machdep.c revision 1.324 1 /* $NetBSD: machdep.c,v 1.324 2009/11/27 03:23:04 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_compat_osf1.h"
67 #include "opt_execfmt.h"
68
69 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
70
71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.324 2009/11/27 03:23:04 rmind Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/signalvar.h>
76 #include <sys/kernel.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/ras.h>
80 #include <sys/sa.h>
81 #include <sys/savar.h>
82 #include <sys/sched.h>
83 #include <sys/reboot.h>
84 #include <sys/device.h>
85 #include <sys/malloc.h>
86 #include <sys/mman.h>
87 #include <sys/msgbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/exec.h>
91 #include <sys/exec_aout.h> /* for MID_* */
92 #include <sys/exec_ecoff.h>
93 #include <sys/core.h>
94 #include <sys/kcore.h>
95 #include <sys/ucontext.h>
96 #include <sys/conf.h>
97 #include <sys/ksyms.h>
98 #include <sys/kauth.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101
102 #include <machine/kcore.h>
103 #include <machine/fpu.h>
104
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107
108 #include <uvm/uvm_extern.h>
109 #include <sys/sysctl.h>
110
111 #include <dev/cons.h>
112
113 #include <machine/autoconf.h>
114 #include <machine/reg.h>
115 #include <machine/rpb.h>
116 #include <machine/prom.h>
117 #include <machine/cpuconf.h>
118 #include <machine/ieeefp.h>
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 #ifdef KGDB
129 #include <sys/kgdb.h>
130 #endif
131
132 #ifdef DEBUG
133 #include <machine/sigdebug.h>
134 #endif
135
136 #include <machine/alpha.h>
137
138 #include "ksyms.h"
139
140 struct vm_map *mb_map = NULL;
141 struct vm_map *phys_map = NULL;
142
143 void *msgbufaddr;
144
145 int maxmem; /* max memory per process */
146
147 int totalphysmem; /* total amount of physical memory in system */
148 int physmem; /* physical memory used by NetBSD + some rsvd */
149 int resvmem; /* amount of memory reserved for PROM */
150 int unusedmem; /* amount of memory for OS that we don't use */
151 int unknownmem; /* amount of memory with an unknown use */
152
153 int cputype; /* system type, from the RPB */
154
155 int bootdev_debug = 0; /* patchable, or from DDB */
156
157 /*
158 * XXX We need an address to which we can assign things so that they
159 * won't be optimized away because we didn't use the value.
160 */
161 u_int32_t no_optimize;
162
163 /* the following is used externally (sysctl_hw) */
164 char machine[] = MACHINE; /* from <machine/param.h> */
165 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
166 char cpu_model[128];
167
168 /* Number of machine cycles per microsecond */
169 u_int64_t cycles_per_usec;
170
171 /* number of CPUs in the box. really! */
172 int ncpus;
173
174 struct bootinfo_kernel bootinfo;
175
176 /* For built-in TCDS */
177 #if defined(DEC_3000_300) || defined(DEC_3000_500)
178 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
179 #endif
180
181 struct platform platform;
182
183 #if NKSYMS || defined(DDB) || defined(MODULAR)
184 /* start and end of kernel symbol table */
185 void *ksym_start, *ksym_end;
186 #endif
187
188 /* for cpu_sysctl() */
189 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
190 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
191 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
192 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
193
194 /*
195 * XXX This should be dynamically sized, but we have the chicken-egg problem!
196 * XXX it should also be larger than it is, because not all of the mddt
197 * XXX clusters end up being used for VM.
198 */
199 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
200 int mem_cluster_cnt;
201
202 int cpu_dump(void);
203 int cpu_dumpsize(void);
204 u_long cpu_dump_mempagecnt(void);
205 void dumpsys(void);
206 void identifycpu(void);
207 void printregs(struct reg *);
208
209 void
210 alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
211 /* pfn: first free PFN number */
212 /* ptb: PFN of current level 1 page table */
213 /* bim: bootinfo magic */
214 /* bip: bootinfo pointer */
215 /* biv: bootinfo version */
216 {
217 extern char kernel_text[], _end[];
218 struct mddt *mddtp;
219 struct mddt_cluster *memc;
220 int i, mddtweird;
221 struct vm_physseg *vps;
222 struct pcb *pcb0;
223 vaddr_t kernstart, kernend, v;
224 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
225 cpuid_t cpu_id;
226 struct cpu_info *ci;
227 char *p;
228 const char *bootinfo_msg;
229 const struct cpuinit *c;
230
231 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
232
233 /*
234 * Turn off interrupts (not mchecks) and floating point.
235 * Make sure the instruction and data streams are consistent.
236 */
237 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
238 alpha_pal_wrfen(0);
239 ALPHA_TBIA();
240 alpha_pal_imb();
241
242 /* Initialize the SCB. */
243 scb_init();
244
245 cpu_id = cpu_number();
246
247 #if defined(MULTIPROCESSOR)
248 /*
249 * Set our SysValue to the address of our cpu_info structure.
250 * Secondary processors do this in their spinup trampoline.
251 */
252 alpha_pal_wrval((u_long)&cpu_info_primary);
253 cpu_info[cpu_id] = &cpu_info_primary;
254 #endif
255
256 ci = curcpu();
257 ci->ci_cpuid = cpu_id;
258
259 /*
260 * Get critical system information (if possible, from the
261 * information provided by the boot program).
262 */
263 bootinfo_msg = NULL;
264 if (bim == BOOTINFO_MAGIC) {
265 if (biv == 0) { /* backward compat */
266 biv = *(u_long *)bip;
267 bip += 8;
268 }
269 switch (biv) {
270 case 1: {
271 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
272
273 bootinfo.ssym = v1p->ssym;
274 bootinfo.esym = v1p->esym;
275 /* hwrpb may not be provided by boot block in v1 */
276 if (v1p->hwrpb != NULL) {
277 bootinfo.hwrpb_phys =
278 ((struct rpb *)v1p->hwrpb)->rpb_phys;
279 bootinfo.hwrpb_size = v1p->hwrpbsize;
280 } else {
281 bootinfo.hwrpb_phys =
282 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
283 bootinfo.hwrpb_size =
284 ((struct rpb *)HWRPB_ADDR)->rpb_size;
285 }
286 memcpy(bootinfo.boot_flags, v1p->boot_flags,
287 min(sizeof v1p->boot_flags,
288 sizeof bootinfo.boot_flags));
289 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
290 min(sizeof v1p->booted_kernel,
291 sizeof bootinfo.booted_kernel));
292 /* booted dev not provided in bootinfo */
293 init_prom_interface((struct rpb *)
294 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
295 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
296 sizeof bootinfo.booted_dev);
297 break;
298 }
299 default:
300 bootinfo_msg = "unknown bootinfo version";
301 goto nobootinfo;
302 }
303 } else {
304 bootinfo_msg = "boot program did not pass bootinfo";
305 nobootinfo:
306 bootinfo.ssym = (u_long)_end;
307 bootinfo.esym = (u_long)_end;
308 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
309 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
310 init_prom_interface((struct rpb *)HWRPB_ADDR);
311 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
312 sizeof bootinfo.boot_flags);
313 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
314 sizeof bootinfo.booted_kernel);
315 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
316 sizeof bootinfo.booted_dev);
317 }
318
319 /*
320 * Initialize the kernel's mapping of the RPB. It's needed for
321 * lots of things.
322 */
323 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
324
325 #if defined(DEC_3000_300) || defined(DEC_3000_500)
326 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
327 hwrpb->rpb_type == ST_DEC_3000_500) {
328 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
329 sizeof(dec_3000_scsiid));
330 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
331 sizeof(dec_3000_scsifast));
332 }
333 #endif
334
335 /*
336 * Remember how many cycles there are per microsecond,
337 * so that we can use delay(). Round up, for safety.
338 */
339 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
340
341 /*
342 * Initialize the (temporary) bootstrap console interface, so
343 * we can use printf until the VM system starts being setup.
344 * The real console is initialized before then.
345 */
346 init_bootstrap_console();
347
348 /* OUTPUT NOW ALLOWED */
349
350 /* delayed from above */
351 if (bootinfo_msg)
352 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
353 bootinfo_msg, bim, bip, biv);
354
355 /* Initialize the trap vectors on the primary processor. */
356 trap_init();
357
358 /*
359 * Find out this system's page size, and initialize
360 * PAGE_SIZE-dependent variables.
361 */
362 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
363 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
364 ALPHA_PGBYTES);
365 uvmexp.pagesize = hwrpb->rpb_page_size;
366 uvm_setpagesize();
367
368 /*
369 * Find out what hardware we're on, and do basic initialization.
370 */
371 cputype = hwrpb->rpb_type;
372 if (cputype < 0) {
373 /*
374 * At least some white-box systems have SRM which
375 * reports a systype that's the negative of their
376 * blue-box counterpart.
377 */
378 cputype = -cputype;
379 }
380 c = platform_lookup(cputype);
381 if (c == NULL) {
382 platform_not_supported();
383 /* NOTREACHED */
384 }
385 (*c->init)();
386 strcpy(cpu_model, platform.model);
387
388 /*
389 * Initialize the real console, so that the bootstrap console is
390 * no longer necessary.
391 */
392 (*platform.cons_init)();
393
394 #ifdef DIAGNOSTIC
395 /* Paranoid sanity checking */
396
397 /* We should always be running on the primary. */
398 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
399
400 /*
401 * On single-CPU systypes, the primary should always be CPU 0,
402 * except on Alpha 8200 systems where the CPU id is related
403 * to the VID, which is related to the Turbo Laser node id.
404 */
405 if (cputype != ST_DEC_21000)
406 assert(hwrpb->rpb_primary_cpu_id == 0);
407 #endif
408
409 /* NO MORE FIRMWARE ACCESS ALLOWED */
410 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
411 /*
412 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
413 * XXX pmap_uses_prom_console() evaluates to non-zero.)
414 */
415 #endif
416
417 /*
418 * Find the beginning and end of the kernel (and leave a
419 * bit of space before the beginning for the bootstrap
420 * stack).
421 */
422 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
423 #if NKSYMS || defined(DDB) || defined(MODULAR)
424 ksym_start = (void *)bootinfo.ssym;
425 ksym_end = (void *)bootinfo.esym;
426 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
427 #else
428 kernend = (vaddr_t)round_page((vaddr_t)_end);
429 #endif
430
431 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
432 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
433
434 /*
435 * Find out how much memory is available, by looking at
436 * the memory cluster descriptors. This also tries to do
437 * its best to detect things things that have never been seen
438 * before...
439 */
440 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
441
442 /* MDDT SANITY CHECKING */
443 mddtweird = 0;
444 if (mddtp->mddt_cluster_cnt < 2) {
445 mddtweird = 1;
446 printf("WARNING: weird number of mem clusters: %lu\n",
447 mddtp->mddt_cluster_cnt);
448 }
449
450 #if 0
451 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
452 #endif
453
454 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
455 memc = &mddtp->mddt_clusters[i];
456 #if 0
457 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
458 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
459 #endif
460 totalphysmem += memc->mddt_pg_cnt;
461 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
462 mem_clusters[mem_cluster_cnt].start =
463 ptoa(memc->mddt_pfn);
464 mem_clusters[mem_cluster_cnt].size =
465 ptoa(memc->mddt_pg_cnt);
466 if (memc->mddt_usage & MDDT_mbz ||
467 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
468 memc->mddt_usage & MDDT_PALCODE)
469 mem_clusters[mem_cluster_cnt].size |=
470 PROT_READ;
471 else
472 mem_clusters[mem_cluster_cnt].size |=
473 PROT_READ | PROT_WRITE | PROT_EXEC;
474 mem_cluster_cnt++;
475 }
476
477 if (memc->mddt_usage & MDDT_mbz) {
478 mddtweird = 1;
479 printf("WARNING: mem cluster %d has weird "
480 "usage 0x%lx\n", i, memc->mddt_usage);
481 unknownmem += memc->mddt_pg_cnt;
482 continue;
483 }
484 if (memc->mddt_usage & MDDT_NONVOLATILE) {
485 /* XXX should handle these... */
486 printf("WARNING: skipping non-volatile mem "
487 "cluster %d\n", i);
488 unusedmem += memc->mddt_pg_cnt;
489 continue;
490 }
491 if (memc->mddt_usage & MDDT_PALCODE) {
492 resvmem += memc->mddt_pg_cnt;
493 continue;
494 }
495
496 /*
497 * We have a memory cluster available for system
498 * software use. We must determine if this cluster
499 * holds the kernel.
500 */
501 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
502 /*
503 * XXX If the kernel uses the PROM console, we only use the
504 * XXX memory after the kernel in the first system segment,
505 * XXX to avoid clobbering prom mapping, data, etc.
506 */
507 if (!pmap_uses_prom_console() || physmem == 0) {
508 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
509 physmem += memc->mddt_pg_cnt;
510 pfn0 = memc->mddt_pfn;
511 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
512 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
513 /*
514 * Must compute the location of the kernel
515 * within the segment.
516 */
517 #if 0
518 printf("Cluster %d contains kernel\n", i);
519 #endif
520 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
521 if (!pmap_uses_prom_console()) {
522 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
523 if (pfn0 < kernstartpfn) {
524 /*
525 * There is a chunk before the kernel.
526 */
527 #if 0
528 printf("Loading chunk before kernel: "
529 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
530 #endif
531 uvm_page_physload(pfn0, kernstartpfn,
532 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
533 }
534 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
535 }
536 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
537 if (kernendpfn < pfn1) {
538 /*
539 * There is a chunk after the kernel.
540 */
541 #if 0
542 printf("Loading chunk after kernel: "
543 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
544 #endif
545 uvm_page_physload(kernendpfn, pfn1,
546 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
547 }
548 } else {
549 /*
550 * Just load this cluster as one chunk.
551 */
552 #if 0
553 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
554 pfn0, pfn1);
555 #endif
556 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
557 VM_FREELIST_DEFAULT);
558 }
559 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
560 }
561 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
562 }
563
564 /*
565 * Dump out the MDDT if it looks odd...
566 */
567 if (mddtweird) {
568 printf("\n");
569 printf("complete memory cluster information:\n");
570 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
571 printf("mddt %d:\n", i);
572 printf("\tpfn %lx\n",
573 mddtp->mddt_clusters[i].mddt_pfn);
574 printf("\tcnt %lx\n",
575 mddtp->mddt_clusters[i].mddt_pg_cnt);
576 printf("\ttest %lx\n",
577 mddtp->mddt_clusters[i].mddt_pg_test);
578 printf("\tbva %lx\n",
579 mddtp->mddt_clusters[i].mddt_v_bitaddr);
580 printf("\tbpa %lx\n",
581 mddtp->mddt_clusters[i].mddt_p_bitaddr);
582 printf("\tbcksum %lx\n",
583 mddtp->mddt_clusters[i].mddt_bit_cksum);
584 printf("\tusage %lx\n",
585 mddtp->mddt_clusters[i].mddt_usage);
586 }
587 printf("\n");
588 }
589
590 if (totalphysmem == 0)
591 panic("can't happen: system seems to have no memory!");
592 maxmem = physmem;
593 #if 0
594 printf("totalphysmem = %d\n", totalphysmem);
595 printf("physmem = %d\n", physmem);
596 printf("resvmem = %d\n", resvmem);
597 printf("unusedmem = %d\n", unusedmem);
598 printf("unknownmem = %d\n", unknownmem);
599 #endif
600
601 /*
602 * Initialize error message buffer (at end of core).
603 */
604 {
605 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
606 vsize_t reqsz = sz;
607
608 vps = &vm_physmem[vm_nphysseg - 1];
609
610 /* shrink so that it'll fit in the last segment */
611 if ((vps->avail_end - vps->avail_start) < atop(sz))
612 sz = ptoa(vps->avail_end - vps->avail_start);
613
614 vps->end -= atop(sz);
615 vps->avail_end -= atop(sz);
616 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
617 initmsgbuf(msgbufaddr, sz);
618
619 /* Remove the last segment if it now has no pages. */
620 if (vps->start == vps->end)
621 vm_nphysseg--;
622
623 /* warn if the message buffer had to be shrunk */
624 if (sz != reqsz)
625 printf("WARNING: %ld bytes not available for msgbuf "
626 "in last cluster (%ld used)\n", reqsz, sz);
627
628 }
629
630 /*
631 * NOTE: It is safe to use uvm_pageboot_alloc() before
632 * pmap_bootstrap() because our pmap_virtual_space()
633 * returns compile-time constants.
634 */
635
636 /*
637 * Allocate uarea page for lwp0 and set it.
638 */
639 v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
640 uvm_lwp_setuarea(&lwp0, v);
641
642 /*
643 * Initialize the virtual memory system, and set the
644 * page table base register in proc 0's PCB.
645 */
646 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
647 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
648
649 /*
650 * Initialize the rest of lwp0's PCB and cache its physical address.
651 */
652 pcb0 = lwp_getpcb(&lwp0);
653 lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
654
655 /*
656 * Set the kernel sp, reserving space for an (empty) trapframe,
657 * and make lwp0's trapframe pointer point to it for sanity.
658 */
659 pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
660 lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
661 simple_lock_init(&pcb0->pcb_fpcpu_slock);
662
663 /* Indicate that lwp0 has a CPU. */
664 lwp0.l_cpu = ci;
665
666 /*
667 * Look at arguments passed to us and compute boothowto.
668 */
669
670 boothowto = RB_SINGLE;
671 #ifdef KADB
672 boothowto |= RB_KDB;
673 #endif
674 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
675 /*
676 * Note that we'd really like to differentiate case here,
677 * but the Alpha AXP Architecture Reference Manual
678 * says that we shouldn't.
679 */
680 switch (*p) {
681 case 'a': /* autoboot */
682 case 'A':
683 boothowto &= ~RB_SINGLE;
684 break;
685
686 #ifdef DEBUG
687 case 'c': /* crash dump immediately after autoconfig */
688 case 'C':
689 boothowto |= RB_DUMP;
690 break;
691 #endif
692
693 #if defined(KGDB) || defined(DDB)
694 case 'd': /* break into the kernel debugger ASAP */
695 case 'D':
696 boothowto |= RB_KDB;
697 break;
698 #endif
699
700 case 'h': /* always halt, never reboot */
701 case 'H':
702 boothowto |= RB_HALT;
703 break;
704
705 #if 0
706 case 'm': /* mini root present in memory */
707 case 'M':
708 boothowto |= RB_MINIROOT;
709 break;
710 #endif
711
712 case 'n': /* askname */
713 case 'N':
714 boothowto |= RB_ASKNAME;
715 break;
716
717 case 's': /* single-user (default, supported for sanity) */
718 case 'S':
719 boothowto |= RB_SINGLE;
720 break;
721
722 case 'q': /* quiet boot */
723 case 'Q':
724 boothowto |= AB_QUIET;
725 break;
726
727 case 'v': /* verbose boot */
728 case 'V':
729 boothowto |= AB_VERBOSE;
730 break;
731
732 case '-':
733 /*
734 * Just ignore this. It's not required, but it's
735 * common for it to be passed regardless.
736 */
737 break;
738
739 default:
740 printf("Unrecognized boot flag '%c'.\n", *p);
741 break;
742 }
743 }
744
745 /*
746 * Perform any initial kernel patches based on the running system.
747 * We may perform more later if we attach additional CPUs.
748 */
749 alpha_patch(false);
750
751 /*
752 * Figure out the number of CPUs in the box, from RPB fields.
753 * Really. We mean it.
754 */
755 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
756 struct pcs *pcsp;
757
758 pcsp = LOCATE_PCS(hwrpb, i);
759 if ((pcsp->pcs_flags & PCS_PP) != 0)
760 ncpus++;
761 }
762
763 /*
764 * Initialize debuggers, and break into them if appropriate.
765 */
766 #if NKSYMS || defined(DDB) || defined(MODULAR)
767 ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
768 ksym_start, ksym_end);
769 #endif
770
771 if (boothowto & RB_KDB) {
772 #if defined(KGDB)
773 kgdb_debug_init = 1;
774 kgdb_connect(1);
775 #elif defined(DDB)
776 Debugger();
777 #endif
778 }
779
780 #ifdef DIAGNOSTIC
781 /*
782 * Check our clock frequency, from RPB fields.
783 */
784 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
785 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
786 hwrpb->rpb_intr_freq, hz);
787 #endif
788 }
789
790 void
791 consinit(void)
792 {
793
794 /*
795 * Everything related to console initialization is done
796 * in alpha_init().
797 */
798 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
799 printf("consinit: %susing prom console\n",
800 pmap_uses_prom_console() ? "" : "not ");
801 #endif
802 }
803
804 void
805 cpu_startup(void)
806 {
807 vaddr_t minaddr, maxaddr;
808 char pbuf[9];
809 #if defined(DEBUG)
810 extern int pmapdebug;
811 int opmapdebug = pmapdebug;
812
813 pmapdebug = 0;
814 #endif
815
816 /*
817 * Good {morning,afternoon,evening,night}.
818 */
819 printf("%s%s", copyright, version);
820 identifycpu();
821 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
822 printf("total memory = %s\n", pbuf);
823 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
824 printf("(%s reserved for PROM, ", pbuf);
825 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
826 printf("%s used by NetBSD)\n", pbuf);
827 if (unusedmem) {
828 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
829 printf("WARNING: unused memory = %s\n", pbuf);
830 }
831 if (unknownmem) {
832 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
833 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
834 }
835
836 minaddr = 0;
837
838 /*
839 * Allocate a submap for physio
840 */
841 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
842 VM_PHYS_SIZE, 0, false, NULL);
843
844 /*
845 * No need to allocate an mbuf cluster submap. Mbuf clusters
846 * are allocated via the pool allocator, and we use K0SEG to
847 * map those pages.
848 */
849
850 #if defined(DEBUG)
851 pmapdebug = opmapdebug;
852 #endif
853 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
854 printf("avail memory = %s\n", pbuf);
855 #if 0
856 {
857 extern u_long pmap_pages_stolen;
858
859 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
860 printf("stolen memory for VM structures = %s\n", pbuf);
861 }
862 #endif
863
864 /*
865 * Set up the HWPCB so that it's safe to configure secondary
866 * CPUs.
867 */
868 hwrpb_primary_init();
869 }
870
871 /*
872 * Retrieve the platform name from the DSR.
873 */
874 const char *
875 alpha_dsr_sysname(void)
876 {
877 struct dsrdb *dsr;
878 const char *sysname;
879
880 /*
881 * DSR does not exist on early HWRPB versions.
882 */
883 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
884 return (NULL);
885
886 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
887 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
888 sizeof(u_int64_t)));
889 return (sysname);
890 }
891
892 /*
893 * Lookup the system specified system variation in the provided table,
894 * returning the model string on match.
895 */
896 const char *
897 alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
898 {
899 int i;
900
901 for (i = 0; avtp[i].avt_model != NULL; i++)
902 if (avtp[i].avt_variation == variation)
903 return (avtp[i].avt_model);
904 return (NULL);
905 }
906
907 /*
908 * Generate a default platform name based for unknown system variations.
909 */
910 const char *
911 alpha_unknown_sysname(void)
912 {
913 static char s[128]; /* safe size */
914
915 sprintf(s, "%s family, unknown model variation 0x%lx",
916 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
917 return ((const char *)s);
918 }
919
920 void
921 identifycpu(void)
922 {
923 char *s;
924 int i;
925
926 /*
927 * print out CPU identification information.
928 */
929 printf("%s", cpu_model);
930 for(s = cpu_model; *s; ++s)
931 if(strncasecmp(s, "MHz", 3) == 0)
932 goto skipMHz;
933 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
934 skipMHz:
935 printf(", s/n ");
936 for (i = 0; i < 10; i++)
937 printf("%c", hwrpb->rpb_ssn[i]);
938 printf("\n");
939 printf("%ld byte page size, %d processor%s.\n",
940 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
941 #if 0
942 /* this isn't defined for any systems that we run on? */
943 printf("serial number 0x%lx 0x%lx\n",
944 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
945
946 /* and these aren't particularly useful! */
947 printf("variation: 0x%lx, revision 0x%lx\n",
948 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
949 #endif
950 }
951
952 int waittime = -1;
953 struct pcb dumppcb;
954
955 void
956 cpu_reboot(int howto, char *bootstr)
957 {
958 #if defined(MULTIPROCESSOR)
959 u_long cpu_id = cpu_number();
960 u_long wait_mask;
961 int i;
962 #endif
963
964 /* If "always halt" was specified as a boot flag, obey. */
965 if ((boothowto & RB_HALT) != 0)
966 howto |= RB_HALT;
967
968 boothowto = howto;
969
970 /* If system is cold, just halt. */
971 if (cold) {
972 boothowto |= RB_HALT;
973 goto haltsys;
974 }
975
976 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
977 waittime = 0;
978 vfs_shutdown();
979 /*
980 * If we've been adjusting the clock, the todr
981 * will be out of synch; adjust it now.
982 */
983 resettodr();
984 }
985
986 /* Disable interrupts. */
987 splhigh();
988
989 #if defined(MULTIPROCESSOR)
990 /*
991 * Halt all other CPUs. If we're not the primary, the
992 * primary will spin, waiting for us to halt.
993 */
994 cpu_id = cpu_number(); /* may have changed cpu */
995 wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
996
997 alpha_broadcast_ipi(ALPHA_IPI_HALT);
998
999 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1000 cpus_paused = 0;
1001
1002 for (i = 0; i < 10000; i++) {
1003 alpha_mb();
1004 if (cpus_running == wait_mask)
1005 break;
1006 delay(1000);
1007 }
1008 alpha_mb();
1009 if (cpus_running != wait_mask)
1010 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1011 cpus_running);
1012 #endif /* MULTIPROCESSOR */
1013
1014 /* If rebooting and a dump is requested do it. */
1015 #if 0
1016 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1017 #else
1018 if (boothowto & RB_DUMP)
1019 #endif
1020 dumpsys();
1021
1022 haltsys:
1023
1024 /* run any shutdown hooks */
1025 doshutdownhooks();
1026
1027 pmf_system_shutdown(boothowto);
1028
1029 #ifdef BOOTKEY
1030 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1031 cnpollc(1); /* for proper keyboard command handling */
1032 cngetc();
1033 cnpollc(0);
1034 printf("\n");
1035 #endif
1036
1037 /* Finally, powerdown/halt/reboot the system. */
1038 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1039 platform.powerdown != NULL) {
1040 (*platform.powerdown)();
1041 printf("WARNING: powerdown failed!\n");
1042 }
1043 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1044 #if defined(MULTIPROCESSOR)
1045 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1046 cpu_halt();
1047 else
1048 #endif
1049 prom_halt(boothowto & RB_HALT);
1050 /*NOTREACHED*/
1051 }
1052
1053 /*
1054 * These variables are needed by /sbin/savecore
1055 */
1056 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1057 int dumpsize = 0; /* pages */
1058 long dumplo = 0; /* blocks */
1059
1060 /*
1061 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1062 */
1063 int
1064 cpu_dumpsize(void)
1065 {
1066 int size;
1067
1068 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1069 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1070 if (roundup(size, dbtob(1)) != dbtob(1))
1071 return -1;
1072
1073 return (1);
1074 }
1075
1076 /*
1077 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1078 */
1079 u_long
1080 cpu_dump_mempagecnt(void)
1081 {
1082 u_long i, n;
1083
1084 n = 0;
1085 for (i = 0; i < mem_cluster_cnt; i++)
1086 n += atop(mem_clusters[i].size);
1087 return (n);
1088 }
1089
1090 /*
1091 * cpu_dump: dump machine-dependent kernel core dump headers.
1092 */
1093 int
1094 cpu_dump(void)
1095 {
1096 int (*dump)(dev_t, daddr_t, void *, size_t);
1097 char buf[dbtob(1)];
1098 kcore_seg_t *segp;
1099 cpu_kcore_hdr_t *cpuhdrp;
1100 phys_ram_seg_t *memsegp;
1101 const struct bdevsw *bdev;
1102 int i;
1103
1104 bdev = bdevsw_lookup(dumpdev);
1105 if (bdev == NULL)
1106 return (ENXIO);
1107 dump = bdev->d_dump;
1108
1109 memset(buf, 0, sizeof buf);
1110 segp = (kcore_seg_t *)buf;
1111 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1112 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1113 ALIGN(sizeof(*cpuhdrp))];
1114
1115 /*
1116 * Generate a segment header.
1117 */
1118 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1119 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1120
1121 /*
1122 * Add the machine-dependent header info.
1123 */
1124 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1125 cpuhdrp->page_size = PAGE_SIZE;
1126 cpuhdrp->nmemsegs = mem_cluster_cnt;
1127
1128 /*
1129 * Fill in the memory segment descriptors.
1130 */
1131 for (i = 0; i < mem_cluster_cnt; i++) {
1132 memsegp[i].start = mem_clusters[i].start;
1133 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1134 }
1135
1136 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1137 }
1138
1139 /*
1140 * This is called by main to set dumplo and dumpsize.
1141 * Dumps always skip the first PAGE_SIZE of disk space
1142 * in case there might be a disk label stored there.
1143 * If there is extra space, put dump at the end to
1144 * reduce the chance that swapping trashes it.
1145 */
1146 void
1147 cpu_dumpconf(void)
1148 {
1149 const struct bdevsw *bdev;
1150 int nblks, dumpblks; /* size of dump area */
1151
1152 if (dumpdev == NODEV)
1153 goto bad;
1154 bdev = bdevsw_lookup(dumpdev);
1155 if (bdev == NULL) {
1156 dumpdev = NODEV;
1157 goto bad;
1158 }
1159 if (bdev->d_psize == NULL)
1160 goto bad;
1161 nblks = (*bdev->d_psize)(dumpdev);
1162 if (nblks <= ctod(1))
1163 goto bad;
1164
1165 dumpblks = cpu_dumpsize();
1166 if (dumpblks < 0)
1167 goto bad;
1168 dumpblks += ctod(cpu_dump_mempagecnt());
1169
1170 /* If dump won't fit (incl. room for possible label), punt. */
1171 if (dumpblks > (nblks - ctod(1)))
1172 goto bad;
1173
1174 /* Put dump at end of partition */
1175 dumplo = nblks - dumpblks;
1176
1177 /* dumpsize is in page units, and doesn't include headers. */
1178 dumpsize = cpu_dump_mempagecnt();
1179 return;
1180
1181 bad:
1182 dumpsize = 0;
1183 return;
1184 }
1185
1186 /*
1187 * Dump the kernel's image to the swap partition.
1188 */
1189 #define BYTES_PER_DUMP PAGE_SIZE
1190
1191 void
1192 dumpsys(void)
1193 {
1194 const struct bdevsw *bdev;
1195 u_long totalbytesleft, bytes, i, n, memcl;
1196 u_long maddr;
1197 int psize;
1198 daddr_t blkno;
1199 int (*dump)(dev_t, daddr_t, void *, size_t);
1200 int error;
1201
1202 /* Save registers. */
1203 savectx(&dumppcb);
1204
1205 if (dumpdev == NODEV)
1206 return;
1207 bdev = bdevsw_lookup(dumpdev);
1208 if (bdev == NULL || bdev->d_psize == NULL)
1209 return;
1210
1211 /*
1212 * For dumps during autoconfiguration,
1213 * if dump device has already configured...
1214 */
1215 if (dumpsize == 0)
1216 cpu_dumpconf();
1217 if (dumplo <= 0) {
1218 printf("\ndump to dev %u,%u not possible\n",
1219 major(dumpdev), minor(dumpdev));
1220 return;
1221 }
1222 printf("\ndumping to dev %u,%u offset %ld\n",
1223 major(dumpdev), minor(dumpdev), dumplo);
1224
1225 psize = (*bdev->d_psize)(dumpdev);
1226 printf("dump ");
1227 if (psize == -1) {
1228 printf("area unavailable\n");
1229 return;
1230 }
1231
1232 /* XXX should purge all outstanding keystrokes. */
1233
1234 if ((error = cpu_dump()) != 0)
1235 goto err;
1236
1237 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1238 blkno = dumplo + cpu_dumpsize();
1239 dump = bdev->d_dump;
1240 error = 0;
1241
1242 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1243 maddr = mem_clusters[memcl].start;
1244 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1245
1246 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1247
1248 /* Print out how many MBs we to go. */
1249 if ((totalbytesleft % (1024*1024)) == 0)
1250 printf_nolog("%ld ",
1251 totalbytesleft / (1024 * 1024));
1252
1253 /* Limit size for next transfer. */
1254 n = bytes - i;
1255 if (n > BYTES_PER_DUMP)
1256 n = BYTES_PER_DUMP;
1257
1258 error = (*dump)(dumpdev, blkno,
1259 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1260 if (error)
1261 goto err;
1262 maddr += n;
1263 blkno += btodb(n); /* XXX? */
1264
1265 /* XXX should look for keystrokes, to cancel. */
1266 }
1267 }
1268
1269 err:
1270 switch (error) {
1271
1272 case ENXIO:
1273 printf("device bad\n");
1274 break;
1275
1276 case EFAULT:
1277 printf("device not ready\n");
1278 break;
1279
1280 case EINVAL:
1281 printf("area improper\n");
1282 break;
1283
1284 case EIO:
1285 printf("i/o error\n");
1286 break;
1287
1288 case EINTR:
1289 printf("aborted from console\n");
1290 break;
1291
1292 case 0:
1293 printf("succeeded\n");
1294 break;
1295
1296 default:
1297 printf("error %d\n", error);
1298 break;
1299 }
1300 printf("\n\n");
1301 delay(1000);
1302 }
1303
1304 void
1305 frametoreg(const struct trapframe *framep, struct reg *regp)
1306 {
1307
1308 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1309 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1310 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1311 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1312 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1313 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1314 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1315 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1316 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1317 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1318 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1319 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1320 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1321 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1322 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1323 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1324 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1325 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1326 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1327 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1328 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1329 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1330 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1331 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1332 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1333 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1334 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1335 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1336 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1337 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1338 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1339 regp->r_regs[R_ZERO] = 0;
1340 }
1341
1342 void
1343 regtoframe(const struct reg *regp, struct trapframe *framep)
1344 {
1345
1346 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1347 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1348 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1349 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1350 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1351 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1352 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1353 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1354 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1355 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1356 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1357 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1358 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1359 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1360 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1361 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1362 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1363 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1364 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1365 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1366 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1367 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1368 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1369 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1370 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1371 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1372 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1373 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1374 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1375 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1376 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1377 /* ??? = regp->r_regs[R_ZERO]; */
1378 }
1379
1380 void
1381 printregs(struct reg *regp)
1382 {
1383 int i;
1384
1385 for (i = 0; i < 32; i++)
1386 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1387 i & 1 ? "\n" : "\t");
1388 }
1389
1390 void
1391 regdump(struct trapframe *framep)
1392 {
1393 struct reg reg;
1394
1395 frametoreg(framep, ®);
1396 reg.r_regs[R_SP] = alpha_pal_rdusp();
1397
1398 printf("REGISTERS:\n");
1399 printregs(®);
1400 }
1401
1402
1403
1404 void *
1405 getframe(const struct lwp *l, int sig, int *onstack)
1406 {
1407 void *frame;
1408
1409 /* Do we need to jump onto the signal stack? */
1410 *onstack =
1411 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1412 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1413
1414 if (*onstack)
1415 frame = (void *)((char *)l->l_sigstk.ss_sp +
1416 l->l_sigstk.ss_size);
1417 else
1418 frame = (void *)(alpha_pal_rdusp());
1419 return (frame);
1420 }
1421
1422 void
1423 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1424 {
1425 struct trapframe *tf = l->l_md.md_tf;
1426
1427 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1428 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1429 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1430 alpha_pal_wrusp((unsigned long)fp);
1431 }
1432
1433
1434 /*
1435 * Send an interrupt to process, new style
1436 */
1437 void
1438 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1439 {
1440 struct lwp *l = curlwp;
1441 struct proc *p = l->l_proc;
1442 struct sigacts *ps = p->p_sigacts;
1443 int onstack, sig = ksi->ksi_signo, error;
1444 struct sigframe_siginfo *fp, frame;
1445 struct trapframe *tf;
1446 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1447
1448 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1449 tf = l->l_md.md_tf;
1450
1451 /* Allocate space for the signal handler context. */
1452 fp--;
1453
1454 #ifdef DEBUG
1455 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1456 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1457 sig, &onstack, fp);
1458 #endif
1459
1460 /* Build stack frame for signal trampoline. */
1461
1462 frame.sf_si._info = ksi->ksi_info;
1463 frame.sf_uc.uc_flags = _UC_SIGMASK;
1464 frame.sf_uc.uc_sigmask = *mask;
1465 frame.sf_uc.uc_link = l->l_ctxlink;
1466 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1467 sendsig_reset(l, sig);
1468 mutex_exit(p->p_lock);
1469 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1470 error = copyout(&frame, fp, sizeof(frame));
1471 mutex_enter(p->p_lock);
1472
1473 if (error != 0) {
1474 /*
1475 * Process has trashed its stack; give it an illegal
1476 * instruction to halt it in its tracks.
1477 */
1478 #ifdef DEBUG
1479 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1480 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1481 p->p_pid, sig);
1482 #endif
1483 sigexit(l, SIGILL);
1484 /* NOTREACHED */
1485 }
1486
1487 #ifdef DEBUG
1488 if (sigdebug & SDB_FOLLOW)
1489 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1490 p->p_pid, sig, fp, ksi->ksi_code);
1491 #endif
1492
1493 /*
1494 * Set up the registers to directly invoke the signal handler. The
1495 * signal trampoline is then used to return from the signal. Note
1496 * the trampoline version numbers are coordinated with machine-
1497 * dependent code in libc.
1498 */
1499
1500 tf->tf_regs[FRAME_A0] = sig;
1501 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1502 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1503
1504 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1505
1506 /* Remember that we're now on the signal stack. */
1507 if (onstack)
1508 l->l_sigstk.ss_flags |= SS_ONSTACK;
1509
1510 #ifdef DEBUG
1511 if (sigdebug & SDB_FOLLOW)
1512 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1513 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1514 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1515 printf("sendsig_siginfo(%d): sig %d returns\n",
1516 p->p_pid, sig);
1517 #endif
1518 }
1519
1520
1521 void
1522 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1523 {
1524 struct trapframe *tf;
1525
1526 tf = l->l_md.md_tf;
1527
1528 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1529 tf->tf_regs[FRAME_RA] = 0;
1530 tf->tf_regs[FRAME_A0] = type;
1531 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1532 tf->tf_regs[FRAME_A2] = nevents;
1533 tf->tf_regs[FRAME_A3] = ninterrupted;
1534 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1535 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1536 alpha_pal_wrusp((unsigned long)sp);
1537 }
1538
1539 /*
1540 * machine dependent system variables.
1541 */
1542 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1543 {
1544
1545 sysctl_createv(clog, 0, NULL, NULL,
1546 CTLFLAG_PERMANENT,
1547 CTLTYPE_NODE, "machdep", NULL,
1548 NULL, 0, NULL, 0,
1549 CTL_MACHDEP, CTL_EOL);
1550
1551 sysctl_createv(clog, 0, NULL, NULL,
1552 CTLFLAG_PERMANENT,
1553 CTLTYPE_STRUCT, "console_device", NULL,
1554 sysctl_consdev, 0, NULL, sizeof(dev_t),
1555 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1556 sysctl_createv(clog, 0, NULL, NULL,
1557 CTLFLAG_PERMANENT,
1558 CTLTYPE_STRING, "root_device", NULL,
1559 sysctl_root_device, 0, NULL, 0,
1560 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1561 sysctl_createv(clog, 0, NULL, NULL,
1562 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1563 CTLTYPE_INT, "unaligned_print", NULL,
1564 NULL, 0, &alpha_unaligned_print, 0,
1565 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1566 sysctl_createv(clog, 0, NULL, NULL,
1567 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1568 CTLTYPE_INT, "unaligned_fix", NULL,
1569 NULL, 0, &alpha_unaligned_fix, 0,
1570 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1571 sysctl_createv(clog, 0, NULL, NULL,
1572 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1573 CTLTYPE_INT, "unaligned_sigbus", NULL,
1574 NULL, 0, &alpha_unaligned_sigbus, 0,
1575 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1576 sysctl_createv(clog, 0, NULL, NULL,
1577 CTLFLAG_PERMANENT,
1578 CTLTYPE_STRING, "booted_kernel", NULL,
1579 NULL, 0, bootinfo.booted_kernel, 0,
1580 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1581 sysctl_createv(clog, 0, NULL, NULL,
1582 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1583 CTLTYPE_INT, "fp_sync_complete", NULL,
1584 NULL, 0, &alpha_fp_sync_complete, 0,
1585 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1586 }
1587
1588 /*
1589 * Set registers on exec.
1590 */
1591 void
1592 setregs(register struct lwp *l, struct exec_package *pack, u_long stack)
1593 {
1594 struct trapframe *tfp = l->l_md.md_tf;
1595 struct pcb *pcb;
1596 #ifdef DEBUG
1597 int i;
1598 #endif
1599
1600 #ifdef DEBUG
1601 /*
1602 * Crash and dump, if the user requested it.
1603 */
1604 if (boothowto & RB_DUMP)
1605 panic("crash requested by boot flags");
1606 #endif
1607
1608 #ifdef DEBUG
1609 for (i = 0; i < FRAME_SIZE; i++)
1610 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1611 #else
1612 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1613 #endif
1614 pcb = lwp_getpcb(l);
1615 memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1616 alpha_pal_wrusp(stack);
1617 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1618 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1619
1620 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1621 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1622 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1623 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1624 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1625
1626 l->l_md.md_flags &= ~MDP_FPUSED;
1627 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1628 l->l_md.md_flags &= ~MDP_FP_C;
1629 pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1630 }
1631 if (pcb->pcb_fpcpu != NULL)
1632 fpusave_proc(l, 0);
1633 }
1634
1635 /*
1636 * Release the FPU.
1637 */
1638 void
1639 fpusave_cpu(struct cpu_info *ci, int save)
1640 {
1641 struct lwp *l;
1642 struct pcb *pcb;
1643 #if defined(MULTIPROCESSOR)
1644 int s;
1645 #endif
1646
1647 KDASSERT(ci == curcpu());
1648
1649 #if defined(MULTIPROCESSOR)
1650 s = splhigh(); /* block IPIs for the duration */
1651 atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1652 #endif
1653
1654 l = ci->ci_fpcurlwp;
1655 if (l == NULL)
1656 goto out;
1657
1658 pcb = lwp_getpcb(l);
1659 if (save) {
1660 alpha_pal_wrfen(1);
1661 savefpstate(&pcb->pcb_fp);
1662 }
1663
1664 alpha_pal_wrfen(0);
1665
1666 FPCPU_LOCK(pcb);
1667
1668 pcb->pcb_fpcpu = NULL;
1669 ci->ci_fpcurlwp = NULL;
1670
1671 FPCPU_UNLOCK(pcb);
1672
1673 out:
1674 #if defined(MULTIPROCESSOR)
1675 atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1676 splx(s);
1677 #endif
1678 return;
1679 }
1680
1681 /*
1682 * Synchronize FP state for this process.
1683 */
1684 void
1685 fpusave_proc(struct lwp *l, int save)
1686 {
1687 struct cpu_info *ci = curcpu();
1688 struct cpu_info *oci;
1689 struct pcb *pcb;
1690 #if defined(MULTIPROCESSOR)
1691 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1692 int s, spincount;
1693 #endif
1694
1695 pcb = lwp_getpcb(l);
1696 KDASSERT(pcb != NULL);
1697
1698 #if defined(MULTIPROCESSOR)
1699 s = splhigh(); /* block IPIs for the duration */
1700 #endif
1701 FPCPU_LOCK(pcb);
1702
1703 oci = pcb->pcb_fpcpu;
1704 if (oci == NULL) {
1705 FPCPU_UNLOCK(pcb);
1706 #if defined(MULTIPROCESSOR)
1707 splx(s);
1708 #endif
1709 return;
1710 }
1711
1712 #if defined(MULTIPROCESSOR)
1713 if (oci == ci) {
1714 KASSERT(ci->ci_fpcurlwp == l);
1715 FPCPU_UNLOCK(pcb);
1716 splx(s);
1717 fpusave_cpu(ci, save);
1718 return;
1719 }
1720
1721 KASSERT(oci->ci_fpcurlwp == l);
1722 alpha_send_ipi(oci->ci_cpuid, ipi);
1723 FPCPU_UNLOCK(pcb);
1724
1725 spincount = 0;
1726 while (pcb->pcb_fpcpu != NULL) {
1727 spincount++;
1728 delay(1000); /* XXX */
1729 if (spincount > 10000)
1730 panic("fpsave ipi didn't");
1731 }
1732 #else
1733 KASSERT(ci->ci_fpcurlwp == l);
1734 FPCPU_UNLOCK(pcb);
1735 fpusave_cpu(ci, save);
1736 #endif /* MULTIPROCESSOR */
1737 }
1738
1739 /*
1740 * Wait "n" microseconds.
1741 */
1742 void
1743 delay(unsigned long n)
1744 {
1745 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1746
1747 if (n == 0)
1748 return;
1749
1750 pcc0 = alpha_rpcc() & 0xffffffffUL;
1751 cycles = 0;
1752 usec = 0;
1753
1754 while (usec <= n) {
1755 /*
1756 * Get the next CPU cycle count- assumes that we cannot
1757 * have had more than one 32 bit overflow.
1758 */
1759 pcc1 = alpha_rpcc() & 0xffffffffUL;
1760 if (pcc1 < pcc0)
1761 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1762 else
1763 curcycle = pcc1 - pcc0;
1764
1765 /*
1766 * We now have the number of processor cycles since we
1767 * last checked. Add the current cycle count to the
1768 * running total. If it's over cycles_per_usec, increment
1769 * the usec counter.
1770 */
1771 cycles += curcycle;
1772 while (cycles > cycles_per_usec) {
1773 usec++;
1774 cycles -= cycles_per_usec;
1775 }
1776 pcc0 = pcc1;
1777 }
1778 }
1779
1780 #ifdef EXEC_ECOFF
1781 void
1782 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, u_long stack)
1783 {
1784 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1785
1786 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1787 }
1788
1789 /*
1790 * cpu_exec_ecoff_hook():
1791 * cpu-dependent ECOFF format hook for execve().
1792 *
1793 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1794 *
1795 */
1796 int
1797 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1798 {
1799 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1800 int error;
1801
1802 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1803 error = 0;
1804 else
1805 error = ENOEXEC;
1806
1807 return (error);
1808 }
1809 #endif /* EXEC_ECOFF */
1810
1811 int
1812 alpha_pa_access(u_long pa)
1813 {
1814 int i;
1815
1816 for (i = 0; i < mem_cluster_cnt; i++) {
1817 if (pa < mem_clusters[i].start)
1818 continue;
1819 if ((pa - mem_clusters[i].start) >=
1820 (mem_clusters[i].size & ~PAGE_MASK))
1821 continue;
1822 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1823 }
1824
1825 /*
1826 * Address is not a memory address. If we're secure, disallow
1827 * access. Otherwise, grant read/write.
1828 */
1829 if (kauth_authorize_machdep(kauth_cred_get(),
1830 KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1831 return (PROT_NONE);
1832 else
1833 return (PROT_READ | PROT_WRITE);
1834 }
1835
1836 /* XXX XXX BEGIN XXX XXX */
1837 paddr_t alpha_XXX_dmamap_or; /* XXX */
1838 /* XXX */
1839 paddr_t /* XXX */
1840 alpha_XXX_dmamap(v) /* XXX */
1841 vaddr_t v; /* XXX */
1842 { /* XXX */
1843 /* XXX */
1844 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1845 } /* XXX */
1846 /* XXX XXX END XXX XXX */
1847
1848 char *
1849 dot_conv(unsigned long x)
1850 {
1851 int i;
1852 char *xc;
1853 static int next;
1854 static char space[2][20];
1855
1856 xc = space[next ^= 1] + sizeof space[0];
1857 *--xc = '\0';
1858 for (i = 0;; ++i) {
1859 if (i && (i & 3) == 0)
1860 *--xc = '.';
1861 *--xc = hexdigits[x & 0xf];
1862 x >>= 4;
1863 if (x == 0)
1864 break;
1865 }
1866 return xc;
1867 }
1868
1869 void
1870 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1871 {
1872 struct trapframe *frame = l->l_md.md_tf;
1873 struct pcb *pcb = lwp_getpcb(l);
1874 __greg_t *gr = mcp->__gregs;
1875 __greg_t ras_pc;
1876
1877 /* Save register context. */
1878 frametoreg(frame, (struct reg *)gr);
1879 /* XXX if there's a better, general way to get the USP of
1880 * an LWP that might or might not be curlwp, I'd like to know
1881 * about it.
1882 */
1883 if (l == curlwp) {
1884 gr[_REG_SP] = alpha_pal_rdusp();
1885 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1886 } else {
1887 gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1888 gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1889 }
1890 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1891 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1892
1893 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1894 (void *) gr[_REG_PC])) != -1)
1895 gr[_REG_PC] = ras_pc;
1896
1897 *flags |= _UC_CPU | _UC_UNIQUE;
1898
1899 /* Save floating point register context, if any, and copy it. */
1900 if (l->l_md.md_flags & MDP_FPUSED) {
1901 fpusave_proc(l, 1);
1902 (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1903 sizeof (mcp->__fpregs));
1904 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1905 *flags |= _UC_FPU;
1906 }
1907 }
1908
1909
1910 int
1911 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1912 {
1913 struct trapframe *frame = l->l_md.md_tf;
1914 struct pcb *pcb = lwp_getpcb(l);
1915 const __greg_t *gr = mcp->__gregs;
1916
1917 /* Restore register context, if any. */
1918 if (flags & _UC_CPU) {
1919 /* Check for security violations first. */
1920 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1921 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1922 return (EINVAL);
1923
1924 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1925 if (l == curlwp)
1926 alpha_pal_wrusp(gr[_REG_SP]);
1927 else
1928 pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1929 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1930 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1931 }
1932 if (flags & _UC_UNIQUE) {
1933 if (l == curlwp)
1934 alpha_pal_wrunique(gr[_REG_UNIQUE]);
1935 else
1936 pcb->pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1937 }
1938 /* Restore floating point register context, if any. */
1939 if (flags & _UC_FPU) {
1940 /* If we have an FP register context, get rid of it. */
1941 if (pcb->pcb_fpcpu != NULL)
1942 fpusave_proc(l, 0);
1943 (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1944 sizeof (pcb->pcb_fp));
1945 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1946 l->l_md.md_flags |= MDP_FPUSED;
1947 }
1948
1949 return (0);
1950 }
1951
1952 /*
1953 * Preempt the current process if in interrupt from user mode,
1954 * or after the current trap/syscall if in system mode.
1955 */
1956 void
1957 cpu_need_resched(struct cpu_info *ci, int flags)
1958 {
1959 #if defined(MULTIPROCESSOR)
1960 bool immed = (flags & RESCHED_IMMED) != 0;
1961 #endif /* defined(MULTIPROCESSOR) */
1962
1963 aston(ci->ci_data.cpu_onproc);
1964 ci->ci_want_resched = 1;
1965 if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
1966 #if defined(MULTIPROCESSOR)
1967 if (immed && ci != curcpu()) {
1968 alpha_send_ipi(ci->ci_cpuid, 0);
1969 }
1970 #endif /* defined(MULTIPROCESSOR) */
1971 }
1972 }
1973