machdep.c revision 1.336 1 /* $NetBSD: machdep.c,v 1.336 2011/12/12 19:03:07 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_compat_osf1.h"
67 #include "opt_execfmt.h"
68
69 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
70
71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.336 2011/12/12 19:03:07 mrg Exp $");
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/signalvar.h>
76 #include <sys/kernel.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/ras.h>
80 #include <sys/sa.h>
81 #include <sys/savar.h>
82 #include <sys/sched.h>
83 #include <sys/reboot.h>
84 #include <sys/device.h>
85 #include <sys/malloc.h>
86 #include <sys/mman.h>
87 #include <sys/msgbuf.h>
88 #include <sys/ioctl.h>
89 #include <sys/tty.h>
90 #include <sys/exec.h>
91 #include <sys/exec_aout.h> /* for MID_* */
92 #include <sys/exec_ecoff.h>
93 #include <sys/core.h>
94 #include <sys/kcore.h>
95 #include <sys/ucontext.h>
96 #include <sys/conf.h>
97 #include <sys/ksyms.h>
98 #include <sys/kauth.h>
99 #include <sys/atomic.h>
100 #include <sys/cpu.h>
101
102 #include <machine/kcore.h>
103 #include <machine/fpu.h>
104
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107
108 #include <uvm/uvm.h>
109 #include <sys/sysctl.h>
110
111 #include <dev/cons.h>
112 #include <dev/mm.h>
113
114 #include <machine/autoconf.h>
115 #include <machine/reg.h>
116 #include <machine/rpb.h>
117 #include <machine/prom.h>
118 #include <machine/cpuconf.h>
119 #include <machine/ieeefp.h>
120
121 #ifdef DDB
122 #include <machine/db_machdep.h>
123 #include <ddb/db_access.h>
124 #include <ddb/db_sym.h>
125 #include <ddb/db_extern.h>
126 #include <ddb/db_interface.h>
127 #endif
128
129 #ifdef KGDB
130 #include <sys/kgdb.h>
131 #endif
132
133 #ifdef DEBUG
134 #include <machine/sigdebug.h>
135 #endif
136
137 #include <machine/alpha.h>
138
139 #include "ksyms.h"
140
141 struct vm_map *phys_map = NULL;
142
143 void *msgbufaddr;
144
145 int maxmem; /* max memory per process */
146
147 int totalphysmem; /* total amount of physical memory in system */
148 int physmem; /* physical memory used by NetBSD + some rsvd */
149 int resvmem; /* amount of memory reserved for PROM */
150 int unusedmem; /* amount of memory for OS that we don't use */
151 int unknownmem; /* amount of memory with an unknown use */
152
153 int cputype; /* system type, from the RPB */
154
155 int bootdev_debug = 0; /* patchable, or from DDB */
156
157 /*
158 * XXX We need an address to which we can assign things so that they
159 * won't be optimized away because we didn't use the value.
160 */
161 u_int32_t no_optimize;
162
163 /* the following is used externally (sysctl_hw) */
164 char machine[] = MACHINE; /* from <machine/param.h> */
165 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
166 char cpu_model[128];
167
168 /* Number of machine cycles per microsecond */
169 u_int64_t cycles_per_usec;
170
171 /* number of CPUs in the box. really! */
172 int ncpus;
173
174 struct bootinfo_kernel bootinfo;
175
176 /* For built-in TCDS */
177 #if defined(DEC_3000_300) || defined(DEC_3000_500)
178 u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
179 #endif
180
181 struct platform platform;
182
183 #if NKSYMS || defined(DDB) || defined(MODULAR)
184 /* start and end of kernel symbol table */
185 void *ksym_start, *ksym_end;
186 #endif
187
188 /* for cpu_sysctl() */
189 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
190 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
191 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
192 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
193
194 /*
195 * XXX This should be dynamically sized, but we have the chicken-egg problem!
196 * XXX it should also be larger than it is, because not all of the mddt
197 * XXX clusters end up being used for VM.
198 */
199 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
200 int mem_cluster_cnt;
201
202 int cpu_dump(void);
203 int cpu_dumpsize(void);
204 u_long cpu_dump_mempagecnt(void);
205 void dumpsys(void);
206 void identifycpu(void);
207 void printregs(struct reg *);
208
209 const pcu_ops_t fpu_ops = {
210 .pcu_id = PCU_FPU,
211 .pcu_state_load = fpu_state_load,
212 .pcu_state_save = fpu_state_save,
213 .pcu_state_release = fpu_state_release,
214 };
215
216 const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
217 [PCU_FPU] = &fpu_ops,
218 };
219
220 void
221 alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
222 /* pfn: first free PFN number */
223 /* ptb: PFN of current level 1 page table */
224 /* bim: bootinfo magic */
225 /* bip: bootinfo pointer */
226 /* biv: bootinfo version */
227 {
228 extern char kernel_text[], _end[];
229 struct mddt *mddtp;
230 struct mddt_cluster *memc;
231 int i, mddtweird;
232 struct vm_physseg *vps;
233 struct pcb *pcb0;
234 vaddr_t kernstart, kernend, v;
235 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
236 cpuid_t cpu_id;
237 struct cpu_info *ci;
238 char *p;
239 const char *bootinfo_msg;
240 const struct cpuinit *c;
241
242 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
243
244 /*
245 * Turn off interrupts (not mchecks) and floating point.
246 * Make sure the instruction and data streams are consistent.
247 */
248 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
249 alpha_pal_wrfen(0);
250 ALPHA_TBIA();
251 alpha_pal_imb();
252
253 /* Initialize the SCB. */
254 scb_init();
255
256 cpu_id = cpu_number();
257
258 #if defined(MULTIPROCESSOR)
259 /*
260 * Set our SysValue to the address of our cpu_info structure.
261 * Secondary processors do this in their spinup trampoline.
262 */
263 alpha_pal_wrval((u_long)&cpu_info_primary);
264 cpu_info[cpu_id] = &cpu_info_primary;
265 #endif
266
267 ci = curcpu();
268 ci->ci_cpuid = cpu_id;
269
270 /*
271 * Get critical system information (if possible, from the
272 * information provided by the boot program).
273 */
274 bootinfo_msg = NULL;
275 if (bim == BOOTINFO_MAGIC) {
276 if (biv == 0) { /* backward compat */
277 biv = *(u_long *)bip;
278 bip += 8;
279 }
280 switch (biv) {
281 case 1: {
282 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
283
284 bootinfo.ssym = v1p->ssym;
285 bootinfo.esym = v1p->esym;
286 /* hwrpb may not be provided by boot block in v1 */
287 if (v1p->hwrpb != NULL) {
288 bootinfo.hwrpb_phys =
289 ((struct rpb *)v1p->hwrpb)->rpb_phys;
290 bootinfo.hwrpb_size = v1p->hwrpbsize;
291 } else {
292 bootinfo.hwrpb_phys =
293 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
294 bootinfo.hwrpb_size =
295 ((struct rpb *)HWRPB_ADDR)->rpb_size;
296 }
297 memcpy(bootinfo.boot_flags, v1p->boot_flags,
298 min(sizeof v1p->boot_flags,
299 sizeof bootinfo.boot_flags));
300 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
301 min(sizeof v1p->booted_kernel,
302 sizeof bootinfo.booted_kernel));
303 /* booted dev not provided in bootinfo */
304 init_prom_interface((struct rpb *)
305 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
306 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
307 sizeof bootinfo.booted_dev);
308 break;
309 }
310 default:
311 bootinfo_msg = "unknown bootinfo version";
312 goto nobootinfo;
313 }
314 } else {
315 bootinfo_msg = "boot program did not pass bootinfo";
316 nobootinfo:
317 bootinfo.ssym = (u_long)_end;
318 bootinfo.esym = (u_long)_end;
319 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
320 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
321 init_prom_interface((struct rpb *)HWRPB_ADDR);
322 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
323 sizeof bootinfo.boot_flags);
324 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
325 sizeof bootinfo.booted_kernel);
326 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
327 sizeof bootinfo.booted_dev);
328 }
329
330 /*
331 * Initialize the kernel's mapping of the RPB. It's needed for
332 * lots of things.
333 */
334 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
335
336 #if defined(DEC_3000_300) || defined(DEC_3000_500)
337 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
338 hwrpb->rpb_type == ST_DEC_3000_500) {
339 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
340 sizeof(dec_3000_scsiid));
341 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
342 sizeof(dec_3000_scsifast));
343 }
344 #endif
345
346 /*
347 * Remember how many cycles there are per microsecond,
348 * so that we can use delay(). Round up, for safety.
349 */
350 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
351
352 /*
353 * Initialize the (temporary) bootstrap console interface, so
354 * we can use printf until the VM system starts being setup.
355 * The real console is initialized before then.
356 */
357 init_bootstrap_console();
358
359 /* OUTPUT NOW ALLOWED */
360
361 /* delayed from above */
362 if (bootinfo_msg)
363 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
364 bootinfo_msg, bim, bip, biv);
365
366 /* Initialize the trap vectors on the primary processor. */
367 trap_init();
368
369 /*
370 * Find out this system's page size, and initialize
371 * PAGE_SIZE-dependent variables.
372 */
373 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
374 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
375 ALPHA_PGBYTES);
376 uvmexp.pagesize = hwrpb->rpb_page_size;
377 uvm_setpagesize();
378
379 /*
380 * Find out what hardware we're on, and do basic initialization.
381 */
382 cputype = hwrpb->rpb_type;
383 if (cputype < 0) {
384 /*
385 * At least some white-box systems have SRM which
386 * reports a systype that's the negative of their
387 * blue-box counterpart.
388 */
389 cputype = -cputype;
390 }
391 c = platform_lookup(cputype);
392 if (c == NULL) {
393 platform_not_supported();
394 /* NOTREACHED */
395 }
396 (*c->init)();
397 strcpy(cpu_model, platform.model);
398
399 /*
400 * Initialize the real console, so that the bootstrap console is
401 * no longer necessary.
402 */
403 (*platform.cons_init)();
404
405 #ifdef DIAGNOSTIC
406 /* Paranoid sanity checking */
407
408 /* We should always be running on the primary. */
409 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
410
411 /*
412 * On single-CPU systypes, the primary should always be CPU 0,
413 * except on Alpha 8200 systems where the CPU id is related
414 * to the VID, which is related to the Turbo Laser node id.
415 */
416 if (cputype != ST_DEC_21000)
417 assert(hwrpb->rpb_primary_cpu_id == 0);
418 #endif
419
420 /* NO MORE FIRMWARE ACCESS ALLOWED */
421 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
422 /*
423 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
424 * XXX pmap_uses_prom_console() evaluates to non-zero.)
425 */
426 #endif
427
428 /*
429 * Find the beginning and end of the kernel (and leave a
430 * bit of space before the beginning for the bootstrap
431 * stack).
432 */
433 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
434 #if NKSYMS || defined(DDB) || defined(MODULAR)
435 ksym_start = (void *)bootinfo.ssym;
436 ksym_end = (void *)bootinfo.esym;
437 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
438 #else
439 kernend = (vaddr_t)round_page((vaddr_t)_end);
440 #endif
441
442 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
443 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
444
445 /*
446 * Find out how much memory is available, by looking at
447 * the memory cluster descriptors. This also tries to do
448 * its best to detect things things that have never been seen
449 * before...
450 */
451 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
452
453 /* MDDT SANITY CHECKING */
454 mddtweird = 0;
455 if (mddtp->mddt_cluster_cnt < 2) {
456 mddtweird = 1;
457 printf("WARNING: weird number of mem clusters: %lu\n",
458 mddtp->mddt_cluster_cnt);
459 }
460
461 #if 0
462 printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
463 #endif
464
465 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
466 memc = &mddtp->mddt_clusters[i];
467 #if 0
468 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
469 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
470 #endif
471 totalphysmem += memc->mddt_pg_cnt;
472 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
473 mem_clusters[mem_cluster_cnt].start =
474 ptoa(memc->mddt_pfn);
475 mem_clusters[mem_cluster_cnt].size =
476 ptoa(memc->mddt_pg_cnt);
477 if (memc->mddt_usage & MDDT_mbz ||
478 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
479 memc->mddt_usage & MDDT_PALCODE)
480 mem_clusters[mem_cluster_cnt].size |=
481 PROT_READ;
482 else
483 mem_clusters[mem_cluster_cnt].size |=
484 PROT_READ | PROT_WRITE | PROT_EXEC;
485 mem_cluster_cnt++;
486 }
487
488 if (memc->mddt_usage & MDDT_mbz) {
489 mddtweird = 1;
490 printf("WARNING: mem cluster %d has weird "
491 "usage 0x%lx\n", i, memc->mddt_usage);
492 unknownmem += memc->mddt_pg_cnt;
493 continue;
494 }
495 if (memc->mddt_usage & MDDT_NONVOLATILE) {
496 /* XXX should handle these... */
497 printf("WARNING: skipping non-volatile mem "
498 "cluster %d\n", i);
499 unusedmem += memc->mddt_pg_cnt;
500 continue;
501 }
502 if (memc->mddt_usage & MDDT_PALCODE) {
503 resvmem += memc->mddt_pg_cnt;
504 continue;
505 }
506
507 /*
508 * We have a memory cluster available for system
509 * software use. We must determine if this cluster
510 * holds the kernel.
511 */
512 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
513 /*
514 * XXX If the kernel uses the PROM console, we only use the
515 * XXX memory after the kernel in the first system segment,
516 * XXX to avoid clobbering prom mapping, data, etc.
517 */
518 if (!pmap_uses_prom_console() || physmem == 0) {
519 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
520 physmem += memc->mddt_pg_cnt;
521 pfn0 = memc->mddt_pfn;
522 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
523 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
524 /*
525 * Must compute the location of the kernel
526 * within the segment.
527 */
528 #if 0
529 printf("Cluster %d contains kernel\n", i);
530 #endif
531 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
532 if (!pmap_uses_prom_console()) {
533 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
534 if (pfn0 < kernstartpfn) {
535 /*
536 * There is a chunk before the kernel.
537 */
538 #if 0
539 printf("Loading chunk before kernel: "
540 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
541 #endif
542 uvm_page_physload(pfn0, kernstartpfn,
543 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
544 }
545 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
546 }
547 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
548 if (kernendpfn < pfn1) {
549 /*
550 * There is a chunk after the kernel.
551 */
552 #if 0
553 printf("Loading chunk after kernel: "
554 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
555 #endif
556 uvm_page_physload(kernendpfn, pfn1,
557 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
558 }
559 } else {
560 /*
561 * Just load this cluster as one chunk.
562 */
563 #if 0
564 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
565 pfn0, pfn1);
566 #endif
567 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
568 VM_FREELIST_DEFAULT);
569 }
570 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
571 }
572 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
573 }
574
575 /*
576 * Dump out the MDDT if it looks odd...
577 */
578 if (mddtweird) {
579 printf("\n");
580 printf("complete memory cluster information:\n");
581 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
582 printf("mddt %d:\n", i);
583 printf("\tpfn %lx\n",
584 mddtp->mddt_clusters[i].mddt_pfn);
585 printf("\tcnt %lx\n",
586 mddtp->mddt_clusters[i].mddt_pg_cnt);
587 printf("\ttest %lx\n",
588 mddtp->mddt_clusters[i].mddt_pg_test);
589 printf("\tbva %lx\n",
590 mddtp->mddt_clusters[i].mddt_v_bitaddr);
591 printf("\tbpa %lx\n",
592 mddtp->mddt_clusters[i].mddt_p_bitaddr);
593 printf("\tbcksum %lx\n",
594 mddtp->mddt_clusters[i].mddt_bit_cksum);
595 printf("\tusage %lx\n",
596 mddtp->mddt_clusters[i].mddt_usage);
597 }
598 printf("\n");
599 }
600
601 if (totalphysmem == 0)
602 panic("can't happen: system seems to have no memory!");
603 maxmem = physmem;
604 #if 0
605 printf("totalphysmem = %d\n", totalphysmem);
606 printf("physmem = %d\n", physmem);
607 printf("resvmem = %d\n", resvmem);
608 printf("unusedmem = %d\n", unusedmem);
609 printf("unknownmem = %d\n", unknownmem);
610 #endif
611
612 /*
613 * Initialize error message buffer (at end of core).
614 */
615 {
616 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
617 vsize_t reqsz = sz;
618
619 vps = VM_PHYSMEM_PTR(vm_nphysseg - 1);
620
621 /* shrink so that it'll fit in the last segment */
622 if ((vps->avail_end - vps->avail_start) < atop(sz))
623 sz = ptoa(vps->avail_end - vps->avail_start);
624
625 vps->end -= atop(sz);
626 vps->avail_end -= atop(sz);
627 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
628 initmsgbuf(msgbufaddr, sz);
629
630 /* Remove the last segment if it now has no pages. */
631 if (vps->start == vps->end)
632 vm_nphysseg--;
633
634 /* warn if the message buffer had to be shrunk */
635 if (sz != reqsz)
636 printf("WARNING: %ld bytes not available for msgbuf "
637 "in last cluster (%ld used)\n", reqsz, sz);
638
639 }
640
641 /*
642 * NOTE: It is safe to use uvm_pageboot_alloc() before
643 * pmap_bootstrap() because our pmap_virtual_space()
644 * returns compile-time constants.
645 */
646
647 /*
648 * Allocate uarea page for lwp0 and set it.
649 */
650 v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
651 uvm_lwp_setuarea(&lwp0, v);
652
653 /*
654 * Initialize the virtual memory system, and set the
655 * page table base register in proc 0's PCB.
656 */
657 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
658 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
659
660 /*
661 * Initialize the rest of lwp0's PCB and cache its physical address.
662 */
663 pcb0 = lwp_getpcb(&lwp0);
664 lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
665
666 /*
667 * Set the kernel sp, reserving space for an (empty) trapframe,
668 * and make lwp0's trapframe pointer point to it for sanity.
669 */
670 pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
671 lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
672
673 /* Indicate that lwp0 has a CPU. */
674 lwp0.l_cpu = ci;
675
676 /*
677 * Look at arguments passed to us and compute boothowto.
678 */
679
680 boothowto = RB_SINGLE;
681 #ifdef KADB
682 boothowto |= RB_KDB;
683 #endif
684 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
685 /*
686 * Note that we'd really like to differentiate case here,
687 * but the Alpha AXP Architecture Reference Manual
688 * says that we shouldn't.
689 */
690 switch (*p) {
691 case 'a': /* autoboot */
692 case 'A':
693 boothowto &= ~RB_SINGLE;
694 break;
695
696 #ifdef DEBUG
697 case 'c': /* crash dump immediately after autoconfig */
698 case 'C':
699 boothowto |= RB_DUMP;
700 break;
701 #endif
702
703 #if defined(KGDB) || defined(DDB)
704 case 'd': /* break into the kernel debugger ASAP */
705 case 'D':
706 boothowto |= RB_KDB;
707 break;
708 #endif
709
710 case 'h': /* always halt, never reboot */
711 case 'H':
712 boothowto |= RB_HALT;
713 break;
714
715 #if 0
716 case 'm': /* mini root present in memory */
717 case 'M':
718 boothowto |= RB_MINIROOT;
719 break;
720 #endif
721
722 case 'n': /* askname */
723 case 'N':
724 boothowto |= RB_ASKNAME;
725 break;
726
727 case 's': /* single-user (default, supported for sanity) */
728 case 'S':
729 boothowto |= RB_SINGLE;
730 break;
731
732 case 'q': /* quiet boot */
733 case 'Q':
734 boothowto |= AB_QUIET;
735 break;
736
737 case 'v': /* verbose boot */
738 case 'V':
739 boothowto |= AB_VERBOSE;
740 break;
741
742 case '-':
743 /*
744 * Just ignore this. It's not required, but it's
745 * common for it to be passed regardless.
746 */
747 break;
748
749 default:
750 printf("Unrecognized boot flag '%c'.\n", *p);
751 break;
752 }
753 }
754
755 /*
756 * Perform any initial kernel patches based on the running system.
757 * We may perform more later if we attach additional CPUs.
758 */
759 alpha_patch(false);
760
761 /*
762 * Figure out the number of CPUs in the box, from RPB fields.
763 * Really. We mean it.
764 */
765 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
766 struct pcs *pcsp;
767
768 pcsp = LOCATE_PCS(hwrpb, i);
769 if ((pcsp->pcs_flags & PCS_PP) != 0)
770 ncpus++;
771 }
772
773 /*
774 * Initialize debuggers, and break into them if appropriate.
775 */
776 #if NKSYMS || defined(DDB) || defined(MODULAR)
777 ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
778 ksym_start, ksym_end);
779 #endif
780
781 if (boothowto & RB_KDB) {
782 #if defined(KGDB)
783 kgdb_debug_init = 1;
784 kgdb_connect(1);
785 #elif defined(DDB)
786 Debugger();
787 #endif
788 }
789
790 #ifdef DIAGNOSTIC
791 /*
792 * Check our clock frequency, from RPB fields.
793 */
794 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
795 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
796 hwrpb->rpb_intr_freq, hz);
797 #endif
798 }
799
800 void
801 consinit(void)
802 {
803
804 /*
805 * Everything related to console initialization is done
806 * in alpha_init().
807 */
808 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
809 printf("consinit: %susing prom console\n",
810 pmap_uses_prom_console() ? "" : "not ");
811 #endif
812 }
813
814 void
815 cpu_startup(void)
816 {
817 extern struct evcnt fpevent_use, fpevent_reuse;
818 vaddr_t minaddr, maxaddr;
819 char pbuf[9];
820 #if defined(DEBUG)
821 extern int pmapdebug;
822 int opmapdebug = pmapdebug;
823
824 pmapdebug = 0;
825 #endif
826
827 /*
828 * Good {morning,afternoon,evening,night}.
829 */
830 printf("%s%s", copyright, version);
831 identifycpu();
832 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
833 printf("total memory = %s\n", pbuf);
834 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
835 printf("(%s reserved for PROM, ", pbuf);
836 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
837 printf("%s used by NetBSD)\n", pbuf);
838 if (unusedmem) {
839 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
840 printf("WARNING: unused memory = %s\n", pbuf);
841 }
842 if (unknownmem) {
843 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
844 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
845 }
846
847 minaddr = 0;
848
849 /*
850 * Allocate a submap for physio
851 */
852 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
853 VM_PHYS_SIZE, 0, false, NULL);
854
855 /*
856 * No need to allocate an mbuf cluster submap. Mbuf clusters
857 * are allocated via the pool allocator, and we use K0SEG to
858 * map those pages.
859 */
860
861 #if defined(DEBUG)
862 pmapdebug = opmapdebug;
863 #endif
864 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
865 printf("avail memory = %s\n", pbuf);
866 #if 0
867 {
868 extern u_long pmap_pages_stolen;
869
870 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
871 printf("stolen memory for VM structures = %s\n", pbuf);
872 }
873 #endif
874
875 /*
876 * Set up the HWPCB so that it's safe to configure secondary
877 * CPUs.
878 */
879 hwrpb_primary_init();
880
881 /*
882 * Initialize some trap event counters.
883 */
884 evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
885 "FP", "proc use");
886 evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
887 "FP", "proc re-use");
888 }
889
890 /*
891 * Retrieve the platform name from the DSR.
892 */
893 const char *
894 alpha_dsr_sysname(void)
895 {
896 struct dsrdb *dsr;
897 const char *sysname;
898
899 /*
900 * DSR does not exist on early HWRPB versions.
901 */
902 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
903 return (NULL);
904
905 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
906 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
907 sizeof(u_int64_t)));
908 return (sysname);
909 }
910
911 /*
912 * Lookup the system specified system variation in the provided table,
913 * returning the model string on match.
914 */
915 const char *
916 alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
917 {
918 int i;
919
920 for (i = 0; avtp[i].avt_model != NULL; i++)
921 if (avtp[i].avt_variation == variation)
922 return (avtp[i].avt_model);
923 return (NULL);
924 }
925
926 /*
927 * Generate a default platform name based for unknown system variations.
928 */
929 const char *
930 alpha_unknown_sysname(void)
931 {
932 static char s[128]; /* safe size */
933
934 sprintf(s, "%s family, unknown model variation 0x%lx",
935 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
936 return ((const char *)s);
937 }
938
939 void
940 identifycpu(void)
941 {
942 char *s;
943 int i;
944
945 /*
946 * print out CPU identification information.
947 */
948 printf("%s", cpu_model);
949 for(s = cpu_model; *s; ++s)
950 if(strncasecmp(s, "MHz", 3) == 0)
951 goto skipMHz;
952 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
953 skipMHz:
954 printf(", s/n ");
955 for (i = 0; i < 10; i++)
956 printf("%c", hwrpb->rpb_ssn[i]);
957 printf("\n");
958 printf("%ld byte page size, %d processor%s.\n",
959 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
960 #if 0
961 /* this isn't defined for any systems that we run on? */
962 printf("serial number 0x%lx 0x%lx\n",
963 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
964
965 /* and these aren't particularly useful! */
966 printf("variation: 0x%lx, revision 0x%lx\n",
967 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
968 #endif
969 }
970
971 int waittime = -1;
972 struct pcb dumppcb;
973
974 void
975 cpu_reboot(int howto, char *bootstr)
976 {
977 #if defined(MULTIPROCESSOR)
978 u_long cpu_id = cpu_number();
979 u_long wait_mask;
980 int i;
981 #endif
982
983 /* If "always halt" was specified as a boot flag, obey. */
984 if ((boothowto & RB_HALT) != 0)
985 howto |= RB_HALT;
986
987 boothowto = howto;
988
989 /* If system is cold, just halt. */
990 if (cold) {
991 boothowto |= RB_HALT;
992 goto haltsys;
993 }
994
995 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
996 waittime = 0;
997 vfs_shutdown();
998 /*
999 * If we've been adjusting the clock, the todr
1000 * will be out of synch; adjust it now.
1001 */
1002 resettodr();
1003 }
1004
1005 /* Disable interrupts. */
1006 splhigh();
1007
1008 #if defined(MULTIPROCESSOR)
1009 /*
1010 * Halt all other CPUs. If we're not the primary, the
1011 * primary will spin, waiting for us to halt.
1012 */
1013 cpu_id = cpu_number(); /* may have changed cpu */
1014 wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
1015
1016 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1017
1018 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1019 cpus_paused = 0;
1020
1021 for (i = 0; i < 10000; i++) {
1022 alpha_mb();
1023 if (cpus_running == wait_mask)
1024 break;
1025 delay(1000);
1026 }
1027 alpha_mb();
1028 if (cpus_running != wait_mask)
1029 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1030 cpus_running);
1031 #endif /* MULTIPROCESSOR */
1032
1033 /* If rebooting and a dump is requested do it. */
1034 #if 0
1035 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1036 #else
1037 if (boothowto & RB_DUMP)
1038 #endif
1039 dumpsys();
1040
1041 haltsys:
1042
1043 /* run any shutdown hooks */
1044 doshutdownhooks();
1045
1046 pmf_system_shutdown(boothowto);
1047
1048 #ifdef BOOTKEY
1049 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1050 cnpollc(1); /* for proper keyboard command handling */
1051 cngetc();
1052 cnpollc(0);
1053 printf("\n");
1054 #endif
1055
1056 /* Finally, powerdown/halt/reboot the system. */
1057 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1058 platform.powerdown != NULL) {
1059 (*platform.powerdown)();
1060 printf("WARNING: powerdown failed!\n");
1061 }
1062 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1063 #if defined(MULTIPROCESSOR)
1064 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1065 cpu_halt();
1066 else
1067 #endif
1068 prom_halt(boothowto & RB_HALT);
1069 /*NOTREACHED*/
1070 }
1071
1072 /*
1073 * These variables are needed by /sbin/savecore
1074 */
1075 u_int32_t dumpmag = 0x8fca0101; /* magic number */
1076 int dumpsize = 0; /* pages */
1077 long dumplo = 0; /* blocks */
1078
1079 /*
1080 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1081 */
1082 int
1083 cpu_dumpsize(void)
1084 {
1085 int size;
1086
1087 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1088 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1089 if (roundup(size, dbtob(1)) != dbtob(1))
1090 return -1;
1091
1092 return (1);
1093 }
1094
1095 /*
1096 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1097 */
1098 u_long
1099 cpu_dump_mempagecnt(void)
1100 {
1101 u_long i, n;
1102
1103 n = 0;
1104 for (i = 0; i < mem_cluster_cnt; i++)
1105 n += atop(mem_clusters[i].size);
1106 return (n);
1107 }
1108
1109 /*
1110 * cpu_dump: dump machine-dependent kernel core dump headers.
1111 */
1112 int
1113 cpu_dump(void)
1114 {
1115 int (*dump)(dev_t, daddr_t, void *, size_t);
1116 char buf[dbtob(1)];
1117 kcore_seg_t *segp;
1118 cpu_kcore_hdr_t *cpuhdrp;
1119 phys_ram_seg_t *memsegp;
1120 const struct bdevsw *bdev;
1121 int i;
1122
1123 bdev = bdevsw_lookup(dumpdev);
1124 if (bdev == NULL)
1125 return (ENXIO);
1126 dump = bdev->d_dump;
1127
1128 memset(buf, 0, sizeof buf);
1129 segp = (kcore_seg_t *)buf;
1130 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1131 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1132 ALIGN(sizeof(*cpuhdrp))];
1133
1134 /*
1135 * Generate a segment header.
1136 */
1137 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1138 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1139
1140 /*
1141 * Add the machine-dependent header info.
1142 */
1143 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1144 cpuhdrp->page_size = PAGE_SIZE;
1145 cpuhdrp->nmemsegs = mem_cluster_cnt;
1146
1147 /*
1148 * Fill in the memory segment descriptors.
1149 */
1150 for (i = 0; i < mem_cluster_cnt; i++) {
1151 memsegp[i].start = mem_clusters[i].start;
1152 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1153 }
1154
1155 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1156 }
1157
1158 /*
1159 * This is called by main to set dumplo and dumpsize.
1160 * Dumps always skip the first PAGE_SIZE of disk space
1161 * in case there might be a disk label stored there.
1162 * If there is extra space, put dump at the end to
1163 * reduce the chance that swapping trashes it.
1164 */
1165 void
1166 cpu_dumpconf(void)
1167 {
1168 int nblks, dumpblks; /* size of dump area */
1169
1170 if (dumpdev == NODEV)
1171 goto bad;
1172 nblks = bdev_size(dumpdev);
1173 if (nblks <= ctod(1))
1174 goto bad;
1175
1176 dumpblks = cpu_dumpsize();
1177 if (dumpblks < 0)
1178 goto bad;
1179 dumpblks += ctod(cpu_dump_mempagecnt());
1180
1181 /* If dump won't fit (incl. room for possible label), punt. */
1182 if (dumpblks > (nblks - ctod(1)))
1183 goto bad;
1184
1185 /* Put dump at end of partition */
1186 dumplo = nblks - dumpblks;
1187
1188 /* dumpsize is in page units, and doesn't include headers. */
1189 dumpsize = cpu_dump_mempagecnt();
1190 return;
1191
1192 bad:
1193 dumpsize = 0;
1194 return;
1195 }
1196
1197 /*
1198 * Dump the kernel's image to the swap partition.
1199 */
1200 #define BYTES_PER_DUMP PAGE_SIZE
1201
1202 void
1203 dumpsys(void)
1204 {
1205 const struct bdevsw *bdev;
1206 u_long totalbytesleft, bytes, i, n, memcl;
1207 u_long maddr;
1208 int psize;
1209 daddr_t blkno;
1210 int (*dump)(dev_t, daddr_t, void *, size_t);
1211 int error;
1212
1213 /* Save registers. */
1214 savectx(&dumppcb);
1215
1216 if (dumpdev == NODEV)
1217 return;
1218 bdev = bdevsw_lookup(dumpdev);
1219 if (bdev == NULL || bdev->d_psize == NULL)
1220 return;
1221
1222 /*
1223 * For dumps during autoconfiguration,
1224 * if dump device has already configured...
1225 */
1226 if (dumpsize == 0)
1227 cpu_dumpconf();
1228 if (dumplo <= 0) {
1229 printf("\ndump to dev %u,%u not possible\n",
1230 major(dumpdev), minor(dumpdev));
1231 return;
1232 }
1233 printf("\ndumping to dev %u,%u offset %ld\n",
1234 major(dumpdev), minor(dumpdev), dumplo);
1235
1236 psize = bdev_size(dumpdev);
1237 printf("dump ");
1238 if (psize == -1) {
1239 printf("area unavailable\n");
1240 return;
1241 }
1242
1243 /* XXX should purge all outstanding keystrokes. */
1244
1245 if ((error = cpu_dump()) != 0)
1246 goto err;
1247
1248 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1249 blkno = dumplo + cpu_dumpsize();
1250 dump = bdev->d_dump;
1251 error = 0;
1252
1253 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1254 maddr = mem_clusters[memcl].start;
1255 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1256
1257 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1258
1259 /* Print out how many MBs we to go. */
1260 if ((totalbytesleft % (1024*1024)) == 0)
1261 printf_nolog("%ld ",
1262 totalbytesleft / (1024 * 1024));
1263
1264 /* Limit size for next transfer. */
1265 n = bytes - i;
1266 if (n > BYTES_PER_DUMP)
1267 n = BYTES_PER_DUMP;
1268
1269 error = (*dump)(dumpdev, blkno,
1270 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1271 if (error)
1272 goto err;
1273 maddr += n;
1274 blkno += btodb(n); /* XXX? */
1275
1276 /* XXX should look for keystrokes, to cancel. */
1277 }
1278 }
1279
1280 err:
1281 switch (error) {
1282
1283 case ENXIO:
1284 printf("device bad\n");
1285 break;
1286
1287 case EFAULT:
1288 printf("device not ready\n");
1289 break;
1290
1291 case EINVAL:
1292 printf("area improper\n");
1293 break;
1294
1295 case EIO:
1296 printf("i/o error\n");
1297 break;
1298
1299 case EINTR:
1300 printf("aborted from console\n");
1301 break;
1302
1303 case 0:
1304 printf("succeeded\n");
1305 break;
1306
1307 default:
1308 printf("error %d\n", error);
1309 break;
1310 }
1311 printf("\n\n");
1312 delay(1000);
1313 }
1314
1315 void
1316 frametoreg(const struct trapframe *framep, struct reg *regp)
1317 {
1318
1319 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1320 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1321 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1322 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1323 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1324 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1325 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1326 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1327 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1328 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1329 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1330 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1331 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1332 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1333 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1334 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1335 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1336 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1337 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1338 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1339 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1340 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1341 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1342 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1343 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1344 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1345 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1346 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1347 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1348 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1349 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1350 regp->r_regs[R_ZERO] = 0;
1351 }
1352
1353 void
1354 regtoframe(const struct reg *regp, struct trapframe *framep)
1355 {
1356
1357 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1358 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1359 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1360 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1361 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1362 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1363 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1364 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1365 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1366 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1367 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1368 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1369 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1370 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1371 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1372 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1373 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1374 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1375 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1376 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1377 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1378 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1379 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1380 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1381 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1382 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1383 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1384 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1385 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1386 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1387 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1388 /* ??? = regp->r_regs[R_ZERO]; */
1389 }
1390
1391 void
1392 printregs(struct reg *regp)
1393 {
1394 int i;
1395
1396 for (i = 0; i < 32; i++)
1397 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1398 i & 1 ? "\n" : "\t");
1399 }
1400
1401 void
1402 regdump(struct trapframe *framep)
1403 {
1404 struct reg reg;
1405
1406 frametoreg(framep, ®);
1407 reg.r_regs[R_SP] = alpha_pal_rdusp();
1408
1409 printf("REGISTERS:\n");
1410 printregs(®);
1411 }
1412
1413
1414
1415 void *
1416 getframe(const struct lwp *l, int sig, int *onstack)
1417 {
1418 void *frame;
1419
1420 /* Do we need to jump onto the signal stack? */
1421 *onstack =
1422 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1423 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1424
1425 if (*onstack)
1426 frame = (void *)((char *)l->l_sigstk.ss_sp +
1427 l->l_sigstk.ss_size);
1428 else
1429 frame = (void *)(alpha_pal_rdusp());
1430 return (frame);
1431 }
1432
1433 void
1434 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1435 {
1436 struct trapframe *tf = l->l_md.md_tf;
1437
1438 tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1439 tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1440 tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1441 alpha_pal_wrusp((unsigned long)fp);
1442 }
1443
1444
1445 /*
1446 * Send an interrupt to process, new style
1447 */
1448 void
1449 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1450 {
1451 struct lwp *l = curlwp;
1452 struct proc *p = l->l_proc;
1453 struct sigacts *ps = p->p_sigacts;
1454 int onstack, sig = ksi->ksi_signo, error;
1455 struct sigframe_siginfo *fp, frame;
1456 struct trapframe *tf;
1457 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1458
1459 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1460 tf = l->l_md.md_tf;
1461
1462 /* Allocate space for the signal handler context. */
1463 fp--;
1464
1465 #ifdef DEBUG
1466 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1467 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1468 sig, &onstack, fp);
1469 #endif
1470
1471 /* Build stack frame for signal trampoline. */
1472
1473 frame.sf_si._info = ksi->ksi_info;
1474 frame.sf_uc.uc_flags = _UC_SIGMASK;
1475 frame.sf_uc.uc_sigmask = *mask;
1476 frame.sf_uc.uc_link = l->l_ctxlink;
1477 memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1478 sendsig_reset(l, sig);
1479 mutex_exit(p->p_lock);
1480 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1481 error = copyout(&frame, fp, sizeof(frame));
1482 mutex_enter(p->p_lock);
1483
1484 if (error != 0) {
1485 /*
1486 * Process has trashed its stack; give it an illegal
1487 * instruction to halt it in its tracks.
1488 */
1489 #ifdef DEBUG
1490 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1491 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1492 p->p_pid, sig);
1493 #endif
1494 sigexit(l, SIGILL);
1495 /* NOTREACHED */
1496 }
1497
1498 #ifdef DEBUG
1499 if (sigdebug & SDB_FOLLOW)
1500 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1501 p->p_pid, sig, fp, ksi->ksi_code);
1502 #endif
1503
1504 /*
1505 * Set up the registers to directly invoke the signal handler. The
1506 * signal trampoline is then used to return from the signal. Note
1507 * the trampoline version numbers are coordinated with machine-
1508 * dependent code in libc.
1509 */
1510
1511 tf->tf_regs[FRAME_A0] = sig;
1512 tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1513 tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1514
1515 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1516
1517 /* Remember that we're now on the signal stack. */
1518 if (onstack)
1519 l->l_sigstk.ss_flags |= SS_ONSTACK;
1520
1521 #ifdef DEBUG
1522 if (sigdebug & SDB_FOLLOW)
1523 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1524 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1525 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1526 printf("sendsig_siginfo(%d): sig %d returns\n",
1527 p->p_pid, sig);
1528 #endif
1529 }
1530
1531
1532 void
1533 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1534 {
1535 struct trapframe *tf;
1536
1537 tf = l->l_md.md_tf;
1538
1539 tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1540 tf->tf_regs[FRAME_RA] = 0;
1541 tf->tf_regs[FRAME_A0] = type;
1542 tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1543 tf->tf_regs[FRAME_A2] = nevents;
1544 tf->tf_regs[FRAME_A3] = ninterrupted;
1545 tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1546 tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1547 alpha_pal_wrusp((unsigned long)sp);
1548 }
1549
1550 /*
1551 * machine dependent system variables.
1552 */
1553 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1554 {
1555
1556 sysctl_createv(clog, 0, NULL, NULL,
1557 CTLFLAG_PERMANENT,
1558 CTLTYPE_NODE, "machdep", NULL,
1559 NULL, 0, NULL, 0,
1560 CTL_MACHDEP, CTL_EOL);
1561
1562 sysctl_createv(clog, 0, NULL, NULL,
1563 CTLFLAG_PERMANENT,
1564 CTLTYPE_STRUCT, "console_device", NULL,
1565 sysctl_consdev, 0, NULL, sizeof(dev_t),
1566 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1567 sysctl_createv(clog, 0, NULL, NULL,
1568 CTLFLAG_PERMANENT,
1569 CTLTYPE_STRING, "root_device", NULL,
1570 sysctl_root_device, 0, NULL, 0,
1571 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1572 sysctl_createv(clog, 0, NULL, NULL,
1573 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1574 CTLTYPE_INT, "unaligned_print", NULL,
1575 NULL, 0, &alpha_unaligned_print, 0,
1576 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1577 sysctl_createv(clog, 0, NULL, NULL,
1578 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1579 CTLTYPE_INT, "unaligned_fix", NULL,
1580 NULL, 0, &alpha_unaligned_fix, 0,
1581 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1582 sysctl_createv(clog, 0, NULL, NULL,
1583 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1584 CTLTYPE_INT, "unaligned_sigbus", NULL,
1585 NULL, 0, &alpha_unaligned_sigbus, 0,
1586 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1587 sysctl_createv(clog, 0, NULL, NULL,
1588 CTLFLAG_PERMANENT,
1589 CTLTYPE_STRING, "booted_kernel", NULL,
1590 NULL, 0, bootinfo.booted_kernel, 0,
1591 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1592 sysctl_createv(clog, 0, NULL, NULL,
1593 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1594 CTLTYPE_INT, "fp_sync_complete", NULL,
1595 NULL, 0, &alpha_fp_sync_complete, 0,
1596 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1597 }
1598
1599 /*
1600 * Set registers on exec.
1601 */
1602 void
1603 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1604 {
1605 struct trapframe *tfp = l->l_md.md_tf;
1606 struct pcb *pcb;
1607 #ifdef DEBUG
1608 int i;
1609 #endif
1610
1611 #ifdef DEBUG
1612 /*
1613 * Crash and dump, if the user requested it.
1614 */
1615 if (boothowto & RB_DUMP)
1616 panic("crash requested by boot flags");
1617 #endif
1618
1619 #ifdef DEBUG
1620 for (i = 0; i < FRAME_SIZE; i++)
1621 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1622 #else
1623 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1624 #endif
1625 pcb = lwp_getpcb(l);
1626 memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1627 alpha_pal_wrusp(stack);
1628 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1629 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1630
1631 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1632 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1633 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1634 tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp; /* a3 = ps_strings */
1635 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1636
1637 l->l_md.md_flags &= ~MDLWP_FPUSED;
1638 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1639 l->l_md.md_flags &= ~MDLWP_FP_C;
1640 pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1641 }
1642 fpu_discard();
1643 }
1644
1645 /*
1646 * Wait "n" microseconds.
1647 */
1648 void
1649 delay(unsigned long n)
1650 {
1651 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1652
1653 if (n == 0)
1654 return;
1655
1656 pcc0 = alpha_rpcc() & 0xffffffffUL;
1657 cycles = 0;
1658 usec = 0;
1659
1660 while (usec <= n) {
1661 /*
1662 * Get the next CPU cycle count- assumes that we cannot
1663 * have had more than one 32 bit overflow.
1664 */
1665 pcc1 = alpha_rpcc() & 0xffffffffUL;
1666 if (pcc1 < pcc0)
1667 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1668 else
1669 curcycle = pcc1 - pcc0;
1670
1671 /*
1672 * We now have the number of processor cycles since we
1673 * last checked. Add the current cycle count to the
1674 * running total. If it's over cycles_per_usec, increment
1675 * the usec counter.
1676 */
1677 cycles += curcycle;
1678 while (cycles > cycles_per_usec) {
1679 usec++;
1680 cycles -= cycles_per_usec;
1681 }
1682 pcc0 = pcc1;
1683 }
1684 }
1685
1686 #ifdef EXEC_ECOFF
1687 void
1688 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1689 {
1690 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1691
1692 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1693 }
1694
1695 /*
1696 * cpu_exec_ecoff_hook():
1697 * cpu-dependent ECOFF format hook for execve().
1698 *
1699 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1700 *
1701 */
1702 int
1703 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1704 {
1705 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1706 int error;
1707
1708 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1709 error = 0;
1710 else
1711 error = ENOEXEC;
1712
1713 return (error);
1714 }
1715 #endif /* EXEC_ECOFF */
1716
1717 int
1718 mm_md_physacc(paddr_t pa, vm_prot_t prot)
1719 {
1720 u_quad_t size;
1721 int i;
1722
1723 for (i = 0; i < mem_cluster_cnt; i++) {
1724 if (pa < mem_clusters[i].start)
1725 continue;
1726 size = mem_clusters[i].size & ~PAGE_MASK;
1727 if (pa >= (mem_clusters[i].start + size))
1728 continue;
1729 if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
1730 return 0;
1731 }
1732 return EFAULT;
1733 }
1734
1735 bool
1736 mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
1737 {
1738 vaddr_t va = (vaddr_t)addr;
1739
1740 if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
1741 *paddr = ALPHA_K0SEG_TO_PHYS(va);
1742 return true;
1743 }
1744 return false;
1745 }
1746
1747 bool
1748 mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
1749 {
1750
1751 *vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
1752 return true;
1753 }
1754
1755 /* XXX XXX BEGIN XXX XXX */
1756 paddr_t alpha_XXX_dmamap_or; /* XXX */
1757 /* XXX */
1758 paddr_t /* XXX */
1759 alpha_XXX_dmamap(v) /* XXX */
1760 vaddr_t v; /* XXX */
1761 { /* XXX */
1762 /* XXX */
1763 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1764 } /* XXX */
1765 /* XXX XXX END XXX XXX */
1766
1767 char *
1768 dot_conv(unsigned long x)
1769 {
1770 int i;
1771 char *xc;
1772 static int next;
1773 static char space[2][20];
1774
1775 xc = space[next ^= 1] + sizeof space[0];
1776 *--xc = '\0';
1777 for (i = 0;; ++i) {
1778 if (i && (i & 3) == 0)
1779 *--xc = '.';
1780 *--xc = hexdigits[x & 0xf];
1781 x >>= 4;
1782 if (x == 0)
1783 break;
1784 }
1785 return xc;
1786 }
1787
1788 void
1789 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1790 {
1791 struct trapframe *frame = l->l_md.md_tf;
1792 struct pcb *pcb = lwp_getpcb(l);
1793 __greg_t *gr = mcp->__gregs;
1794 __greg_t ras_pc;
1795
1796 /* Save register context. */
1797 frametoreg(frame, (struct reg *)gr);
1798 /* XXX if there's a better, general way to get the USP of
1799 * an LWP that might or might not be curlwp, I'd like to know
1800 * about it.
1801 */
1802 if (l == curlwp) {
1803 gr[_REG_SP] = alpha_pal_rdusp();
1804 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1805 } else {
1806 gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1807 gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1808 }
1809 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1810 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1811
1812 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1813 (void *) gr[_REG_PC])) != -1)
1814 gr[_REG_PC] = ras_pc;
1815
1816 *flags |= _UC_CPU | _UC_UNIQUE;
1817
1818 /* Save floating point register context, if any, and copy it. */
1819 if (fpu_used_p(l)) {
1820 fpu_save();
1821 (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1822 sizeof (mcp->__fpregs));
1823 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1824 *flags |= _UC_FPU;
1825 }
1826 }
1827
1828
1829 int
1830 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1831 {
1832 struct trapframe *frame = l->l_md.md_tf;
1833 struct pcb *pcb = lwp_getpcb(l);
1834 const __greg_t *gr = mcp->__gregs;
1835
1836 /* Restore register context, if any. */
1837 if (flags & _UC_CPU) {
1838 /* Check for security violations first. */
1839 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1840 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1841 return (EINVAL);
1842
1843 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1844 if (l == curlwp)
1845 alpha_pal_wrusp(gr[_REG_SP]);
1846 else
1847 pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1848 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1849 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1850 }
1851 if (flags & _UC_UNIQUE)
1852 lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
1853 /* Restore floating point register context, if any. */
1854 if (flags & _UC_FPU) {
1855 /* If we have an FP register context, get rid of it. */
1856 fpu_discard();
1857 (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1858 sizeof (pcb->pcb_fp));
1859 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
1860 fpu_mark_used(l);
1861 }
1862
1863 return (0);
1864 }
1865
1866 /*
1867 * Preempt the current process if in interrupt from user mode,
1868 * or after the current trap/syscall if in system mode.
1869 */
1870 void
1871 cpu_need_resched(struct cpu_info *ci, int flags)
1872 {
1873 #if defined(MULTIPROCESSOR)
1874 bool immed = (flags & RESCHED_IMMED) != 0;
1875 #endif /* defined(MULTIPROCESSOR) */
1876
1877 aston(ci->ci_data.cpu_onproc);
1878 ci->ci_want_resched = 1;
1879 if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
1880 #if defined(MULTIPROCESSOR)
1881 if (immed && ci != curcpu()) {
1882 alpha_send_ipi(ci->ci_cpuid, 0);
1883 }
1884 #endif /* defined(MULTIPROCESSOR) */
1885 }
1886 }
1887