfo.esym;
428 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
429 #else
430 kernend = (vaddr_t)round_page((vaddr_t)_end);
431 #endif
432
433 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
434 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
435
436 /*
437 * Find out how much memory is available, by looking at
438 * the memory cluster descriptors. This also tries to do
439 * its best to detect things things that have never been seen
440 * before...
441 */
442 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
443
444 /* MDDT SANITY CHECKING */
445 mddtweird = 0;
446 if (mddtp->mddt_cluster_cnt < 2) {
447 mddtweird = 1;
448 printf("WARNING: weird number of mem clusters: %lu\n",
449 mddtp->mddt_cluster_cnt);
450 }
451
452 #if 0
453 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
454 #endif
455
456 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
457 memc = &mddtp->mddt_clusters[i];
458 #if 0
459 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
460 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
461 #endif
462 totalphysmem += memc->mddt_pg_cnt;
463 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
464 mem_clusters[mem_cluster_cnt].start =
465 ptoa(memc->mddt_pfn);
466 mem_clusters[mem_cluster_cnt].size =
467 ptoa(memc->mddt_pg_cnt);
468 if (memc->mddt_usage & MDDT_mbz ||
469 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
470 memc->mddt_usage & MDDT_PALCODE)
471 mem_clusters[mem_cluster_cnt].size |=
472 PROT_READ;
473 else
474 mem_clusters[mem_cluster_cnt].size |=
475 PROT_READ | PROT_WRITE | PROT_EXEC;
476 mem_cluster_cnt++;
477 }
478
479 if (memc->mddt_usage & MDDT_mbz) {
480 mddtweird = 1;
481 printf("WARNING: mem cluster %d has weird "
482 "usage 0x%lx\n", i, memc->mddt_usage);
483 unknownmem += memc->mddt_pg_cnt;
484 continue;
485 }
486 if (memc->mddt_usage & MDDT_NONVOLATILE) {
487 /* XXX should handle these... */
488 printf("WARNING: skipping non-volatile mem "
489 "cluster %d\n", i);
490 unusedmem += memc->mddt_pg_cnt;
491 continue;
492 }
493 if (memc->mddt_usage & MDDT_PALCODE) {
494 resvmem += memc->mddt_pg_cnt;
495 continue;
496 }
497
498 /*
499 * We have a memory cluster available for system
500 * software use. We must determine if this cluster
501 * holds the kernel.
502 */
503 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
504 /*
505 * XXX If the kernel uses the PROM console, we only use the
506 * XXX memory after the kernel in the first system segment,
507 * XXX to avoid clobbering prom mapping, data, etc.
508 */
509 if (!pmap_uses_prom_console() || physmem == 0) {
510 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
511 physmem += memc->mddt_pg_cnt;
512 pfn0 = memc->mddt_pfn;
513 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
514 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
515 /*
516 * Must compute the location of the kernel
517 * within the segment.
518 */
519 #if 0
520 printf("Cluster %d contains kernel\n", i);
521 #endif
522 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
523 if (!pmap_uses_prom_console()) {
524 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
525 if (pfn0 < kernstartpfn) {
526 /*
527 * There is a chunk before the kernel.
528 */
529 #if 0
530 printf("Loading chunk before kernel: "
531 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
532 #endif
533 uvm_page_physload(pfn0, kernstartpfn,
534 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
535 }
536 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
537 }
538 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
539 if (kernendpfn < pfn1) {
540 /*
541 * There is a chunk after the kernel.
542 */
543 #if 0
544 printf("Loading chunk after kernel: "
545 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
546 #endif
547 uvm_page_physload(kernendpfn, pfn1,
548 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
549 }
550 } else {
551 /*
552 * Just load this cluster as one chunk.
553 */
554 #if 0
555 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
556 pfn0, pfn1);
557 #endif
558 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
559 VM_FREELIST_DEFAULT);
560 }
561 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
562 }
563 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
564 }
565
566 /*
567 * Dump out the MDDT if it looks odd...
568 */
569 if (mddtweird) {
570 printf("\n");
571 printf("complete memory cluster information:\n");
572 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
573 printf("mddt %d:\n", i);
574 printf("\tpfn %lx\n",
575 mddtp->mddt_clusters[i].mddt_pfn);
576 printf("\tcnt %lx\n",
577 mddtp->mddt_clusters[i].mddt_pg_cnt);
578 printf("\ttest %lx\n",
579 mddtp->mddt_clusters[i].mddt_pg_test);
580 printf("\tbva %lx\n",
581 mddtp->mddt_clusters[i].mddt_v_bitaddr);
582 printf("\tbpa %lx\n",
583 mddtp->mddt_clusters[i].mddt_p_bitaddr);
584 printf("\tbcksum %lx\n",
585 mddtp->mddt_clusters[i].mddt_bit_cksum);
586 printf("\tusage %lx\n",
587 mddtp->mddt_clusters[i].mddt_usage);
588 }
589 printf("\n");
590 }
591
592 if (totalphysmem == 0)
593 panic("can't happen: system seems to have no memory!");
594 maxmem = physmem;
595 #if 0
596 printf("totalphysmem = %d\n", totalphysmem);
597 printf("physmem = %d\n", physmem);
598 printf("resvmem = %d\n", resvmem);
599 printf("unusedmem = %d\n", unusedmem);
600 printf("unknownmem = %d\n", unknownmem);
601 #endif
602
603 /*
604 * Initialize error message buffer (at end of core).
605 */
606 {
607 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
608 vsize_t reqsz = sz;
609
610 vps = &vm_physmem[vm_nphysseg - 1];
611
612 /* shrink so that it'll fit in the last segment */
613 if ((vps->avail_end - vps->avail_start) < atop(sz))
614 sz = ptoa(vps->avail_end - vps->avail_start);
615
616 vps->end -= atop(sz);
617 vps->avail_end -= atop(sz);
618 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
619 initmsgbuf(msgbufaddr, sz);
620
621 /* Remove the last segment if it now has no pages. */
622 if (vps->start == vps->end)
623 vm_nphysseg--;
624
625 /* warn if the message buffer had to be shrunk */
626 if (sz != reqsz)
627 printf("WARNING: %ld bytes not available for msgbuf "
628 "in last cluster (%ld used)\n", reqsz, sz);
629
630 }
631
632 /*
633 * NOTE: It is safe to use uvm_pageboot_alloc() before
634 * pmap_bootstrap() because our pmap_virtual_space()
635 * returns compile-time constants.
636 */
637
638 /*
639 * Init mapping for u page(s) for proc 0
640 */
641 lwp0.l_addr = proc0paddr =
642 (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
643
644 /*
645 * Initialize the virtual memory system, and set the
646 * page table base register in proc 0's PCB.
647 */
648 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
649 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
650
651 /*
652 * Initialize the rest of proc 0's PCB, and cache its physical
653 * address.
654 */
655 lwp0.l_md.md_pcbpaddr =
656 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
657
658 /*
659 * Set the kernel sp, reserving space for an (empty) trapframe,
660 * and make proc0's trapframe pointer point to it for sanity.
661 */
662 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
663 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
664 lwp0.l_md.md_tf =
665 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
666 simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
667
668 /* Indicate that proc0 has a CPU. */
669 lwp0.l_cpu = ci;
670
671 /*
672 * Look at arguments passed to us and compute boothowto.
673 */
674
675 boothowto = RB_SINGLE;
676 #ifdef KADB
677 boothowto |= RB_KDB;
678 #endif
679 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
680 /*
681 * Note that we'd really like to differentiate case here,
682 * but the Alpha AXP Architecture Reference Manual
683 * says that we shouldn't.
684 */
685 switch (*p) {
686 case 'a': /* autoboot */
687 case 'A':
688 boothowto &= ~RB_SINGLE;
689 break;
690
691 #ifdef DEBUG
692 case 'c': /* crash dump immediately after autoconfig */
693 case 'C':
694 boothowto |= RB_DUMP;
695 break;
696 #endif
697
698 #if defined(KGDB) || defined(DDB)
699 case 'd': /* break into the kernel debugger ASAP */
700 case 'D':
701 boothowto |= RB_KDB;
702 break;
703 #endif
704
705 case 'h': /* always halt, never reboot */
706 case 'H':
707 boothowto |= RB_HALT;
708 break;
709
710 #if 0
711 case 'm': /* mini root present in memory */
712 case 'M':
713 boothowto |= RB_MINIROOT;
714 break;
715 #endif
716
717 case 'n': /* askname */
718 case 'N':
719 boothowto |= RB_ASKNAME;
720 break;
721
722 case 's': /* single-user (default, supported for sanity) */
723 case 'S':
724 boothowto |= RB_SINGLE;
725 break;
726
727 case 'q': /* quiet boot */
728 case 'Q':
729 boothowto |= AB_QUIET;
730 break;
731
732 case 'v': /* verbose boot */
733 case 'V':
734 boothowto |= AB_VERBOSE;
735 break;
736
737 case '-':
738 /*
739 * Just ignore this. It's not required, but it's
740 * common for it to be passed regardless.
741 */
742 break;
743
744 default:
745 printf("Unrecognized boot flag '%c'.\n", *p);
746 break;
747 }
748 }
749
750 /*
751 * Perform any initial kernel patches based on the running system.
752 * We may perform more later if we attach additional CPUs.
753 */
754 alpha_patch(false);
755
756 /*
757 * Figure out the number of CPUs in the box, from RPB fields.
758 * Really. We mean it.
759 */
760 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
761 struct pcs *pcsp;
762
763 pcsp = LOCATE_PCS(hwrpb, i);
764 if ((pcsp->pcs_flags & PCS_PP) != 0)
765 ncpus++;
766 }
767
768 /*
769 * Initialize debuggers, and break into them if appropriate.
770 */
771 #if NKSYMS || defined(DDB) || defined(MODULAR)
772 ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
773 ksym_start, ksym_end);
774 #endif
775
776 if (boothowto & RB_KDB) {
777 #if defined(KGDB)
778 kgdb_debug_init = 1;
779 kgdb_connect(1);
780 #elif defined(DDB)
781 Debugger();
782 #endif
783 }
784
785 #ifdef DIAGNOSTIC
786 /*
787 * Check our clock frequency, from RPB fields.
788 */
789 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
790 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
791 hwrpb->rpb_intr_freq, hz);
792 #endif
793 }
794
795 void
796 consinit(void)
797 {
798
799 /*
800 * Everything related to console initialization is done
801 * in alpha_init().
802 */
803 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
804 printf("consinit: %susing prom console\n",
805 pmap_uses_prom_console() ? "" : "not ");
806 #endif
807 }
808
809 void
810 cpu_startup(void)
811 {
812 vaddr_t minaddr, maxaddr;
813 char pbuf[9];
814 #if defined(DEBUG)
815 extern int pmapdebug;
816 int opmapdebug = pmapdebug;
817
818 pmapdebug = 0;
819 #endif
820
821 /*
822 * Good {morning,afternoon,evening,night}.
823 */
824 printf("%s%s", copyright, version);
825 identifycpu();
826 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
827 printf("total memory = %s\n", pbuf);
828 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
829 printf("(%s reserved for PROM, ", pbuf);
830 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
831 printf("%s used by NetBSD)\n", pbuf);
832 if (unusedmem) {
833 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
834 printf("WARNING: unused memory = %s\n", pbuf);
835 }
836 if (unknownmem) {
837 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
838 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
839 }
840
841 minaddr = 0;
842
843 /*
844 * Allocate a submap for physio
845 */
846 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
847 VM_PHYS_SIZE, 0, false, NULL);
848
849 /*
850 * No need to allocate an mbuf cluster submap. Mbuf clusters
851 * are allocated via the pool allocator, and we use K0SEG to
852 * map those pages.
853 */
854
855 #if defined(DEBUG)
856 pmapdebug = opmapdebug;
857 #endif
858 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
859 printf("avail memory = %s\n", pbuf);
860 #if 0
861 {
862 extern u_long pmap_pages_stolen;
863
864 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
865 printf("stolen memory for VM structures = %s\n", pbuf);
866 }
867 #endif
868
869 /*
870 * Set up the HWPCB so that it's safe to configure secondary
871 * CPUs.
872 */
873 hwrpb_primary_init();
874 }
875
876 /*
877 * Retrieve the platform name from the DSR.
878 */
879 const char *
880 alpha_dsr_sysname(void)
881 {
882 struct dsrdb *dsr;
883 const char *sysname;
884
885 /*
886 * DSR does not exist on early HWRPB versions.
887 */
888 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
889 return (NULL);
890
891 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
892 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
893 sizeof(u_int64_t)));
894 return (sysname);
895 }
896
897 /*
898 * Lookup the system specified system variation in the provided table,
899 * returning the model string on match.
900 */
901 const char *
902 alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
903 {
904 int i;
905
906 for (i = 0; avtp[i].avt_model != NULL; i++)
907 if (avtp[i].avt_variation == variation)
908 return (avtp[i].avt_model);
909 return (NULL);
910 }
911
912 /*
913 * Generate a default platform name based for unknown system variations.
914 */
915 const char *
916 alpha_unknown_sysname(void)
917 {
918 static char s[128]; /* safe size */
919
920 sprintf(s, "%s family, unknown model variation 0x%lx",
921 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
922 return ((const char *)s);
923 }
924
925 void
926 identifycpu(void)
927 {
928 char *s;
929 int i;
930
931 /*
932 * print out CPU identification information.
933 */
934 printf("%s", cpu_model);
935 for(s = cpu_model; *s; ++s)
936 if(strncasecmp(s, "MHz", 3) == 0)
937 goto skipMHz;
938 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
939 skipMHz:
940 printf(", s/n ");
941 for (i = 0; i < 10; i++)
942 printf("%c", hwrpb->rpb_ssn[i]);
943 printf("\n");
944 printf("%ld byte page size, %d processor%s.\n",
945 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
946 #if 0
947 /* this isn't defined for any systems that we run on? */
948 printf("serial number 0x%lx 0x%lx\n",
949 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
950
951 /* and these aren't particularly useful! */
952 printf("variation: 0x%lx, revision 0x%lx\n",
953 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
954 #endif
955 }
956
957 int waittime = -1;
958 struct pcb dumppcb;
959
960 void
961 cpu_reboot(int howto, char *bootstr)
962 {
963 #if defined(MULTIPROCESSOR)
964 u_long cpu_id = cpu_number();
965 u_long wait_mask;
966 int i;
967 #endif
968
969 /* If "always halt" was specified as a boot flag, obey. */
970 if ((boothowto & RB_HALT) != 0)
971 howto |= RB_HALT;
972
973 boothowto = howto;
974
975 /* If system is cold, just halt. */
976 if (cold) {
977 boothowto |= RB_HALT;
978 goto haltsys;
979 }
980
981 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
982 waittime = 0;
983 vfs_shutdown();
984 /*
985 * If we've been adjusting the clock, the todr
986 * will be out of synch; adjust it now.
987 */
988 resettodr();
989 }
990
991 /* Disable interrupts. */
992 splhigh();
993
994 #if defined(MULTIPROCESSOR)
995 /*
996 * Halt all other CPUs. If we're not the primary, the
997 * primary will spin, waiting for us to halt.
998 */
999 cpu_id = cpu_number(); /* may have changed cpu */
1000 wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
1001
1002 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1003
1004 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1005 cpus_paused = 0;
1006
1007 for (i = 0; i < 10000; i++) {
1008 alpha_mb();
1009 if (cpus_running == wait_mask)
1010 break;
1011 delay(1000);
1012 }
1013 alpha_mb();
1014 if (cpus_running != wait_mask)
1015 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1016 cpus_running);
1017 #endif /* MULTIPROCESSOR */
1018
1019 /* If rebooting and a dump is requested do it. */
1020 #if 0
1021 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1022 #else
1023 if (boothowto & RB_DUMP)
1024 #endif
1025 dumpsys();
1026
1027 haltsys:
1028
1029 /* run any shutdown hooks */
1030 doshutdownhooks();
1031
1032 pmf_system_shutdown(boothowto);
1033
1034 #ifdef BOOTKEY
1035 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1036 cnpollc(1); /* for proper keyboard command handling */
1037 cngetc();
1038 cnpollc(0);
1039 printf("\n");
1040 #endif
1041
1042 /* Finally, powerdown/halt/reboot the system. */
1043 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1044 platform.powerdown != NULL) {
1045 (*platform.powerdown)();
1046 printf("WARNING: powerdown failed!\n");
1047 }
1048 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1049 #if defined(MULTIPROCESSOR)
1050 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1051 cpu_halt();
1052 else
1053 #endif
1054 prom_halt(boothowto & RB_HALT);
1055 /*NOTREACHED*/
1056 }
1057
1058 /*
1059 * These variables are needed by /sbin/savecore
1060 */
1061 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1062 int dumpsize = 0; /* pages */
1063 long dumplo = 0; /* blocks */
1064
1065 /*
1066 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1067 */
1068 int
1069 cpu_dumpsize(void)
1070 {
1071 int size;
1072
1073 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1074 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1075 if (roundup(size, dbtob(1)) != dbtob(1))
1076 return -1;
1077
1078 return (1);
1079 }
1080
1081 /*
1082 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1083 */
1084 u_long
1085 cpu_dump_mempagecnt(void)
1086 {
1087 u_long i, n;
1088
1089 n = 0;
1090 for (i = 0; i < mem_cluster_cnt; i++)
1091 n += atop(mem_clusters[i].size);
1092 return (n);
1093 }
1094
1095 /*
1096 * cpu_dump: dump machine-dependent kernel core dump headers.
1097 */
1098 int
1099 cpu_dump(void)
1100 {
1101 int (*dump)(dev_t, daddr_t, void *, size_t);
1102 char buf[dbtob(1)];
1103 kcore_seg_t *segp;
1104 cpu_kcore_hdr_t *cpuhdrp;
1105 phys_ram_seg_t *memsegp;
1106 const struct bdevsw *bdev;
1107 int i;
1108
1109 bdev = bdevsw_lookup(dumpdev);
1110 if (bdev == NULL)
1111 return (ENXIO);
1112 dump = bdev->d_dump;
1113
1114 memset(buf, 0, sizeof buf);
1115 segp = (kcore_seg_t *)buf;
1116 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1117 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1118 ALIGN(sizeof(*cpuhdrp))];
1119
1120 /*
1121 * Generate a segment header.
1122 */
1123 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1124 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1125
1126 /*
1127 * Add the machine-dependent header info.
1128 */
1129 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1130 cpuhdrp->page_size = PAGE_SIZE;
1131 cpuhdrp->nmemsegs = mem_cluster_cnt;
1132
1133 /*
1134 * Fill in the memory segment descriptors.
1135 */
1136 for (i = 0; i < mem_cluster_cnt; i++) {
1137 memsegp[i].start = mem_clusters[i].start;
1138 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1139 }
1140
1141 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1142 }
1143
1144 /*
1145 * This is called by main to set dumplo and dumpsize.
1146 * Dumps always skip the first PAGE_SIZE of disk space
1147 * in case there might be a disk label stored there.
1148 * If there is extra space, put dump at the end to
1149 * reduce the chance that swapping trashes it.
1150 */
1151 void
1152 cpu_dumpconf(void)
1153 {
1154 const struct bdevsw *bdev;
1155 int nblks, dumpblks; /* size of dump area */
1156
1157 if (dumpdev == NODEV)
1158 goto bad;
1159 bdev = bdevsw_lookup(dumpdev);
1160 if (bdev == NULL) {
1161 dumpdev = NODEV;
1162 goto bad;
1163 }
1164 if (bdev->d_psize == NULL)
1165 goto bad;
1166 nblks = (*bdev->d_psize)(dumpdev);
1167 if (nblks <= ctod(1))
1168 goto bad;
1169
1170 dumpblks = cpu_dumpsize();
1171 if (dumpblks < 0)
1172 goto bad;
1173 dumpblks += ctod(cpu_dump_mempagecnt());
1174
1175 /* If dump won't fit (incl. room for possible label), punt. */
1176 if (dumpblks > (nblks - ctod(1)))
1177 goto bad;
1178
1179 /* Put dump at end of partition */
1180 dumplo = nblks - dumpblks;
1181
1182 /* dumpsize is in page units, and doesn't include headers. */
1183 dumpsize = cpu_dump_mempagecnt();
1184 return;
1185
1186 bad:
1187 dumpsize = 0;
1188 return;
1189 }
1190
1191 /*
1192 * Dump the kernel's image to the swap partition.
1193 */
1194 #define BYTES_PER_DUMP PAGE_SIZE
1195
1196 void
1197 dumpsys(void)
1198 {
1199 const struct bdevsw *bdev;
1200 u_long totalbytesleft, bytes, i, n, memcl;
1201 u_long maddr;
1202 int psize;
1203 daddr_t blkno;
1204 int (*dump)(dev_t, daddr_t, void *, size_t);
1205 int error;
1206
1207 /* Save registers. */
1208 savectx(&dumppcb);
1209
1210 if (dumpdev == NODEV)
1211 return;
1212 bdev = bdevsw_lookup(dumpdev);
1213 if (bdev == NULL || bdev->d_psize == NULL)
1214 return;
1215
1216 /*
1217 * For dumps during autoconfiguration,
1218 * if dump device has already configured...
1219 */
1220 if (dumpsize == 0)
1221 cpu_dumpconf();
1222 if (dumplo <= 0) {
1223 printf("\ndump to dev %u,%u not possible\n",
1224 major(dumpdev), minor(dumpdev));
1225 return;
1226 }
1227 printf("\ndumping to dev %u,%u offset %ld\n",
1228 major(dumpdev), minor(dumpdev), dumplo);
1229
1230 psize = (*bdev->d_psize)(dumpdev);
1231 printf("dump ");
1232 if (psize == -1) {
1233 printf("area unavailable\n");
1234 return;
1235 }
1236
1237 /* XXX should purge all outstanding keystrokes. */
1238
1239 if ((error = cpu_dump()) != 0)
1240 goto err;
1241
1242 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1243 blkno = dumplo + cpu_dumpsize();
1244 dump = bdev->d_dump;
1245 error = 0;
1246
1247 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1248 maddr = mem_clusters[memcl].start;
1249 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1250
1251 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1252
1253 /* Print out how many MBs we to go. */
1254 if ((totalbytesleft % (1024*1024)) == 0)
1255 printf_nolog("%ld ",
1256 totalbytesleft / (1024 * 1024));
1257
1258 /* Limit size for next transfer. */
1259 n = bytes - i;
1260 if (n > BYTES_PER_DUMP)
1261 n = BYTES_PER_DUMP;
1262
1263 error = (*dump)(dumpdev, blkno,
1264 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1265 if (error)
1266 goto err;
1267 maddr += n;
1268 blkno += btodb(n); /* XXX? */
1269
1270 /* XXX should look for keystrokes, to cancel. */
1271 }
1272 }
1273
1274 err:
1275 switch (error) {
1276
1277 case ENXIO:
1278 printf("device bad\n");
1279 break;
1280
1281 case EFAULT:
1282 printf("device not ready\n");
1283 break;
1284
1285 case EINVAL:
1286 printf("area improper\n");
1287 break;
1288
1289 case EIO:
1290 printf("i/o error\n");
1291 break;
1292
1293 case EINTR:
1294 printf("aborted from console\n");
1295 break;
1296
1297 case 0:
1298 printf("succeeded\n");
1299 break;
1300
1301 default:
1302 printf("error %d\n", error);
1303 break;
1304 }
1305 printf("\n\n");
1306 delay(1000);
1307 }
1308
1309 void
1310 frametoreg(const struct trapframe *framep, struct reg *regp)
1311 {
1312
1313 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1314 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1315 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1316 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1317 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1318 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1319 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1320 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1321 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1322 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1323 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1324 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1325 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1326 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1327 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1328 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1329 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1330 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1331 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1332 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1333 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1334 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1335 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1336 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1337 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1338 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1339 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1340 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1341 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1342 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1343 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1344 regp->r_regs[R_ZERO] = 0;
1345 }
1346
1347 void
1348 regtoframe(const struct reg *regp, struct trapframe *framep)
1349 {
1350
1351 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1352 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1353 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1354 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1355 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1356 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1357 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1358 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1359 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1360 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1361 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1362 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1363 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1364 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1365 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1366 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1367 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1368 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1369 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1370 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1371 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1372 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1373 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1374 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1375 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1376 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1377 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1378 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1379 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1380 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1381 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1382 /* ??? = regp->r_regs[R_ZERO]; */
1383 }
1384
1385 void
1386 printregs(struct reg *regp)
1387 {
1388 int i;
1389
1390 for (i = 0; i < 32; i++)
1391 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1392 i & 1 ? "\n" : "\t");
1393 }
1394
1395 void
1396 regdump(struct trapframe *framep)
1397 {
1398 struct reg reg;
1399
1400 frametoreg(framep, ®);
1401 reg.r_regs[R_SP] = alpha_pal_rdusp();
1402
1403 printf("REGISTERS:\n");
1404 printregs(®);
1405 }
1406
1407
1408
1409 void *
1410 getframe(const struct lwp *l, int sig, int *onstack)
1411 {
1412 void *frame;
1413
1414 /* Do we need to jump onto the signal stack? */
1415 *onstack =
1416 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1417 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1418
1419 if (*onstack)
1420 frame = (void *)((char *)l->l_sigstk.ss_sp +
1421 l->l_sigstk.ss_size);
1422 else
1423 frame = (void *)(alpha_pal_rdusp());
1424 return (frame);
1425 }
1426
1427 void
1428 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1429 {
1430 struct trapframe *tf = l->l_md.md_tf;
1431
1432 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1433 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1434 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1435 alpha_pal_wrusp((unsigned long)fp);
1436 }
1437
1438
1439 /*
1440 * Send an interrupt to process, new style
1441 */
1442 void
1443 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1444 {
1445 struct lwp *l = curlwp;
1446 struct proc *p = l->l_proc;
1447 struct sigacts *ps = p->p_sigacts;
1448 int onstack, sig = ksi->ksi_signo, error;
1449 struct sigframe_siginfo *fp, frame;
1450 struct trapframe *tf;
1451 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1452
1453 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1454 tf = l->l_md.md_tf;
1455
1456 /* Allocate space for the signal handler context. */
1457 fp--;
1458
1459 #ifdef DEBUG
1460 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1461 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1462 sig, &onstack, fp);
1463 #endif
1464
1465 /* Build stack frame for signal trampoline. */
1466
1467 frame.sf_si._info = ksi->ksi_info;
1468 frame.sf_uc.uc_flags = _UC_SIGMASK;
1469 frame.sf_uc.uc_sigmask = *mask;
1470 frame.sf_uc.uc_link = l->l_ctxlink;
1471 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1472 sendsig_reset(l, sig);
1473 mutex_exit(p->p_lock);
1474 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1475 error = copyout(&frame, fp, sizeof(frame));
1476 mutex_enter(p->p_lock);
1477
1478 if (error != 0) {
1479 /*
1480 * Process has trashed its stack; give it an illegal
1481 * instruction to halt it in its tracks.
1482 */
1483 #ifdef DEBUG
1484 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1485 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1486 p->p_pid, sig);
1487 #endif
1488 sigexit(l, SIGILL);
1489 /* NOTREACHED */
1490 }
1491
1492 #ifdef DEBUG
1493 if (sigdebug & SDB_FOLLOW)
1494 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1495 p->p_pid, sig, fp, ksi->ksi_code);
1496 #endif
1497
1498 /*
1499 * Set up the registers to directly invoke the signal handler. The
1500 * signal trampoline is then used to return from the signal. Note
1501 * the trampoline version numbers are coordinated with machine-
1502 * dependent code in libc.
1503 */
1504
1505 tf->tf_regs[FRAME_A0] = sig;
1506 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1507 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1508
1509 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1510
1511 /* Remember that we're now on the signal stack. */
1512 if (onstack)
1513 l->l_sigstk.ss_flags |= SS_ONSTACK;
1514
1515 #ifdef DEBUG
1516 if (sigdebug & SDB_FOLLOW)
1517 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1518 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1519 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1520 printf("sendsig_siginfo(%d): sig %d returns\n",
1521 p->p_pid, sig);
1522 #endif
1523 }
1524
1525
1526 void
1527 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1528 {
1529 struct trapframe *tf;
1530
1531 tf = l->l_md.md_tf;
1532
1533 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1534 tf->tf_regs[FRAME_RA] = 0;
1535 tf->tf_regs[FRAME_A0] = type;
1536 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1537 tf->tf_regs[FRAME_A2] = nevents;
1538 tf->tf_regs[FRAME_A3] = ninterrupted;
1539 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1540 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1541 alpha_pal_wrusp((unsigned long)sp);
1542 }
1543
1544 /*
1545 * machine dependent system variables.
1546 */
1547 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1548 {
1549
1550 sysctl_createv(clog, 0, NULL, NULL,
1551 CTLFLAG_PERMANENT,
1552 CTLTYPE_NODE, "machdep", NULL,
1553 NULL, 0, NULL, 0,
1554 CTL_MACHDEP, CTL_EOL);
1555
1556 sysctl_createv(clog, 0, NULL, NULL,
1557 CTLFLAG_PERMANENT,
1558 CTLTYPE_STRUCT, "console_device", NULL,
1559 sysctl_consdev, 0, NULL, sizeof(dev_t),
1560 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1561 sysctl_createv(clog, 0, NULL, NULL,
1562 CTLFLAG_PERMANENT,
1563 CTLTYPE_STRING, "root_device", NULL,
1564 sysctl_root_device, 0, NULL, 0,
1565 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1566 sysctl_createv(clog, 0, NULL, NULL,
1567 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1568 CTLTYPE_INT, "unaligned_print", NULL,
1569 NULL, 0, &alpha_unaligned_print, 0,
1570 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1571 sysctl_createv(clog, 0, NULL, NULL,
1572 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1573 CTLTYPE_INT, "unaligned_fix", NULL,
1574 NULL, 0, &alpha_unaligned_fix, 0,
1575 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1576 sysctl_createv(clog, 0, NULL, NULL,
1577 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1578 CTLTYPE_INT, "unaligned_sigbus", NULL,
1579 NULL, 0, &alpha_unaligned_sigbus, 0,
1580 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1581 sysctl_createv(clog, 0, NULL, NULL,
1582 CTLFLAG_PERMANENT,
1583 CTLTYPE_STRING, "booted_kernel", NULL,
1584 NULL, 0, bootinfo.booted_kernel, 0,
1585 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1586 sysctl_createv(clog, 0, NULL, NULL,
1587 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1588 CTLTYPE_INT, "fp_sync_complete", NULL,
1589 NULL, 0, &alpha_fp_sync_complete, 0,
1590 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1591 }
1592
1593 /*
1594 * Set registers on exec.
1595 */
1596 void
1597 setregs(register struct lwp *l, struct exec_package *pack, u_long stack)
1598 {
1599 struct trapframe *tfp = l->l_md.md_tf;
1600 #ifdef DEBUG
1601 int i;
1602 #endif
1603
1604 #ifdef DEBUG
1605 /*
1606 * Crash and dump, if the user requested it.
1607 */
1608 if (boothowto & RB_DUMP)
1609 panic("crash requested by boot flags");
1610 #endif
1611
1612 #ifdef DEBUG
1613 for (i = 0; i < FRAME_SIZE; i++)
1614 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1615 #else
1616 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1617 #endif
1618 memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1619 alpha_pal_wrusp(stack);
1620 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1621 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1622
1623 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1624 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1625 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1626 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1627 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1628
1629 l->l_md.md_flags &= ~MDP_FPUSED;
1630 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1631 l->l_md.md_flags &= ~MDP_FP_C;
1632 l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1633 }
1634 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1635 fpusave_proc(l, 0);
1636 }
1637
1638 /*
1639 * Release the FPU.
1640 */
1641 void
1642 fpusave_cpu(struct cpu_info *ci, int save)
1643 {
1644 struct lwp *l;
1645 #if defined(MULTIPROCESSOR)
1646 int s;
1647 #endif
1648
1649 KDASSERT(ci == curcpu());
1650
1651 #if defined(MULTIPROCESSOR)
1652 s = splhigh(); /* block IPIs for the duration */
1653 atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1654 #endif
1655
1656 l = ci->ci_fpcurlwp;
1657 if (l == NULL)
1658 goto out;
1659
1660 if (save) {
1661 alpha_pal_wrfen(1);
1662 savefpstate(&l->l_addr->u_pcb.pcb_fp);
1663 }
1664
1665 alpha_pal_wrfen(0);
1666
1667 FPCPU_LOCK(&l->l_addr->u_pcb);
1668
1669 l->l_addr->u_pcb.pcb_fpcpu = NULL;
1670 ci->ci_fpcurlwp = NULL;
1671
1672 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1673
1674 out:
1675 #if defined(MULTIPROCESSOR)
1676 atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1677 splx(s);
1678 #endif
1679 return;
1680 }
1681
1682 /*
1683 * Synchronize FP state for this process.
1684 */
1685 void
1686 fpusave_proc(struct lwp *l, int save)
1687 {
1688 struct cpu_info *ci = curcpu();
1689 struct cpu_info *oci;
1690 #if defined(MULTIPROCESSOR)
1691 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1692 int s, spincount;
1693 #endif
1694
1695 KDASSERT(l->l_addr != NULL);
1696
1697 #if defined(MULTIPROCESSOR)
1698 s = splhigh(); /* block IPIs for the duration */
1699 #endif
1700 FPCPU_LOCK(&l->l_addr->u_pcb);
1701
1702 oci = l->l_addr->u_pcb.pcb_fpcpu;
1703 if (oci == NULL) {
1704 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1705 #if defined(MULTIPROCESSOR)
1706 splx(s);
1707 #endif
1708 return;
1709 }
1710
1711 #if defined(MULTIPROCESSOR)
1712 if (oci == ci) {
1713 KASSERT(ci->ci_fpcurlwp == l);
1714 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1715 splx(s);
1716 fpusave_cpu(ci, save);
1717 return;
1718 }
1719
1720 KASSERT(oci->ci_fpcurlwp == l);
1721 alpha_send_ipi(oci->ci_cpuid, ipi);
1722 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1723
1724 spincount = 0;
1725 while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1726 spincount++;
1727 delay(1000); /* XXX */
1728 if (spincount > 10000)
1729 panic("fpsave ipi didn't");
1730 }
1731 #else
1732 KASSERT(ci->ci_fpcurlwp == l);
1733 FPCPU_UNLOCK(&l->l_addr->u_pcb);
1734 fpusave_cpu(ci, save);
1735 #endif /* MULTIPROCESSOR */
1736 }
1737
1738 /*
1739 * Wait "n" microseconds.
1740 */
1741 void
1742 delay(unsigned long n)
1743 {
1744 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1745
1746 if (n == 0)
1747 return;
1748
1749 pcc0 = alpha_rpcc() & 0xffffffffUL;
1750 cycles = 0;
1751 usec = 0;
1752
1753 while (usec <= n) {
1754 /*
1755 * Get the next CPU cycle count- assumes that we cannot
1756 * have had more than one 32 bit overflow.
1757 */
1758 pcc1 = alpha_rpcc() & 0xffffffffUL;
1759 if (pcc1 < pcc0)
1760 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1761 else
1762 curcycle = pcc1 - pcc0;
1763
1764 /*
1765 * We now have the number of processor cycles since we
1766 * last checked. Add the current cycle count to the
1767 * running total. If it's over cycles_per_usec, increment
1768 * the usec counter.
1769 */
1770 cycles += curcycle;
1771 while (cycles > cycles_per_usec) {
1772 usec++;
1773 cycles -= cycles_per_usec;
1774 }
1775 pcc0 = pcc1;
1776 }
1777 }
1778
1779 #ifdef EXEC_ECOFF
1780 void
1781 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, u_long stack)
1782 {
1783 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1784
1785 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1786 }
1787
1788 /*
1789 * cpu_exec_ecoff_hook():
1790 * cpu-dependent ECOFF format hook for execve().
1791 *
1792 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1793 *
1794 */
1795 int
1796 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1797 {
1798 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1799 int error;
1800
1801 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1802 error = 0;
1803 else
1804 error = ENOEXEC;
1805
1806 return (error);
1807 }
1808 #endif /* EXEC_ECOFF */
1809
1810 int
1811 alpha_pa_access(u_long pa)
1812 {
1813 int i;
1814
1815 for (i = 0; i < mem_cluster_cnt; i++) {
1816 if (pa < mem_clusters[i].start)
1817 continue;
1818 if ((pa - mem_clusters[i].start) >=
1819 (mem_clusters[i].size & ~PAGE_MASK))
1820 continue;
1821 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1822 }
1823
1824 /*
1825 * Address is not a memory address. If we're secure, disallow
1826 * access. Otherwise, grant read/write.
1827 */
1828 if (kauth_authorize_machdep(kauth_cred_get(),
1829 KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1830 return (PROT_NONE);
1831 else
1832 return (PROT_READ | PROT_WRITE);
1833 }
1834
1835 /* XXX XXX BEGIN XXX XXX */
1836 paddr_t alpha_XXX_dmamap_or; /* XXX */
1837 /* XXX */
1838 paddr_t /* XXX */
1839 alpha_XXX_dmamap(v) /* XXX */
1840 vaddr_t v; /* XXX */
1841 { /* XXX */
1842 /* XXX */
1843 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1844 } /* XXX */
1845 /* XXX XXX END XXX XXX */
1846
1847 char *
1848 dot_conv(unsigned long x)
1849 {
1850 int i;
1851 char *xc;
1852 static int next;
1853 static char space[2][20];
1854
1855 xc = space[next ^= 1] + sizeof space[0];
1856 *--xc = '\0';
1857 for (i = 0;; ++i) {
1858 if (i && (i & 3) == 0)
1859 *--xc = '.';
1860 *--xc = hexdigits[x & 0xf];
1861 x >>= 4;
1862 if (x == 0)
1863 break;
1864 }
1865 return xc;
1866 }
1867
1868 void
1869 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1870 {
1871 struct trapframe *frame = l->l_md.md_tf;
1872 __greg_t *gr = mcp->__gregs;
1873 __greg_t ras_pc;
1874
1875 /* Save register context. */
1876 frametoreg(frame, (struct reg *)gr);
1877 /* XXX if there's a better, general way to get the USP of
1878 * an LWP that might or might not be curlwp, I'd like to know
1879 * about it.
1880 */
1881 if (l == curlwp) {
1882 gr[_REG_SP] = alpha_pal_rdusp();
1883 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1884 } else {
1885 gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
1886 gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
1887 }
1888 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1889 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1890
1891 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1892 (void *) gr[_REG_PC])) != -1)
1893 gr[_REG_PC] = ras_pc;
1894
1895 *flags |= _UC_CPU | _UC_UNIQUE;
1896
1897 /* Save floating point register context, if any, and copy it. */
1898 if (l->l_md.md_flags & MDP_FPUSED) {
1899 fpusave_proc(l, 1);
1900 (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
1901 sizeof (mcp->__fpregs));
1902 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1903 *flags |= _UC_FPU;
1904 }
1905 }
1906
1907
1908 int
1909 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1910 {
1911 struct trapframe *frame = l->l_md.md_tf;
1912 const __greg_t *gr = mcp->__gregs;
1913
1914 /* Restore register context, if any. */
1915 if (flags & _UC_CPU) {
1916 /* Check for security violations first. */
1917 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1918 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1919 return (EINVAL);
1920
1921 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1922 if (l == curlwp)
1923 alpha_pal_wrusp(gr[_REG_SP]);
1924 else
1925 l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
1926 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1927 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1928 }
1929 if (flags & _UC_UNIQUE) {
1930 if (l == curlwp)
1931 alpha_pal_wrunique(gr[_REG_UNIQUE]);
1932 else
1933 l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1934 }
1935 /* Restore floating point register context, if any. */
1936 if (flags & _UC_FPU) {
1937 /* If we have an FP register context, get rid of it. */
1938 if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1939 fpusave_proc(l, 0);
1940 (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
1941 sizeof (l->l_addr->u_pcb.pcb_fp));
1942 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1943 l->l_md.md_flags |= MDP_FPUSED;
1944 }
1945
1946 return (0);
1947 }
1948
1949 /*
1950 * Preempt the current process if in interrupt from user mode,
1951 * or after the current trap/syscall if in system mode.
1952 */
1953 void
1954 cpu_need_resched(struct cpu_info *ci, int flags)
1955 {
1956 #if defined(MULTIPROCESSOR)
1957 bool immed = (flags & RESCHED_IMMED) != 0;
1958 #endif /* defined(MULTIPROCESSOR) */
1959
1960 aston(ci->ci_data.cpu_onproc);
1961 ci->ci_want_resched = 1;
1962 if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
1963 #if defined(MULTIPROCESSOR)
1964 if (immed && ci != curcpu()) {
1965 alpha_send_ipi(ci->ci_cpuid, 0);
1966 }
1967 #endif /* defined(MULTIPROCESSOR) */
1968 }
1969 }
1970