Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.336
      1 /* $NetBSD: machdep.c,v 1.336 2011/12/12 19:03:07 mrg Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     35  * All rights reserved.
     36  *
     37  * Author: Chris G. Demetriou
     38  *
     39  * Permission to use, copy, modify and distribute this software and
     40  * its documentation is hereby granted, provided that both the copyright
     41  * notice and this permission notice appear in all copies of the
     42  * software, derivative works or modified versions, and any portions
     43  * thereof, and that both notices appear in supporting documentation.
     44  *
     45  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     46  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     47  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     48  *
     49  * Carnegie Mellon requests users of this software to return to
     50  *
     51  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     52  *  School of Computer Science
     53  *  Carnegie Mellon University
     54  *  Pittsburgh PA 15213-3890
     55  *
     56  * any improvements or extensions that they make and grant Carnegie the
     57  * rights to redistribute these changes.
     58  */
     59 
     60 #include "opt_ddb.h"
     61 #include "opt_kgdb.h"
     62 #include "opt_modular.h"
     63 #include "opt_multiprocessor.h"
     64 #include "opt_dec_3000_300.h"
     65 #include "opt_dec_3000_500.h"
     66 #include "opt_compat_osf1.h"
     67 #include "opt_execfmt.h"
     68 
     69 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     70 
     71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.336 2011/12/12 19:03:07 mrg Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/signalvar.h>
     76 #include <sys/kernel.h>
     77 #include <sys/cpu.h>
     78 #include <sys/proc.h>
     79 #include <sys/ras.h>
     80 #include <sys/sa.h>
     81 #include <sys/savar.h>
     82 #include <sys/sched.h>
     83 #include <sys/reboot.h>
     84 #include <sys/device.h>
     85 #include <sys/malloc.h>
     86 #include <sys/mman.h>
     87 #include <sys/msgbuf.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/tty.h>
     90 #include <sys/exec.h>
     91 #include <sys/exec_aout.h>		/* for MID_* */
     92 #include <sys/exec_ecoff.h>
     93 #include <sys/core.h>
     94 #include <sys/kcore.h>
     95 #include <sys/ucontext.h>
     96 #include <sys/conf.h>
     97 #include <sys/ksyms.h>
     98 #include <sys/kauth.h>
     99 #include <sys/atomic.h>
    100 #include <sys/cpu.h>
    101 
    102 #include <machine/kcore.h>
    103 #include <machine/fpu.h>
    104 
    105 #include <sys/mount.h>
    106 #include <sys/syscallargs.h>
    107 
    108 #include <uvm/uvm.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <dev/cons.h>
    112 #include <dev/mm.h>
    113 
    114 #include <machine/autoconf.h>
    115 #include <machine/reg.h>
    116 #include <machine/rpb.h>
    117 #include <machine/prom.h>
    118 #include <machine/cpuconf.h>
    119 #include <machine/ieeefp.h>
    120 
    121 #ifdef DDB
    122 #include <machine/db_machdep.h>
    123 #include <ddb/db_access.h>
    124 #include <ddb/db_sym.h>
    125 #include <ddb/db_extern.h>
    126 #include <ddb/db_interface.h>
    127 #endif
    128 
    129 #ifdef KGDB
    130 #include <sys/kgdb.h>
    131 #endif
    132 
    133 #ifdef DEBUG
    134 #include <machine/sigdebug.h>
    135 #endif
    136 
    137 #include <machine/alpha.h>
    138 
    139 #include "ksyms.h"
    140 
    141 struct vm_map *phys_map = NULL;
    142 
    143 void *msgbufaddr;
    144 
    145 int	maxmem;			/* max memory per process */
    146 
    147 int	totalphysmem;		/* total amount of physical memory in system */
    148 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    149 int	resvmem;		/* amount of memory reserved for PROM */
    150 int	unusedmem;		/* amount of memory for OS that we don't use */
    151 int	unknownmem;		/* amount of memory with an unknown use */
    152 
    153 int	cputype;		/* system type, from the RPB */
    154 
    155 int	bootdev_debug = 0;	/* patchable, or from DDB */
    156 
    157 /*
    158  * XXX We need an address to which we can assign things so that they
    159  * won't be optimized away because we didn't use the value.
    160  */
    161 u_int32_t no_optimize;
    162 
    163 /* the following is used externally (sysctl_hw) */
    164 char	machine[] = MACHINE;		/* from <machine/param.h> */
    165 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    166 char	cpu_model[128];
    167 
    168 /* Number of machine cycles per microsecond */
    169 u_int64_t	cycles_per_usec;
    170 
    171 /* number of CPUs in the box.  really! */
    172 int		ncpus;
    173 
    174 struct bootinfo_kernel bootinfo;
    175 
    176 /* For built-in TCDS */
    177 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    178 u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    179 #endif
    180 
    181 struct platform platform;
    182 
    183 #if NKSYMS || defined(DDB) || defined(MODULAR)
    184 /* start and end of kernel symbol table */
    185 void	*ksym_start, *ksym_end;
    186 #endif
    187 
    188 /* for cpu_sysctl() */
    189 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    190 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    191 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    192 int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    193 
    194 /*
    195  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    196  * XXX it should also be larger than it is, because not all of the mddt
    197  * XXX clusters end up being used for VM.
    198  */
    199 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    200 int	mem_cluster_cnt;
    201 
    202 int	cpu_dump(void);
    203 int	cpu_dumpsize(void);
    204 u_long	cpu_dump_mempagecnt(void);
    205 void	dumpsys(void);
    206 void	identifycpu(void);
    207 void	printregs(struct reg *);
    208 
    209 const pcu_ops_t fpu_ops = {
    210 	.pcu_id = PCU_FPU,
    211 	.pcu_state_load = fpu_state_load,
    212 	.pcu_state_save = fpu_state_save,
    213 	.pcu_state_release = fpu_state_release,
    214 };
    215 
    216 const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
    217 	[PCU_FPU] = &fpu_ops,
    218 };
    219 
    220 void
    221 alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
    222 	/* pfn:		 first free PFN number */
    223 	/* ptb:		 PFN of current level 1 page table */
    224 	/* bim:		 bootinfo magic */
    225 	/* bip:		 bootinfo pointer */
    226 	/* biv:		 bootinfo version */
    227 {
    228 	extern char kernel_text[], _end[];
    229 	struct mddt *mddtp;
    230 	struct mddt_cluster *memc;
    231 	int i, mddtweird;
    232 	struct vm_physseg *vps;
    233 	struct pcb *pcb0;
    234 	vaddr_t kernstart, kernend, v;
    235 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    236 	cpuid_t cpu_id;
    237 	struct cpu_info *ci;
    238 	char *p;
    239 	const char *bootinfo_msg;
    240 	const struct cpuinit *c;
    241 
    242 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    243 
    244 	/*
    245 	 * Turn off interrupts (not mchecks) and floating point.
    246 	 * Make sure the instruction and data streams are consistent.
    247 	 */
    248 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    249 	alpha_pal_wrfen(0);
    250 	ALPHA_TBIA();
    251 	alpha_pal_imb();
    252 
    253 	/* Initialize the SCB. */
    254 	scb_init();
    255 
    256 	cpu_id = cpu_number();
    257 
    258 #if defined(MULTIPROCESSOR)
    259 	/*
    260 	 * Set our SysValue to the address of our cpu_info structure.
    261 	 * Secondary processors do this in their spinup trampoline.
    262 	 */
    263 	alpha_pal_wrval((u_long)&cpu_info_primary);
    264 	cpu_info[cpu_id] = &cpu_info_primary;
    265 #endif
    266 
    267 	ci = curcpu();
    268 	ci->ci_cpuid = cpu_id;
    269 
    270 	/*
    271 	 * Get critical system information (if possible, from the
    272 	 * information provided by the boot program).
    273 	 */
    274 	bootinfo_msg = NULL;
    275 	if (bim == BOOTINFO_MAGIC) {
    276 		if (biv == 0) {		/* backward compat */
    277 			biv = *(u_long *)bip;
    278 			bip += 8;
    279 		}
    280 		switch (biv) {
    281 		case 1: {
    282 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    283 
    284 			bootinfo.ssym = v1p->ssym;
    285 			bootinfo.esym = v1p->esym;
    286 			/* hwrpb may not be provided by boot block in v1 */
    287 			if (v1p->hwrpb != NULL) {
    288 				bootinfo.hwrpb_phys =
    289 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    290 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    291 			} else {
    292 				bootinfo.hwrpb_phys =
    293 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    294 				bootinfo.hwrpb_size =
    295 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    296 			}
    297 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    298 			    min(sizeof v1p->boot_flags,
    299 			      sizeof bootinfo.boot_flags));
    300 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    301 			    min(sizeof v1p->booted_kernel,
    302 			      sizeof bootinfo.booted_kernel));
    303 			/* booted dev not provided in bootinfo */
    304 			init_prom_interface((struct rpb *)
    305 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    306                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    307 			    sizeof bootinfo.booted_dev);
    308 			break;
    309 		}
    310 		default:
    311 			bootinfo_msg = "unknown bootinfo version";
    312 			goto nobootinfo;
    313 		}
    314 	} else {
    315 		bootinfo_msg = "boot program did not pass bootinfo";
    316 nobootinfo:
    317 		bootinfo.ssym = (u_long)_end;
    318 		bootinfo.esym = (u_long)_end;
    319 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    320 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    321 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    322 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    323 		    sizeof bootinfo.boot_flags);
    324 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    325 		    sizeof bootinfo.booted_kernel);
    326 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    327 		    sizeof bootinfo.booted_dev);
    328 	}
    329 
    330 	/*
    331 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    332 	 * lots of things.
    333 	 */
    334 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    335 
    336 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    337 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    338 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    339 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    340 		    sizeof(dec_3000_scsiid));
    341 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    342 		    sizeof(dec_3000_scsifast));
    343 	}
    344 #endif
    345 
    346 	/*
    347 	 * Remember how many cycles there are per microsecond,
    348 	 * so that we can use delay().  Round up, for safety.
    349 	 */
    350 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    351 
    352 	/*
    353 	 * Initialize the (temporary) bootstrap console interface, so
    354 	 * we can use printf until the VM system starts being setup.
    355 	 * The real console is initialized before then.
    356 	 */
    357 	init_bootstrap_console();
    358 
    359 	/* OUTPUT NOW ALLOWED */
    360 
    361 	/* delayed from above */
    362 	if (bootinfo_msg)
    363 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    364 		    bootinfo_msg, bim, bip, biv);
    365 
    366 	/* Initialize the trap vectors on the primary processor. */
    367 	trap_init();
    368 
    369 	/*
    370 	 * Find out this system's page size, and initialize
    371 	 * PAGE_SIZE-dependent variables.
    372 	 */
    373 	if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
    374 		panic("page size %lu != %d?!", hwrpb->rpb_page_size,
    375 		    ALPHA_PGBYTES);
    376 	uvmexp.pagesize = hwrpb->rpb_page_size;
    377 	uvm_setpagesize();
    378 
    379 	/*
    380 	 * Find out what hardware we're on, and do basic initialization.
    381 	 */
    382 	cputype = hwrpb->rpb_type;
    383 	if (cputype < 0) {
    384 		/*
    385 		 * At least some white-box systems have SRM which
    386 		 * reports a systype that's the negative of their
    387 		 * blue-box counterpart.
    388 		 */
    389 		cputype = -cputype;
    390 	}
    391 	c = platform_lookup(cputype);
    392 	if (c == NULL) {
    393 		platform_not_supported();
    394 		/* NOTREACHED */
    395 	}
    396 	(*c->init)();
    397 	strcpy(cpu_model, platform.model);
    398 
    399 	/*
    400 	 * Initialize the real console, so that the bootstrap console is
    401 	 * no longer necessary.
    402 	 */
    403 	(*platform.cons_init)();
    404 
    405 #ifdef DIAGNOSTIC
    406 	/* Paranoid sanity checking */
    407 
    408 	/* We should always be running on the primary. */
    409 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    410 
    411 	/*
    412 	 * On single-CPU systypes, the primary should always be CPU 0,
    413 	 * except on Alpha 8200 systems where the CPU id is related
    414 	 * to the VID, which is related to the Turbo Laser node id.
    415 	 */
    416 	if (cputype != ST_DEC_21000)
    417 		assert(hwrpb->rpb_primary_cpu_id == 0);
    418 #endif
    419 
    420 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    421 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    422 	/*
    423 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    424 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    425 	 */
    426 #endif
    427 
    428 	/*
    429 	 * Find the beginning and end of the kernel (and leave a
    430 	 * bit of space before the beginning for the bootstrap
    431 	 * stack).
    432 	 */
    433 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    434 #if NKSYMS || defined(DDB) || defined(MODULAR)
    435 	ksym_start = (void *)bootinfo.ssym;
    436 	ksym_end   = (void *)bootinfo.esym;
    437 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    438 #else
    439 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    440 #endif
    441 
    442 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    443 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    444 
    445 	/*
    446 	 * Find out how much memory is available, by looking at
    447 	 * the memory cluster descriptors.  This also tries to do
    448 	 * its best to detect things things that have never been seen
    449 	 * before...
    450 	 */
    451 	mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
    452 
    453 	/* MDDT SANITY CHECKING */
    454 	mddtweird = 0;
    455 	if (mddtp->mddt_cluster_cnt < 2) {
    456 		mddtweird = 1;
    457 		printf("WARNING: weird number of mem clusters: %lu\n",
    458 		    mddtp->mddt_cluster_cnt);
    459 	}
    460 
    461 #if 0
    462 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    463 #endif
    464 
    465 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    466 		memc = &mddtp->mddt_clusters[i];
    467 #if 0
    468 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    469 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    470 #endif
    471 		totalphysmem += memc->mddt_pg_cnt;
    472 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    473 			mem_clusters[mem_cluster_cnt].start =
    474 			    ptoa(memc->mddt_pfn);
    475 			mem_clusters[mem_cluster_cnt].size =
    476 			    ptoa(memc->mddt_pg_cnt);
    477 			if (memc->mddt_usage & MDDT_mbz ||
    478 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    479 			    memc->mddt_usage & MDDT_PALCODE)
    480 				mem_clusters[mem_cluster_cnt].size |=
    481 				    PROT_READ;
    482 			else
    483 				mem_clusters[mem_cluster_cnt].size |=
    484 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    485 			mem_cluster_cnt++;
    486 		}
    487 
    488 		if (memc->mddt_usage & MDDT_mbz) {
    489 			mddtweird = 1;
    490 			printf("WARNING: mem cluster %d has weird "
    491 			    "usage 0x%lx\n", i, memc->mddt_usage);
    492 			unknownmem += memc->mddt_pg_cnt;
    493 			continue;
    494 		}
    495 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    496 			/* XXX should handle these... */
    497 			printf("WARNING: skipping non-volatile mem "
    498 			    "cluster %d\n", i);
    499 			unusedmem += memc->mddt_pg_cnt;
    500 			continue;
    501 		}
    502 		if (memc->mddt_usage & MDDT_PALCODE) {
    503 			resvmem += memc->mddt_pg_cnt;
    504 			continue;
    505 		}
    506 
    507 		/*
    508 		 * We have a memory cluster available for system
    509 		 * software use.  We must determine if this cluster
    510 		 * holds the kernel.
    511 		 */
    512 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    513 		/*
    514 		 * XXX If the kernel uses the PROM console, we only use the
    515 		 * XXX memory after the kernel in the first system segment,
    516 		 * XXX to avoid clobbering prom mapping, data, etc.
    517 		 */
    518 	    if (!pmap_uses_prom_console() || physmem == 0) {
    519 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    520 		physmem += memc->mddt_pg_cnt;
    521 		pfn0 = memc->mddt_pfn;
    522 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    523 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    524 			/*
    525 			 * Must compute the location of the kernel
    526 			 * within the segment.
    527 			 */
    528 #if 0
    529 			printf("Cluster %d contains kernel\n", i);
    530 #endif
    531 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    532 		    if (!pmap_uses_prom_console()) {
    533 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    534 			if (pfn0 < kernstartpfn) {
    535 				/*
    536 				 * There is a chunk before the kernel.
    537 				 */
    538 #if 0
    539 				printf("Loading chunk before kernel: "
    540 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    541 #endif
    542 				uvm_page_physload(pfn0, kernstartpfn,
    543 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    544 			}
    545 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    546 		    }
    547 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    548 			if (kernendpfn < pfn1) {
    549 				/*
    550 				 * There is a chunk after the kernel.
    551 				 */
    552 #if 0
    553 				printf("Loading chunk after kernel: "
    554 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    555 #endif
    556 				uvm_page_physload(kernendpfn, pfn1,
    557 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    558 			}
    559 		} else {
    560 			/*
    561 			 * Just load this cluster as one chunk.
    562 			 */
    563 #if 0
    564 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    565 			    pfn0, pfn1);
    566 #endif
    567 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    568 			    VM_FREELIST_DEFAULT);
    569 		}
    570 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    571 	    }
    572 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    573 	}
    574 
    575 	/*
    576 	 * Dump out the MDDT if it looks odd...
    577 	 */
    578 	if (mddtweird) {
    579 		printf("\n");
    580 		printf("complete memory cluster information:\n");
    581 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    582 			printf("mddt %d:\n", i);
    583 			printf("\tpfn %lx\n",
    584 			    mddtp->mddt_clusters[i].mddt_pfn);
    585 			printf("\tcnt %lx\n",
    586 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    587 			printf("\ttest %lx\n",
    588 			    mddtp->mddt_clusters[i].mddt_pg_test);
    589 			printf("\tbva %lx\n",
    590 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    591 			printf("\tbpa %lx\n",
    592 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    593 			printf("\tbcksum %lx\n",
    594 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    595 			printf("\tusage %lx\n",
    596 			    mddtp->mddt_clusters[i].mddt_usage);
    597 		}
    598 		printf("\n");
    599 	}
    600 
    601 	if (totalphysmem == 0)
    602 		panic("can't happen: system seems to have no memory!");
    603 	maxmem = physmem;
    604 #if 0
    605 	printf("totalphysmem = %d\n", totalphysmem);
    606 	printf("physmem = %d\n", physmem);
    607 	printf("resvmem = %d\n", resvmem);
    608 	printf("unusedmem = %d\n", unusedmem);
    609 	printf("unknownmem = %d\n", unknownmem);
    610 #endif
    611 
    612 	/*
    613 	 * Initialize error message buffer (at end of core).
    614 	 */
    615 	{
    616 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    617 		vsize_t reqsz = sz;
    618 
    619 		vps = VM_PHYSMEM_PTR(vm_nphysseg - 1);
    620 
    621 		/* shrink so that it'll fit in the last segment */
    622 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    623 			sz = ptoa(vps->avail_end - vps->avail_start);
    624 
    625 		vps->end -= atop(sz);
    626 		vps->avail_end -= atop(sz);
    627 		msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    628 		initmsgbuf(msgbufaddr, sz);
    629 
    630 		/* Remove the last segment if it now has no pages. */
    631 		if (vps->start == vps->end)
    632 			vm_nphysseg--;
    633 
    634 		/* warn if the message buffer had to be shrunk */
    635 		if (sz != reqsz)
    636 			printf("WARNING: %ld bytes not available for msgbuf "
    637 			    "in last cluster (%ld used)\n", reqsz, sz);
    638 
    639 	}
    640 
    641 	/*
    642 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    643 	 * pmap_bootstrap() because our pmap_virtual_space()
    644 	 * returns compile-time constants.
    645 	 */
    646 
    647 	/*
    648 	 * Allocate uarea page for lwp0 and set it.
    649 	 */
    650 	v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    651 	uvm_lwp_setuarea(&lwp0, v);
    652 
    653 	/*
    654 	 * Initialize the virtual memory system, and set the
    655 	 * page table base register in proc 0's PCB.
    656 	 */
    657 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    658 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    659 
    660 	/*
    661 	 * Initialize the rest of lwp0's PCB and cache its physical address.
    662 	 */
    663 	pcb0 = lwp_getpcb(&lwp0);
    664 	lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
    665 
    666 	/*
    667 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    668 	 * and make lwp0's trapframe pointer point to it for sanity.
    669 	 */
    670 	pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
    671 	lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
    672 
    673 	/* Indicate that lwp0 has a CPU. */
    674 	lwp0.l_cpu = ci;
    675 
    676 	/*
    677 	 * Look at arguments passed to us and compute boothowto.
    678 	 */
    679 
    680 	boothowto = RB_SINGLE;
    681 #ifdef KADB
    682 	boothowto |= RB_KDB;
    683 #endif
    684 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    685 		/*
    686 		 * Note that we'd really like to differentiate case here,
    687 		 * but the Alpha AXP Architecture Reference Manual
    688 		 * says that we shouldn't.
    689 		 */
    690 		switch (*p) {
    691 		case 'a': /* autoboot */
    692 		case 'A':
    693 			boothowto &= ~RB_SINGLE;
    694 			break;
    695 
    696 #ifdef DEBUG
    697 		case 'c': /* crash dump immediately after autoconfig */
    698 		case 'C':
    699 			boothowto |= RB_DUMP;
    700 			break;
    701 #endif
    702 
    703 #if defined(KGDB) || defined(DDB)
    704 		case 'd': /* break into the kernel debugger ASAP */
    705 		case 'D':
    706 			boothowto |= RB_KDB;
    707 			break;
    708 #endif
    709 
    710 		case 'h': /* always halt, never reboot */
    711 		case 'H':
    712 			boothowto |= RB_HALT;
    713 			break;
    714 
    715 #if 0
    716 		case 'm': /* mini root present in memory */
    717 		case 'M':
    718 			boothowto |= RB_MINIROOT;
    719 			break;
    720 #endif
    721 
    722 		case 'n': /* askname */
    723 		case 'N':
    724 			boothowto |= RB_ASKNAME;
    725 			break;
    726 
    727 		case 's': /* single-user (default, supported for sanity) */
    728 		case 'S':
    729 			boothowto |= RB_SINGLE;
    730 			break;
    731 
    732 		case 'q': /* quiet boot */
    733 		case 'Q':
    734 			boothowto |= AB_QUIET;
    735 			break;
    736 
    737 		case 'v': /* verbose boot */
    738 		case 'V':
    739 			boothowto |= AB_VERBOSE;
    740 			break;
    741 
    742 		case '-':
    743 			/*
    744 			 * Just ignore this.  It's not required, but it's
    745 			 * common for it to be passed regardless.
    746 			 */
    747 			break;
    748 
    749 		default:
    750 			printf("Unrecognized boot flag '%c'.\n", *p);
    751 			break;
    752 		}
    753 	}
    754 
    755 	/*
    756 	 * Perform any initial kernel patches based on the running system.
    757 	 * We may perform more later if we attach additional CPUs.
    758 	 */
    759 	alpha_patch(false);
    760 
    761 	/*
    762 	 * Figure out the number of CPUs in the box, from RPB fields.
    763 	 * Really.  We mean it.
    764 	 */
    765 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    766 		struct pcs *pcsp;
    767 
    768 		pcsp = LOCATE_PCS(hwrpb, i);
    769 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    770 			ncpus++;
    771 	}
    772 
    773 	/*
    774 	 * Initialize debuggers, and break into them if appropriate.
    775 	 */
    776 #if NKSYMS || defined(DDB) || defined(MODULAR)
    777 	ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    778 	    ksym_start, ksym_end);
    779 #endif
    780 
    781 	if (boothowto & RB_KDB) {
    782 #if defined(KGDB)
    783 		kgdb_debug_init = 1;
    784 		kgdb_connect(1);
    785 #elif defined(DDB)
    786 		Debugger();
    787 #endif
    788 	}
    789 
    790 #ifdef DIAGNOSTIC
    791 	/*
    792 	 * Check our clock frequency, from RPB fields.
    793 	 */
    794 	if ((hwrpb->rpb_intr_freq >> 12) != 1024)
    795 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    796 			hwrpb->rpb_intr_freq, hz);
    797 #endif
    798 }
    799 
    800 void
    801 consinit(void)
    802 {
    803 
    804 	/*
    805 	 * Everything related to console initialization is done
    806 	 * in alpha_init().
    807 	 */
    808 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    809 	printf("consinit: %susing prom console\n",
    810 	    pmap_uses_prom_console() ? "" : "not ");
    811 #endif
    812 }
    813 
    814 void
    815 cpu_startup(void)
    816 {
    817 	extern struct evcnt fpevent_use, fpevent_reuse;
    818 	vaddr_t minaddr, maxaddr;
    819 	char pbuf[9];
    820 #if defined(DEBUG)
    821 	extern int pmapdebug;
    822 	int opmapdebug = pmapdebug;
    823 
    824 	pmapdebug = 0;
    825 #endif
    826 
    827 	/*
    828 	 * Good {morning,afternoon,evening,night}.
    829 	 */
    830 	printf("%s%s", copyright, version);
    831 	identifycpu();
    832 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    833 	printf("total memory = %s\n", pbuf);
    834 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    835 	printf("(%s reserved for PROM, ", pbuf);
    836 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    837 	printf("%s used by NetBSD)\n", pbuf);
    838 	if (unusedmem) {
    839 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    840 		printf("WARNING: unused memory = %s\n", pbuf);
    841 	}
    842 	if (unknownmem) {
    843 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    844 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    845 	}
    846 
    847 	minaddr = 0;
    848 
    849 	/*
    850 	 * Allocate a submap for physio
    851 	 */
    852 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    853 				   VM_PHYS_SIZE, 0, false, NULL);
    854 
    855 	/*
    856 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    857 	 * are allocated via the pool allocator, and we use K0SEG to
    858 	 * map those pages.
    859 	 */
    860 
    861 #if defined(DEBUG)
    862 	pmapdebug = opmapdebug;
    863 #endif
    864 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    865 	printf("avail memory = %s\n", pbuf);
    866 #if 0
    867 	{
    868 		extern u_long pmap_pages_stolen;
    869 
    870 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    871 		printf("stolen memory for VM structures = %s\n", pbuf);
    872 	}
    873 #endif
    874 
    875 	/*
    876 	 * Set up the HWPCB so that it's safe to configure secondary
    877 	 * CPUs.
    878 	 */
    879 	hwrpb_primary_init();
    880 
    881 	/*
    882 	 * Initialize some trap event counters.
    883 	 */
    884 	evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
    885 	    "FP", "proc use");
    886 	evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
    887 	    "FP", "proc re-use");
    888 }
    889 
    890 /*
    891  * Retrieve the platform name from the DSR.
    892  */
    893 const char *
    894 alpha_dsr_sysname(void)
    895 {
    896 	struct dsrdb *dsr;
    897 	const char *sysname;
    898 
    899 	/*
    900 	 * DSR does not exist on early HWRPB versions.
    901 	 */
    902 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    903 		return (NULL);
    904 
    905 	dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
    906 	sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
    907 	    sizeof(u_int64_t)));
    908 	return (sysname);
    909 }
    910 
    911 /*
    912  * Lookup the system specified system variation in the provided table,
    913  * returning the model string on match.
    914  */
    915 const char *
    916 alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
    917 {
    918 	int i;
    919 
    920 	for (i = 0; avtp[i].avt_model != NULL; i++)
    921 		if (avtp[i].avt_variation == variation)
    922 			return (avtp[i].avt_model);
    923 	return (NULL);
    924 }
    925 
    926 /*
    927  * Generate a default platform name based for unknown system variations.
    928  */
    929 const char *
    930 alpha_unknown_sysname(void)
    931 {
    932 	static char s[128];		/* safe size */
    933 
    934 	sprintf(s, "%s family, unknown model variation 0x%lx",
    935 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    936 	return ((const char *)s);
    937 }
    938 
    939 void
    940 identifycpu(void)
    941 {
    942 	char *s;
    943 	int i;
    944 
    945 	/*
    946 	 * print out CPU identification information.
    947 	 */
    948 	printf("%s", cpu_model);
    949 	for(s = cpu_model; *s; ++s)
    950 		if(strncasecmp(s, "MHz", 3) == 0)
    951 			goto skipMHz;
    952 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
    953 skipMHz:
    954 	printf(", s/n ");
    955 	for (i = 0; i < 10; i++)
    956 		printf("%c", hwrpb->rpb_ssn[i]);
    957 	printf("\n");
    958 	printf("%ld byte page size, %d processor%s.\n",
    959 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    960 #if 0
    961 	/* this isn't defined for any systems that we run on? */
    962 	printf("serial number 0x%lx 0x%lx\n",
    963 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    964 
    965 	/* and these aren't particularly useful! */
    966 	printf("variation: 0x%lx, revision 0x%lx\n",
    967 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    968 #endif
    969 }
    970 
    971 int	waittime = -1;
    972 struct pcb dumppcb;
    973 
    974 void
    975 cpu_reboot(int howto, char *bootstr)
    976 {
    977 #if defined(MULTIPROCESSOR)
    978 	u_long cpu_id = cpu_number();
    979 	u_long wait_mask;
    980 	int i;
    981 #endif
    982 
    983 	/* If "always halt" was specified as a boot flag, obey. */
    984 	if ((boothowto & RB_HALT) != 0)
    985 		howto |= RB_HALT;
    986 
    987 	boothowto = howto;
    988 
    989 	/* If system is cold, just halt. */
    990 	if (cold) {
    991 		boothowto |= RB_HALT;
    992 		goto haltsys;
    993 	}
    994 
    995 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
    996 		waittime = 0;
    997 		vfs_shutdown();
    998 		/*
    999 		 * If we've been adjusting the clock, the todr
   1000 		 * will be out of synch; adjust it now.
   1001 		 */
   1002 		resettodr();
   1003 	}
   1004 
   1005 	/* Disable interrupts. */
   1006 	splhigh();
   1007 
   1008 #if defined(MULTIPROCESSOR)
   1009 	/*
   1010 	 * Halt all other CPUs.  If we're not the primary, the
   1011 	 * primary will spin, waiting for us to halt.
   1012 	 */
   1013 	cpu_id = cpu_number();		/* may have changed cpu */
   1014 	wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
   1015 
   1016 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1017 
   1018 	/* Ensure any CPUs paused by DDB resume execution so they can halt */
   1019 	cpus_paused = 0;
   1020 
   1021 	for (i = 0; i < 10000; i++) {
   1022 		alpha_mb();
   1023 		if (cpus_running == wait_mask)
   1024 			break;
   1025 		delay(1000);
   1026 	}
   1027 	alpha_mb();
   1028 	if (cpus_running != wait_mask)
   1029 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1030 		    cpus_running);
   1031 #endif /* MULTIPROCESSOR */
   1032 
   1033 	/* If rebooting and a dump is requested do it. */
   1034 #if 0
   1035 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1036 #else
   1037 	if (boothowto & RB_DUMP)
   1038 #endif
   1039 		dumpsys();
   1040 
   1041 haltsys:
   1042 
   1043 	/* run any shutdown hooks */
   1044 	doshutdownhooks();
   1045 
   1046 	pmf_system_shutdown(boothowto);
   1047 
   1048 #ifdef BOOTKEY
   1049 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1050 	cnpollc(1);	/* for proper keyboard command handling */
   1051 	cngetc();
   1052 	cnpollc(0);
   1053 	printf("\n");
   1054 #endif
   1055 
   1056 	/* Finally, powerdown/halt/reboot the system. */
   1057 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1058 	    platform.powerdown != NULL) {
   1059 		(*platform.powerdown)();
   1060 		printf("WARNING: powerdown failed!\n");
   1061 	}
   1062 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1063 #if defined(MULTIPROCESSOR)
   1064 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1065 		cpu_halt();
   1066 	else
   1067 #endif
   1068 		prom_halt(boothowto & RB_HALT);
   1069 	/*NOTREACHED*/
   1070 }
   1071 
   1072 /*
   1073  * These variables are needed by /sbin/savecore
   1074  */
   1075 u_int32_t dumpmag = 0x8fca0101;	/* magic number */
   1076 int 	dumpsize = 0;		/* pages */
   1077 long	dumplo = 0; 		/* blocks */
   1078 
   1079 /*
   1080  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1081  */
   1082 int
   1083 cpu_dumpsize(void)
   1084 {
   1085 	int size;
   1086 
   1087 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1088 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1089 	if (roundup(size, dbtob(1)) != dbtob(1))
   1090 		return -1;
   1091 
   1092 	return (1);
   1093 }
   1094 
   1095 /*
   1096  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1097  */
   1098 u_long
   1099 cpu_dump_mempagecnt(void)
   1100 {
   1101 	u_long i, n;
   1102 
   1103 	n = 0;
   1104 	for (i = 0; i < mem_cluster_cnt; i++)
   1105 		n += atop(mem_clusters[i].size);
   1106 	return (n);
   1107 }
   1108 
   1109 /*
   1110  * cpu_dump: dump machine-dependent kernel core dump headers.
   1111  */
   1112 int
   1113 cpu_dump(void)
   1114 {
   1115 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1116 	char buf[dbtob(1)];
   1117 	kcore_seg_t *segp;
   1118 	cpu_kcore_hdr_t *cpuhdrp;
   1119 	phys_ram_seg_t *memsegp;
   1120 	const struct bdevsw *bdev;
   1121 	int i;
   1122 
   1123 	bdev = bdevsw_lookup(dumpdev);
   1124 	if (bdev == NULL)
   1125 		return (ENXIO);
   1126 	dump = bdev->d_dump;
   1127 
   1128 	memset(buf, 0, sizeof buf);
   1129 	segp = (kcore_seg_t *)buf;
   1130 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1131 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1132 	    ALIGN(sizeof(*cpuhdrp))];
   1133 
   1134 	/*
   1135 	 * Generate a segment header.
   1136 	 */
   1137 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1138 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1139 
   1140 	/*
   1141 	 * Add the machine-dependent header info.
   1142 	 */
   1143 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1144 	cpuhdrp->page_size = PAGE_SIZE;
   1145 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1146 
   1147 	/*
   1148 	 * Fill in the memory segment descriptors.
   1149 	 */
   1150 	for (i = 0; i < mem_cluster_cnt; i++) {
   1151 		memsegp[i].start = mem_clusters[i].start;
   1152 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1153 	}
   1154 
   1155 	return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
   1156 }
   1157 
   1158 /*
   1159  * This is called by main to set dumplo and dumpsize.
   1160  * Dumps always skip the first PAGE_SIZE of disk space
   1161  * in case there might be a disk label stored there.
   1162  * If there is extra space, put dump at the end to
   1163  * reduce the chance that swapping trashes it.
   1164  */
   1165 void
   1166 cpu_dumpconf(void)
   1167 {
   1168 	int nblks, dumpblks;	/* size of dump area */
   1169 
   1170 	if (dumpdev == NODEV)
   1171 		goto bad;
   1172 	nblks = bdev_size(dumpdev);
   1173 	if (nblks <= ctod(1))
   1174 		goto bad;
   1175 
   1176 	dumpblks = cpu_dumpsize();
   1177 	if (dumpblks < 0)
   1178 		goto bad;
   1179 	dumpblks += ctod(cpu_dump_mempagecnt());
   1180 
   1181 	/* If dump won't fit (incl. room for possible label), punt. */
   1182 	if (dumpblks > (nblks - ctod(1)))
   1183 		goto bad;
   1184 
   1185 	/* Put dump at end of partition */
   1186 	dumplo = nblks - dumpblks;
   1187 
   1188 	/* dumpsize is in page units, and doesn't include headers. */
   1189 	dumpsize = cpu_dump_mempagecnt();
   1190 	return;
   1191 
   1192 bad:
   1193 	dumpsize = 0;
   1194 	return;
   1195 }
   1196 
   1197 /*
   1198  * Dump the kernel's image to the swap partition.
   1199  */
   1200 #define	BYTES_PER_DUMP	PAGE_SIZE
   1201 
   1202 void
   1203 dumpsys(void)
   1204 {
   1205 	const struct bdevsw *bdev;
   1206 	u_long totalbytesleft, bytes, i, n, memcl;
   1207 	u_long maddr;
   1208 	int psize;
   1209 	daddr_t blkno;
   1210 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1211 	int error;
   1212 
   1213 	/* Save registers. */
   1214 	savectx(&dumppcb);
   1215 
   1216 	if (dumpdev == NODEV)
   1217 		return;
   1218 	bdev = bdevsw_lookup(dumpdev);
   1219 	if (bdev == NULL || bdev->d_psize == NULL)
   1220 		return;
   1221 
   1222 	/*
   1223 	 * For dumps during autoconfiguration,
   1224 	 * if dump device has already configured...
   1225 	 */
   1226 	if (dumpsize == 0)
   1227 		cpu_dumpconf();
   1228 	if (dumplo <= 0) {
   1229 		printf("\ndump to dev %u,%u not possible\n",
   1230 		    major(dumpdev), minor(dumpdev));
   1231 		return;
   1232 	}
   1233 	printf("\ndumping to dev %u,%u offset %ld\n",
   1234 	    major(dumpdev), minor(dumpdev), dumplo);
   1235 
   1236 	psize = bdev_size(dumpdev);
   1237 	printf("dump ");
   1238 	if (psize == -1) {
   1239 		printf("area unavailable\n");
   1240 		return;
   1241 	}
   1242 
   1243 	/* XXX should purge all outstanding keystrokes. */
   1244 
   1245 	if ((error = cpu_dump()) != 0)
   1246 		goto err;
   1247 
   1248 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1249 	blkno = dumplo + cpu_dumpsize();
   1250 	dump = bdev->d_dump;
   1251 	error = 0;
   1252 
   1253 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1254 		maddr = mem_clusters[memcl].start;
   1255 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1256 
   1257 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1258 
   1259 			/* Print out how many MBs we to go. */
   1260 			if ((totalbytesleft % (1024*1024)) == 0)
   1261 				printf_nolog("%ld ",
   1262 				    totalbytesleft / (1024 * 1024));
   1263 
   1264 			/* Limit size for next transfer. */
   1265 			n = bytes - i;
   1266 			if (n > BYTES_PER_DUMP)
   1267 				n =  BYTES_PER_DUMP;
   1268 
   1269 			error = (*dump)(dumpdev, blkno,
   1270 			    (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1271 			if (error)
   1272 				goto err;
   1273 			maddr += n;
   1274 			blkno += btodb(n);			/* XXX? */
   1275 
   1276 			/* XXX should look for keystrokes, to cancel. */
   1277 		}
   1278 	}
   1279 
   1280 err:
   1281 	switch (error) {
   1282 
   1283 	case ENXIO:
   1284 		printf("device bad\n");
   1285 		break;
   1286 
   1287 	case EFAULT:
   1288 		printf("device not ready\n");
   1289 		break;
   1290 
   1291 	case EINVAL:
   1292 		printf("area improper\n");
   1293 		break;
   1294 
   1295 	case EIO:
   1296 		printf("i/o error\n");
   1297 		break;
   1298 
   1299 	case EINTR:
   1300 		printf("aborted from console\n");
   1301 		break;
   1302 
   1303 	case 0:
   1304 		printf("succeeded\n");
   1305 		break;
   1306 
   1307 	default:
   1308 		printf("error %d\n", error);
   1309 		break;
   1310 	}
   1311 	printf("\n\n");
   1312 	delay(1000);
   1313 }
   1314 
   1315 void
   1316 frametoreg(const struct trapframe *framep, struct reg *regp)
   1317 {
   1318 
   1319 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1320 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1321 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1322 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1323 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1324 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1325 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1326 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1327 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1328 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1329 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1330 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1331 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1332 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1333 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1334 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1335 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1336 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1337 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1338 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1339 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1340 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1341 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1342 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1343 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1344 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1345 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1346 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1347 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1348 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1349 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1350 	regp->r_regs[R_ZERO] = 0;
   1351 }
   1352 
   1353 void
   1354 regtoframe(const struct reg *regp, struct trapframe *framep)
   1355 {
   1356 
   1357 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1358 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1359 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1360 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1361 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1362 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1363 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1364 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1365 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1366 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1367 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1368 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1369 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1370 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1371 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1372 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1373 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1374 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1375 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1376 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1377 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1378 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1379 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1380 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1381 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1382 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1383 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1384 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1385 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1386 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1387 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1388 	/* ??? = regp->r_regs[R_ZERO]; */
   1389 }
   1390 
   1391 void
   1392 printregs(struct reg *regp)
   1393 {
   1394 	int i;
   1395 
   1396 	for (i = 0; i < 32; i++)
   1397 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1398 		   i & 1 ? "\n" : "\t");
   1399 }
   1400 
   1401 void
   1402 regdump(struct trapframe *framep)
   1403 {
   1404 	struct reg reg;
   1405 
   1406 	frametoreg(framep, &reg);
   1407 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1408 
   1409 	printf("REGISTERS:\n");
   1410 	printregs(&reg);
   1411 }
   1412 
   1413 
   1414 
   1415 void *
   1416 getframe(const struct lwp *l, int sig, int *onstack)
   1417 {
   1418 	void *frame;
   1419 
   1420 	/* Do we need to jump onto the signal stack? */
   1421 	*onstack =
   1422 	    (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1423 	    (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
   1424 
   1425 	if (*onstack)
   1426 		frame = (void *)((char *)l->l_sigstk.ss_sp +
   1427 					l->l_sigstk.ss_size);
   1428 	else
   1429 		frame = (void *)(alpha_pal_rdusp());
   1430 	return (frame);
   1431 }
   1432 
   1433 void
   1434 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
   1435 {
   1436 	struct trapframe *tf = l->l_md.md_tf;
   1437 
   1438 	tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
   1439 	tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
   1440 	tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
   1441 	alpha_pal_wrusp((unsigned long)fp);
   1442 }
   1443 
   1444 
   1445 /*
   1446  * Send an interrupt to process, new style
   1447  */
   1448 void
   1449 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
   1450 {
   1451 	struct lwp *l = curlwp;
   1452 	struct proc *p = l->l_proc;
   1453 	struct sigacts *ps = p->p_sigacts;
   1454 	int onstack, sig = ksi->ksi_signo, error;
   1455 	struct sigframe_siginfo *fp, frame;
   1456 	struct trapframe *tf;
   1457 	sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
   1458 
   1459 	fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
   1460 	tf = l->l_md.md_tf;
   1461 
   1462 	/* Allocate space for the signal handler context. */
   1463 	fp--;
   1464 
   1465 #ifdef DEBUG
   1466 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1467 		printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1468 		    sig, &onstack, fp);
   1469 #endif
   1470 
   1471 	/* Build stack frame for signal trampoline. */
   1472 
   1473 	frame.sf_si._info = ksi->ksi_info;
   1474 	frame.sf_uc.uc_flags = _UC_SIGMASK;
   1475 	frame.sf_uc.uc_sigmask = *mask;
   1476 	frame.sf_uc.uc_link = l->l_ctxlink;
   1477 	memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
   1478 	sendsig_reset(l, sig);
   1479 	mutex_exit(p->p_lock);
   1480 	cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
   1481 	error = copyout(&frame, fp, sizeof(frame));
   1482 	mutex_enter(p->p_lock);
   1483 
   1484 	if (error != 0) {
   1485 		/*
   1486 		 * Process has trashed its stack; give it an illegal
   1487 		 * instruction to halt it in its tracks.
   1488 		 */
   1489 #ifdef DEBUG
   1490 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1491 			printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
   1492 			    p->p_pid, sig);
   1493 #endif
   1494 		sigexit(l, SIGILL);
   1495 		/* NOTREACHED */
   1496 	}
   1497 
   1498 #ifdef DEBUG
   1499 	if (sigdebug & SDB_FOLLOW)
   1500 		printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
   1501 		       p->p_pid, sig, fp, ksi->ksi_code);
   1502 #endif
   1503 
   1504 	/*
   1505 	 * Set up the registers to directly invoke the signal handler.  The
   1506 	 * signal trampoline is then used to return from the signal.  Note
   1507 	 * the trampoline version numbers are coordinated with machine-
   1508 	 * dependent code in libc.
   1509 	 */
   1510 
   1511 	tf->tf_regs[FRAME_A0] = sig;
   1512 	tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
   1513 	tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
   1514 
   1515 	buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
   1516 
   1517 	/* Remember that we're now on the signal stack. */
   1518 	if (onstack)
   1519 		l->l_sigstk.ss_flags |= SS_ONSTACK;
   1520 
   1521 #ifdef DEBUG
   1522 	if (sigdebug & SDB_FOLLOW)
   1523 		printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
   1524 		    tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
   1525 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1526 		printf("sendsig_siginfo(%d): sig %d returns\n",
   1527 		    p->p_pid, sig);
   1528 #endif
   1529 }
   1530 
   1531 
   1532 void
   1533 cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
   1534 {
   1535        	struct trapframe *tf;
   1536 
   1537 	tf = l->l_md.md_tf;
   1538 
   1539 	tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
   1540 	tf->tf_regs[FRAME_RA] = 0;
   1541 	tf->tf_regs[FRAME_A0] = type;
   1542 	tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
   1543 	tf->tf_regs[FRAME_A2] = nevents;
   1544 	tf->tf_regs[FRAME_A3] = ninterrupted;
   1545 	tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
   1546 	tf->tf_regs[FRAME_T12] = (u_int64_t)upcall;  /* t12 is pv */
   1547 	alpha_pal_wrusp((unsigned long)sp);
   1548 }
   1549 
   1550 /*
   1551  * machine dependent system variables.
   1552  */
   1553 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
   1554 {
   1555 
   1556 	sysctl_createv(clog, 0, NULL, NULL,
   1557 		       CTLFLAG_PERMANENT,
   1558 		       CTLTYPE_NODE, "machdep", NULL,
   1559 		       NULL, 0, NULL, 0,
   1560 		       CTL_MACHDEP, CTL_EOL);
   1561 
   1562 	sysctl_createv(clog, 0, NULL, NULL,
   1563 		       CTLFLAG_PERMANENT,
   1564 		       CTLTYPE_STRUCT, "console_device", NULL,
   1565 		       sysctl_consdev, 0, NULL, sizeof(dev_t),
   1566 		       CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
   1567 	sysctl_createv(clog, 0, NULL, NULL,
   1568 		       CTLFLAG_PERMANENT,
   1569 		       CTLTYPE_STRING, "root_device", NULL,
   1570 		       sysctl_root_device, 0, NULL, 0,
   1571 		       CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
   1572 	sysctl_createv(clog, 0, NULL, NULL,
   1573 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1574 		       CTLTYPE_INT, "unaligned_print", NULL,
   1575 		       NULL, 0, &alpha_unaligned_print, 0,
   1576 		       CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
   1577 	sysctl_createv(clog, 0, NULL, NULL,
   1578 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1579 		       CTLTYPE_INT, "unaligned_fix", NULL,
   1580 		       NULL, 0, &alpha_unaligned_fix, 0,
   1581 		       CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
   1582 	sysctl_createv(clog, 0, NULL, NULL,
   1583 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1584 		       CTLTYPE_INT, "unaligned_sigbus", NULL,
   1585 		       NULL, 0, &alpha_unaligned_sigbus, 0,
   1586 		       CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
   1587 	sysctl_createv(clog, 0, NULL, NULL,
   1588 		       CTLFLAG_PERMANENT,
   1589 		       CTLTYPE_STRING, "booted_kernel", NULL,
   1590 		       NULL, 0, bootinfo.booted_kernel, 0,
   1591 		       CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
   1592 	sysctl_createv(clog, 0, NULL, NULL,
   1593 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1594 		       CTLTYPE_INT, "fp_sync_complete", NULL,
   1595 		       NULL, 0, &alpha_fp_sync_complete, 0,
   1596 		       CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
   1597 }
   1598 
   1599 /*
   1600  * Set registers on exec.
   1601  */
   1602 void
   1603 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
   1604 {
   1605 	struct trapframe *tfp = l->l_md.md_tf;
   1606 	struct pcb *pcb;
   1607 #ifdef DEBUG
   1608 	int i;
   1609 #endif
   1610 
   1611 #ifdef DEBUG
   1612 	/*
   1613 	 * Crash and dump, if the user requested it.
   1614 	 */
   1615 	if (boothowto & RB_DUMP)
   1616 		panic("crash requested by boot flags");
   1617 #endif
   1618 
   1619 #ifdef DEBUG
   1620 	for (i = 0; i < FRAME_SIZE; i++)
   1621 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1622 #else
   1623 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1624 #endif
   1625 	pcb = lwp_getpcb(l);
   1626 	memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
   1627 	alpha_pal_wrusp(stack);
   1628 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1629 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1630 
   1631 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1632 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1633 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1634 	tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp;	/* a3 = ps_strings */
   1635 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1636 
   1637 	l->l_md.md_flags &= ~MDLWP_FPUSED;
   1638 	if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
   1639 		l->l_md.md_flags &= ~MDLWP_FP_C;
   1640 		pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
   1641 	}
   1642 	fpu_discard();
   1643 }
   1644 
   1645 /*
   1646  * Wait "n" microseconds.
   1647  */
   1648 void
   1649 delay(unsigned long n)
   1650 {
   1651 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1652 
   1653 	if (n == 0)
   1654 		return;
   1655 
   1656 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1657 	cycles = 0;
   1658 	usec = 0;
   1659 
   1660 	while (usec <= n) {
   1661 		/*
   1662 		 * Get the next CPU cycle count- assumes that we cannot
   1663 		 * have had more than one 32 bit overflow.
   1664 		 */
   1665 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1666 		if (pcc1 < pcc0)
   1667 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1668 		else
   1669 			curcycle = pcc1 - pcc0;
   1670 
   1671 		/*
   1672 		 * We now have the number of processor cycles since we
   1673 		 * last checked. Add the current cycle count to the
   1674 		 * running total. If it's over cycles_per_usec, increment
   1675 		 * the usec counter.
   1676 		 */
   1677 		cycles += curcycle;
   1678 		while (cycles > cycles_per_usec) {
   1679 			usec++;
   1680 			cycles -= cycles_per_usec;
   1681 		}
   1682 		pcc0 = pcc1;
   1683 	}
   1684 }
   1685 
   1686 #ifdef EXEC_ECOFF
   1687 void
   1688 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
   1689 {
   1690 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1691 
   1692 	l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1693 }
   1694 
   1695 /*
   1696  * cpu_exec_ecoff_hook():
   1697  *	cpu-dependent ECOFF format hook for execve().
   1698  *
   1699  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1700  *
   1701  */
   1702 int
   1703 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
   1704 {
   1705 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1706 	int error;
   1707 
   1708 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   1709 		error = 0;
   1710 	else
   1711 		error = ENOEXEC;
   1712 
   1713 	return (error);
   1714 }
   1715 #endif /* EXEC_ECOFF */
   1716 
   1717 int
   1718 mm_md_physacc(paddr_t pa, vm_prot_t prot)
   1719 {
   1720 	u_quad_t size;
   1721 	int i;
   1722 
   1723 	for (i = 0; i < mem_cluster_cnt; i++) {
   1724 		if (pa < mem_clusters[i].start)
   1725 			continue;
   1726 		size = mem_clusters[i].size & ~PAGE_MASK;
   1727 		if (pa >= (mem_clusters[i].start + size))
   1728 			continue;
   1729 		if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
   1730 			return 0;
   1731 	}
   1732 	return EFAULT;
   1733 }
   1734 
   1735 bool
   1736 mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
   1737 {
   1738 	vaddr_t va = (vaddr_t)addr;
   1739 
   1740 	if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
   1741 		*paddr = ALPHA_K0SEG_TO_PHYS(va);
   1742 		return true;
   1743 	}
   1744 	return false;
   1745 }
   1746 
   1747 bool
   1748 mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
   1749 {
   1750 
   1751 	*vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
   1752 	return true;
   1753 }
   1754 
   1755 /* XXX XXX BEGIN XXX XXX */
   1756 paddr_t alpha_XXX_dmamap_or;					/* XXX */
   1757 								/* XXX */
   1758 paddr_t								/* XXX */
   1759 alpha_XXX_dmamap(v)						/* XXX */
   1760 	vaddr_t v;						/* XXX */
   1761 {								/* XXX */
   1762 								/* XXX */
   1763 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1764 }								/* XXX */
   1765 /* XXX XXX END XXX XXX */
   1766 
   1767 char *
   1768 dot_conv(unsigned long x)
   1769 {
   1770 	int i;
   1771 	char *xc;
   1772 	static int next;
   1773 	static char space[2][20];
   1774 
   1775 	xc = space[next ^= 1] + sizeof space[0];
   1776 	*--xc = '\0';
   1777 	for (i = 0;; ++i) {
   1778 		if (i && (i & 3) == 0)
   1779 			*--xc = '.';
   1780 		*--xc = hexdigits[x & 0xf];
   1781 		x >>= 4;
   1782 		if (x == 0)
   1783 			break;
   1784 	}
   1785 	return xc;
   1786 }
   1787 
   1788 void
   1789 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
   1790 {
   1791 	struct trapframe *frame = l->l_md.md_tf;
   1792 	struct pcb *pcb = lwp_getpcb(l);
   1793 	__greg_t *gr = mcp->__gregs;
   1794 	__greg_t ras_pc;
   1795 
   1796 	/* Save register context. */
   1797 	frametoreg(frame, (struct reg *)gr);
   1798 	/* XXX if there's a better, general way to get the USP of
   1799 	 * an LWP that might or might not be curlwp, I'd like to know
   1800 	 * about it.
   1801 	 */
   1802 	if (l == curlwp) {
   1803 		gr[_REG_SP] = alpha_pal_rdusp();
   1804 		gr[_REG_UNIQUE] = alpha_pal_rdunique();
   1805 	} else {
   1806 		gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
   1807 		gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
   1808 	}
   1809 	gr[_REG_PC] = frame->tf_regs[FRAME_PC];
   1810 	gr[_REG_PS] = frame->tf_regs[FRAME_PS];
   1811 
   1812 	if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
   1813 	    (void *) gr[_REG_PC])) != -1)
   1814 		gr[_REG_PC] = ras_pc;
   1815 
   1816 	*flags |= _UC_CPU | _UC_UNIQUE;
   1817 
   1818 	/* Save floating point register context, if any, and copy it. */
   1819 	if (fpu_used_p(l)) {
   1820 		fpu_save();
   1821 		(void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
   1822 		    sizeof (mcp->__fpregs));
   1823 		mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
   1824 		*flags |= _UC_FPU;
   1825 	}
   1826 }
   1827 
   1828 
   1829 int
   1830 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
   1831 {
   1832 	struct trapframe *frame = l->l_md.md_tf;
   1833 	struct pcb *pcb = lwp_getpcb(l);
   1834 	const __greg_t *gr = mcp->__gregs;
   1835 
   1836 	/* Restore register context, if any. */
   1837 	if (flags & _UC_CPU) {
   1838 		/* Check for security violations first. */
   1839 		if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
   1840 		    (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
   1841 			return (EINVAL);
   1842 
   1843 		regtoframe((const struct reg *)gr, l->l_md.md_tf);
   1844 		if (l == curlwp)
   1845 			alpha_pal_wrusp(gr[_REG_SP]);
   1846 		else
   1847 			pcb->pcb_hw.apcb_usp = gr[_REG_SP];
   1848 		frame->tf_regs[FRAME_PC] = gr[_REG_PC];
   1849 		frame->tf_regs[FRAME_PS] = gr[_REG_PS];
   1850 	}
   1851 	if (flags & _UC_UNIQUE)
   1852 		lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
   1853 	/* Restore floating point register context, if any. */
   1854 	if (flags & _UC_FPU) {
   1855 		/* If we have an FP register context, get rid of it. */
   1856 		fpu_discard();
   1857 		(void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
   1858 		    sizeof (pcb->pcb_fp));
   1859 		l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
   1860 		fpu_mark_used(l);
   1861 	}
   1862 
   1863 	return (0);
   1864 }
   1865 
   1866 /*
   1867  * Preempt the current process if in interrupt from user mode,
   1868  * or after the current trap/syscall if in system mode.
   1869  */
   1870 void
   1871 cpu_need_resched(struct cpu_info *ci, int flags)
   1872 {
   1873 #if defined(MULTIPROCESSOR)
   1874 	bool immed = (flags & RESCHED_IMMED) != 0;
   1875 #endif /* defined(MULTIPROCESSOR) */
   1876 
   1877 	aston(ci->ci_data.cpu_onproc);
   1878 	ci->ci_want_resched = 1;
   1879 	if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
   1880 #if defined(MULTIPROCESSOR)
   1881 		if (immed && ci != curcpu()) {
   1882 			alpha_send_ipi(ci->ci_cpuid, 0);
   1883 		}
   1884 #endif /* defined(MULTIPROCESSOR) */
   1885 	}
   1886 }
   1887