machdep.c revision 1.332 1 /* $NetBSD: machdep.c,v 1.332 2011/04/15 21:24:00 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_compat_osf1.h"
67 #include "opt_execfmt.h"
68
69 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
70
71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.332 2011/04/15 21:24:00 martin Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/signalvar.h>
76 #include <sys/kernel.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/ras.h>
80 #include <sys/sa.h>
81 #include <sys/savar.h>
82 #include <sys/sched.h>
83 #include <sys/reboot.h>
84 #include <sys/device.h>
85 #include <sys/malloc.h>
86 #include <sys/mman.h>
87 #include <sys/msgbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/exec.h>
91 #include <sys/exec_aout.h> /* for MID_* */
92 #include <sys/exec_ecoff.h>
93 #include <sys/core.h>
94 #include <sys/kcore.h>
95 #include <sys/ucontext.h>
96 #include <sys/conf.h>
97 #include <sys/ksyms.h>
98 #include <sys/kauth.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101
102 #include <machine/kcore.h>
103 #include <machine/fpu.h>
104
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107
108 #include <uvm/uvm.h>
109 #include <sys/sysctl.h>
110
111 #include <dev/cons.h>
112
113 #include <machine/autoconf.h>
114 #include <machine/reg.h>
115 #include <machine/rpb.h>
116 #include <machine/prom.h>
117 #include <machine/cpuconf.h>
118 #include <machine/ieeefp.h>
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 #ifdef KGDB
129 #include <sys/kgdb.h>
130 #endif
131
132 #ifdef DEBUG
133 #include <machine/sigdebug.h>
134 #endif
135
136 #include <machine/alpha.h>
137
138 #include "ksyms.h"
139
140 struct vm_map *phys_map = NULL;
141
142 void *msgbufaddr;
143
144 int maxmem; /* max memory per process */
145
146 int totalphysmem; /* total amount of physical memory in system */
147 int physmem; /* physical memory used by NetBSD + some rsvd */
148 int resvmem; /* amount of memory reserved for PROM */
149 int unusedmem; /* amount of memory for OS that we don't use */
150 int unknownmem; /* amount of memory with an unknown use */
151
152 int cputype; /* system type, from the RPB */
153
154 int bootdev_debug = 0; /* patchable, or from DDB */
155
156 /*
157 * XXX We need an address to which we can assign things so that they
158 * won't be optimized away because we didn't use the value.
159 */
160 u_int32_t no_optimize;
161
162 /* the following is used externally (sysctl_hw) */
163 char machine[] = MACHINE; /* from <machine/param.h> */
164 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
165 char cpu_model[128];
166
167 /* Number of machine cycles per microsecond */
168 u_int64_t cycles_per_usec;
169
170 /* number of CPUs in the box. really! */
171 int ncpus;
172
173 struct bootinfo_kernel bootinfo;
174
175 /* For built-in TCDS */
176 #if defined(DEC_3000_300) || defined(DEC_3000_500)
177 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
178 #endif
179
180 struct platform platform;
181
182 #if NKSYMS || defined(DDB) || defined(MODULAR)
183 /* start and end of kernel symbol table */
184 void *ksym_start, *ksym_end;
185 #endif
186
187 /* for cpu_sysctl() */
188 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
189 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
190 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
191 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
192
193 /*
194 * XXX This should be dynamically sized, but we have the chicken-egg problem!
195 * XXX it should also be larger than it is, because not all of the mddt
196 * XXX clusters end up being used for VM.
197 */
198 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
199 int mem_cluster_cnt;
200
201 int cpu_dump(void);
202 int cpu_dumpsize(void);
203 u_long cpu_dump_mempagecnt(void);
204 void dumpsys(void);
205 void identifycpu(void);
206 void printregs(struct reg *);
207
208 void
209 alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
210 /* pfn: first free PFN number */
211 /* ptb: PFN of current level 1 page table */
212 /* bim: bootinfo magic */
213 /* bip: bootinfo pointer */
214 /* biv: bootinfo version */
215 {
216 extern char kernel_text[], _end[];
217 struct mddt *mddtp;
218 struct mddt_cluster *memc;
219 int i, mddtweird;
220 struct vm_physseg *vps;
221 struct pcb *pcb0;
222 vaddr_t kernstart, kernend, v;
223 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
224 cpuid_t cpu_id;
225 struct cpu_info *ci;
226 char *p;
227 const char *bootinfo_msg;
228 const struct cpuinit *c;
229
230 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
231
232 /*
233 * Turn off interrupts (not mchecks) and floating point.
234 * Make sure the instruction and data streams are consistent.
235 */
236 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
237 alpha_pal_wrfen(0);
238 ALPHA_TBIA();
239 alpha_pal_imb();
240
241 /* Initialize the SCB. */
242 scb_init();
243
244 cpu_id = cpu_number();
245
246 #if defined(MULTIPROCESSOR)
247 /*
248 * Set our SysValue to the address of our cpu_info structure.
249 * Secondary processors do this in their spinup trampoline.
250 */
251 alpha_pal_wrval((u_long)&cpu_info_primary);
252 cpu_info[cpu_id] = &cpu_info_primary;
253 #endif
254
255 ci = curcpu();
256 ci->ci_cpuid = cpu_id;
257
258 /*
259 * Get critical system information (if possible, from the
260 * information provided by the boot program).
261 */
262 bootinfo_msg = NULL;
263 if (bim == BOOTINFO_MAGIC) {
264 if (biv == 0) { /* backward compat */
265 biv = *(u_long *)bip;
266 bip += 8;
267 }
268 switch (biv) {
269 case 1: {
270 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
271
272 bootinfo.ssym = v1p->ssym;
273 bootinfo.esym = v1p->esym;
274 /* hwrpb may not be provided by boot block in v1 */
275 if (v1p->hwrpb != NULL) {
276 bootinfo.hwrpb_phys =
277 ((struct rpb *)v1p->hwrpb)->rpb_phys;
278 bootinfo.hwrpb_size = v1p->hwrpbsize;
279 } else {
280 bootinfo.hwrpb_phys =
281 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
282 bootinfo.hwrpb_size =
283 ((struct rpb *)HWRPB_ADDR)->rpb_size;
284 }
285 memcpy(bootinfo.boot_flags, v1p->boot_flags,
286 min(sizeof v1p->boot_flags,
287 sizeof bootinfo.boot_flags));
288 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
289 min(sizeof v1p->booted_kernel,
290 sizeof bootinfo.booted_kernel));
291 /* booted dev not provided in bootinfo */
292 init_prom_interface((struct rpb *)
293 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
294 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
295 sizeof bootinfo.booted_dev);
296 break;
297 }
298 default:
299 bootinfo_msg = "unknown bootinfo version";
300 goto nobootinfo;
301 }
302 } else {
303 bootinfo_msg = "boot program did not pass bootinfo";
304 nobootinfo:
305 bootinfo.ssym = (u_long)_end;
306 bootinfo.esym = (u_long)_end;
307 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
308 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
309 init_prom_interface((struct rpb *)HWRPB_ADDR);
310 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
311 sizeof bootinfo.boot_flags);
312 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
313 sizeof bootinfo.booted_kernel);
314 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
315 sizeof bootinfo.booted_dev);
316 }
317
318 /*
319 * Initialize the kernel's mapping of the RPB. It's needed for
320 * lots of things.
321 */
322 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
323
324 #if defined(DEC_3000_300) || defined(DEC_3000_500)
325 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
326 hwrpb->rpb_type == ST_DEC_3000_500) {
327 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
328 sizeof(dec_3000_scsiid));
329 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
330 sizeof(dec_3000_scsifast));
331 }
332 #endif
333
334 /*
335 * Remember how many cycles there are per microsecond,
336 * so that we can use delay(). Round up, for safety.
337 */
338 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
339
340 /*
341 * Initialize the (temporary) bootstrap console interface, so
342 * we can use printf until the VM system starts being setup.
343 * The real console is initialized before then.
344 */
345 init_bootstrap_console();
346
347 /* OUTPUT NOW ALLOWED */
348
349 /* delayed from above */
350 if (bootinfo_msg)
351 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
352 bootinfo_msg, bim, bip, biv);
353
354 /* Initialize the trap vectors on the primary processor. */
355 trap_init();
356
357 /*
358 * Find out this system's page size, and initialize
359 * PAGE_SIZE-dependent variables.
360 */
361 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
362 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
363 ALPHA_PGBYTES);
364 uvmexp.pagesize = hwrpb->rpb_page_size;
365 uvm_setpagesize();
366
367 /*
368 * Find out what hardware we're on, and do basic initialization.
369 */
370 cputype = hwrpb->rpb_type;
371 if (cputype < 0) {
372 /*
373 * At least some white-box systems have SRM which
374 * reports a systype that's the negative of their
375 * blue-box counterpart.
376 */
377 cputype = -cputype;
378 }
379 c = platform_lookup(cputype);
380 if (c == NULL) {
381 platform_not_supported();
382 /* NOTREACHED */
383 }
384 (*c->init)();
385 strcpy(cpu_model, platform.model);
386
387 /*
388 * Initialize the real console, so that the bootstrap console is
389 * no longer necessary.
390 */
391 (*platform.cons_init)();
392
393 #ifdef DIAGNOSTIC
394 /* Paranoid sanity checking */
395
396 /* We should always be running on the primary. */
397 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
398
399 /*
400 * On single-CPU systypes, the primary should always be CPU 0,
401 * except on Alpha 8200 systems where the CPU id is related
402 * to the VID, which is related to the Turbo Laser node id.
403 */
404 if (cputype != ST_DEC_21000)
405 assert(hwrpb->rpb_primary_cpu_id == 0);
406 #endif
407
408 /* NO MORE FIRMWARE ACCESS ALLOWED */
409 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
410 /*
411 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
412 * XXX pmap_uses_prom_console() evaluates to non-zero.)
413 */
414 #endif
415
416 /*
417 * Find the beginning and end of the kernel (and leave a
418 * bit of space before the beginning for the bootstrap
419 * stack).
420 */
421 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
422 #if NKSYMS || defined(DDB) || defined(MODULAR)
423 ksym_start = (void *)bootinfo.ssym;
424 ksym_end = (void *)bootinfo.esym;
425 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
426 #else
427 kernend = (vaddr_t)round_page((vaddr_t)_end);
428 #endif
429
430 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
431 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
432
433 /*
434 * Find out how much memory is available, by looking at
435 * the memory cluster descriptors. This also tries to do
436 * its best to detect things things that have never been seen
437 * before...
438 */
439 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
440
441 /* MDDT SANITY CHECKING */
442 mddtweird = 0;
443 if (mddtp->mddt_cluster_cnt < 2) {
444 mddtweird = 1;
445 printf("WARNING: weird number of mem clusters: %lu\n",
446 mddtp->mddt_cluster_cnt);
447 }
448
449 #if 0
450 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
451 #endif
452
453 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
454 memc = &mddtp->mddt_clusters[i];
455 #if 0
456 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
457 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
458 #endif
459 totalphysmem += memc->mddt_pg_cnt;
460 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
461 mem_clusters[mem_cluster_cnt].start =
462 ptoa(memc->mddt_pfn);
463 mem_clusters[mem_cluster_cnt].size =
464 ptoa(memc->mddt_pg_cnt);
465 if (memc->mddt_usage & MDDT_mbz ||
466 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
467 memc->mddt_usage & MDDT_PALCODE)
468 mem_clusters[mem_cluster_cnt].size |=
469 PROT_READ;
470 else
471 mem_clusters[mem_cluster_cnt].size |=
472 PROT_READ | PROT_WRITE | PROT_EXEC;
473 mem_cluster_cnt++;
474 }
475
476 if (memc->mddt_usage & MDDT_mbz) {
477 mddtweird = 1;
478 printf("WARNING: mem cluster %d has weird "
479 "usage 0x%lx\n", i, memc->mddt_usage);
480 unknownmem += memc->mddt_pg_cnt;
481 continue;
482 }
483 if (memc->mddt_usage & MDDT_NONVOLATILE) {
484 /* XXX should handle these... */
485 printf("WARNING: skipping non-volatile mem "
486 "cluster %d\n", i);
487 unusedmem += memc->mddt_pg_cnt;
488 continue;
489 }
490 if (memc->mddt_usage & MDDT_PALCODE) {
491 resvmem += memc->mddt_pg_cnt;
492 continue;
493 }
494
495 /*
496 * We have a memory cluster available for system
497 * software use. We must determine if this cluster
498 * holds the kernel.
499 */
500 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
501 /*
502 * XXX If the kernel uses the PROM console, we only use the
503 * XXX memory after the kernel in the first system segment,
504 * XXX to avoid clobbering prom mapping, data, etc.
505 */
506 if (!pmap_uses_prom_console() || physmem == 0) {
507 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
508 physmem += memc->mddt_pg_cnt;
509 pfn0 = memc->mddt_pfn;
510 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
511 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
512 /*
513 * Must compute the location of the kernel
514 * within the segment.
515 */
516 #if 0
517 printf("Cluster %d contains kernel\n", i);
518 #endif
519 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
520 if (!pmap_uses_prom_console()) {
521 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
522 if (pfn0 < kernstartpfn) {
523 /*
524 * There is a chunk before the kernel.
525 */
526 #if 0
527 printf("Loading chunk before kernel: "
528 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
529 #endif
530 uvm_page_physload(pfn0, kernstartpfn,
531 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
532 }
533 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
534 }
535 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
536 if (kernendpfn < pfn1) {
537 /*
538 * There is a chunk after the kernel.
539 */
540 #if 0
541 printf("Loading chunk after kernel: "
542 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
543 #endif
544 uvm_page_physload(kernendpfn, pfn1,
545 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
546 }
547 } else {
548 /*
549 * Just load this cluster as one chunk.
550 */
551 #if 0
552 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
553 pfn0, pfn1);
554 #endif
555 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
556 VM_FREELIST_DEFAULT);
557 }
558 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
559 }
560 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
561 }
562
563 /*
564 * Dump out the MDDT if it looks odd...
565 */
566 if (mddtweird) {
567 printf("\n");
568 printf("complete memory cluster information:\n");
569 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
570 printf("mddt %d:\n", i);
571 printf("\tpfn %lx\n",
572 mddtp->mddt_clusters[i].mddt_pfn);
573 printf("\tcnt %lx\n",
574 mddtp->mddt_clusters[i].mddt_pg_cnt);
575 printf("\ttest %lx\n",
576 mddtp->mddt_clusters[i].mddt_pg_test);
577 printf("\tbva %lx\n",
578 mddtp->mddt_clusters[i].mddt_v_bitaddr);
579 printf("\tbpa %lx\n",
580 mddtp->mddt_clusters[i].mddt_p_bitaddr);
581 printf("\tbcksum %lx\n",
582 mddtp->mddt_clusters[i].mddt_bit_cksum);
583 printf("\tusage %lx\n",
584 mddtp->mddt_clusters[i].mddt_usage);
585 }
586 printf("\n");
587 }
588
589 if (totalphysmem == 0)
590 panic("can't happen: system seems to have no memory!");
591 maxmem = physmem;
592 #if 0
593 printf("totalphysmem = %d\n", totalphysmem);
594 printf("physmem = %d\n", physmem);
595 printf("resvmem = %d\n", resvmem);
596 printf("unusedmem = %d\n", unusedmem);
597 printf("unknownmem = %d\n", unknownmem);
598 #endif
599
600 /*
601 * Initialize error message buffer (at end of core).
602 */
603 {
604 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
605 vsize_t reqsz = sz;
606
607 vps = VM_PHYSMEM_PTR(vm_nphysseg - 1);
608
609 /* shrink so that it'll fit in the last segment */
610 if ((vps->avail_end - vps->avail_start) < atop(sz))
611 sz = ptoa(vps->avail_end - vps->avail_start);
612
613 vps->end -= atop(sz);
614 vps->avail_end -= atop(sz);
615 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
616 initmsgbuf(msgbufaddr, sz);
617
618 /* Remove the last segment if it now has no pages. */
619 if (vps->start == vps->end)
620 vm_nphysseg--;
621
622 /* warn if the message buffer had to be shrunk */
623 if (sz != reqsz)
624 printf("WARNING: %ld bytes not available for msgbuf "
625 "in last cluster (%ld used)\n", reqsz, sz);
626
627 }
628
629 /*
630 * NOTE: It is safe to use uvm_pageboot_alloc() before
631 * pmap_bootstrap() because our pmap_virtual_space()
632 * returns compile-time constants.
633 */
634
635 /*
636 * Allocate uarea page for lwp0 and set it.
637 */
638 v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
639 uvm_lwp_setuarea(&lwp0, v);
640
641 /*
642 * Initialize the virtual memory system, and set the
643 * page table base register in proc 0's PCB.
644 */
645 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
646 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
647
648 /*
649 * Initialize the rest of lwp0's PCB and cache its physical address.
650 */
651 pcb0 = lwp_getpcb(&lwp0);
652 lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
653
654 /*
655 * Set the kernel sp, reserving space for an (empty) trapframe,
656 * and make lwp0's trapframe pointer point to it for sanity.
657 */
658 pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
659 lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
660 simple_lock_init(&pcb0->pcb_fpcpu_slock);
661
662 /* Indicate that lwp0 has a CPU. */
663 lwp0.l_cpu = ci;
664
665 /*
666 * Look at arguments passed to us and compute boothowto.
667 */
668
669 boothowto = RB_SINGLE;
670 #ifdef KADB
671 boothowto |= RB_KDB;
672 #endif
673 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
674 /*
675 * Note that we'd really like to differentiate case here,
676 * but the Alpha AXP Architecture Reference Manual
677 * says that we shouldn't.
678 */
679 switch (*p) {
680 case 'a': /* autoboot */
681 case 'A':
682 boothowto &= ~RB_SINGLE;
683 break;
684
685 #ifdef DEBUG
686 case 'c': /* crash dump immediately after autoconfig */
687 case 'C':
688 boothowto |= RB_DUMP;
689 break;
690 #endif
691
692 #if defined(KGDB) || defined(DDB)
693 case 'd': /* break into the kernel debugger ASAP */
694 case 'D':
695 boothowto |= RB_KDB;
696 break;
697 #endif
698
699 case 'h': /* always halt, never reboot */
700 case 'H':
701 boothowto |= RB_HALT;
702 break;
703
704 #if 0
705 case 'm': /* mini root present in memory */
706 case 'M':
707 boothowto |= RB_MINIROOT;
708 break;
709 #endif
710
711 case 'n': /* askname */
712 case 'N':
713 boothowto |= RB_ASKNAME;
714 break;
715
716 case 's': /* single-user (default, supported for sanity) */
717 case 'S':
718 boothowto |= RB_SINGLE;
719 break;
720
721 case 'q': /* quiet boot */
722 case 'Q':
723 boothowto |= AB_QUIET;
724 break;
725
726 case 'v': /* verbose boot */
727 case 'V':
728 boothowto |= AB_VERBOSE;
729 break;
730
731 case '-':
732 /*
733 * Just ignore this. It's not required, but it's
734 * common for it to be passed regardless.
735 */
736 break;
737
738 default:
739 printf("Unrecognized boot flag '%c'.\n", *p);
740 break;
741 }
742 }
743
744 /*
745 * Perform any initial kernel patches based on the running system.
746 * We may perform more later if we attach additional CPUs.
747 */
748 alpha_patch(false);
749
750 /*
751 * Figure out the number of CPUs in the box, from RPB fields.
752 * Really. We mean it.
753 */
754 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
755 struct pcs *pcsp;
756
757 pcsp = LOCATE_PCS(hwrpb, i);
758 if ((pcsp->pcs_flags & PCS_PP) != 0)
759 ncpus++;
760 }
761
762 /*
763 * Initialize debuggers, and break into them if appropriate.
764 */
765 #if NKSYMS || defined(DDB) || defined(MODULAR)
766 ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
767 ksym_start, ksym_end);
768 #endif
769
770 if (boothowto & RB_KDB) {
771 #if defined(KGDB)
772 kgdb_debug_init = 1;
773 kgdb_connect(1);
774 #elif defined(DDB)
775 Debugger();
776 #endif
777 }
778
779 #ifdef DIAGNOSTIC
780 /*
781 * Check our clock frequency, from RPB fields.
782 */
783 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
784 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
785 hwrpb->rpb_intr_freq, hz);
786 #endif
787 }
788
789 void
790 consinit(void)
791 {
792
793 /*
794 * Everything related to console initialization is done
795 * in alpha_init().
796 */
797 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
798 printf("consinit: %susing prom console\n",
799 pmap_uses_prom_console() ? "" : "not ");
800 #endif
801 }
802
803 void
804 cpu_startup(void)
805 {
806 extern struct evcnt fpevent_use, fpevent_reuse;
807 vaddr_t minaddr, maxaddr;
808 char pbuf[9];
809 #if defined(DEBUG)
810 extern int pmapdebug;
811 int opmapdebug = pmapdebug;
812
813 pmapdebug = 0;
814 #endif
815
816 /*
817 * Good {morning,afternoon,evening,night}.
818 */
819 printf("%s%s", copyright, version);
820 identifycpu();
821 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
822 printf("total memory = %s\n", pbuf);
823 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
824 printf("(%s reserved for PROM, ", pbuf);
825 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
826 printf("%s used by NetBSD)\n", pbuf);
827 if (unusedmem) {
828 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
829 printf("WARNING: unused memory = %s\n", pbuf);
830 }
831 if (unknownmem) {
832 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
833 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
834 }
835
836 minaddr = 0;
837
838 /*
839 * Allocate a submap for physio
840 */
841 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
842 VM_PHYS_SIZE, 0, false, NULL);
843
844 /*
845 * No need to allocate an mbuf cluster submap. Mbuf clusters
846 * are allocated via the pool allocator, and we use K0SEG to
847 * map those pages.
848 */
849
850 #if defined(DEBUG)
851 pmapdebug = opmapdebug;
852 #endif
853 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
854 printf("avail memory = %s\n", pbuf);
855 #if 0
856 {
857 extern u_long pmap_pages_stolen;
858
859 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
860 printf("stolen memory for VM structures = %s\n", pbuf);
861 }
862 #endif
863
864 /*
865 * Set up the HWPCB so that it's safe to configure secondary
866 * CPUs.
867 */
868 hwrpb_primary_init();
869
870 /*
871 * Initialize some trap event counters.
872 */
873 evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
874 "FP", "proc use");
875 evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
876 "FP", "proc re-use");
877 }
878
879 /*
880 * Retrieve the platform name from the DSR.
881 */
882 const char *
883 alpha_dsr_sysname(void)
884 {
885 struct dsrdb *dsr;
886 const char *sysname;
887
888 /*
889 * DSR does not exist on early HWRPB versions.
890 */
891 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
892 return (NULL);
893
894 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
895 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
896 sizeof(u_int64_t)));
897 return (sysname);
898 }
899
900 /*
901 * Lookup the system specified system variation in the provided table,
902 * returning the model string on match.
903 */
904 const char *
905 alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
906 {
907 int i;
908
909 for (i = 0; avtp[i].avt_model != NULL; i++)
910 if (avtp[i].avt_variation == variation)
911 return (avtp[i].avt_model);
912 return (NULL);
913 }
914
915 /*
916 * Generate a default platform name based for unknown system variations.
917 */
918 const char *
919 alpha_unknown_sysname(void)
920 {
921 static char s[128]; /* safe size */
922
923 sprintf(s, "%s family, unknown model variation 0x%lx",
924 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
925 return ((const char *)s);
926 }
927
928 void
929 identifycpu(void)
930 {
931 char *s;
932 int i;
933
934 /*
935 * print out CPU identification information.
936 */
937 printf("%s", cpu_model);
938 for(s = cpu_model; *s; ++s)
939 if(strncasecmp(s, "MHz", 3) == 0)
940 goto skipMHz;
941 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
942 skipMHz:
943 printf(", s/n ");
944 for (i = 0; i < 10; i++)
945 printf("%c", hwrpb->rpb_ssn[i]);
946 printf("\n");
947 printf("%ld byte page size, %d processor%s.\n",
948 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
949 #if 0
950 /* this isn't defined for any systems that we run on? */
951 printf("serial number 0x%lx 0x%lx\n",
952 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
953
954 /* and these aren't particularly useful! */
955 printf("variation: 0x%lx, revision 0x%lx\n",
956 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
957 #endif
958 }
959
960 int waittime = -1;
961 struct pcb dumppcb;
962
963 void
964 cpu_reboot(int howto, char *bootstr)
965 {
966 #if defined(MULTIPROCESSOR)
967 u_long cpu_id = cpu_number();
968 u_long wait_mask;
969 int i;
970 #endif
971
972 /* If "always halt" was specified as a boot flag, obey. */
973 if ((boothowto & RB_HALT) != 0)
974 howto |= RB_HALT;
975
976 boothowto = howto;
977
978 /* If system is cold, just halt. */
979 if (cold) {
980 boothowto |= RB_HALT;
981 goto haltsys;
982 }
983
984 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
985 waittime = 0;
986 vfs_shutdown();
987 /*
988 * If we've been adjusting the clock, the todr
989 * will be out of synch; adjust it now.
990 */
991 resettodr();
992 }
993
994 /* Disable interrupts. */
995 splhigh();
996
997 #if defined(MULTIPROCESSOR)
998 /*
999 * Halt all other CPUs. If we're not the primary, the
1000 * primary will spin, waiting for us to halt.
1001 */
1002 cpu_id = cpu_number(); /* may have changed cpu */
1003 wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
1004
1005 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1006
1007 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1008 cpus_paused = 0;
1009
1010 for (i = 0; i < 10000; i++) {
1011 alpha_mb();
1012 if (cpus_running == wait_mask)
1013 break;
1014 delay(1000);
1015 }
1016 alpha_mb();
1017 if (cpus_running != wait_mask)
1018 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1019 cpus_running);
1020 #endif /* MULTIPROCESSOR */
1021
1022 /* If rebooting and a dump is requested do it. */
1023 #if 0
1024 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1025 #else
1026 if (boothowto & RB_DUMP)
1027 #endif
1028 dumpsys();
1029
1030 haltsys:
1031
1032 /* run any shutdown hooks */
1033 doshutdownhooks();
1034
1035 pmf_system_shutdown(boothowto);
1036
1037 #ifdef BOOTKEY
1038 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1039 cnpollc(1); /* for proper keyboard command handling */
1040 cngetc();
1041 cnpollc(0);
1042 printf("\n");
1043 #endif
1044
1045 /* Finally, powerdown/halt/reboot the system. */
1046 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1047 platform.powerdown != NULL) {
1048 (*platform.powerdown)();
1049 printf("WARNING: powerdown failed!\n");
1050 }
1051 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1052 #if defined(MULTIPROCESSOR)
1053 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1054 cpu_halt();
1055 else
1056 #endif
1057 prom_halt(boothowto & RB_HALT);
1058 /*NOTREACHED*/
1059 }
1060
1061 /*
1062 * These variables are needed by /sbin/savecore
1063 */
1064 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1065 int dumpsize = 0; /* pages */
1066 long dumplo = 0; /* blocks */
1067
1068 /*
1069 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1070 */
1071 int
1072 cpu_dumpsize(void)
1073 {
1074 int size;
1075
1076 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1077 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1078 if (roundup(size, dbtob(1)) != dbtob(1))
1079 return -1;
1080
1081 return (1);
1082 }
1083
1084 /*
1085 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1086 */
1087 u_long
1088 cpu_dump_mempagecnt(void)
1089 {
1090 u_long i, n;
1091
1092 n = 0;
1093 for (i = 0; i < mem_cluster_cnt; i++)
1094 n += atop(mem_clusters[i].size);
1095 return (n);
1096 }
1097
1098 /*
1099 * cpu_dump: dump machine-dependent kernel core dump headers.
1100 */
1101 int
1102 cpu_dump(void)
1103 {
1104 int (*dump)(dev_t, daddr_t, void *, size_t);
1105 char buf[dbtob(1)];
1106 kcore_seg_t *segp;
1107 cpu_kcore_hdr_t *cpuhdrp;
1108 phys_ram_seg_t *memsegp;
1109 const struct bdevsw *bdev;
1110 int i;
1111
1112 bdev = bdevsw_lookup(dumpdev);
1113 if (bdev == NULL)
1114 return (ENXIO);
1115 dump = bdev->d_dump;
1116
1117 memset(buf, 0, sizeof buf);
1118 segp = (kcore_seg_t *)buf;
1119 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1120 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1121 ALIGN(sizeof(*cpuhdrp))];
1122
1123 /*
1124 * Generate a segment header.
1125 */
1126 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1127 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1128
1129 /*
1130 * Add the machine-dependent header info.
1131 */
1132 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1133 cpuhdrp->page_size = PAGE_SIZE;
1134 cpuhdrp->nmemsegs = mem_cluster_cnt;
1135
1136 /*
1137 * Fill in the memory segment descriptors.
1138 */
1139 for (i = 0; i < mem_cluster_cnt; i++) {
1140 memsegp[i].start = mem_clusters[i].start;
1141 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1142 }
1143
1144 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1145 }
1146
1147 /*
1148 * This is called by main to set dumplo and dumpsize.
1149 * Dumps always skip the first PAGE_SIZE of disk space
1150 * in case there might be a disk label stored there.
1151 * If there is extra space, put dump at the end to
1152 * reduce the chance that swapping trashes it.
1153 */
1154 void
1155 cpu_dumpconf(void)
1156 {
1157 const struct bdevsw *bdev;
1158 int nblks, dumpblks; /* size of dump area */
1159
1160 if (dumpdev == NODEV)
1161 goto bad;
1162 bdev = bdevsw_lookup(dumpdev);
1163 if (bdev == NULL) {
1164 dumpdev = NODEV;
1165 goto bad;
1166 }
1167 if (bdev->d_psize == NULL)
1168 goto bad;
1169 nblks = (*bdev->d_psize)(dumpdev);
1170 if (nblks <= ctod(1))
1171 goto bad;
1172
1173 dumpblks = cpu_dumpsize();
1174 if (dumpblks < 0)
1175 goto bad;
1176 dumpblks += ctod(cpu_dump_mempagecnt());
1177
1178 /* If dump won't fit (incl. room for possible label), punt. */
1179 if (dumpblks > (nblks - ctod(1)))
1180 goto bad;
1181
1182 /* Put dump at end of partition */
1183 dumplo = nblks - dumpblks;
1184
1185 /* dumpsize is in page units, and doesn't include headers. */
1186 dumpsize = cpu_dump_mempagecnt();
1187 return;
1188
1189 bad:
1190 dumpsize = 0;
1191 return;
1192 }
1193
1194 /*
1195 * Dump the kernel's image to the swap partition.
1196 */
1197 #define BYTES_PER_DUMP PAGE_SIZE
1198
1199 void
1200 dumpsys(void)
1201 {
1202 const struct bdevsw *bdev;
1203 u_long totalbytesleft, bytes, i, n, memcl;
1204 u_long maddr;
1205 int psize;
1206 daddr_t blkno;
1207 int (*dump)(dev_t, daddr_t, void *, size_t);
1208 int error;
1209
1210 /* Save registers. */
1211 savectx(&dumppcb);
1212
1213 if (dumpdev == NODEV)
1214 return;
1215 bdev = bdevsw_lookup(dumpdev);
1216 if (bdev == NULL || bdev->d_psize == NULL)
1217 return;
1218
1219 /*
1220 * For dumps during autoconfiguration,
1221 * if dump device has already configured...
1222 */
1223 if (dumpsize == 0)
1224 cpu_dumpconf();
1225 if (dumplo <= 0) {
1226 printf("\ndump to dev %u,%u not possible\n",
1227 major(dumpdev), minor(dumpdev));
1228 return;
1229 }
1230 printf("\ndumping to dev %u,%u offset %ld\n",
1231 major(dumpdev), minor(dumpdev), dumplo);
1232
1233 psize = (*bdev->d_psize)(dumpdev);
1234 printf("dump ");
1235 if (psize == -1) {
1236 printf("area unavailable\n");
1237 return;
1238 }
1239
1240 /* XXX should purge all outstanding keystrokes. */
1241
1242 if ((error = cpu_dump()) != 0)
1243 goto err;
1244
1245 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1246 blkno = dumplo + cpu_dumpsize();
1247 dump = bdev->d_dump;
1248 error = 0;
1249
1250 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1251 maddr = mem_clusters[memcl].start;
1252 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1253
1254 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1255
1256 /* Print out how many MBs we to go. */
1257 if ((totalbytesleft % (1024*1024)) == 0)
1258 printf_nolog("%ld ",
1259 totalbytesleft / (1024 * 1024));
1260
1261 /* Limit size for next transfer. */
1262 n = bytes - i;
1263 if (n > BYTES_PER_DUMP)
1264 n = BYTES_PER_DUMP;
1265
1266 error = (*dump)(dumpdev, blkno,
1267 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1268 if (error)
1269 goto err;
1270 maddr += n;
1271 blkno += btodb(n); /* XXX? */
1272
1273 /* XXX should look for keystrokes, to cancel. */
1274 }
1275 }
1276
1277 err:
1278 switch (error) {
1279
1280 case ENXIO:
1281 printf("device bad\n");
1282 break;
1283
1284 case EFAULT:
1285 printf("device not ready\n");
1286 break;
1287
1288 case EINVAL:
1289 printf("area improper\n");
1290 break;
1291
1292 case EIO:
1293 printf("i/o error\n");
1294 break;
1295
1296 case EINTR:
1297 printf("aborted from console\n");
1298 break;
1299
1300 case 0:
1301 printf("succeeded\n");
1302 break;
1303
1304 default:
1305 printf("error %d\n", error);
1306 break;
1307 }
1308 printf("\n\n");
1309 delay(1000);
1310 }
1311
1312 void
1313 frametoreg(const struct trapframe *framep, struct reg *regp)
1314 {
1315
1316 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1317 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1318 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1319 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1320 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1321 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1322 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1323 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1324 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1325 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1326 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1327 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1328 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1329 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1330 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1331 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1332 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1333 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1334 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1335 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1336 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1337 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1338 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1339 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1340 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1341 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1342 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1343 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1344 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1345 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1346 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1347 regp->r_regs[R_ZERO] = 0;
1348 }
1349
1350 void
1351 regtoframe(const struct reg *regp, struct trapframe *framep)
1352 {
1353
1354 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1355 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1356 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1357 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1358 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1359 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1360 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1361 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1362 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1363 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1364 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1365 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1366 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1367 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1368 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1369 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1370 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1371 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1372 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1373 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1374 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1375 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1376 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1377 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1378 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1379 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1380 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1381 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1382 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1383 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1384 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1385 /* ??? = regp->r_regs[R_ZERO]; */
1386 }
1387
1388 void
1389 printregs(struct reg *regp)
1390 {
1391 int i;
1392
1393 for (i = 0; i < 32; i++)
1394 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1395 i & 1 ? "\n" : "\t");
1396 }
1397
1398 void
1399 regdump(struct trapframe *framep)
1400 {
1401 struct reg reg;
1402
1403 frametoreg(framep, ®);
1404 reg.r_regs[R_SP] = alpha_pal_rdusp();
1405
1406 printf("REGISTERS:\n");
1407 printregs(®);
1408 }
1409
1410
1411
1412 void *
1413 getframe(const struct lwp *l, int sig, int *onstack)
1414 {
1415 void *frame;
1416
1417 /* Do we need to jump onto the signal stack? */
1418 *onstack =
1419 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1420 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1421
1422 if (*onstack)
1423 frame = (void *)((char *)l->l_sigstk.ss_sp +
1424 l->l_sigstk.ss_size);
1425 else
1426 frame = (void *)(alpha_pal_rdusp());
1427 return (frame);
1428 }
1429
1430 void
1431 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1432 {
1433 struct trapframe *tf = l->l_md.md_tf;
1434
1435 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1436 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1437 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1438 alpha_pal_wrusp((unsigned long)fp);
1439 }
1440
1441
1442 /*
1443 * Send an interrupt to process, new style
1444 */
1445 void
1446 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1447 {
1448 struct lwp *l = curlwp;
1449 struct proc *p = l->l_proc;
1450 struct sigacts *ps = p->p_sigacts;
1451 int onstack, sig = ksi->ksi_signo, error;
1452 struct sigframe_siginfo *fp, frame;
1453 struct trapframe *tf;
1454 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1455
1456 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1457 tf = l->l_md.md_tf;
1458
1459 /* Allocate space for the signal handler context. */
1460 fp--;
1461
1462 #ifdef DEBUG
1463 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1464 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1465 sig, &onstack, fp);
1466 #endif
1467
1468 /* Build stack frame for signal trampoline. */
1469
1470 frame.sf_si._info = ksi->ksi_info;
1471 frame.sf_uc.uc_flags = _UC_SIGMASK;
1472 frame.sf_uc.uc_sigmask = *mask;
1473 frame.sf_uc.uc_link = l->l_ctxlink;
1474 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1475 sendsig_reset(l, sig);
1476 mutex_exit(p->p_lock);
1477 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1478 error = copyout(&frame, fp, sizeof(frame));
1479 mutex_enter(p->p_lock);
1480
1481 if (error != 0) {
1482 /*
1483 * Process has trashed its stack; give it an illegal
1484 * instruction to halt it in its tracks.
1485 */
1486 #ifdef DEBUG
1487 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1488 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1489 p->p_pid, sig);
1490 #endif
1491 sigexit(l, SIGILL);
1492 /* NOTREACHED */
1493 }
1494
1495 #ifdef DEBUG
1496 if (sigdebug & SDB_FOLLOW)
1497 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1498 p->p_pid, sig, fp, ksi->ksi_code);
1499 #endif
1500
1501 /*
1502 * Set up the registers to directly invoke the signal handler. The
1503 * signal trampoline is then used to return from the signal. Note
1504 * the trampoline version numbers are coordinated with machine-
1505 * dependent code in libc.
1506 */
1507
1508 tf->tf_regs[FRAME_A0] = sig;
1509 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1510 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1511
1512 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1513
1514 /* Remember that we're now on the signal stack. */
1515 if (onstack)
1516 l->l_sigstk.ss_flags |= SS_ONSTACK;
1517
1518 #ifdef DEBUG
1519 if (sigdebug & SDB_FOLLOW)
1520 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1521 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1522 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1523 printf("sendsig_siginfo(%d): sig %d returns\n",
1524 p->p_pid, sig);
1525 #endif
1526 }
1527
1528
1529 void
1530 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1531 {
1532 struct trapframe *tf;
1533
1534 tf = l->l_md.md_tf;
1535
1536 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1537 tf->tf_regs[FRAME_RA] = 0;
1538 tf->tf_regs[FRAME_A0] = type;
1539 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1540 tf->tf_regs[FRAME_A2] = nevents;
1541 tf->tf_regs[FRAME_A3] = ninterrupted;
1542 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1543 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1544 alpha_pal_wrusp((unsigned long)sp);
1545 }
1546
1547 /*
1548 * machine dependent system variables.
1549 */
1550 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1551 {
1552
1553 sysctl_createv(clog, 0, NULL, NULL,
1554 CTLFLAG_PERMANENT,
1555 CTLTYPE_NODE, "machdep", NULL,
1556 NULL, 0, NULL, 0,
1557 CTL_MACHDEP, CTL_EOL);
1558
1559 sysctl_createv(clog, 0, NULL, NULL,
1560 CTLFLAG_PERMANENT,
1561 CTLTYPE_STRUCT, "console_device", NULL,
1562 sysctl_consdev, 0, NULL, sizeof(dev_t),
1563 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1564 sysctl_createv(clog, 0, NULL, NULL,
1565 CTLFLAG_PERMANENT,
1566 CTLTYPE_STRING, "root_device", NULL,
1567 sysctl_root_device, 0, NULL, 0,
1568 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1569 sysctl_createv(clog, 0, NULL, NULL,
1570 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1571 CTLTYPE_INT, "unaligned_print", NULL,
1572 NULL, 0, &alpha_unaligned_print, 0,
1573 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1574 sysctl_createv(clog, 0, NULL, NULL,
1575 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1576 CTLTYPE_INT, "unaligned_fix", NULL,
1577 NULL, 0, &alpha_unaligned_fix, 0,
1578 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1579 sysctl_createv(clog, 0, NULL, NULL,
1580 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1581 CTLTYPE_INT, "unaligned_sigbus", NULL,
1582 NULL, 0, &alpha_unaligned_sigbus, 0,
1583 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1584 sysctl_createv(clog, 0, NULL, NULL,
1585 CTLFLAG_PERMANENT,
1586 CTLTYPE_STRING, "booted_kernel", NULL,
1587 NULL, 0, bootinfo.booted_kernel, 0,
1588 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1589 sysctl_createv(clog, 0, NULL, NULL,
1590 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1591 CTLTYPE_INT, "fp_sync_complete", NULL,
1592 NULL, 0, &alpha_fp_sync_complete, 0,
1593 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1594 }
1595
1596 /*
1597 * Set registers on exec.
1598 */
1599 void
1600 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1601 {
1602 struct trapframe *tfp = l->l_md.md_tf;
1603 struct pcb *pcb;
1604 #ifdef DEBUG
1605 int i;
1606 #endif
1607
1608 #ifdef DEBUG
1609 /*
1610 * Crash and dump, if the user requested it.
1611 */
1612 if (boothowto & RB_DUMP)
1613 panic("crash requested by boot flags");
1614 #endif
1615
1616 #ifdef DEBUG
1617 for (i = 0; i < FRAME_SIZE; i++)
1618 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1619 #else
1620 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1621 #endif
1622 pcb = lwp_getpcb(l);
1623 memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1624 alpha_pal_wrusp(stack);
1625 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1626 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1627
1628 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1629 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1630 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1631 tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp; /* a3 = ps_strings */
1632 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1633
1634 l->l_md.md_flags &= ~MDP_FPUSED;
1635 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1636 l->l_md.md_flags &= ~MDP_FP_C;
1637 pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1638 }
1639 if (pcb->pcb_fpcpu != NULL)
1640 fpusave_proc(l, 0);
1641 }
1642
1643 /*
1644 * Release the FPU.
1645 */
1646 void
1647 fpusave_cpu(struct cpu_info *ci, int save)
1648 {
1649 struct lwp *l;
1650 struct pcb *pcb;
1651 #if defined(MULTIPROCESSOR)
1652 int s;
1653 #endif
1654
1655 KDASSERT(ci == curcpu());
1656
1657 #if defined(MULTIPROCESSOR)
1658 s = splhigh(); /* block IPIs for the duration */
1659 atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1660 #endif
1661
1662 l = ci->ci_fpcurlwp;
1663 if (l == NULL)
1664 goto out;
1665
1666 pcb = lwp_getpcb(l);
1667 if (save) {
1668 alpha_pal_wrfen(1);
1669 savefpstate(&pcb->pcb_fp);
1670 }
1671
1672 alpha_pal_wrfen(0);
1673
1674 FPCPU_LOCK(pcb);
1675
1676 pcb->pcb_fpcpu = NULL;
1677 ci->ci_fpcurlwp = NULL;
1678
1679 FPCPU_UNLOCK(pcb);
1680
1681 out:
1682 #if defined(MULTIPROCESSOR)
1683 atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1684 splx(s);
1685 #endif
1686 return;
1687 }
1688
1689 /*
1690 * Synchronize FP state for this process.
1691 */
1692 void
1693 fpusave_proc(struct lwp *l, int save)
1694 {
1695 struct cpu_info *ci = curcpu();
1696 struct cpu_info *oci;
1697 struct pcb *pcb;
1698 #if defined(MULTIPROCESSOR)
1699 u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1700 int s, spincount;
1701 #endif
1702
1703 pcb = lwp_getpcb(l);
1704 KDASSERT(pcb != NULL);
1705
1706 #if defined(MULTIPROCESSOR)
1707 s = splhigh(); /* block IPIs for the duration */
1708 #endif
1709 FPCPU_LOCK(pcb);
1710
1711 oci = pcb->pcb_fpcpu;
1712 if (oci == NULL) {
1713 FPCPU_UNLOCK(pcb);
1714 #if defined(MULTIPROCESSOR)
1715 splx(s);
1716 #endif
1717 return;
1718 }
1719
1720 #if defined(MULTIPROCESSOR)
1721 if (oci == ci) {
1722 KASSERT(ci->ci_fpcurlwp == l);
1723 FPCPU_UNLOCK(pcb);
1724 splx(s);
1725 fpusave_cpu(ci, save);
1726 return;
1727 }
1728
1729 KASSERT(oci->ci_fpcurlwp == l);
1730 alpha_send_ipi(oci->ci_cpuid, ipi);
1731 FPCPU_UNLOCK(pcb);
1732
1733 spincount = 0;
1734 while (pcb->pcb_fpcpu != NULL) {
1735 spincount++;
1736 delay(1000); /* XXX */
1737 if (spincount > 10000)
1738 panic("fpsave ipi didn't");
1739 }
1740 #else
1741 KASSERT(ci->ci_fpcurlwp == l);
1742 FPCPU_UNLOCK(pcb);
1743 fpusave_cpu(ci, save);
1744 #endif /* MULTIPROCESSOR */
1745 }
1746
1747 /*
1748 * Wait "n" microseconds.
1749 */
1750 void
1751 delay(unsigned long n)
1752 {
1753 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1754
1755 if (n == 0)
1756 return;
1757
1758 pcc0 = alpha_rpcc() & 0xffffffffUL;
1759 cycles = 0;
1760 usec = 0;
1761
1762 while (usec <= n) {
1763 /*
1764 * Get the next CPU cycle count- assumes that we cannot
1765 * have had more than one 32 bit overflow.
1766 */
1767 pcc1 = alpha_rpcc() & 0xffffffffUL;
1768 if (pcc1 < pcc0)
1769 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1770 else
1771 curcycle = pcc1 - pcc0;
1772
1773 /*
1774 * We now have the number of processor cycles since we
1775 * last checked. Add the current cycle count to the
1776 * running total. If it's over cycles_per_usec, increment
1777 * the usec counter.
1778 */
1779 cycles += curcycle;
1780 while (cycles > cycles_per_usec) {
1781 usec++;
1782 cycles -= cycles_per_usec;
1783 }
1784 pcc0 = pcc1;
1785 }
1786 }
1787
1788 #ifdef EXEC_ECOFF
1789 void
1790 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1791 {
1792 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1793
1794 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1795 }
1796
1797 /*
1798 * cpu_exec_ecoff_hook():
1799 * cpu-dependent ECOFF format hook for execve().
1800 *
1801 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1802 *
1803 */
1804 int
1805 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1806 {
1807 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1808 int error;
1809
1810 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1811 error = 0;
1812 else
1813 error = ENOEXEC;
1814
1815 return (error);
1816 }
1817 #endif /* EXEC_ECOFF */
1818
1819 int
1820 alpha_pa_access(u_long pa)
1821 {
1822 int i;
1823
1824 for (i = 0; i < mem_cluster_cnt; i++) {
1825 if (pa < mem_clusters[i].start)
1826 continue;
1827 if ((pa - mem_clusters[i].start) >=
1828 (mem_clusters[i].size & ~PAGE_MASK))
1829 continue;
1830 return (mem_clusters[i].size & PAGE_MASK); /* prot */
1831 }
1832
1833 /*
1834 * Address is not a memory address. If we're secure, disallow
1835 * access. Otherwise, grant read/write.
1836 */
1837 if (kauth_authorize_machdep(kauth_cred_get(),
1838 KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1839 return (PROT_NONE);
1840 else
1841 return (PROT_READ | PROT_WRITE);
1842 }
1843
1844 /* XXX XXX BEGIN XXX XXX */
1845 paddr_t alpha_XXX_dmamap_or; /* XXX */
1846 /* XXX */
1847 paddr_t /* XXX */
1848 alpha_XXX_dmamap(v) /* XXX */
1849 vaddr_t v; /* XXX */
1850 { /* XXX */
1851 /* XXX */
1852 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1853 } /* XXX */
1854 /* XXX XXX END XXX XXX */
1855
1856 char *
1857 dot_conv(unsigned long x)
1858 {
1859 int i;
1860 char *xc;
1861 static int next;
1862 static char space[2][20];
1863
1864 xc = space[next ^= 1] + sizeof space[0];
1865 *--xc = '\0';
1866 for (i = 0;; ++i) {
1867 if (i && (i & 3) == 0)
1868 *--xc = '.';
1869 *--xc = hexdigits[x & 0xf];
1870 x >>= 4;
1871 if (x == 0)
1872 break;
1873 }
1874 return xc;
1875 }
1876
1877 void
1878 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1879 {
1880 struct trapframe *frame = l->l_md.md_tf;
1881 struct pcb *pcb = lwp_getpcb(l);
1882 __greg_t *gr = mcp->__gregs;
1883 __greg_t ras_pc;
1884
1885 /* Save register context. */
1886 frametoreg(frame, (struct reg *)gr);
1887 /* XXX if there's a better, general way to get the USP of
1888 * an LWP that might or might not be curlwp, I'd like to know
1889 * about it.
1890 */
1891 if (l == curlwp) {
1892 gr[_REG_SP] = alpha_pal_rdusp();
1893 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1894 } else {
1895 gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1896 gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1897 }
1898 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1899 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1900
1901 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1902 (void *) gr[_REG_PC])) != -1)
1903 gr[_REG_PC] = ras_pc;
1904
1905 *flags |= _UC_CPU | _UC_UNIQUE;
1906
1907 /* Save floating point register context, if any, and copy it. */
1908 if (l->l_md.md_flags & MDP_FPUSED) {
1909 fpusave_proc(l, 1);
1910 (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1911 sizeof (mcp->__fpregs));
1912 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1913 *flags |= _UC_FPU;
1914 }
1915 }
1916
1917
1918 int
1919 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1920 {
1921 struct trapframe *frame = l->l_md.md_tf;
1922 struct pcb *pcb = lwp_getpcb(l);
1923 const __greg_t *gr = mcp->__gregs;
1924
1925 /* Restore register context, if any. */
1926 if (flags & _UC_CPU) {
1927 /* Check for security violations first. */
1928 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1929 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1930 return (EINVAL);
1931
1932 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1933 if (l == curlwp)
1934 alpha_pal_wrusp(gr[_REG_SP]);
1935 else
1936 pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1937 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1938 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1939 }
1940 if (flags & _UC_UNIQUE)
1941 lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
1942 /* Restore floating point register context, if any. */
1943 if (flags & _UC_FPU) {
1944 /* If we have an FP register context, get rid of it. */
1945 if (pcb->pcb_fpcpu != NULL)
1946 fpusave_proc(l, 0);
1947 (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1948 sizeof (pcb->pcb_fp));
1949 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1950 l->l_md.md_flags |= MDP_FPUSED;
1951 }
1952
1953 return (0);
1954 }
1955
1956 /*
1957 * Preempt the current process if in interrupt from user mode,
1958 * or after the current trap/syscall if in system mode.
1959 */
1960 void
1961 cpu_need_resched(struct cpu_info *ci, int flags)
1962 {
1963 #if defined(MULTIPROCESSOR)
1964 bool immed = (flags & RESCHED_IMMED) != 0;
1965 #endif /* defined(MULTIPROCESSOR) */
1966
1967 aston(ci->ci_data.cpu_onproc);
1968 ci->ci_want_resched = 1;
1969 if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
1970 #if defined(MULTIPROCESSOR)
1971 if (immed && ci != curcpu()) {
1972 alpha_send_ipi(ci->ci_cpuid, 0);
1973 }
1974 #endif /* defined(MULTIPROCESSOR) */
1975 }
1976 }
1977