machdep.c revision 1.327 1 /* $NetBSD: machdep.c,v 1.327 2010/11/06 11:46:00 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_compat_osf1.h"
67 #include "opt_execfmt.h"
68
69 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
70
71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.327 2010/11/06 11:46:00 uebayasi Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/signalvar.h>
76 #include <sys/kernel.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/ras.h>
80 #include <sys/sa.h>
81 #include <sys/savar.h>
82 #include <sys/sched.h>
83 #include <sys/reboot.h>
84 #include <sys/device.h>
85 #include <sys/malloc.h>
86 #include <sys/mman.h>
87 #include <sys/msgbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/exec.h>
91 #include <sys/exec_aout.h> /* for MID_* */
92 #include <sys/exec_ecoff.h>
93 #include <sys/core.h>
94 #include <sys/kcore.h>
95 #include <sys/ucontext.h>
96 #include <sys/conf.h>
97 #include <sys/ksyms.h>
98 #include <sys/kauth.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101
102 #include <machine/kcore.h>
103 #include <machine/fpu.h>
104
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107
108 #include <uvm/uvm.h>
109 #include <sys/sysctl.h>
110
111 #include <dev/cons.h>
112
113 #include <machine/autoconf.h>
114 #include <machine/reg.h>
115 #include <machine/rpb.h>
116 #include <machine/prom.h>
117 #include <machine/cpuconf.h>
118 #include <machine/ieeefp.h>
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 #ifdef KGDB
129 #include <sys/kgdb.h>
130 #endif
131
132 #ifdef DEBUG
133 #include <machine/sigdebug.h>
134 #endif
135
136 #include <machine/alpha.h>
137
138 #include "ksyms.h"
139
140 struct vm_map *phys_map = NULL;
141
142 void *msgbufaddr;
143
144 int maxmem; /* max memory per process */
145
146 int totalphysmem; /* total amount of physical memory in system */
147 int physmem; /* physical memory used by NetBSD + some rsvd */
148 int resvmem; /* amount of memory reserved for PROM */
149 int unusedmem; /* amount of memory for OS that we don't use */
150 int unknownmem; /* amount of memory with an unknown use */
151
152 int cputype; /* system type, from the RPB */
153
154 int bootdev_debug = 0; /* patchable, or from DDB */
155
156 /*
157 * XXX We need an address to which we can assign things so that they
158 * won't be optimized away because we didn't use the value.
159 */
160 u_int32_t no_optimize;
161
162 /* the following is used externally (sysctl_hw) */
163 char machine[] = MACHINE; /* from <machine/param.h> */
164 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
165 char cpu_model[128];
166
167 /* Number of machine cycles per microsecond */
168 u_int64_t cycles_per_usec;
169
170 /* number of CPUs in the box. really! */
171 int ncpus;
172
173 struct bootinfo_kernel bootinfo;
174
175 /* For built-in TCDS */
176 #if defined(DEC_3000_300) || defined(DEC_3000_500)
177 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
178 #endif
179
180 struct platform platform;
181
182 #if NKSYMS || defined(DDB) || defined(MODULAR)
183 /* start and end of kernel symbol table */
184 void *ksym_start, *ksym_end;
185 #endif
186
187 /* for cpu_sysctl() */
188 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
189 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
190 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
191 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
192
193 /*
194 * XXX This should be dynamically sized, but we have the chicken-egg problem!
195 * XXX it should also be larger than it is, because not all of the mddt
196 * XXX clusters end up being used for VM.
197 */
198 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
199 int mem_cluster_cnt;
200
201 int cpu_dump(void);
202 int cpu_dumpsize(void);
203 u_long cpu_dump_mempagecnt(void);
204 void dumpsys(void);
205 void identifycpu(void);
206 void printregs(struct reg *);
207
208 void
209 alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
210 /* pfn: first free PFN number */
211 /* ptb: PFN of current level 1 page table */
212 /* bim: bootinfo magic */
213 /* bip: bootinfo pointer */
214 /* biv: bootinfo version */
215 {
216 extern char kernel_text[], _end[];
217 struct mddt *mddtp;
218 struct mddt_cluster *memc;
219 int i, mddtweird;
220 struct vm_physseg *vps;
221 struct pcb *pcb0;
222 vaddr_t kernstart, kernend, v;
223 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
224 cpuid_t cpu_id;
225 struct cpu_info *ci;
226 char *p;
227 const char *bootinfo_msg;
228 const struct cpuinit *c;
229
230 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
231
232 /*
233 * Turn off interrupts (not mchecks) and floating point.
234 * Make sure the instruction and data streams are consistent.
235 */
236 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
237 alpha_pal_wrfen(0);
238 ALPHA_TBIA();
239 alpha_pal_imb();
240
241 /* Initialize the SCB. */
242 scb_init();
243
244 cpu_id = cpu_number();
245
246 #if defined(MULTIPROCESSOR)
247 /*
248 * Set our SysValue to the address of our cpu_info structure.
249 * Secondary processors do this in their spinup trampoline.
250 */
251 alpha_pal_wrval((u_long)&cpu_info_primary);
252 cpu_info[cpu_id] = &cpu_info_primary;
253 #endif
254
255 ci = curcpu();
256 ci->ci_cpuid = cpu_id;
257
258 /*
259 * Get critical system information (if possible, from the
260 * information provided by the boot program).
261 */
262 bootinfo_msg = NULL;
263 if (bim == BOOTINFO_MAGIC) {
264 if (biv == 0) { /* backward compat */
265 biv = *(u_long *)bip;
266 bip += 8;
267 }
268 switch (biv) {
269 case 1: {
270 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
271
272 bootinfo.ssym = v1p->ssym;
273 bootinfo.esym = v1p->esym;
274 /* hwrpb may not be provided by boot block in v1 */
275 if (v1p->hwrpb != NULL) {
276 bootinfo.hwrpb_phys =
277 ((struct rpb *)v1p->hwrpb)->rpb_phys;
278 bootinfo.hwrpb_size = v1p->hwrpbsize;
279 } else {
280 bootinfo.hwrpb_phys =
281 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
282 bootinfo.hwrpb_size =
283 ((struct rpb *)HWRPB_ADDR)->rpb_size;
284 }
285 memcpy(bootinfo.boot_flags, v1p->boot_flags,
286 min(sizeof v1p->boot_flags,
287 sizeof bootinfo.boot_flags));
288 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
289 min(sizeof v1p->booted_kernel,
290 sizeof bootinfo.booted_kernel));
291 /* booted dev not provided in bootinfo */
292 init_prom_interface((struct rpb *)
293 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
294 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
295 sizeof bootinfo.booted_dev);
296 break;
297 }
298 default:
299 bootinfo_msg = "unknown bootinfo version";
300 goto nobootinfo;
301 }
302 } else {
303 bootinfo_msg = "boot program did not pass bootinfo";
304 nobootinfo:
305 bootinfo.ssym = (u_long)_end;
306 bootinfo.esym = (u_long)_end;
307 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
308 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
309 init_prom_interface((struct rpb *)HWRPB_ADDR);
310 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
311 sizeof bootinfo.boot_flags);
312 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
313 sizeof bootinfo.booted_kernel);
314 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
315 sizeof bootinfo.booted_dev);
316 }
317
318 /*
319 * Initialize the kernel's mapping of the RPB. It's needed for
320 * lots of things.
321 */
322 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
323
324 #if defined(DEC_3000_300) || defined(DEC_3000_500)
325 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
326 hwrpb->rpb_type == ST_DEC_3000_500) {
327 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
328 sizeof(dec_3000_scsiid));
329 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
330 sizeof(dec_3000_scsifast));
331 }
332 #endif
333
334 /*
335 * Remember how many cycles there are per microsecond,
336 * so that we can use delay(). Round up, for safety.
337 */
338 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
339
340 /*
341 * Initialize the (temporary) bootstrap console interface, so
342 * we can use printf until the VM system starts being setup.
343 * The real console is initialized before then.
344 */
345 init_bootstrap_console();
346
347 /* OUTPUT NOW ALLOWED */
348
349 /* delayed from above */
350 if (bootinfo_msg)
351 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
352 bootinfo_msg, bim, bip, biv);
353
354 /* Initialize the trap vectors on the primary processor. */
355 trap_init();
356
357 /*
358 * Find out this system's page size, and initialize
359 * PAGE_SIZE-dependent variables.
360 */
361 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
362 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
363 ALPHA_PGBYTES);
364 uvmexp.pagesize = hwrpb->rpb_page_size;
365 uvm_setpagesize();
366
367 /*
368 * Find out what hardware we're on, and do basic initialization.
369 */
370 cputype = hwrpb->rpb_type;
371 if (cputype < 0) {
372 /*
373 * At least some white-box systems have SRM which
374 * reports a systype that's the negative of their
375 * blue-box counterpart.
376 */
377 cputype = -cputype;
378 }
379 c = platform_lookup(cputype);
380 if (c == NULL) {
381 platform_not_supported();
382 /* NOTREACHED */
383 }
384 (*c->init)();
385 strcpy(cpu_model, platform.model);
386
387 /*
388 * Initialize the real console, so that the bootstrap console is
389 * no longer necessary.
390 */
391 (*platform.cons_init)();
392
393 #ifdef DIAGNOSTIC
394 /* Paranoid sanity checking */
395
396 /* We should always be running on the primary. */
397 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
398
399 /*
400 * On single-CPU systypes, the primary should always be CPU 0,
401 * except on Alpha 8200 systems where the CPU id is related
402 * to the VID, which is related to the Turbo Laser node id.
403 */
404 if (cputype != ST_DEC_21000)
405 assert(hwrpb->rpb_primary_cpu_id == 0);
406 #endif
407
408 /* NO MORE FIRMWARE ACCESS ALLOWED */
409 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
410 /*
411 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
412 * XXX pmap_uses_prom_console() evaluates to non-zero.)
413 */
414 #endif
415
416 /*
417 * Find the beginning and end of the kernel (and leave a
418 * bit of space before the beginning for the bootstrap
419 * stack).
420 */
421 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
422 #if NKSYMS || defined(DDB) || defined(MODULAR)
423 ksym_start = (void *)bootinfo.ssym;
424 ksym_end = (void *)bootinfo.esym;
425 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
426 #else
427 kernend = (vaddr_t)round_page((vaddr_t)_end);
428 #endif
429
430 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
431 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
432
433 /*
434 * Find out how much memory is available, by looking at
435 * the memory cluster descriptors. This also tries to do
436 * its best to detect things things that have never been seen
437 * before...
438 */
439 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
440
441 /* MDDT SANITY CHECKING */
442 mddtweird = 0;
443 if (mddtp->mddt_cluster_cnt < 2) {
444 mddtweird = 1;
445 printf("WARNING: weird number of mem clusters: %lu\n",
446 mddtp->mddt_cluster_cnt);
447 }
448
449 #if 0
450 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
451 #endif
452
453 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
454 memc = &mddtp->mddt_clusters[i];
455 #if 0
456 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
457 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
458 #endif
459 totalphysmem += memc->mddt_pg_cnt;
460 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
461 mem_clusters[mem_cluster_cnt].start =
462 ptoa(memc->mddt_pfn);
463 mem_clusters[mem_cluster_cnt].size =
464 ptoa(memc->mddt_pg_cnt);
465 if (memc->mddt_usage & MDDT_mbz ||
466 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
467 memc->mddt_usage & MDDT_PALCODE)
468 mem_clusters[mem_cluster_cnt].size |=
469 PROT_READ;
470 else
471 mem_clusters[mem_cluster_cnt].size |=
472 PROT_READ | PROT_WRITE | PROT_EXEC;
473 mem_cluster_cnt++;
474 }
475
476 if (memc->mddt_usage & MDDT_mbz) {
477 mddtweird = 1;
478 printf("WARNING: mem cluster %d has weird "
479 "usage 0x%lx\n", i, memc->mddt_usage);
480 unknownmem += memc->mddt_pg_cnt;
481 continue;
482 }
483 if (memc->mddt_usage & MDDT_NONVOLATILE) {
484 /* XXX should handle these... */
485 printf("WARNING: skipping non-volatile mem "
486 "cluster %d\n", i);
487 unusedmem += memc->mddt_pg_cnt;
488 continue;
489 }
490 if (memc->mddt_usage & MDDT_PALCODE) {
491 resvmem += memc->mddt_pg_cnt;
492 continue;
493 }
494
495 /*
496 * We have a memory cluster available for system
497 * software use. We must determine if this cluster
498 * holds the kernel.
499 */
500 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
501 /*
502 * XXX If the kernel uses the PROM console, we only use the
503 * XXX memory after the kernel in the first system segment,
504 * XXX to avoid clobbering prom mapping, data, etc.
505 */
506 if (!pmap_uses_prom_console() || physmem == 0) {
507 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
508 physmem += memc->mddt_pg_cnt;
509 pfn0 = memc->mddt_pfn;
510 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
511 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
512 /*
513 * Must compute the location of the kernel
514 * within the segment.
515 */
516 #if 0
517 printf("Cluster %d contains kernel\n", i);
518 #endif
519 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
520 if (!pmap_uses_prom_console()) {
521 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
522 if (pfn0 < kernstartpfn) {
523 /*
524 * There is a chunk before the kernel.
525 */
526 #if 0
527 printf("Loading chunk before kernel: "
528 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
529 #endif
530 uvm_page_physload(pfn0, kernstartpfn,
531 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
532 }
533 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
534 }
535 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
536 if (kernendpfn < pfn1) {
537 /*
538 * There is a chunk after the kernel.
539 */
540 #if 0
541 printf("Loading chunk after kernel: "
542 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
543 #endif
544 uvm_page_physload(kernendpfn, pfn1,
545 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
546 }
547 } else {
548 /*
549 * Just load this cluster as one chunk.
550 */
551 #if 0
552 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
553 pfn0, pfn1);
554 #endif
555 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
556 VM_FREELIST_DEFAULT);
557 }
558 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
559 }
560 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
561 }
562
563 /*
564 * Dump out the MDDT if it looks odd...
565 */
566 if (mddtweird) {
567 printf("\n");
568 printf("complete memory cluster information:\n");
569 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
570 printf("mddt %d:\n", i);
571 printf("\tpfn %lx\n",
572 mddtp->mddt_clusters[i].mddt_pfn);
573 printf("\tcnt %lx\n",
574 mddtp->mddt_clusters[i].mddt_pg_cnt);
575 printf("\ttest %lx\n",
576 mddtp->mddt_clusters[i].mddt_pg_test);
577 printf("\tbva %lx\n",
578 mddtp->mddt_clusters[i].mddt_v_bitaddr);
579 printf("\tbpa %lx\n",
580 mddtp->mddt_clusters[i].mddt_p_bitaddr);
581 printf("\tbcksum %lx\n",
582 mddtp->mddt_clusters[i].mddt_bit_cksum);
583 printf("\tusage %lx\n",
584 mddtp->mddt_clusters[i].mddt_usage);
585 }
586 printf("\n");
587 }
588
589 if (totalphysmem == 0)
590 panic("can't happen: system seems to have no memory!");
591 maxmem = physmem;
592 #if 0
593 printf("totalphysmem = %d\n", totalphysmem);
594 printf("physmem = %d\n", physmem);
595 printf("resvmem = %d\n", resvmem);
596 printf("unusedmem = %d\n", unusedmem);
597 printf("unknownmem = %d\n", unknownmem);
598 #endif
599
600 /*
601 * Initialize error message buffer (at end of core).
602 */
603 {
604 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
605 vsize_t reqsz = sz;
606
607 vps = &vm_physmem[vm_nphysseg - 1];
608
609 /* shrink so that it'll fit in the last segment */
610 if ((vps->avail_end - vps->avail_start) < atop(sz))
611 sz = ptoa(vps->avail_end - vps->avail_start);
612
613 vps->end -= atop(sz);
614 vps->avail_end -= atop(sz);
615 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
616 initmsgbuf(msgbufaddr, sz);
617
618 /* Remove the last segment if it now has no pages. */
619 if (vps->start == vps->end)
620 vm_nphysseg--;
621
622 /* warn if the message buffer had to be shrunk */
623 if (sz != reqsz)
624 printf("WARNING: %ld bytes not available for msgbuf "
625 "in last cluster (%ld used)\n", reqsz, sz);
626
627 }
628
629 /*
630 * NOTE: It is safe to use uvm_pageboot_alloc() before
631 * pmap_bootstrap() because our pmap_virtual_space()
632 * returns compile-time constants.
633 */
634
635 /*
636 * Allocate uarea page for lwp0 and set it.
637 */
638 v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
639 uvm_lwp_setuarea(&lwp0, v);
640
641 /*
642 * Initialize the virtual memory system, and set the
643 * page table base register in proc 0's PCB.
644 */
645 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
646 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
647
648 /*
649 * Initialize the rest of lwp0's PCB and cache its physical address.
650 */
651 pcb0 = lwp_getpcb(&lwp0);
652 lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
653
654 /*
655 * Set the kernel sp, reserving space for an (empty) trapframe,
656 * and make lwp0's trapframe pointer point to it for sanity.
657 */
658 pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
659 lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
660 simple_lock_init(&pcb0->pcb_fpcpu_slock);
661
662 /* Indicate that lwp0 has a CPU. */
663 lwp0.l_cpu = ci;
664
665 /*
666 * Look at arguments passed to us and compute boothowto.
667 */
668
669 boothowto = RB_SINGLE;
670 #ifdef KADB
671 boothowto |= RB_KDB;
672 #endif
673 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
674 /*
675 * Note that we'd really like to differentiate case here,
676 * but the Alpha AXP Architecture Reference Manual
677 * says that we shouldn't.
678 */
679 switch (*p) {
680 case 'a': /* autoboot */
681 case 'A':
682 boothowto &= ~RB_SINGLE;
683 break;
684
685 #ifdef DEBUG
686 case 'c': /* crash dump immediately after autoconfig */
687 case 'C':
688 boothowto |= RB_DUMP;
689 break;
690 #endif
691
692 #if defined(KGDB) || defined(DDB)
693 case 'd': /* break into the kernel debugger ASAP */
694 case 'D':
695 boothowto |= RB_KDB;
696 break;
697 #endif
698
699 case 'h': /* always halt, never reboot */
700 case 'H':
701 boothowto |= RB_HALT;
702 break;
703
704 #if 0
705 case 'm': /* mini root present in memory */
706 case 'M':
707 boothowto |= RB_MINIROOT;
708 break;
709 #endif
710
711 case 'n': /* askname */
712 case 'N':
713 boothowto |= RB_ASKNAME;
714 break;
715
716 case 's': /* single-user (default, supported for sanity) */
717 case 'S':
718 boothowto |= RB_SINGLE;
719 break;
720
721 case 'q': /* quiet boot */
722 case 'Q':
723 boothowto |= AB_QUIET;
724 break;
725
726 case 'v': /* verbose boot */
727 case 'V':
728 boothowto |= AB_VERBOSE;
729 break;
730
731 case '-':
732 /*
733 * Just ignore this. It's not required, but it's
734 * common for it to be passed regardless.
735 */
736 break;
737
738 default:
739 printf("Unrecognized boot flag '%c'.\n", *p);
740 break;
741 }
742 }
743
744 /*
745 * Perform any initial kernel patches based on the running system.
746 * We may perform more later if we attach additional CPUs.
747 */
748 alpha_patch(false);
749
750 /*
751 * Figure out the number of CPUs in the box, from RPB fields.
752 * Really. We mean it.
753 */
754 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
755 struct pcs *pcsp;
756
757 pcsp = LOCATE_PCS(hwrpb, i);
758 if ((pcsp->pcs_flags & PCS_PP) != 0)
759 ncpus++;
760 }
761
762 /*
763 * Initialize debuggers, and break into them if appropriate.
764 */
765 #if NKSYMS || defined(DDB) || defined(MODULAR)
766 ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
767 ksym_start, ksym_end);
768 #endif
769
770 if (boothowto & RB_KDB) {
771 #if defined(KGDB)
772 kgdb_debug_init = 1;
773 kgdb_connect(1);
774 #elif defined(DDB)
775 Debugger();
776 #endif
777 }
778
779 #ifdef DIAGNOSTIC
780 /*
781 * Check our clock frequency, from RPB fields.
782 */
783 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
784 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
785 hwrpb->rpb_intr_freq, hz);
786 #endif
787 }
788
789 void
790 consinit(void)
791 {
792
793 /*
794 * Everything related to console initialization is done
795 * in alpha_init().
796 */
797 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
798 printf("consinit: %susing prom console\n",
799 pmap_uses_prom_console() ? "" : "not ");
800 #endif
801 }
802
803 void
804 cpu_startup(void)
805 {
806 vaddr_t minaddr, maxaddr;
807 char pbuf[9];
808 #if defined(DEBUG)
809 extern int pmapdebug;
810 int opmapdebug = pmapdebug;
811
812 pmapdebug = 0;
813 #endif
814
815 /*
816 * Good {morning,afternoon,evening,night}.
817 */
818 printf("%s%s", copyright, version);
819 identifycpu();
820 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
821 printf("total memory = %s\n", pbuf);
822 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
823 printf("(%s reserved for PROM, ", pbuf);
824 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
825 printf("%s used by NetBSD)\n", pbuf);
826 if (unusedmem) {
827 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
828 printf("WARNING: unused memory = %s\n", pbuf);
829 }
830 if (unknownmem) {
831 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
832 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
833 }
834
835 minaddr = 0;
836
837 /*
838 * Allocate a submap for physio
839 */
840 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
841 VM_PHYS_SIZE, 0, false, NULL);
842
843 /*
844 * No need to allocate an mbuf cluster submap. Mbuf clusters
845 * are allocated via the pool allocator, and we use K0SEG to
846 * map those pages.
847 */
848
849 #if defined(DEBUG)
850 pmapdebug = opmapdebug;
851 #endif
852 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
853 printf("avail memory = %s\n", pbuf);
854 #if 0
855 {
856 extern u_long pmap_pages_stolen;
857
858 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
859 printf("stolen memory for VM structures = %s\n", pbuf);
860 }
861 #endif
862
863 /*
864 * Set up the HWPCB so that it's safe to configure secondary
865 * CPUs.
866 */
867 hwrpb_primary_init();
868 }
869
870 /*
871 * Retrieve the platform name from the DSR.
872 */
873 const char *
874 alpha_dsr_sysname(void)
875 {
876 struct dsrdb *dsr;
877 const char *sysname;
878
879 /*
880 * DSR does not exist on early HWRPB versions.
881 */
882 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
883 return (NULL);
884
885 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
886 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
887 sizeof(u_int64_t)));
888 return (sysname);
889 }
890
891 /*
892 * Lookup the system specified system variation in the provided table,
893 * returning the model string on match.
894 */
895 const char *
896 alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
897 {
898 int i;
899
900 for (i = 0; avtp[i].avt_model != NULL; i++)
901 if (avtp[i].avt_variation == variation)
902 return (avtp[i].avt_model);
903 return (NULL);
904 }
905
906 /*
907 * Generate a default platform name based for unknown system variations.
908 */
909 const char *
910 alpha_unknown_sysname(void)
911 {
912 static char s[128]; /* safe size */
913
914 sprintf(s, "%s family, unknown model variation 0x%lx",
915 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
916 return ((const char *)s);
917 }
918
919 void
920 identifycpu(void)
921 {
922 char *s;
923 int i;
924
925 /*
926 * print out CPU identification information.
927 */
928 printf("%s", cpu_model);
929 for(s = cpu_model; *s; ++s)
930 if(strncasecmp(s, "MHz", 3) == 0)
931 goto skipMHz;
932 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
933 skipMHz:
934 printf(", s/n ");
935 for (i = 0; i < 10; i++)
936 printf("%c", hwrpb->rpb_ssn[i]);
937 printf("\n");
938 printf("%ld byte page size, %d processor%s.\n",
939 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
940 #if 0
941 /* this isn't defined for any systems that we run on? */
942 printf("serial number 0x%lx 0x%lx\n",
943 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
944
945 /* and these aren't particularly useful! */
946 printf("variation: 0x%lx, revision 0x%lx\n",
947 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
948 #endif
949 }
950
951 int waittime = -1;
952 struct pcb dumppcb;
953
954 void
955 cpu_reboot(int howto, char *bootstr)
956 {
957 #if defined(MULTIPROCESSOR)
958 u_long cpu_id = cpu_number();
959 u_long wait_mask;
960 int i;
961 #endif
962
963 /* If "always halt" was specified as a boot flag, obey. */
964 if ((boothowto & RB_HALT) != 0)
965 howto |= RB_HALT;
966
967 boothowto = howto;
968
969 /* If system is cold, just halt. */
970 if (cold) {
971 boothowto |= RB_HALT;
972 goto haltsys;
973 }
974
975 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
976 waittime = 0;
977 vfs_shutdown();
978 /*
979 * If we've been adjusting the clock, the todr
980 * will be out of synch; adjust it now.
981 */
982 resettodr();
983 }
984
985 /* Disable interrupts. */
986 splhigh();
987
988 #if defined(MULTIPROCESSOR)
989 /*
990 * Halt all other CPUs. If we're not the primary, the
991 * primary will spin, waiting for us to halt.
992 */
993 cpu_id = cpu_number(); /* may have changed cpu */
994 wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
995
996 alpha_broadcast_ipi(ALPHA_IPI_HALT);
997
998 /* Ensure any CPUs paused by DDB resume execution so they can halt */
999 cpus_paused = 0;
1000
1001 for (i = 0; i < 10000; i++) {
1002 alpha_mb();
1003 if (cpus_running == wait_mask)
1004 break;
1005 delay(1000);
1006 }
1007 alpha_mb();
1008 if (cpus_running != wait_mask)
1009 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1010 cpus_running);
1011 #endif /* MULTIPROCESSOR */
1012
1013 /* If rebooting and a dump is requested do it. */
1014 #if 0
1015 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1016 #else
1017 if (boothowto & RB_DUMP)
1018 #endif
1019 dumpsys();
1020
1021 haltsys:
1022
1023 /* run any shutdown hooks */
1024 doshutdownhooks();
1025
1026 pmf_system_shutdown(boothowto);
1027
1028 #ifdef BOOTKEY
1029 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1030 cnpollc(1); /* for proper keyboard command handling */
1031 cngetc();
1032 cnpollc(0);
1033 printf("\n");
1034 #endif
1035
1036 /* Finally, powerdown/halt/reboot the system. */
1037 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1038 platform.powerdown != NULL) {
1039 (*platform.powerdown)();
1040 printf("WARNING: powerdown failed!\n");
1041 }
1042 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1043 #if defined(MULTIPROCESSOR)
1044 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1045 cpu_halt();
1046 else
1047 #endif
1048 prom_halt(boothowto & RB_HALT);
1049 /*NOTREACHED*/
1050 }
1051
1052 /*
1053 * These variables are needed by /sbin/savecore
1054 */
1055 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1056 int dumpsize = 0; /* pages */
1057 long dumplo = 0; /* blocks */
1058
1059 /*
1060 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1061 */
1062 int
1063 cpu_dumpsize(void)
1064 {
1065 int size;
1066
1067 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1068 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1069 if (roundup(size, dbtob(1)) != dbtob(1))
1070 return -1;
1071
1072 return (1);
1073 }
1074
1075 /*
1076 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1077 */
1078 u_long
1079 cpu_dump_mempagecnt(void)
1080 {
1081 u_long i, n;
1082
1083 n = 0;
1084 for (i = 0; i < mem_cluster_cnt; i++)
1085 n += atop(mem_clusters[i].size);
1086 return (n);
1087 }
1088
1089 /*
1090 * cpu_dump: dump machine-dependent kernel core dump headers.
1091 */
1092 int
1093 cpu_dump(void)
1094 {
1095 int (*dump)(dev_t, daddr_t, void *, size_t);
1096 char buf[dbtob(1)];
1097 kcore_seg_t *segp;
1098 cpu_kcore_hdr_t *cpuhdrp;
1099 phys_ram_seg_t *memsegp;
1100 const struct bdevsw *bdev;
1101 int i;
1102
1103 bdev = bdevsw_lookup(dumpdev);
1104 if (bdev == NULL)
1105 return (ENXIO);
1106 dump = bdev->d_dump;
1107
1108 memset(buf, 0, sizeof buf);
1109 segp = (kcore_seg_t *)buf;
1110 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1111 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1112 ALIGN(sizeof(*cpuhdrp))];
1113
1114 /*
1115 * Generate a segment header.
1116 */
1117 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1118 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1119
1120 /*
1121 * Add the machine-dependent header info.
1122 */
1123 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1124 cpuhdrp->page_size = PAGE_SIZE;
1125 cpuhdrp->nmemsegs = mem_cluster_cnt;
1126
1127 /*
1128 * Fill in the memory segment descriptors.
1129 */
1130 for (i = 0; i < mem_cluster_cnt; i++) {
1131 memsegp[i].start = mem_clusters[i].start;
1132 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1133 }
1134
1135 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1136 }
1137
1138 /*
1139 * This is called by main to set dumplo and dumpsize.
1140 * Dumps always skip the first PAGE_SIZE of disk space
1141 * in case there might be a disk label stored there.
1142 * If there is extra space, put dump at the end to
1143 * reduce the chance that swapping trashes it.
1144 */
1145 void
1146 cpu_dumpconf(void)
1147 {
1148 const struct bdevsw *bdev;
1149 int nblks, dumpblks; /* size of dump area */
1150
1151 if (dumpdev == NODEV)
1152 goto bad;
1153 bdev = bdevsw_lookup(dumpdev);
1154 if (bdev == NULL) {
1155 dumpdev = NODEV;
1156 goto bad;
1157 }
1158 if (bdev->d_psize == NULL)
1159 goto bad;
1160 nblks = (*bdev->d_psize)(dumpdev);
1161 if (nblks <= ctod(1))
1162 goto bad;
1163
1164 dumpblks = cpu_dumpsize();
1165 if (dumpblks < 0)
1166 goto bad;
1167 dumpblks += ctod(cpu_dump_mempagecnt());
1168
1169 /* If dump won't fit (incl. room for possible label), punt. */
1170 if (dumpblks > (nblks - ctod(1)))
1171 goto bad;
1172
1173 /* Put dump at end of partition */
1174 dumplo = nblks - dumpblks;
1175
1176 /* dumpsize is in page units, and doesn't include headers. */
1177 dumpsize = cpu_dump_mempagecnt();
1178 return;
1179
1180 bad:
1181 dumpsize = 0;
1182 return;
1183 }
1184
1185 /*
1186 * Dump the kernel's image to the swap partition.
1187 */
1188 #define BYTES_PER_DUMP PAGE_SIZE
1189
1190 void
1191 dumpsys(void)
1192 {
1193 const struct bdevsw *bdev;
1194 u_long totalbytesleft, bytes, i, n, memcl;
1195 u_long maddr;
1196 int psize;
1197 daddr_t blkno;
1198 int (*dump)(dev_t, daddr_t, void *, size_t);
1199 int error;
1200
1201 /* Save registers. */
1202 savectx(&dumppcb);
1203
1204 if (dumpdev == NODEV)
1205 return;
1206 bdev = bdevsw_lookup(dumpdev);
1207 if (bdev == NULL || bdev->d_psize == NULL)
1208 return;
1209
1210 /*
1211 * For dumps during autoconfiguration,
1212 * if dump device has already configured...
1213 */
1214 if (dumpsize == 0)
1215 cpu_dumpconf();
1216 if (dumplo <= 0) {
1217 printf("\ndump to dev %u,%u not possible\n",
1218 major(dumpdev), minor(dumpdev));
1219 return;
1220 }
1221 printf("\ndumping to dev %u,%u offset %ld\n",
1222 major(dumpdev), minor(dumpdev), dumplo);
1223
1224 psize = (*bdev->d_psize)(dumpdev);
1225 printf("dump ");
1226 if (psize == -1) {
1227 printf("area unavailable\n");
1228 return;
1229 }
1230
1231 /* XXX should purge all outstanding keystrokes. */
1232
1233 if ((error = cpu_dump()) != 0)
1234 goto err;
1235
1236 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1237 blkno = dumplo + cpu_dumpsize();
1238 dump = bdev->d_dump;
1239 error = 0;
1240
1241 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1242 maddr = mem_clusters[memcl].start;
1243 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1244
1245 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1246
1247 /* Print out how many MBs we to go. */
1248 if ((totalbytesleft % (1024*1024)) == 0)
1249 printf_nolog("%ld ",
1250 totalbytesleft / (1024 * 1024));
1251
1252 /* Limit size for next transfer. */
1253 n = bytes - i;
1254 if (n > BYTES_PER_DUMP)
1255 n = BYTES_PER_DUMP;
1256
1257 error = (*dump)(dumpdev, blkno,
1258 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1259 if (error)
1260 goto err;
1261 maddr += n;
1262 blkno += btodb(n); /* XXX? */
1263
1264 /* XXX should look for keystrokes, to cancel. */
1265 }
1266 }
1267
1268 err:
1269 switch (error) {
1270
1271 case ENXIO:
1272 printf("device bad\n");
1273 break;
1274
1275 case EFAULT:
1276 printf("device not ready\n");
1277 break;
1278
1279 case EINVAL:
1280 printf("area improper\n");
1281 break;
1282
1283 case EIO:
1284 printf("i/o error\n");
1285 break;
1286
1287 case EINTR:
1288 printf("aborted from console\n");
1289 break;
1290
1291 case 0:
1292 printf("succeeded\n");
1293 break;
1294
1295 default:
1296 printf("error %d\n", error);
1297 break;
1298 }
1299 printf("\n\n");
1300 delay(1000);
1301 }
1302
1303 void
1304 frametoreg(const struct trapframe *framep, struct reg *regp)
1305 {
1306
1307 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1308 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1309 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1310 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1311 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1312 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1313 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1314 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1315 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1316 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1317 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1318 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1319 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1320 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1321 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1322 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1323 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1324 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1325 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1326 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1327 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1328 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1329 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1330 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1331 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1332 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1333 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1334 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1335 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1336 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1337 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1338 regp->r_regs[R_ZERO] = 0;
1339 }
1340
1341 void
1342 regtoframe(const struct reg *regp, struct trapframe *framep)
1343 {
1344
1345 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1346 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1347 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1348 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1349 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1350 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1351 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1352 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1353 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1354 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1355 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1356 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1357 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1358 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1359 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1360 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1361 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1362 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1363 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1364 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1365 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1366 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1367 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1368 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1369 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1370 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1371 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1372 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1373 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1374 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1375 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1376 /* ??? = regp->r_regs[R_ZERO]; */
1377 }
1378
1379 void
1380 printregs(struct reg *regp)
1381 {
1382 int i;
1383
1384 for (i = 0; i < 32; i++)
1385 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1386 i & 1 ? "\n" : "\t");
1387 }
1388
1389 void
1390 regdump(struct trapframe *framep)
1391 {
1392 struct reg reg;
1393
1394 frametoreg(framep, ®);
1395 reg.r_regs[R_SP] = alpha_pal_rdusp();
1396
1397 printf("REGISTERS:\n");
1398 printregs(®);
1399 }
1400
1401
1402
1403 void *
1404 getframe(const struct lwp *l, int sig, int *onstack)
1405 {
1406 void *frame;
1407
1408 /* Do we need to jump onto the signal stack? */
1409 *onstack =
1410 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1411 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1412
1413 if (*onstack)
1414 frame = (void *)((char *)l->l_sigstk.ss_sp +
1415 l->l_sigstk.ss_size);
1416 else
1417 frame = (void *)(alpha_pal_rdusp());
1418 return (frame);
1419 }
1420
1421 void
1422 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1423 {
1424 struct trapframe *tf = l->l_md.md_tf;
1425
1426 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1427 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1428 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1429 alpha_pal_wrusp((unsigned long)fp);
1430 }
1431
1432
1433 /*
1434 * Send an interrupt to process, new style
1435 */
1436 void
1437 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1438 {
1439 struct lwp *l = curlwp;
1440 struct proc *p = l->l_proc;
1441 struct sigacts *ps = p->p_sigacts;
1442 int onstack, sig = ksi->ksi_signo, error;
1443 struct sigframe_siginfo *fp, frame;
1444 struct trapframe *tf;
1445 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1446
1447 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1448 tf = l->l_md.md_tf;
1449
1450 /* Allocate space for the signal handler context. */
1451 fp--;
1452
1453 #ifdef DEBUG
1454 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1455 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1456 sig, &onstack, fp);
1457 #endif
1458
1459 /* Build stack frame for signal trampoline. */
1460
1461 frame.sf_si._info = ksi->ksi_info;
1462 frame.sf_uc.uc_flags = _UC_SIGMASK;
1463 frame.sf_uc.uc_sigmask = *mask;
1464 frame.sf_uc.uc_link = l->l_ctxlink;
1465 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1466 sendsig_reset(l, sig);
1467 mutex_exit(p->p_lock);
1468 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1469 error = copyout(&frame, fp, sizeof(frame));
1470 mutex_enter(p->p_lock);
1471
1472 if (error != 0) {
1473 /*
1474 * Process has trashed its stack; give it an illegal
1475 * instruction to halt it in its tracks.
1476 */
1477 #ifdef DEBUG
1478 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1479 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1480 p->p_pid, sig);
1481 #endif
1482 sigexit(l, SIGILL);
1483 /* NOTREACHED */
1484 }
1485
1486 #ifdef DEBUG
1487 if (sigdebug & SDB_FOLLOW)
1488 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1489 p->p_pid, sig, fp, ksi->ksi_code);
1490 #endif
1491
1492 /*
1493 * Set up the registers to directly invoke the signal handler. The
1494 * signal trampoline is then used to return from the signal. Note
1495 * the trampoline version numbers are coordinated with machine-
1496 * dependent code in libc.
1497 */
1498
1499 tf->tf_regs[FRAME_A0] = sig;
1500 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1501 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1502
1503 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1504
1505 /* Remember that we're now on the signal stack. */
1506 if (onstack)
1507 l->l_sigstk.ss_flags |= SS_ONSTACK;
1508
1509 #ifdef DEBUG
1510 if (sigdebug & SDB_FOLLOW)
1511 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1512 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1513 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1514 printf("sendsig_siginfo(%d): sig %d returns\n",
1515 p->p_pid, sig);
1516 #endif
1517 }
1518
1519
1520 void
1521 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1522 {
1523 struct trapframe *tf;
1524
1525 tf = l->l_md.md_tf;
1526
1527 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1528 tf->tf_regs[FRAME_RA] = 0;
1529 tf->tf_regs[FRAME_A0] = type;
1530 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1531 tf->tf_regs[FRAME_A2] = nevents;
1532 tf->tf_regs[FRAME_A3] = ninterrupted;
1533 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1534 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1535 alpha_pal_wrusp((unsigned long)sp);
1536 }
1537
1538 /*
1539 * machine dependent system variables.
1540 */
1541 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1542 {
1543
1544 sysctl_createv(clog, 0, NULL, NULL,
1545 CTLFLAG_PERMANENT,
1546 CTLTYPE_NODE, "machdep", NULL,
1547 NULL, 0, NULL, 0,
1548 CTL_MACHDEP, CTL_EOL);
1549
1550 sysctl_createv(clog, 0, NULL, NULL,
1551 CTLFLAG_PERMANENT,
1552 CTLTYPE_STRUCT, "console_device", NULL,
1553 sysctl_consdev, 0, NULL, sizeof(dev_t),
1554 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1555 sysctl_createv(clog, 0, NULL, NULL,
1556 CTLFLAG_PERMANENT,
1557 CTLTYPE_STRING, "root_device", NULL,
1558 sysctl_root_device, 0, NULL, 0,
1559 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1560 sysctl_createv(clog, 0, NULL, NULL,
1561 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1562 CTLTYPE_INT, "unaligned_print", NULL,
1563 NULL, 0, &alpha_unaligned_print, 0,
1564 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1565 sysctl_createv(clog, 0, NULL, NULL,
1566 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1567 CTLTYPE_INT, "unaligned_fix", NULL,
1568 NULL, 0, &alpha_unaligned_fix, 0,
1569 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1570 sysctl_createv(clog, 0, NULL, NULL,
1571 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1572 CTLTYPE_INT, "unaligned_sigbus", NULL,
1573 NULL, 0, &alpha_unaligned_sigbus, 0,
1574 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1575 sysctl_createv(clog, 0, NULL, NULL,
1576 CTLFLAG_PERMANENT,
1577 CTLTYPE_STRING, "booted_kernel", NULL,
1578 NULL, 0, bootinfo.booted_kernel, 0,
1579 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1580 sysctl_createv(clog, 0, NULL, NULL,
1581 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1582 CTLTYPE_INT, "fp_sync_complete", NULL,
1583 NULL, 0, &alpha_fp_sync_complete, 0,
1584 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1585 }
1586
1587 /*
1588 * Set registers on exec.
1589 */
1590 void
1591 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1592 {
1593 struct trapframe *tfp = l->l_md.md_tf;
1594 struct pcb *pcb;
1595 #ifdef DEBUG
1596 int i;
1597 #endif
1598
1599 #ifdef DEBUG
1600 /*
1601 * Crash and dump, if the user requested it.
1602 */
1603 if (boothowto & RB_DUMP)
1604 panic("crash requested by boot flags");
1605 #endif
1606
1607 #ifdef DEBUG
1608 for (i = 0; i < FRAME_SIZE; i++)
1609 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1610 #else
1611 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1612 #endif
1613 pcb = lwp_getpcb(l);
1614 memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1615 alpha_pal_wrusp(stack);
1616 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1617 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1618
1619 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1620 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1621 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1622 tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1623 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1624
1625 l->l_md.md_flags &= ~MDP_FPUSED;
1626 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1627 l->l_md.md_flags &= ~MDP_FP_C;
1628 pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1629 }
1630 if (pcb->pcb_fpcpu != NULL)
1631 fpusave_proc(l, 0);
1632 }
1633
1634 /*
1635 * Release the FPU.
1636 */
1637 void
1638 fpusave_cpu(struct cpu_info *ci, int save)
1639 {
1640 struct lwp *l;
1641 struct pcb *pcb;
1642 #if defined(MULTIPROCESSOR)
1643 int s;
1644 #endif
1645
1646 KDASSERT(ci == curcpu());
1647
1648 #if defined(MULTIPROCESSOR)
1649 s = splhigh(); /* block IPIs for the duration */
1650 atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1651 #endif
1652
1653 l = ci->ci_fpcurlwp;
1654 if (l == NULL)
1655 goto out;
1656
1657 pcb = lwp_getpcb(l);
1658 if (save) {
1659 alpha_pal_wrfen(1);
1660 savefpstate(&pcb->pcb_fp);
1661 }
1662
1663 alpha_pal_wrfen(0);
1664
1665 FPCPU_LOCK(pcb);
1666
1667 pcb->pcb_fpcpu = NULL;
1668 ci->ci_fpcurlwp = NULL;
1669
1670 FPCPU_UNLOCK(pcb);
1671
1672 out:
1673 #if defined(MULTIPROCESSOR)
1674 atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1675 splx(s);
1676 #endif
1677 return;
1678 }
1679
1680 /*
1681 * Synchronize FP state for this process.
1682 */
1683 void
1684 fpusave_proc(struct lwp *l, int save)
1685 {
1686 struct cpu_info *ci = curcpu();
1687 struct cpu_info *oci;
1688 struct pcb *pcb;
1689 #if defined(MULTIPROCESSOR)
1690 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1691 int s, spincount;
1692 #endif
1693
1694 pcb = lwp_getpcb(l);
1695 KDASSERT(pcb != NULL);
1696
1697 #if defined(MULTIPROCESSOR)
1698 s = splhigh(); /* block IPIs for the duration */
1699 #endif
1700 FPCPU_LOCK(pcb);
1701
1702 oci = pcb->pcb_fpcpu;
1703 if (oci == NULL) {
1704 FPCPU_UNLOCK(pcb);
1705 #if defined(MULTIPROCESSOR)
1706 splx(s);
1707 #endif
1708 return;
1709 }
1710
1711 #if defined(MULTIPROCESSOR)
1712 if (oci == ci) {
1713 KASSERT(ci->ci_fpcurlwp == l);
1714 FPCPU_UNLOCK(pcb);
1715 splx(s);
1716 fpusave_cpu(ci, save);
1717 return;
1718 }
1719
1720 KASSERT(oci->ci_fpcurlwp == l);
1721 alpha_send_ipi(oci->ci_cpuid, ipi);
1722 FPCPU_UNLOCK(pcb);
1723
1724 spincount = 0;
1725 while (pcb->pcb_fpcpu != NULL) {
1726 spincount++;
1727 delay(1000); /* XXX */
1728 if (spincount > 10000)
1729 panic("fpsave ipi didn't");
1730 }
1731 #else
1732 KASSERT(ci->ci_fpcurlwp == l);
1733 FPCPU_UNLOCK(pcb);
1734 fpusave_cpu(ci, save);
1735 #endif /* MULTIPROCESSOR */
1736 }
1737
1738 /*
1739 * Wait "n" microseconds.
1740 */
1741 void
1742 delay(unsigned long n)
1743 {
1744 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1745
1746 if (n == 0)
1747 return;
1748
1749 pcc0 = alpha_rpcc() & 0xffffffffUL;
1750 cycles = 0;
1751 usec = 0;
1752
1753 while (usec <= n) {
1754 /*
1755 * Get the next CPU cycle count- assumes that we cannot
1756 * have had more than one 32 bit overflow.
1757 */
1758 pcc1 = alpha_rpcc() & 0xffffffffUL;
1759 if (pcc1 < pcc0)
1760 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1761 else
1762 curcycle = pcc1 - pcc0;
1763
1764 /*
1765 * We now have the number of processor cycles since we
1766 * last checked. Add the current cycle count to the
1767 * running total. If it's over cycles_per_usec, increment
1768 * the usec counter.
1769 */
1770 cycles += curcycle;
1771 while (cycles > cycles_per_usec) {
1772 usec++;
1773 cycles -= cycles_per_usec;
1774 }
1775 pcc0 = pcc1;
1776 }
1777 }
1778
1779 #ifdef EXEC_ECOFF
1780 void
1781 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1782 {
1783 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1784
1785 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1786 }
1787
1788 /*
1789 * cpu_exec_ecoff_hook():
1790 * cpu-dependent ECOFF format hook for execve().
1791 *
1792 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1793 *
1794 */
1795 int
1796 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1797 {
1798 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1799 int error;
1800
1801 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1802 error = 0;
1803 else
1804 error = ENOEXEC;
1805
1806 return (error);
1807 }
1808 #endif /* EXEC_ECOFF */
1809
1810 int
1811 alpha_pa_access(u_long pa)
1812 {
1813 int i;
1814
1815 for (i = 0; i < mem_cluster_cnt; i++) {
1816 if (pa < mem_clusters[i].start)
1817 continue;
1818 if ((pa - mem_clusters[i].start) >=
1819 (mem_clusters[i].size & ~PAGE_MASK))
1820 continue;
1821 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1822 }
1823
1824 /*
1825 * Address is not a memory address. If we're secure, disallow
1826 * access. Otherwise, grant read/write.
1827 */
1828 if (kauth_authorize_machdep(kauth_cred_get(),
1829 KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1830 return (PROT_NONE);
1831 else
1832 return (PROT_READ | PROT_WRITE);
1833 }
1834
1835 /* XXX XXX BEGIN XXX XXX */
1836 paddr_t alpha_XXX_dmamap_or; /* XXX */
1837 /* XXX */
1838 paddr_t /* XXX */
1839 alpha_XXX_dmamap(v) /* XXX */
1840 vaddr_t v; /* XXX */
1841 { /* XXX */
1842 /* XXX */
1843 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1844 } /* XXX */
1845 /* XXX XXX END XXX XXX */
1846
1847 char *
1848 dot_conv(unsigned long x)
1849 {
1850 int i;
1851 char *xc;
1852 static int next;
1853 static char space[2][20];
1854
1855 xc = space[next ^= 1] + sizeof space[0];
1856 *--xc = '\0';
1857 for (i = 0;; ++i) {
1858 if (i && (i & 3) == 0)
1859 *--xc = '.';
1860 *--xc = hexdigits[x & 0xf];
1861 x >>= 4;
1862 if (x == 0)
1863 break;
1864 }
1865 return xc;
1866 }
1867
1868 void
1869 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1870 {
1871 struct trapframe *frame = l->l_md.md_tf;
1872 struct pcb *pcb = lwp_getpcb(l);
1873 __greg_t *gr = mcp->__gregs;
1874 __greg_t ras_pc;
1875
1876 /* Save register context. */
1877 frametoreg(frame, (struct reg *)gr);
1878 /* XXX if there's a better, general way to get the USP of
1879 * an LWP that might or might not be curlwp, I'd like to know
1880 * about it.
1881 */
1882 if (l == curlwp) {
1883 gr[_REG_SP] = alpha_pal_rdusp();
1884 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1885 } else {
1886 gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1887 gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1888 }
1889 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1890 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1891
1892 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1893 (void *) gr[_REG_PC])) != -1)
1894 gr[_REG_PC] = ras_pc;
1895
1896 *flags |= _UC_CPU | _UC_UNIQUE;
1897
1898 /* Save floating point register context, if any, and copy it. */
1899 if (l->l_md.md_flags & MDP_FPUSED) {
1900 fpusave_proc(l, 1);
1901 (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1902 sizeof (mcp->__fpregs));
1903 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1904 *flags |= _UC_FPU;
1905 }
1906 }
1907
1908
1909 int
1910 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1911 {
1912 struct trapframe *frame = l->l_md.md_tf;
1913 struct pcb *pcb = lwp_getpcb(l);
1914 const __greg_t *gr = mcp->__gregs;
1915
1916 /* Restore register context, if any. */
1917 if (flags & _UC_CPU) {
1918 /* Check for security violations first. */
1919 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1920 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1921 return (EINVAL);
1922
1923 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1924 if (l == curlwp)
1925 alpha_pal_wrusp(gr[_REG_SP]);
1926 else
1927 pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1928 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1929 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1930 }
1931 if (flags & _UC_UNIQUE) {
1932 if (l == curlwp)
1933 alpha_pal_wrunique(gr[_REG_UNIQUE]);
1934 else
1935 pcb->pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1936 }
1937 /* Restore floating point register context, if any. */
1938 if (flags & _UC_FPU) {
1939 /* If we have an FP register context, get rid of it. */
1940 if (pcb->pcb_fpcpu != NULL)
1941 fpusave_proc(l, 0);
1942 (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1943 sizeof (pcb->pcb_fp));
1944 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1945 l->l_md.md_flags |= MDP_FPUSED;
1946 }
1947
1948 return (0);
1949 }
1950
1951 /*
1952 * Preempt the current process if in interrupt from user mode,
1953 * or after the current trap/syscall if in system mode.
1954 */
1955 void
1956 cpu_need_resched(struct cpu_info *ci, int flags)
1957 {
1958 #if defined(MULTIPROCESSOR)
1959 bool immed = (flags & RESCHED_IMMED) != 0;
1960 #endif /* defined(MULTIPROCESSOR) */
1961
1962 aston(ci->ci_data.cpu_onproc);
1963 ci->ci_want_resched = 1;
1964 if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
1965 #if defined(MULTIPROCESSOR)
1966 if (immed && ci != curcpu()) {
1967 alpha_send_ipi(ci->ci_cpuid, 0);
1968 }
1969 #endif /* defined(MULTIPROCESSOR) */
1970 }
1971 }
1972