Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.345
      1 /* $NetBSD: machdep.c,v 1.345 2014/05/16 19:18:21 matt Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     35  * All rights reserved.
     36  *
     37  * Author: Chris G. Demetriou
     38  *
     39  * Permission to use, copy, modify and distribute this software and
     40  * its documentation is hereby granted, provided that both the copyright
     41  * notice and this permission notice appear in all copies of the
     42  * software, derivative works or modified versions, and any portions
     43  * thereof, and that both notices appear in supporting documentation.
     44  *
     45  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     46  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     47  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     48  *
     49  * Carnegie Mellon requests users of this software to return to
     50  *
     51  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     52  *  School of Computer Science
     53  *  Carnegie Mellon University
     54  *  Pittsburgh PA 15213-3890
     55  *
     56  * any improvements or extensions that they make and grant Carnegie the
     57  * rights to redistribute these changes.
     58  */
     59 
     60 #include "opt_ddb.h"
     61 #include "opt_kgdb.h"
     62 #include "opt_modular.h"
     63 #include "opt_multiprocessor.h"
     64 #include "opt_dec_3000_300.h"
     65 #include "opt_dec_3000_500.h"
     66 #include "opt_compat_osf1.h"
     67 #include "opt_execfmt.h"
     68 
     69 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     70 
     71 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.345 2014/05/16 19:18:21 matt Exp $");
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/signalvar.h>
     76 #include <sys/kernel.h>
     77 #include <sys/cpu.h>
     78 #include <sys/proc.h>
     79 #include <sys/ras.h>
     80 #include <sys/sched.h>
     81 #include <sys/reboot.h>
     82 #include <sys/device.h>
     83 #include <sys/malloc.h>
     84 #include <sys/mman.h>
     85 #include <sys/msgbuf.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/tty.h>
     88 #include <sys/exec.h>
     89 #include <sys/exec_aout.h>		/* for MID_* */
     90 #include <sys/exec_ecoff.h>
     91 #include <sys/core.h>
     92 #include <sys/kcore.h>
     93 #include <sys/ucontext.h>
     94 #include <sys/conf.h>
     95 #include <sys/ksyms.h>
     96 #include <sys/kauth.h>
     97 #include <sys/atomic.h>
     98 #include <sys/cpu.h>
     99 
    100 #include <machine/kcore.h>
    101 #include <machine/fpu.h>
    102 
    103 #include <sys/mount.h>
    104 #include <sys/syscallargs.h>
    105 
    106 #include <uvm/uvm.h>
    107 #include <sys/sysctl.h>
    108 
    109 #include <dev/cons.h>
    110 #include <dev/mm.h>
    111 
    112 #include <machine/autoconf.h>
    113 #include <machine/reg.h>
    114 #include <machine/rpb.h>
    115 #include <machine/prom.h>
    116 #include <machine/cpuconf.h>
    117 #include <machine/ieeefp.h>
    118 
    119 #ifdef DDB
    120 #include <machine/db_machdep.h>
    121 #include <ddb/db_access.h>
    122 #include <ddb/db_sym.h>
    123 #include <ddb/db_extern.h>
    124 #include <ddb/db_interface.h>
    125 #endif
    126 
    127 #ifdef KGDB
    128 #include <sys/kgdb.h>
    129 #endif
    130 
    131 #ifdef DEBUG
    132 #include <machine/sigdebug.h>
    133 #endif
    134 
    135 #include <machine/alpha.h>
    136 
    137 #include "ksyms.h"
    138 
    139 struct vm_map *phys_map = NULL;
    140 
    141 void *msgbufaddr;
    142 
    143 int	maxmem;			/* max memory per process */
    144 
    145 int	totalphysmem;		/* total amount of physical memory in system */
    146 int	resvmem;		/* amount of memory reserved for PROM */
    147 int	unusedmem;		/* amount of memory for OS that we don't use */
    148 int	unknownmem;		/* amount of memory with an unknown use */
    149 
    150 int	cputype;		/* system type, from the RPB */
    151 
    152 int	bootdev_debug = 0;	/* patchable, or from DDB */
    153 
    154 /*
    155  * XXX We need an address to which we can assign things so that they
    156  * won't be optimized away because we didn't use the value.
    157  */
    158 uint32_t no_optimize;
    159 
    160 /* the following is used externally (sysctl_hw) */
    161 char	machine[] = MACHINE;		/* from <machine/param.h> */
    162 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    163 
    164 /* Number of machine cycles per microsecond */
    165 uint64_t	cycles_per_usec;
    166 
    167 /* number of CPUs in the box.  really! */
    168 int		ncpus;
    169 
    170 struct bootinfo_kernel bootinfo;
    171 
    172 /* For built-in TCDS */
    173 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    174 uint8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    175 #endif
    176 
    177 struct platform platform;
    178 
    179 #if NKSYMS || defined(DDB) || defined(MODULAR)
    180 /* start and end of kernel symbol table */
    181 void	*ksym_start, *ksym_end;
    182 #endif
    183 
    184 /* for cpu_sysctl() */
    185 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    186 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    187 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    188 int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    189 
    190 /*
    191  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    192  * XXX it should also be larger than it is, because not all of the mddt
    193  * XXX clusters end up being used for VM.
    194  */
    195 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    196 int	mem_cluster_cnt;
    197 
    198 int	cpu_dump(void);
    199 int	cpu_dumpsize(void);
    200 u_long	cpu_dump_mempagecnt(void);
    201 void	dumpsys(void);
    202 void	identifycpu(void);
    203 void	printregs(struct reg *);
    204 
    205 const pcu_ops_t fpu_ops = {
    206 	.pcu_id = PCU_FPU,
    207 	.pcu_state_load = fpu_state_load,
    208 	.pcu_state_save = fpu_state_save,
    209 	.pcu_state_release = fpu_state_release,
    210 };
    211 
    212 const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
    213 	[PCU_FPU] = &fpu_ops,
    214 };
    215 
    216 void
    217 alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
    218 	/* pfn:		 first free PFN number */
    219 	/* ptb:		 PFN of current level 1 page table */
    220 	/* bim:		 bootinfo magic */
    221 	/* bip:		 bootinfo pointer */
    222 	/* biv:		 bootinfo version */
    223 {
    224 	extern char kernel_text[], _end[];
    225 	struct mddt *mddtp;
    226 	struct mddt_cluster *memc;
    227 	int i, mddtweird;
    228 	struct vm_physseg *vps;
    229 	struct pcb *pcb0;
    230 	vaddr_t kernstart, kernend, v;
    231 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    232 	cpuid_t cpu_id;
    233 	struct cpu_info *ci;
    234 	char *p;
    235 	const char *bootinfo_msg;
    236 	const struct cpuinit *c;
    237 
    238 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    239 
    240 	/*
    241 	 * Turn off interrupts (not mchecks) and floating point.
    242 	 * Make sure the instruction and data streams are consistent.
    243 	 */
    244 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    245 	alpha_pal_wrfen(0);
    246 	ALPHA_TBIA();
    247 	alpha_pal_imb();
    248 
    249 	/* Initialize the SCB. */
    250 	scb_init();
    251 
    252 	cpu_id = cpu_number();
    253 
    254 #if defined(MULTIPROCESSOR)
    255 	/*
    256 	 * Set our SysValue to the address of our cpu_info structure.
    257 	 * Secondary processors do this in their spinup trampoline.
    258 	 */
    259 	alpha_pal_wrval((u_long)&cpu_info_primary);
    260 	cpu_info[cpu_id] = &cpu_info_primary;
    261 #endif
    262 
    263 	ci = curcpu();
    264 	ci->ci_cpuid = cpu_id;
    265 
    266 	/*
    267 	 * Get critical system information (if possible, from the
    268 	 * information provided by the boot program).
    269 	 */
    270 	bootinfo_msg = NULL;
    271 	if (bim == BOOTINFO_MAGIC) {
    272 		if (biv == 0) {		/* backward compat */
    273 			biv = *(u_long *)bip;
    274 			bip += 8;
    275 		}
    276 		switch (biv) {
    277 		case 1: {
    278 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    279 
    280 			bootinfo.ssym = v1p->ssym;
    281 			bootinfo.esym = v1p->esym;
    282 			/* hwrpb may not be provided by boot block in v1 */
    283 			if (v1p->hwrpb != NULL) {
    284 				bootinfo.hwrpb_phys =
    285 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    286 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    287 			} else {
    288 				bootinfo.hwrpb_phys =
    289 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    290 				bootinfo.hwrpb_size =
    291 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    292 			}
    293 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    294 			    min(sizeof v1p->boot_flags,
    295 			      sizeof bootinfo.boot_flags));
    296 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    297 			    min(sizeof v1p->booted_kernel,
    298 			      sizeof bootinfo.booted_kernel));
    299 			/* booted dev not provided in bootinfo */
    300 			init_prom_interface((struct rpb *)
    301 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    302 	        	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    303 			    sizeof bootinfo.booted_dev);
    304 			break;
    305 		}
    306 		default:
    307 			bootinfo_msg = "unknown bootinfo version";
    308 			goto nobootinfo;
    309 		}
    310 	} else {
    311 		bootinfo_msg = "boot program did not pass bootinfo";
    312 nobootinfo:
    313 		bootinfo.ssym = (u_long)_end;
    314 		bootinfo.esym = (u_long)_end;
    315 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    316 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    317 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    318 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    319 		    sizeof bootinfo.boot_flags);
    320 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    321 		    sizeof bootinfo.booted_kernel);
    322 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    323 		    sizeof bootinfo.booted_dev);
    324 	}
    325 
    326 	/*
    327 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    328 	 * lots of things.
    329 	 */
    330 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    331 
    332 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    333 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    334 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    335 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    336 		    sizeof(dec_3000_scsiid));
    337 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    338 		    sizeof(dec_3000_scsifast));
    339 	}
    340 #endif
    341 
    342 	/*
    343 	 * Remember how many cycles there are per microsecond,
    344 	 * so that we can use delay().  Round up, for safety.
    345 	 */
    346 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    347 
    348 	/*
    349 	 * Initialize the (temporary) bootstrap console interface, so
    350 	 * we can use printf until the VM system starts being setup.
    351 	 * The real console is initialized before then.
    352 	 */
    353 	init_bootstrap_console();
    354 
    355 	/* OUTPUT NOW ALLOWED */
    356 
    357 	/* delayed from above */
    358 	if (bootinfo_msg)
    359 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    360 		    bootinfo_msg, bim, bip, biv);
    361 
    362 	/* Initialize the trap vectors on the primary processor. */
    363 	trap_init();
    364 
    365 	/*
    366 	 * Find out this system's page size, and initialize
    367 	 * PAGE_SIZE-dependent variables.
    368 	 */
    369 	if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
    370 		panic("page size %lu != %d?!", hwrpb->rpb_page_size,
    371 		    ALPHA_PGBYTES);
    372 	uvmexp.pagesize = hwrpb->rpb_page_size;
    373 	uvm_setpagesize();
    374 
    375 	/*
    376 	 * Find out what hardware we're on, and do basic initialization.
    377 	 */
    378 	cputype = hwrpb->rpb_type;
    379 	if (cputype < 0) {
    380 		/*
    381 		 * At least some white-box systems have SRM which
    382 		 * reports a systype that's the negative of their
    383 		 * blue-box counterpart.
    384 		 */
    385 		cputype = -cputype;
    386 	}
    387 	c = platform_lookup(cputype);
    388 	if (c == NULL) {
    389 		platform_not_supported();
    390 		/* NOTREACHED */
    391 	}
    392 	(*c->init)();
    393 	cpu_setmodel("%s", platform.model);
    394 
    395 	/*
    396 	 * Initialize the real console, so that the bootstrap console is
    397 	 * no longer necessary.
    398 	 */
    399 	(*platform.cons_init)();
    400 
    401 #ifdef DIAGNOSTIC
    402 	/* Paranoid sanity checking */
    403 
    404 	/* We should always be running on the primary. */
    405 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    406 
    407 	/*
    408 	 * On single-CPU systypes, the primary should always be CPU 0,
    409 	 * except on Alpha 8200 systems where the CPU id is related
    410 	 * to the VID, which is related to the Turbo Laser node id.
    411 	 */
    412 	if (cputype != ST_DEC_21000)
    413 		assert(hwrpb->rpb_primary_cpu_id == 0);
    414 #endif
    415 
    416 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    417 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    418 	/*
    419 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    420 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    421 	 */
    422 #endif
    423 
    424 	/*
    425 	 * Find the beginning and end of the kernel (and leave a
    426 	 * bit of space before the beginning for the bootstrap
    427 	 * stack).
    428 	 */
    429 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    430 #if NKSYMS || defined(DDB) || defined(MODULAR)
    431 	ksym_start = (void *)bootinfo.ssym;
    432 	ksym_end   = (void *)bootinfo.esym;
    433 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    434 #else
    435 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    436 #endif
    437 
    438 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    439 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    440 
    441 	/*
    442 	 * Find out how much memory is available, by looking at
    443 	 * the memory cluster descriptors.  This also tries to do
    444 	 * its best to detect things things that have never been seen
    445 	 * before...
    446 	 */
    447 	mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
    448 
    449 	/* MDDT SANITY CHECKING */
    450 	mddtweird = 0;
    451 	if (mddtp->mddt_cluster_cnt < 2) {
    452 		mddtweird = 1;
    453 		printf("WARNING: weird number of mem clusters: %lu\n",
    454 		    mddtp->mddt_cluster_cnt);
    455 	}
    456 
    457 #if 0
    458 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    459 #endif
    460 
    461 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    462 		memc = &mddtp->mddt_clusters[i];
    463 #if 0
    464 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    465 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    466 #endif
    467 		totalphysmem += memc->mddt_pg_cnt;
    468 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    469 			mem_clusters[mem_cluster_cnt].start =
    470 			    ptoa(memc->mddt_pfn);
    471 			mem_clusters[mem_cluster_cnt].size =
    472 			    ptoa(memc->mddt_pg_cnt);
    473 			if (memc->mddt_usage & MDDT_mbz ||
    474 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    475 			    memc->mddt_usage & MDDT_PALCODE)
    476 				mem_clusters[mem_cluster_cnt].size |=
    477 				    PROT_READ;
    478 			else
    479 				mem_clusters[mem_cluster_cnt].size |=
    480 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    481 			mem_cluster_cnt++;
    482 		}
    483 
    484 		if (memc->mddt_usage & MDDT_mbz) {
    485 			mddtweird = 1;
    486 			printf("WARNING: mem cluster %d has weird "
    487 			    "usage 0x%lx\n", i, memc->mddt_usage);
    488 			unknownmem += memc->mddt_pg_cnt;
    489 			continue;
    490 		}
    491 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    492 			/* XXX should handle these... */
    493 			printf("WARNING: skipping non-volatile mem "
    494 			    "cluster %d\n", i);
    495 			unusedmem += memc->mddt_pg_cnt;
    496 			continue;
    497 		}
    498 		if (memc->mddt_usage & MDDT_PALCODE) {
    499 			resvmem += memc->mddt_pg_cnt;
    500 			continue;
    501 		}
    502 
    503 		/*
    504 		 * We have a memory cluster available for system
    505 		 * software use.  We must determine if this cluster
    506 		 * holds the kernel.
    507 		 */
    508 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    509 		/*
    510 		 * XXX If the kernel uses the PROM console, we only use the
    511 		 * XXX memory after the kernel in the first system segment,
    512 		 * XXX to avoid clobbering prom mapping, data, etc.
    513 		 */
    514 	    if (!pmap_uses_prom_console() || physmem == 0) {
    515 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    516 		physmem += memc->mddt_pg_cnt;
    517 		pfn0 = memc->mddt_pfn;
    518 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    519 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    520 			/*
    521 			 * Must compute the location of the kernel
    522 			 * within the segment.
    523 			 */
    524 #if 0
    525 			printf("Cluster %d contains kernel\n", i);
    526 #endif
    527 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    528 		    if (!pmap_uses_prom_console()) {
    529 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    530 			if (pfn0 < kernstartpfn) {
    531 				/*
    532 				 * There is a chunk before the kernel.
    533 				 */
    534 #if 0
    535 				printf("Loading chunk before kernel: "
    536 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    537 #endif
    538 				uvm_page_physload(pfn0, kernstartpfn,
    539 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    540 			}
    541 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    542 		    }
    543 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    544 			if (kernendpfn < pfn1) {
    545 				/*
    546 				 * There is a chunk after the kernel.
    547 				 */
    548 #if 0
    549 				printf("Loading chunk after kernel: "
    550 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    551 #endif
    552 				uvm_page_physload(kernendpfn, pfn1,
    553 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    554 			}
    555 		} else {
    556 			/*
    557 			 * Just load this cluster as one chunk.
    558 			 */
    559 #if 0
    560 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    561 			    pfn0, pfn1);
    562 #endif
    563 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    564 			    VM_FREELIST_DEFAULT);
    565 		}
    566 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    567 	    }
    568 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    569 	}
    570 
    571 	/*
    572 	 * Dump out the MDDT if it looks odd...
    573 	 */
    574 	if (mddtweird) {
    575 		printf("\n");
    576 		printf("complete memory cluster information:\n");
    577 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    578 			printf("mddt %d:\n", i);
    579 			printf("\tpfn %lx\n",
    580 			    mddtp->mddt_clusters[i].mddt_pfn);
    581 			printf("\tcnt %lx\n",
    582 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    583 			printf("\ttest %lx\n",
    584 			    mddtp->mddt_clusters[i].mddt_pg_test);
    585 			printf("\tbva %lx\n",
    586 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    587 			printf("\tbpa %lx\n",
    588 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    589 			printf("\tbcksum %lx\n",
    590 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    591 			printf("\tusage %lx\n",
    592 			    mddtp->mddt_clusters[i].mddt_usage);
    593 		}
    594 		printf("\n");
    595 	}
    596 
    597 	if (totalphysmem == 0)
    598 		panic("can't happen: system seems to have no memory!");
    599 	maxmem = physmem;
    600 #if 0
    601 	printf("totalphysmem = %d\n", totalphysmem);
    602 	printf("physmem = %d\n", physmem);
    603 	printf("resvmem = %d\n", resvmem);
    604 	printf("unusedmem = %d\n", unusedmem);
    605 	printf("unknownmem = %d\n", unknownmem);
    606 #endif
    607 
    608 	/*
    609 	 * Initialize error message buffer (at end of core).
    610 	 */
    611 	{
    612 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    613 		vsize_t reqsz = sz;
    614 
    615 		vps = VM_PHYSMEM_PTR(vm_nphysseg - 1);
    616 
    617 		/* shrink so that it'll fit in the last segment */
    618 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    619 			sz = ptoa(vps->avail_end - vps->avail_start);
    620 
    621 		vps->end -= atop(sz);
    622 		vps->avail_end -= atop(sz);
    623 		msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    624 		initmsgbuf(msgbufaddr, sz);
    625 
    626 		/* Remove the last segment if it now has no pages. */
    627 		if (vps->start == vps->end)
    628 			vm_nphysseg--;
    629 
    630 		/* warn if the message buffer had to be shrunk */
    631 		if (sz != reqsz)
    632 			printf("WARNING: %ld bytes not available for msgbuf "
    633 			    "in last cluster (%ld used)\n", reqsz, sz);
    634 
    635 	}
    636 
    637 	/*
    638 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    639 	 * pmap_bootstrap() because our pmap_virtual_space()
    640 	 * returns compile-time constants.
    641 	 */
    642 
    643 	/*
    644 	 * Allocate uarea page for lwp0 and set it.
    645 	 */
    646 	v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    647 	uvm_lwp_setuarea(&lwp0, v);
    648 
    649 	/*
    650 	 * Initialize the virtual memory system, and set the
    651 	 * page table base register in proc 0's PCB.
    652 	 */
    653 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    654 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    655 
    656 	/*
    657 	 * Initialize the rest of lwp0's PCB and cache its physical address.
    658 	 */
    659 	pcb0 = lwp_getpcb(&lwp0);
    660 	lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
    661 
    662 	/*
    663 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    664 	 * and make lwp0's trapframe pointer point to it for sanity.
    665 	 */
    666 	pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
    667 	lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
    668 
    669 	/* Indicate that lwp0 has a CPU. */
    670 	lwp0.l_cpu = ci;
    671 
    672 	/*
    673 	 * Look at arguments passed to us and compute boothowto.
    674 	 */
    675 
    676 	boothowto = RB_SINGLE;
    677 #ifdef KADB
    678 	boothowto |= RB_KDB;
    679 #endif
    680 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    681 		/*
    682 		 * Note that we'd really like to differentiate case here,
    683 		 * but the Alpha AXP Architecture Reference Manual
    684 		 * says that we shouldn't.
    685 		 */
    686 		switch (*p) {
    687 		case 'a': /* autoboot */
    688 		case 'A':
    689 			boothowto &= ~RB_SINGLE;
    690 			break;
    691 
    692 #ifdef DEBUG
    693 		case 'c': /* crash dump immediately after autoconfig */
    694 		case 'C':
    695 			boothowto |= RB_DUMP;
    696 			break;
    697 #endif
    698 
    699 #if defined(KGDB) || defined(DDB)
    700 		case 'd': /* break into the kernel debugger ASAP */
    701 		case 'D':
    702 			boothowto |= RB_KDB;
    703 			break;
    704 #endif
    705 
    706 		case 'h': /* always halt, never reboot */
    707 		case 'H':
    708 			boothowto |= RB_HALT;
    709 			break;
    710 
    711 #if 0
    712 		case 'm': /* mini root present in memory */
    713 		case 'M':
    714 			boothowto |= RB_MINIROOT;
    715 			break;
    716 #endif
    717 
    718 		case 'n': /* askname */
    719 		case 'N':
    720 			boothowto |= RB_ASKNAME;
    721 			break;
    722 
    723 		case 's': /* single-user (default, supported for sanity) */
    724 		case 'S':
    725 			boothowto |= RB_SINGLE;
    726 			break;
    727 
    728 		case 'q': /* quiet boot */
    729 		case 'Q':
    730 			boothowto |= AB_QUIET;
    731 			break;
    732 
    733 		case 'v': /* verbose boot */
    734 		case 'V':
    735 			boothowto |= AB_VERBOSE;
    736 			break;
    737 
    738 		case '-':
    739 			/*
    740 			 * Just ignore this.  It's not required, but it's
    741 			 * common for it to be passed regardless.
    742 			 */
    743 			break;
    744 
    745 		default:
    746 			printf("Unrecognized boot flag '%c'.\n", *p);
    747 			break;
    748 		}
    749 	}
    750 
    751 	/*
    752 	 * Perform any initial kernel patches based on the running system.
    753 	 * We may perform more later if we attach additional CPUs.
    754 	 */
    755 	alpha_patch(false);
    756 
    757 	/*
    758 	 * Figure out the number of CPUs in the box, from RPB fields.
    759 	 * Really.  We mean it.
    760 	 */
    761 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    762 		struct pcs *pcsp;
    763 
    764 		pcsp = LOCATE_PCS(hwrpb, i);
    765 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    766 			ncpus++;
    767 	}
    768 
    769 	/*
    770 	 * Initialize debuggers, and break into them if appropriate.
    771 	 */
    772 #if NKSYMS || defined(DDB) || defined(MODULAR)
    773 	ksyms_addsyms_elf((int)((uint64_t)ksym_end - (uint64_t)ksym_start),
    774 	    ksym_start, ksym_end);
    775 #endif
    776 
    777 	if (boothowto & RB_KDB) {
    778 #if defined(KGDB)
    779 		kgdb_debug_init = 1;
    780 		kgdb_connect(1);
    781 #elif defined(DDB)
    782 		Debugger();
    783 #endif
    784 	}
    785 
    786 #ifdef DIAGNOSTIC
    787 	/*
    788 	 * Check our clock frequency, from RPB fields.
    789 	 */
    790 	if ((hwrpb->rpb_intr_freq >> 12) != 1024)
    791 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    792 			hwrpb->rpb_intr_freq, hz);
    793 #endif
    794 }
    795 
    796 void
    797 consinit(void)
    798 {
    799 
    800 	/*
    801 	 * Everything related to console initialization is done
    802 	 * in alpha_init().
    803 	 */
    804 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    805 	printf("consinit: %susing prom console\n",
    806 	    pmap_uses_prom_console() ? "" : "not ");
    807 #endif
    808 }
    809 
    810 void
    811 cpu_startup(void)
    812 {
    813 	extern struct evcnt fpevent_use, fpevent_reuse;
    814 	vaddr_t minaddr, maxaddr;
    815 	char pbuf[9];
    816 #if defined(DEBUG)
    817 	extern int pmapdebug;
    818 	int opmapdebug = pmapdebug;
    819 
    820 	pmapdebug = 0;
    821 #endif
    822 
    823 	/*
    824 	 * Good {morning,afternoon,evening,night}.
    825 	 */
    826 	printf("%s%s", copyright, version);
    827 	identifycpu();
    828 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    829 	printf("total memory = %s\n", pbuf);
    830 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    831 	printf("(%s reserved for PROM, ", pbuf);
    832 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    833 	printf("%s used by NetBSD)\n", pbuf);
    834 	if (unusedmem) {
    835 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    836 		printf("WARNING: unused memory = %s\n", pbuf);
    837 	}
    838 	if (unknownmem) {
    839 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    840 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    841 	}
    842 
    843 	minaddr = 0;
    844 
    845 	/*
    846 	 * Allocate a submap for physio
    847 	 */
    848 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    849 				   VM_PHYS_SIZE, 0, false, NULL);
    850 
    851 	/*
    852 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    853 	 * are allocated via the pool allocator, and we use K0SEG to
    854 	 * map those pages.
    855 	 */
    856 
    857 #if defined(DEBUG)
    858 	pmapdebug = opmapdebug;
    859 #endif
    860 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    861 	printf("avail memory = %s\n", pbuf);
    862 #if 0
    863 	{
    864 		extern u_long pmap_pages_stolen;
    865 
    866 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    867 		printf("stolen memory for VM structures = %s\n", pbuf);
    868 	}
    869 #endif
    870 
    871 	/*
    872 	 * Set up the HWPCB so that it's safe to configure secondary
    873 	 * CPUs.
    874 	 */
    875 	hwrpb_primary_init();
    876 
    877 	/*
    878 	 * Initialize some trap event counters.
    879 	 */
    880 	evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
    881 	    "FP", "proc use");
    882 	evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
    883 	    "FP", "proc re-use");
    884 }
    885 
    886 /*
    887  * Retrieve the platform name from the DSR.
    888  */
    889 const char *
    890 alpha_dsr_sysname(void)
    891 {
    892 	struct dsrdb *dsr;
    893 	const char *sysname;
    894 
    895 	/*
    896 	 * DSR does not exist on early HWRPB versions.
    897 	 */
    898 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    899 		return (NULL);
    900 
    901 	dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
    902 	sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
    903 	    sizeof(uint64_t)));
    904 	return (sysname);
    905 }
    906 
    907 /*
    908  * Lookup the system specified system variation in the provided table,
    909  * returning the model string on match.
    910  */
    911 const char *
    912 alpha_variation_name(uint64_t variation, const struct alpha_variation_table *avtp)
    913 {
    914 	int i;
    915 
    916 	for (i = 0; avtp[i].avt_model != NULL; i++)
    917 		if (avtp[i].avt_variation == variation)
    918 			return (avtp[i].avt_model);
    919 	return (NULL);
    920 }
    921 
    922 /*
    923  * Generate a default platform name based for unknown system variations.
    924  */
    925 const char *
    926 alpha_unknown_sysname(void)
    927 {
    928 	static char s[128];		/* safe size */
    929 
    930 	snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx",
    931 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    932 	return ((const char *)s);
    933 }
    934 
    935 void
    936 identifycpu(void)
    937 {
    938 	const char *s;
    939 	int i;
    940 
    941 	/*
    942 	 * print out CPU identification information.
    943 	 */
    944 	printf("%s", cpu_getmodel());
    945 	for(s = cpu_getmodel(); *s; ++s)
    946 		if(strncasecmp(s, "MHz", 3) == 0)
    947 			goto skipMHz;
    948 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
    949 skipMHz:
    950 	printf(", s/n ");
    951 	for (i = 0; i < 10; i++)
    952 		printf("%c", hwrpb->rpb_ssn[i]);
    953 	printf("\n");
    954 	printf("%ld byte page size, %d processor%s.\n",
    955 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    956 #if 0
    957 	/* this isn't defined for any systems that we run on? */
    958 	printf("serial number 0x%lx 0x%lx\n",
    959 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    960 
    961 	/* and these aren't particularly useful! */
    962 	printf("variation: 0x%lx, revision 0x%lx\n",
    963 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    964 #endif
    965 }
    966 
    967 int	waittime = -1;
    968 struct pcb dumppcb;
    969 
    970 void
    971 cpu_reboot(int howto, char *bootstr)
    972 {
    973 #if defined(MULTIPROCESSOR)
    974 	u_long cpu_id = cpu_number();
    975 	u_long wait_mask;
    976 	int i;
    977 #endif
    978 
    979 	/* If "always halt" was specified as a boot flag, obey. */
    980 	if ((boothowto & RB_HALT) != 0)
    981 		howto |= RB_HALT;
    982 
    983 	boothowto = howto;
    984 
    985 	/* If system is cold, just halt. */
    986 	if (cold) {
    987 		boothowto |= RB_HALT;
    988 		goto haltsys;
    989 	}
    990 
    991 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
    992 		waittime = 0;
    993 		vfs_shutdown();
    994 		/*
    995 		 * If we've been adjusting the clock, the todr
    996 		 * will be out of synch; adjust it now.
    997 		 */
    998 		resettodr();
    999 	}
   1000 
   1001 	/* Disable interrupts. */
   1002 	splhigh();
   1003 
   1004 #if defined(MULTIPROCESSOR)
   1005 	/*
   1006 	 * Halt all other CPUs.  If we're not the primary, the
   1007 	 * primary will spin, waiting for us to halt.
   1008 	 */
   1009 	cpu_id = cpu_number();		/* may have changed cpu */
   1010 	wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
   1011 
   1012 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1013 
   1014 	/* Ensure any CPUs paused by DDB resume execution so they can halt */
   1015 	cpus_paused = 0;
   1016 
   1017 	for (i = 0; i < 10000; i++) {
   1018 		alpha_mb();
   1019 		if (cpus_running == wait_mask)
   1020 			break;
   1021 		delay(1000);
   1022 	}
   1023 	alpha_mb();
   1024 	if (cpus_running != wait_mask)
   1025 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1026 		    cpus_running);
   1027 #endif /* MULTIPROCESSOR */
   1028 
   1029 	/* If rebooting and a dump is requested do it. */
   1030 #if 0
   1031 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1032 #else
   1033 	if (boothowto & RB_DUMP)
   1034 #endif
   1035 		dumpsys();
   1036 
   1037 haltsys:
   1038 
   1039 	/* run any shutdown hooks */
   1040 	doshutdownhooks();
   1041 
   1042 	pmf_system_shutdown(boothowto);
   1043 
   1044 #ifdef BOOTKEY
   1045 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1046 	cnpollc(1);	/* for proper keyboard command handling */
   1047 	cngetc();
   1048 	cnpollc(0);
   1049 	printf("\n");
   1050 #endif
   1051 
   1052 	/* Finally, powerdown/halt/reboot the system. */
   1053 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1054 	    platform.powerdown != NULL) {
   1055 		(*platform.powerdown)();
   1056 		printf("WARNING: powerdown failed!\n");
   1057 	}
   1058 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1059 #if defined(MULTIPROCESSOR)
   1060 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1061 		cpu_halt();
   1062 	else
   1063 #endif
   1064 		prom_halt(boothowto & RB_HALT);
   1065 	/*NOTREACHED*/
   1066 }
   1067 
   1068 /*
   1069  * These variables are needed by /sbin/savecore
   1070  */
   1071 uint32_t dumpmag = 0x8fca0101;	/* magic number */
   1072 int 	dumpsize = 0;		/* pages */
   1073 long	dumplo = 0; 		/* blocks */
   1074 
   1075 /*
   1076  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1077  */
   1078 int
   1079 cpu_dumpsize(void)
   1080 {
   1081 	int size;
   1082 
   1083 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1084 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1085 	if (roundup(size, dbtob(1)) != dbtob(1))
   1086 		return -1;
   1087 
   1088 	return (1);
   1089 }
   1090 
   1091 /*
   1092  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1093  */
   1094 u_long
   1095 cpu_dump_mempagecnt(void)
   1096 {
   1097 	u_long i, n;
   1098 
   1099 	n = 0;
   1100 	for (i = 0; i < mem_cluster_cnt; i++)
   1101 		n += atop(mem_clusters[i].size);
   1102 	return (n);
   1103 }
   1104 
   1105 /*
   1106  * cpu_dump: dump machine-dependent kernel core dump headers.
   1107  */
   1108 int
   1109 cpu_dump(void)
   1110 {
   1111 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1112 	char buf[dbtob(1)];
   1113 	kcore_seg_t *segp;
   1114 	cpu_kcore_hdr_t *cpuhdrp;
   1115 	phys_ram_seg_t *memsegp;
   1116 	const struct bdevsw *bdev;
   1117 	int i;
   1118 
   1119 	bdev = bdevsw_lookup(dumpdev);
   1120 	if (bdev == NULL)
   1121 		return (ENXIO);
   1122 	dump = bdev->d_dump;
   1123 
   1124 	memset(buf, 0, sizeof buf);
   1125 	segp = (kcore_seg_t *)buf;
   1126 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1127 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1128 	    ALIGN(sizeof(*cpuhdrp))];
   1129 
   1130 	/*
   1131 	 * Generate a segment header.
   1132 	 */
   1133 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1134 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1135 
   1136 	/*
   1137 	 * Add the machine-dependent header info.
   1138 	 */
   1139 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1140 	cpuhdrp->page_size = PAGE_SIZE;
   1141 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1142 
   1143 	/*
   1144 	 * Fill in the memory segment descriptors.
   1145 	 */
   1146 	for (i = 0; i < mem_cluster_cnt; i++) {
   1147 		memsegp[i].start = mem_clusters[i].start;
   1148 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1149 	}
   1150 
   1151 	return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
   1152 }
   1153 
   1154 /*
   1155  * This is called by main to set dumplo and dumpsize.
   1156  * Dumps always skip the first PAGE_SIZE of disk space
   1157  * in case there might be a disk label stored there.
   1158  * If there is extra space, put dump at the end to
   1159  * reduce the chance that swapping trashes it.
   1160  */
   1161 void
   1162 cpu_dumpconf(void)
   1163 {
   1164 	int nblks, dumpblks;	/* size of dump area */
   1165 
   1166 	if (dumpdev == NODEV)
   1167 		goto bad;
   1168 	nblks = bdev_size(dumpdev);
   1169 	if (nblks <= ctod(1))
   1170 		goto bad;
   1171 
   1172 	dumpblks = cpu_dumpsize();
   1173 	if (dumpblks < 0)
   1174 		goto bad;
   1175 	dumpblks += ctod(cpu_dump_mempagecnt());
   1176 
   1177 	/* If dump won't fit (incl. room for possible label), punt. */
   1178 	if (dumpblks > (nblks - ctod(1)))
   1179 		goto bad;
   1180 
   1181 	/* Put dump at end of partition */
   1182 	dumplo = nblks - dumpblks;
   1183 
   1184 	/* dumpsize is in page units, and doesn't include headers. */
   1185 	dumpsize = cpu_dump_mempagecnt();
   1186 	return;
   1187 
   1188 bad:
   1189 	dumpsize = 0;
   1190 	return;
   1191 }
   1192 
   1193 /*
   1194  * Dump the kernel's image to the swap partition.
   1195  */
   1196 #define	BYTES_PER_DUMP	PAGE_SIZE
   1197 
   1198 void
   1199 dumpsys(void)
   1200 {
   1201 	const struct bdevsw *bdev;
   1202 	u_long totalbytesleft, bytes, i, n, memcl;
   1203 	u_long maddr;
   1204 	int psize;
   1205 	daddr_t blkno;
   1206 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1207 	int error;
   1208 
   1209 	/* Save registers. */
   1210 	savectx(&dumppcb);
   1211 
   1212 	if (dumpdev == NODEV)
   1213 		return;
   1214 	bdev = bdevsw_lookup(dumpdev);
   1215 	if (bdev == NULL || bdev->d_psize == NULL)
   1216 		return;
   1217 
   1218 	/*
   1219 	 * For dumps during autoconfiguration,
   1220 	 * if dump device has already configured...
   1221 	 */
   1222 	if (dumpsize == 0)
   1223 		cpu_dumpconf();
   1224 	if (dumplo <= 0) {
   1225 		printf("\ndump to dev %u,%u not possible\n",
   1226 		    major(dumpdev), minor(dumpdev));
   1227 		return;
   1228 	}
   1229 	printf("\ndumping to dev %u,%u offset %ld\n",
   1230 	    major(dumpdev), minor(dumpdev), dumplo);
   1231 
   1232 	psize = bdev_size(dumpdev);
   1233 	printf("dump ");
   1234 	if (psize == -1) {
   1235 		printf("area unavailable\n");
   1236 		return;
   1237 	}
   1238 
   1239 	/* XXX should purge all outstanding keystrokes. */
   1240 
   1241 	if ((error = cpu_dump()) != 0)
   1242 		goto err;
   1243 
   1244 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1245 	blkno = dumplo + cpu_dumpsize();
   1246 	dump = bdev->d_dump;
   1247 	error = 0;
   1248 
   1249 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1250 		maddr = mem_clusters[memcl].start;
   1251 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1252 
   1253 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1254 
   1255 			/* Print out how many MBs we to go. */
   1256 			if ((totalbytesleft % (1024*1024)) == 0)
   1257 				printf_nolog("%ld ",
   1258 				    totalbytesleft / (1024 * 1024));
   1259 
   1260 			/* Limit size for next transfer. */
   1261 			n = bytes - i;
   1262 			if (n > BYTES_PER_DUMP)
   1263 				n =  BYTES_PER_DUMP;
   1264 
   1265 			error = (*dump)(dumpdev, blkno,
   1266 			    (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1267 			if (error)
   1268 				goto err;
   1269 			maddr += n;
   1270 			blkno += btodb(n);			/* XXX? */
   1271 
   1272 			/* XXX should look for keystrokes, to cancel. */
   1273 		}
   1274 	}
   1275 
   1276 err:
   1277 	switch (error) {
   1278 
   1279 	case ENXIO:
   1280 		printf("device bad\n");
   1281 		break;
   1282 
   1283 	case EFAULT:
   1284 		printf("device not ready\n");
   1285 		break;
   1286 
   1287 	case EINVAL:
   1288 		printf("area improper\n");
   1289 		break;
   1290 
   1291 	case EIO:
   1292 		printf("i/o error\n");
   1293 		break;
   1294 
   1295 	case EINTR:
   1296 		printf("aborted from console\n");
   1297 		break;
   1298 
   1299 	case 0:
   1300 		printf("succeeded\n");
   1301 		break;
   1302 
   1303 	default:
   1304 		printf("error %d\n", error);
   1305 		break;
   1306 	}
   1307 	printf("\n\n");
   1308 	delay(1000);
   1309 }
   1310 
   1311 void
   1312 frametoreg(const struct trapframe *framep, struct reg *regp)
   1313 {
   1314 
   1315 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1316 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1317 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1318 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1319 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1320 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1321 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1322 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1323 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1324 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1325 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1326 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1327 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1328 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1329 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1330 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1331 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1332 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1333 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1334 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1335 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1336 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1337 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1338 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1339 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1340 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1341 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1342 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1343 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1344 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1345 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1346 	regp->r_regs[R_ZERO] = 0;
   1347 }
   1348 
   1349 void
   1350 regtoframe(const struct reg *regp, struct trapframe *framep)
   1351 {
   1352 
   1353 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1354 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1355 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1356 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1357 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1358 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1359 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1360 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1361 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1362 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1363 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1364 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1365 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1366 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1367 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1368 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1369 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1370 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1371 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1372 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1373 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1374 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1375 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1376 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1377 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1378 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1379 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1380 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1381 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1382 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1383 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1384 	/* ??? = regp->r_regs[R_ZERO]; */
   1385 }
   1386 
   1387 void
   1388 printregs(struct reg *regp)
   1389 {
   1390 	int i;
   1391 
   1392 	for (i = 0; i < 32; i++)
   1393 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1394 		   i & 1 ? "\n" : "\t");
   1395 }
   1396 
   1397 void
   1398 regdump(struct trapframe *framep)
   1399 {
   1400 	struct reg reg;
   1401 
   1402 	frametoreg(framep, &reg);
   1403 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1404 
   1405 	printf("REGISTERS:\n");
   1406 	printregs(&reg);
   1407 }
   1408 
   1409 
   1410 
   1411 void *
   1412 getframe(const struct lwp *l, int sig, int *onstack)
   1413 {
   1414 	void *frame;
   1415 
   1416 	/* Do we need to jump onto the signal stack? */
   1417 	*onstack =
   1418 	    (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1419 	    (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
   1420 
   1421 	if (*onstack)
   1422 		frame = (void *)((char *)l->l_sigstk.ss_sp +
   1423 					l->l_sigstk.ss_size);
   1424 	else
   1425 		frame = (void *)(alpha_pal_rdusp());
   1426 	return (frame);
   1427 }
   1428 
   1429 void
   1430 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
   1431 {
   1432 	struct trapframe *tf = l->l_md.md_tf;
   1433 
   1434 	tf->tf_regs[FRAME_RA] = (uint64_t)tramp;
   1435 	tf->tf_regs[FRAME_PC] = (uint64_t)catcher;
   1436 	tf->tf_regs[FRAME_T12] = (uint64_t)catcher;
   1437 	alpha_pal_wrusp((unsigned long)fp);
   1438 }
   1439 
   1440 
   1441 /*
   1442  * Send an interrupt to process, new style
   1443  */
   1444 void
   1445 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
   1446 {
   1447 	struct lwp *l = curlwp;
   1448 	struct proc *p = l->l_proc;
   1449 	struct sigacts *ps = p->p_sigacts;
   1450 	int onstack, sig = ksi->ksi_signo, error;
   1451 	struct sigframe_siginfo *fp, frame;
   1452 	struct trapframe *tf;
   1453 	sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
   1454 
   1455 	fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
   1456 	tf = l->l_md.md_tf;
   1457 
   1458 	/* Allocate space for the signal handler context. */
   1459 	fp--;
   1460 
   1461 #ifdef DEBUG
   1462 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1463 		printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1464 		    sig, &onstack, fp);
   1465 #endif
   1466 
   1467 	/* Build stack frame for signal trampoline. */
   1468 
   1469 	frame.sf_si._info = ksi->ksi_info;
   1470 	frame.sf_uc.uc_flags = _UC_SIGMASK;
   1471 	frame.sf_uc.uc_sigmask = *mask;
   1472 	frame.sf_uc.uc_link = l->l_ctxlink;
   1473 	memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
   1474 	sendsig_reset(l, sig);
   1475 	mutex_exit(p->p_lock);
   1476 	cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
   1477 	error = copyout(&frame, fp, sizeof(frame));
   1478 	mutex_enter(p->p_lock);
   1479 
   1480 	if (error != 0) {
   1481 		/*
   1482 		 * Process has trashed its stack; give it an illegal
   1483 		 * instruction to halt it in its tracks.
   1484 		 */
   1485 #ifdef DEBUG
   1486 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1487 			printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
   1488 			    p->p_pid, sig);
   1489 #endif
   1490 		sigexit(l, SIGILL);
   1491 		/* NOTREACHED */
   1492 	}
   1493 
   1494 #ifdef DEBUG
   1495 	if (sigdebug & SDB_FOLLOW)
   1496 		printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
   1497 		       p->p_pid, sig, fp, ksi->ksi_code);
   1498 #endif
   1499 
   1500 	/*
   1501 	 * Set up the registers to directly invoke the signal handler.  The
   1502 	 * signal trampoline is then used to return from the signal.  Note
   1503 	 * the trampoline version numbers are coordinated with machine-
   1504 	 * dependent code in libc.
   1505 	 */
   1506 
   1507 	tf->tf_regs[FRAME_A0] = sig;
   1508 	tf->tf_regs[FRAME_A1] = (uint64_t)&fp->sf_si;
   1509 	tf->tf_regs[FRAME_A2] = (uint64_t)&fp->sf_uc;
   1510 
   1511 	buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
   1512 
   1513 	/* Remember that we're now on the signal stack. */
   1514 	if (onstack)
   1515 		l->l_sigstk.ss_flags |= SS_ONSTACK;
   1516 
   1517 #ifdef DEBUG
   1518 	if (sigdebug & SDB_FOLLOW)
   1519 		printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
   1520 		    tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
   1521 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1522 		printf("sendsig_siginfo(%d): sig %d returns\n",
   1523 		    p->p_pid, sig);
   1524 #endif
   1525 }
   1526 
   1527 /*
   1528  * machine dependent system variables.
   1529  */
   1530 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
   1531 {
   1532 
   1533 	sysctl_createv(clog, 0, NULL, NULL,
   1534 		       CTLFLAG_PERMANENT,
   1535 		       CTLTYPE_NODE, "machdep", NULL,
   1536 		       NULL, 0, NULL, 0,
   1537 		       CTL_MACHDEP, CTL_EOL);
   1538 
   1539 	sysctl_createv(clog, 0, NULL, NULL,
   1540 		       CTLFLAG_PERMANENT,
   1541 		       CTLTYPE_STRUCT, "console_device", NULL,
   1542 		       sysctl_consdev, 0, NULL, sizeof(dev_t),
   1543 		       CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
   1544 	sysctl_createv(clog, 0, NULL, NULL,
   1545 		       CTLFLAG_PERMANENT,
   1546 		       CTLTYPE_STRING, "root_device", NULL,
   1547 		       sysctl_root_device, 0, NULL, 0,
   1548 		       CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
   1549 	sysctl_createv(clog, 0, NULL, NULL,
   1550 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1551 		       CTLTYPE_INT, "unaligned_print",
   1552 		       SYSCTL_DESCR("Warn about unaligned accesses"),
   1553 		       NULL, 0, &alpha_unaligned_print, 0,
   1554 		       CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
   1555 	sysctl_createv(clog, 0, NULL, NULL,
   1556 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1557 		       CTLTYPE_INT, "unaligned_fix",
   1558 		       SYSCTL_DESCR("Fix up unaligned accesses"),
   1559 		       NULL, 0, &alpha_unaligned_fix, 0,
   1560 		       CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
   1561 	sysctl_createv(clog, 0, NULL, NULL,
   1562 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1563 		       CTLTYPE_INT, "unaligned_sigbus",
   1564 		       SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"),
   1565 		       NULL, 0, &alpha_unaligned_sigbus, 0,
   1566 		       CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
   1567 	sysctl_createv(clog, 0, NULL, NULL,
   1568 		       CTLFLAG_PERMANENT,
   1569 		       CTLTYPE_STRING, "booted_kernel", NULL,
   1570 		       NULL, 0, bootinfo.booted_kernel, 0,
   1571 		       CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
   1572 	sysctl_createv(clog, 0, NULL, NULL,
   1573 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1574 		       CTLTYPE_INT, "fp_sync_complete", NULL,
   1575 		       NULL, 0, &alpha_fp_sync_complete, 0,
   1576 		       CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
   1577 }
   1578 
   1579 /*
   1580  * Set registers on exec.
   1581  */
   1582 void
   1583 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
   1584 {
   1585 	struct trapframe *tfp = l->l_md.md_tf;
   1586 	struct pcb *pcb;
   1587 #ifdef DEBUG
   1588 	int i;
   1589 #endif
   1590 
   1591 #ifdef DEBUG
   1592 	/*
   1593 	 * Crash and dump, if the user requested it.
   1594 	 */
   1595 	if (boothowto & RB_DUMP)
   1596 		panic("crash requested by boot flags");
   1597 #endif
   1598 
   1599 #ifdef DEBUG
   1600 	for (i = 0; i < FRAME_SIZE; i++)
   1601 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1602 #else
   1603 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1604 #endif
   1605 	pcb = lwp_getpcb(l);
   1606 	memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
   1607 	alpha_pal_wrusp(stack);
   1608 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1609 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1610 
   1611 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1612 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1613 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1614 	tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp;	/* a3 = ps_strings */
   1615 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1616 
   1617 	if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
   1618 		l->l_md.md_flags &= ~MDLWP_FP_C;
   1619 		pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
   1620 	}
   1621 }
   1622 
   1623 /*
   1624  * Wait "n" microseconds.
   1625  */
   1626 void
   1627 delay(unsigned long n)
   1628 {
   1629 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1630 
   1631 	if (n == 0)
   1632 		return;
   1633 
   1634 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1635 	cycles = 0;
   1636 	usec = 0;
   1637 
   1638 	while (usec <= n) {
   1639 		/*
   1640 		 * Get the next CPU cycle count- assumes that we cannot
   1641 		 * have had more than one 32 bit overflow.
   1642 		 */
   1643 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1644 		if (pcc1 < pcc0)
   1645 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1646 		else
   1647 			curcycle = pcc1 - pcc0;
   1648 
   1649 		/*
   1650 		 * We now have the number of processor cycles since we
   1651 		 * last checked. Add the current cycle count to the
   1652 		 * running total. If it's over cycles_per_usec, increment
   1653 		 * the usec counter.
   1654 		 */
   1655 		cycles += curcycle;
   1656 		while (cycles > cycles_per_usec) {
   1657 			usec++;
   1658 			cycles -= cycles_per_usec;
   1659 		}
   1660 		pcc0 = pcc1;
   1661 	}
   1662 }
   1663 
   1664 #ifdef EXEC_ECOFF
   1665 void
   1666 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
   1667 {
   1668 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1669 
   1670 	l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1671 }
   1672 
   1673 /*
   1674  * cpu_exec_ecoff_hook():
   1675  *	cpu-dependent ECOFF format hook for execve().
   1676  *
   1677  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1678  *
   1679  */
   1680 int
   1681 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
   1682 {
   1683 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1684 	int error;
   1685 
   1686 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   1687 		error = 0;
   1688 	else
   1689 		error = ENOEXEC;
   1690 
   1691 	return (error);
   1692 }
   1693 #endif /* EXEC_ECOFF */
   1694 
   1695 int
   1696 mm_md_physacc(paddr_t pa, vm_prot_t prot)
   1697 {
   1698 	u_quad_t size;
   1699 	int i;
   1700 
   1701 	for (i = 0; i < mem_cluster_cnt; i++) {
   1702 		if (pa < mem_clusters[i].start)
   1703 			continue;
   1704 		size = mem_clusters[i].size & ~PAGE_MASK;
   1705 		if (pa >= (mem_clusters[i].start + size))
   1706 			continue;
   1707 		if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
   1708 			return 0;
   1709 	}
   1710 	return EFAULT;
   1711 }
   1712 
   1713 bool
   1714 mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
   1715 {
   1716 	vaddr_t va = (vaddr_t)addr;
   1717 
   1718 	if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
   1719 		*paddr = ALPHA_K0SEG_TO_PHYS(va);
   1720 		return true;
   1721 	}
   1722 	return false;
   1723 }
   1724 
   1725 bool
   1726 mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
   1727 {
   1728 
   1729 	*vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
   1730 	return true;
   1731 }
   1732 
   1733 /* XXX XXX BEGIN XXX XXX */
   1734 paddr_t alpha_XXX_dmamap_or;					/* XXX */
   1735 								/* XXX */
   1736 paddr_t								/* XXX */
   1737 alpha_XXX_dmamap(vaddr_t v)					/* XXX */
   1738 {								/* XXX */
   1739 								/* XXX */
   1740 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1741 }								/* XXX */
   1742 /* XXX XXX END XXX XXX */
   1743 
   1744 char *
   1745 dot_conv(unsigned long x)
   1746 {
   1747 	int i;
   1748 	char *xc;
   1749 	static int next;
   1750 	static char space[2][20];
   1751 
   1752 	xc = space[next ^= 1] + sizeof space[0];
   1753 	*--xc = '\0';
   1754 	for (i = 0;; ++i) {
   1755 		if (i && (i & 3) == 0)
   1756 			*--xc = '.';
   1757 		*--xc = hexdigits[x & 0xf];
   1758 		x >>= 4;
   1759 		if (x == 0)
   1760 			break;
   1761 	}
   1762 	return xc;
   1763 }
   1764 
   1765 void
   1766 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
   1767 {
   1768 	struct trapframe *frame = l->l_md.md_tf;
   1769 	struct pcb *pcb = lwp_getpcb(l);
   1770 	__greg_t *gr = mcp->__gregs;
   1771 	__greg_t ras_pc;
   1772 
   1773 	/* Save register context. */
   1774 	frametoreg(frame, (struct reg *)gr);
   1775 	/* XXX if there's a better, general way to get the USP of
   1776 	 * an LWP that might or might not be curlwp, I'd like to know
   1777 	 * about it.
   1778 	 */
   1779 	if (l == curlwp) {
   1780 		gr[_REG_SP] = alpha_pal_rdusp();
   1781 		gr[_REG_UNIQUE] = alpha_pal_rdunique();
   1782 	} else {
   1783 		gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
   1784 		gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
   1785 	}
   1786 	gr[_REG_PC] = frame->tf_regs[FRAME_PC];
   1787 	gr[_REG_PS] = frame->tf_regs[FRAME_PS];
   1788 
   1789 	if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
   1790 	    (void *) gr[_REG_PC])) != -1)
   1791 		gr[_REG_PC] = ras_pc;
   1792 
   1793 	*flags |= _UC_CPU | _UC_TLSBASE;
   1794 
   1795 	/* Save floating point register context, if any, and copy it. */
   1796 	if (fpu_valid_p(l)) {
   1797 		fpu_save();
   1798 		(void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
   1799 		    sizeof (mcp->__fpregs));
   1800 		mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
   1801 		*flags |= _UC_FPU;
   1802 	}
   1803 }
   1804 
   1805 int
   1806 cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
   1807 {
   1808 	const __greg_t *gr = mcp->__gregs;
   1809 
   1810 	if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
   1811 	    (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
   1812 		return EINVAL;
   1813 
   1814 	return 0;
   1815 }
   1816 
   1817 int
   1818 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
   1819 {
   1820 	struct trapframe *frame = l->l_md.md_tf;
   1821 	struct pcb *pcb = lwp_getpcb(l);
   1822 	const __greg_t *gr = mcp->__gregs;
   1823 	int error;
   1824 
   1825 	/* Restore register context, if any. */
   1826 	if (flags & _UC_CPU) {
   1827 		/* Check for security violations first. */
   1828 		error = cpu_mcontext_validate(l, mcp);
   1829 		if (error)
   1830 			return error;
   1831 
   1832 		regtoframe((const struct reg *)gr, l->l_md.md_tf);
   1833 		if (l == curlwp)
   1834 			alpha_pal_wrusp(gr[_REG_SP]);
   1835 		else
   1836 			pcb->pcb_hw.apcb_usp = gr[_REG_SP];
   1837 		frame->tf_regs[FRAME_PC] = gr[_REG_PC];
   1838 		frame->tf_regs[FRAME_PS] = gr[_REG_PS];
   1839 	}
   1840 	if (flags & _UC_TLSBASE)
   1841 		lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
   1842 	/* Restore floating point register context, if any. */
   1843 	if (flags & _UC_FPU) {
   1844 		/* If we have an FP register context, get rid of it. */
   1845 		fpu_discard(true);
   1846 		(void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
   1847 		    sizeof (pcb->pcb_fp));
   1848 		l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
   1849 	}
   1850 
   1851 	return (0);
   1852 }
   1853 
   1854 /*
   1855  * Preempt the current process if in interrupt from user mode,
   1856  * or after the current trap/syscall if in system mode.
   1857  */
   1858 void
   1859 cpu_need_resched(struct cpu_info *ci, int flags)
   1860 {
   1861 #if defined(MULTIPROCESSOR)
   1862 	bool immed = (flags & RESCHED_IMMED) != 0;
   1863 #endif /* defined(MULTIPROCESSOR) */
   1864 
   1865 	aston(ci->ci_data.cpu_onproc);
   1866 	ci->ci_want_resched = 1;
   1867 	if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
   1868 #if defined(MULTIPROCESSOR)
   1869 		if (immed && ci != curcpu()) {
   1870 			alpha_send_ipi(ci->ci_cpuid, 0);
   1871 		}
   1872 #endif /* defined(MULTIPROCESSOR) */
   1873 	}
   1874 }
   1875