machdep.c revision 1.362 1 /* $NetBSD: machdep.c,v 1.362 2020/09/02 17:40:23 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_execfmt.h"
67
68 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
69
70 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.362 2020/09/02 17:40:23 riastradh Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/signalvar.h>
75 #include <sys/kernel.h>
76 #include <sys/cpu.h>
77 #include <sys/proc.h>
78 #include <sys/ras.h>
79 #include <sys/sched.h>
80 #include <sys/reboot.h>
81 #include <sys/device.h>
82 #include <sys/malloc.h>
83 #include <sys/module.h>
84 #include <sys/mman.h>
85 #include <sys/msgbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/tty.h>
88 #include <sys/exec.h>
89 #include <sys/exec_aout.h> /* for MID_* */
90 #include <sys/exec_ecoff.h>
91 #include <sys/core.h>
92 #include <sys/kcore.h>
93 #include <sys/ucontext.h>
94 #include <sys/conf.h>
95 #include <sys/ksyms.h>
96 #include <sys/kauth.h>
97 #include <sys/atomic.h>
98 #include <sys/cpu.h>
99
100 #include <machine/kcore.h>
101 #include <machine/fpu.h>
102
103 #include <sys/mount.h>
104 #include <sys/syscallargs.h>
105
106 #include <uvm/uvm.h>
107 #include <sys/sysctl.h>
108
109 #include <dev/cons.h>
110 #include <dev/mm.h>
111
112 #include <machine/autoconf.h>
113 #include <machine/reg.h>
114 #include <machine/rpb.h>
115 #include <machine/prom.h>
116 #include <machine/cpuconf.h>
117 #include <machine/ieeefp.h>
118
119 #ifdef DDB
120 #include <machine/db_machdep.h>
121 #include <ddb/db_access.h>
122 #include <ddb/db_sym.h>
123 #include <ddb/db_extern.h>
124 #include <ddb/db_interface.h>
125 #endif
126
127 #ifdef KGDB
128 #include <sys/kgdb.h>
129 #endif
130
131 #ifdef DEBUG
132 #include <machine/sigdebug.h>
133 int sigdebug = 0x0;
134 int sigpid = 0;
135 #endif
136
137 #include <machine/alpha.h>
138
139 #include "ksyms.h"
140
141 struct vm_map *phys_map = NULL;
142
143 void *msgbufaddr;
144
145 int maxmem; /* max memory per process */
146
147 int totalphysmem; /* total amount of physical memory in system */
148 int resvmem; /* amount of memory reserved for PROM */
149 int unusedmem; /* amount of memory for OS that we don't use */
150 int unknownmem; /* amount of memory with an unknown use */
151
152 int cputype; /* system type, from the RPB */
153
154 int bootdev_debug = 0; /* patchable, or from DDB */
155
156 /*
157 * XXX We need an address to which we can assign things so that they
158 * won't be optimized away because we didn't use the value.
159 */
160 uint32_t no_optimize;
161
162 /* the following is used externally (sysctl_hw) */
163 char machine[] = MACHINE; /* from <machine/param.h> */
164 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
165
166 /* Number of machine cycles per microsecond */
167 uint64_t cycles_per_usec;
168
169 /* number of CPUs in the box. really! */
170 int ncpus;
171
172 struct bootinfo_kernel bootinfo;
173
174 /* For built-in TCDS */
175 #if defined(DEC_3000_300) || defined(DEC_3000_500)
176 uint8_t dec_3000_scsiid[3], dec_3000_scsifast[3];
177 #endif
178
179 struct platform platform;
180
181 #if NKSYMS || defined(DDB) || defined(MODULAR)
182 /* start and end of kernel symbol table */
183 void *ksym_start, *ksym_end;
184 #endif
185
186 /* for cpu_sysctl() */
187 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
188 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
189 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
190 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
191
192 /*
193 * XXX This should be dynamically sized, but we have the chicken-egg problem!
194 * XXX it should also be larger than it is, because not all of the mddt
195 * XXX clusters end up being used for VM.
196 */
197 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
198 int mem_cluster_cnt;
199
200 int cpu_dump(void);
201 int cpu_dumpsize(void);
202 u_long cpu_dump_mempagecnt(void);
203 void dumpsys(void);
204 void identifycpu(void);
205 void printregs(struct reg *);
206
207 const pcu_ops_t fpu_ops = {
208 .pcu_id = PCU_FPU,
209 .pcu_state_load = fpu_state_load,
210 .pcu_state_save = fpu_state_save,
211 .pcu_state_release = fpu_state_release,
212 };
213
214 const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
215 [PCU_FPU] = &fpu_ops,
216 };
217
218 void
219 alpha_init(u_long xxx_pfn __unused, u_long ptb, u_long bim, u_long bip,
220 u_long biv)
221 /* pfn: first free PFN number (no longer used) */
222 /* ptb: PFN of current level 1 page table */
223 /* bim: bootinfo magic */
224 /* bip: bootinfo pointer */
225 /* biv: bootinfo version */
226 {
227 extern char kernel_text[], _end[];
228 struct mddt *mddtp;
229 struct mddt_cluster *memc;
230 int i, mddtweird;
231 struct pcb *pcb0;
232 vaddr_t kernstart, kernend, v;
233 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
234 cpuid_t cpu_id;
235 struct cpu_info *ci;
236 char *p;
237 const char *bootinfo_msg;
238 const struct cpuinit *c;
239
240 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
241
242 /*
243 * Turn off interrupts (not mchecks) and floating point.
244 * Make sure the instruction and data streams are consistent.
245 */
246 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
247 alpha_pal_wrfen(0);
248 ALPHA_TBIA();
249 alpha_pal_imb();
250
251 /* Initialize the SCB. */
252 scb_init();
253
254 cpu_id = cpu_number();
255
256 #if defined(MULTIPROCESSOR)
257 /*
258 * Set our SysValue to the address of our cpu_info structure.
259 * Secondary processors do this in their spinup trampoline.
260 */
261 alpha_pal_wrval((u_long)&cpu_info_primary);
262 cpu_info[cpu_id] = &cpu_info_primary;
263 #endif
264
265 ci = curcpu();
266 ci->ci_cpuid = cpu_id;
267
268 /*
269 * Get critical system information (if possible, from the
270 * information provided by the boot program).
271 */
272 bootinfo_msg = NULL;
273 if (bim == BOOTINFO_MAGIC) {
274 if (biv == 0) { /* backward compat */
275 biv = *(u_long *)bip;
276 bip += 8;
277 }
278 switch (biv) {
279 case 1: {
280 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
281
282 bootinfo.ssym = v1p->ssym;
283 bootinfo.esym = v1p->esym;
284 /* hwrpb may not be provided by boot block in v1 */
285 if (v1p->hwrpb != NULL) {
286 bootinfo.hwrpb_phys =
287 ((struct rpb *)v1p->hwrpb)->rpb_phys;
288 bootinfo.hwrpb_size = v1p->hwrpbsize;
289 } else {
290 bootinfo.hwrpb_phys =
291 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
292 bootinfo.hwrpb_size =
293 ((struct rpb *)HWRPB_ADDR)->rpb_size;
294 }
295 memcpy(bootinfo.boot_flags, v1p->boot_flags,
296 uimin(sizeof v1p->boot_flags,
297 sizeof bootinfo.boot_flags));
298 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
299 uimin(sizeof v1p->booted_kernel,
300 sizeof bootinfo.booted_kernel));
301 /* booted dev not provided in bootinfo */
302 init_prom_interface((struct rpb *)
303 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
304 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
305 sizeof bootinfo.booted_dev);
306 break;
307 }
308 default:
309 bootinfo_msg = "unknown bootinfo version";
310 goto nobootinfo;
311 }
312 } else {
313 bootinfo_msg = "boot program did not pass bootinfo";
314 nobootinfo:
315 bootinfo.ssym = (u_long)_end;
316 bootinfo.esym = (u_long)_end;
317 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
318 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
319 init_prom_interface((struct rpb *)HWRPB_ADDR);
320 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
321 sizeof bootinfo.boot_flags);
322 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
323 sizeof bootinfo.booted_kernel);
324 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
325 sizeof bootinfo.booted_dev);
326 }
327
328 /*
329 * Initialize the kernel's mapping of the RPB. It's needed for
330 * lots of things.
331 */
332 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
333
334 #if defined(DEC_3000_300) || defined(DEC_3000_500)
335 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
336 hwrpb->rpb_type == ST_DEC_3000_500) {
337 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
338 sizeof(dec_3000_scsiid));
339 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
340 sizeof(dec_3000_scsifast));
341 }
342 #endif
343
344 /*
345 * Remember how many cycles there are per microsecond,
346 * so that we can use delay(). Round up, for safety.
347 */
348 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
349
350 /*
351 * Initialize the (temporary) bootstrap console interface, so
352 * we can use printf until the VM system starts being setup.
353 * The real console is initialized before then.
354 */
355 init_bootstrap_console();
356
357 /* OUTPUT NOW ALLOWED */
358
359 /* delayed from above */
360 if (bootinfo_msg)
361 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
362 bootinfo_msg, bim, bip, biv);
363
364 /* Initialize the trap vectors on the primary processor. */
365 trap_init();
366
367 /*
368 * Find out this system's page size, and initialize
369 * PAGE_SIZE-dependent variables.
370 */
371 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
372 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
373 ALPHA_PGBYTES);
374 uvmexp.pagesize = hwrpb->rpb_page_size;
375 uvm_md_init();
376
377 /*
378 * Find out what hardware we're on, and do basic initialization.
379 */
380 cputype = hwrpb->rpb_type;
381 if (cputype < 0) {
382 /*
383 * At least some white-box systems have SRM which
384 * reports a systype that's the negative of their
385 * blue-box counterpart.
386 */
387 cputype = -cputype;
388 }
389 c = platform_lookup(cputype);
390 if (c == NULL) {
391 platform_not_supported();
392 /* NOTREACHED */
393 }
394 (*c->init)();
395 cpu_setmodel("%s", platform.model);
396
397 /*
398 * Initialize the real console, so that the bootstrap console is
399 * no longer necessary.
400 */
401 (*platform.cons_init)();
402
403 #ifdef DIAGNOSTIC
404 /* Paranoid sanity checking */
405
406 /* We should always be running on the primary. */
407 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
408
409 /*
410 * On single-CPU systypes, the primary should always be CPU 0,
411 * except on Alpha 8200 systems where the CPU id is related
412 * to the VID, which is related to the Turbo Laser node id.
413 */
414 if (cputype != ST_DEC_21000)
415 assert(hwrpb->rpb_primary_cpu_id == 0);
416 #endif
417
418 /* NO MORE FIRMWARE ACCESS ALLOWED */
419 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
420 /*
421 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
422 * XXX pmap_uses_prom_console() evaluates to non-zero.)
423 */
424 #endif
425
426 /*
427 * Find the beginning and end of the kernel (and leave a
428 * bit of space before the beginning for the bootstrap
429 * stack).
430 */
431 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
432 #if NKSYMS || defined(DDB) || defined(MODULAR)
433 ksym_start = (void *)bootinfo.ssym;
434 ksym_end = (void *)bootinfo.esym;
435 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
436 #else
437 kernend = (vaddr_t)round_page((vaddr_t)_end);
438 #endif
439
440 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
441 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
442
443 /*
444 * Find out how much memory is available, by looking at
445 * the memory cluster descriptors. This also tries to do
446 * its best to detect things things that have never been seen
447 * before...
448 */
449 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
450
451 /* MDDT SANITY CHECKING */
452 mddtweird = 0;
453 if (mddtp->mddt_cluster_cnt < 2) {
454 mddtweird = 1;
455 printf("WARNING: weird number of mem clusters: %lu\n",
456 mddtp->mddt_cluster_cnt);
457 }
458
459 #if 0
460 printf("Memory cluster count: %" PRIu64 "\n", mddtp->mddt_cluster_cnt);
461 #endif
462
463 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
464 memc = &mddtp->mddt_clusters[i];
465 #if 0
466 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
467 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
468 #endif
469 totalphysmem += memc->mddt_pg_cnt;
470 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
471 mem_clusters[mem_cluster_cnt].start =
472 ptoa(memc->mddt_pfn);
473 mem_clusters[mem_cluster_cnt].size =
474 ptoa(memc->mddt_pg_cnt);
475 if (memc->mddt_usage & MDDT_mbz ||
476 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
477 memc->mddt_usage & MDDT_PALCODE)
478 mem_clusters[mem_cluster_cnt].size |=
479 PROT_READ;
480 else
481 mem_clusters[mem_cluster_cnt].size |=
482 PROT_READ | PROT_WRITE | PROT_EXEC;
483 mem_cluster_cnt++;
484 }
485
486 if (memc->mddt_usage & MDDT_mbz) {
487 mddtweird = 1;
488 printf("WARNING: mem cluster %d has weird "
489 "usage 0x%lx\n", i, memc->mddt_usage);
490 unknownmem += memc->mddt_pg_cnt;
491 continue;
492 }
493 if (memc->mddt_usage & MDDT_NONVOLATILE) {
494 /* XXX should handle these... */
495 printf("WARNING: skipping non-volatile mem "
496 "cluster %d\n", i);
497 unusedmem += memc->mddt_pg_cnt;
498 continue;
499 }
500 if (memc->mddt_usage & MDDT_PALCODE) {
501 resvmem += memc->mddt_pg_cnt;
502 continue;
503 }
504
505 /*
506 * We have a memory cluster available for system
507 * software use. We must determine if this cluster
508 * holds the kernel.
509 */
510 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
511 /*
512 * XXX If the kernel uses the PROM console, we only use the
513 * XXX memory after the kernel in the first system segment,
514 * XXX to avoid clobbering prom mapping, data, etc.
515 */
516 if (!pmap_uses_prom_console() || physmem == 0) {
517 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
518 physmem += memc->mddt_pg_cnt;
519 pfn0 = memc->mddt_pfn;
520 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
521 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
522 /*
523 * Must compute the location of the kernel
524 * within the segment.
525 */
526 #if 0
527 printf("Cluster %d contains kernel\n", i);
528 #endif
529 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
530 if (!pmap_uses_prom_console()) {
531 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
532 if (pfn0 < kernstartpfn) {
533 /*
534 * There is a chunk before the kernel.
535 */
536 #if 0
537 printf("Loading chunk before kernel: "
538 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
539 #endif
540 uvm_page_physload(pfn0, kernstartpfn,
541 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
542 }
543 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
544 }
545 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
546 if (kernendpfn < pfn1) {
547 /*
548 * There is a chunk after the kernel.
549 */
550 #if 0
551 printf("Loading chunk after kernel: "
552 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
553 #endif
554 uvm_page_physload(kernendpfn, pfn1,
555 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
556 }
557 } else {
558 /*
559 * Just load this cluster as one chunk.
560 */
561 #if 0
562 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
563 pfn0, pfn1);
564 #endif
565 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
566 VM_FREELIST_DEFAULT);
567 }
568 #ifdef _PMAP_MAY_USE_PROM_CONSOLE
569 }
570 #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
571 }
572
573 /*
574 * Dump out the MDDT if it looks odd...
575 */
576 if (mddtweird) {
577 printf("\n");
578 printf("complete memory cluster information:\n");
579 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
580 printf("mddt %d:\n", i);
581 printf("\tpfn %lx\n",
582 mddtp->mddt_clusters[i].mddt_pfn);
583 printf("\tcnt %lx\n",
584 mddtp->mddt_clusters[i].mddt_pg_cnt);
585 printf("\ttest %lx\n",
586 mddtp->mddt_clusters[i].mddt_pg_test);
587 printf("\tbva %lx\n",
588 mddtp->mddt_clusters[i].mddt_v_bitaddr);
589 printf("\tbpa %lx\n",
590 mddtp->mddt_clusters[i].mddt_p_bitaddr);
591 printf("\tbcksum %lx\n",
592 mddtp->mddt_clusters[i].mddt_bit_cksum);
593 printf("\tusage %lx\n",
594 mddtp->mddt_clusters[i].mddt_usage);
595 }
596 printf("\n");
597 }
598
599 if (totalphysmem == 0)
600 panic("can't happen: system seems to have no memory!");
601 maxmem = physmem;
602 #if 0
603 printf("totalphysmem = %d\n", totalphysmem);
604 printf("physmem = %lu\n", physmem);
605 printf("resvmem = %d\n", resvmem);
606 printf("unusedmem = %d\n", unusedmem);
607 printf("unknownmem = %d\n", unknownmem);
608 #endif
609
610 /*
611 * Initialize error message buffer (at end of core).
612 */
613 {
614 paddr_t end;
615 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
616 vsize_t reqsz = sz;
617 uvm_physseg_t bank;
618
619 bank = uvm_physseg_get_last();
620
621 /* shrink so that it'll fit in the last segment */
622 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < atop(sz))
623 sz = ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank));
624
625 end = uvm_physseg_get_end(bank);
626 end -= atop(sz);
627
628 uvm_physseg_unplug(end, atop(sz));
629 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(end));
630
631 initmsgbuf(msgbufaddr, sz);
632
633 /* warn if the message buffer had to be shrunk */
634 if (sz != reqsz)
635 printf("WARNING: %ld bytes not available for msgbuf "
636 "in last cluster (%ld used)\n", reqsz, sz);
637
638 }
639
640 /*
641 * NOTE: It is safe to use uvm_pageboot_alloc() before
642 * pmap_bootstrap() because our pmap_virtual_space()
643 * returns compile-time constants.
644 */
645
646 /*
647 * Allocate uarea page for lwp0 and set it.
648 */
649 v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
650 uvm_lwp_setuarea(&lwp0, v);
651
652 /*
653 * Initialize the virtual memory system, and set the
654 * page table base register in proc 0's PCB.
655 */
656 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
657 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
658
659 /*
660 * Initialize the rest of lwp0's PCB and cache its physical address.
661 */
662 pcb0 = lwp_getpcb(&lwp0);
663 lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
664
665 /*
666 * Set the kernel sp, reserving space for an (empty) trapframe,
667 * and make lwp0's trapframe pointer point to it for sanity.
668 */
669 pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
670 lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
671
672 /* Indicate that lwp0 has a CPU. */
673 lwp0.l_cpu = ci;
674
675 /*
676 * Look at arguments passed to us and compute boothowto.
677 */
678
679 boothowto = RB_SINGLE;
680 #ifdef KADB
681 boothowto |= RB_KDB;
682 #endif
683 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
684 /*
685 * Note that we'd really like to differentiate case here,
686 * but the Alpha AXP Architecture Reference Manual
687 * says that we shouldn't.
688 */
689 switch (*p) {
690 case 'a': /* autoboot */
691 case 'A':
692 boothowto &= ~RB_SINGLE;
693 break;
694
695 #ifdef DEBUG
696 case 'c': /* crash dump immediately after autoconfig */
697 case 'C':
698 boothowto |= RB_DUMP;
699 break;
700 #endif
701
702 #if defined(KGDB) || defined(DDB)
703 case 'd': /* break into the kernel debugger ASAP */
704 case 'D':
705 boothowto |= RB_KDB;
706 break;
707 #endif
708
709 case 'h': /* always halt, never reboot */
710 case 'H':
711 boothowto |= RB_HALT;
712 break;
713
714 #if 0
715 case 'm': /* mini root present in memory */
716 case 'M':
717 boothowto |= RB_MINIROOT;
718 break;
719 #endif
720
721 case 'n': /* askname */
722 case 'N':
723 boothowto |= RB_ASKNAME;
724 break;
725
726 case 's': /* single-user (default, supported for sanity) */
727 case 'S':
728 boothowto |= RB_SINGLE;
729 break;
730
731 case 'q': /* quiet boot */
732 case 'Q':
733 boothowto |= AB_QUIET;
734 break;
735
736 case 'v': /* verbose boot */
737 case 'V':
738 boothowto |= AB_VERBOSE;
739 break;
740
741 case '-':
742 /*
743 * Just ignore this. It's not required, but it's
744 * common for it to be passed regardless.
745 */
746 break;
747
748 default:
749 printf("Unrecognized boot flag '%c'.\n", *p);
750 break;
751 }
752 }
753
754 /*
755 * Perform any initial kernel patches based on the running system.
756 * We may perform more later if we attach additional CPUs.
757 */
758 alpha_patch(false);
759
760 /*
761 * Figure out the number of CPUs in the box, from RPB fields.
762 * Really. We mean it.
763 */
764 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
765 struct pcs *pcsp;
766
767 pcsp = LOCATE_PCS(hwrpb, i);
768 if ((pcsp->pcs_flags & PCS_PP) != 0)
769 ncpus++;
770 }
771
772 /*
773 * Initialize debuggers, and break into them if appropriate.
774 */
775 #if NKSYMS || defined(DDB) || defined(MODULAR)
776 ksyms_addsyms_elf((int)((uint64_t)ksym_end - (uint64_t)ksym_start),
777 ksym_start, ksym_end);
778 #endif
779
780 if (boothowto & RB_KDB) {
781 #if defined(KGDB)
782 kgdb_debug_init = 1;
783 kgdb_connect(1);
784 #elif defined(DDB)
785 Debugger();
786 #endif
787 }
788
789 #ifdef DIAGNOSTIC
790 /*
791 * Check our clock frequency, from RPB fields.
792 */
793 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
794 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
795 hwrpb->rpb_intr_freq, hz);
796 #endif
797 }
798
799 #ifdef MODULAR
800 /* Push any modules loaded by the boot loader */
801 void
802 module_init_md(void)
803 {
804 /* nada. */
805 }
806 #endif /* MODULAR */
807
808 void
809 consinit(void)
810 {
811
812 /*
813 * Everything related to console initialization is done
814 * in alpha_init().
815 */
816 #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
817 printf("consinit: %susing prom console\n",
818 pmap_uses_prom_console() ? "" : "not ");
819 #endif
820 }
821
822 void
823 cpu_startup(void)
824 {
825 extern struct evcnt fpevent_use, fpevent_reuse;
826 vaddr_t minaddr, maxaddr;
827 char pbuf[9];
828 #if defined(DEBUG)
829 extern int pmapdebug;
830 int opmapdebug = pmapdebug;
831
832 pmapdebug = 0;
833 #endif
834
835 /*
836 * Good {morning,afternoon,evening,night}.
837 */
838 printf("%s%s", copyright, version);
839 identifycpu();
840 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
841 printf("total memory = %s\n", pbuf);
842 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
843 printf("(%s reserved for PROM, ", pbuf);
844 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
845 printf("%s used by NetBSD)\n", pbuf);
846 if (unusedmem) {
847 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
848 printf("WARNING: unused memory = %s\n", pbuf);
849 }
850 if (unknownmem) {
851 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
852 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
853 }
854
855 minaddr = 0;
856
857 /*
858 * Allocate a submap for physio
859 */
860 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
861 VM_PHYS_SIZE, 0, false, NULL);
862
863 /*
864 * No need to allocate an mbuf cluster submap. Mbuf clusters
865 * are allocated via the pool allocator, and we use K0SEG to
866 * map those pages.
867 */
868
869 #if defined(DEBUG)
870 pmapdebug = opmapdebug;
871 #endif
872 format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
873 printf("avail memory = %s\n", pbuf);
874 #if 0
875 {
876 extern u_long pmap_pages_stolen;
877
878 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
879 printf("stolen memory for VM structures = %s\n", pbuf);
880 }
881 #endif
882
883 /*
884 * Set up the HWPCB so that it's safe to configure secondary
885 * CPUs.
886 */
887 hwrpb_primary_init();
888
889 /*
890 * Initialize some trap event counters.
891 */
892 evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
893 "FP", "proc use");
894 evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
895 "FP", "proc re-use");
896 }
897
898 /*
899 * Retrieve the platform name from the DSR.
900 */
901 const char *
902 alpha_dsr_sysname(void)
903 {
904 struct dsrdb *dsr;
905 const char *sysname;
906
907 /*
908 * DSR does not exist on early HWRPB versions.
909 */
910 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
911 return (NULL);
912
913 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
914 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
915 sizeof(uint64_t)));
916 return (sysname);
917 }
918
919 /*
920 * Lookup the system specified system variation in the provided table,
921 * returning the model string on match.
922 */
923 const char *
924 alpha_variation_name(uint64_t variation, const struct alpha_variation_table *avtp)
925 {
926 int i;
927
928 for (i = 0; avtp[i].avt_model != NULL; i++)
929 if (avtp[i].avt_variation == variation)
930 return (avtp[i].avt_model);
931 return (NULL);
932 }
933
934 /*
935 * Generate a default platform name based for unknown system variations.
936 */
937 const char *
938 alpha_unknown_sysname(void)
939 {
940 static char s[128]; /* safe size */
941
942 snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx",
943 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
944 return ((const char *)s);
945 }
946
947 void
948 identifycpu(void)
949 {
950 const char *s;
951 int i;
952
953 /*
954 * print out CPU identification information.
955 */
956 printf("%s", cpu_getmodel());
957 for(s = cpu_getmodel(); *s; ++s)
958 if(strncasecmp(s, "MHz", 3) == 0)
959 goto skipMHz;
960 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
961 skipMHz:
962 printf(", s/n ");
963 for (i = 0; i < 10; i++)
964 printf("%c", hwrpb->rpb_ssn[i]);
965 printf("\n");
966 printf("%ld byte page size, %d processor%s.\n",
967 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
968 #if 0
969 /* this isn't defined for any systems that we run on? */
970 printf("serial number 0x%lx 0x%lx\n",
971 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
972
973 /* and these aren't particularly useful! */
974 printf("variation: 0x%lx, revision 0x%lx\n",
975 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
976 #endif
977 }
978
979 int waittime = -1;
980 struct pcb dumppcb;
981
982 void
983 cpu_reboot(int howto, char *bootstr)
984 {
985 #if defined(MULTIPROCESSOR)
986 u_long cpu_id = cpu_number();
987 u_long wait_mask;
988 int i;
989 #endif
990
991 /* If "always halt" was specified as a boot flag, obey. */
992 if ((boothowto & RB_HALT) != 0)
993 howto |= RB_HALT;
994
995 boothowto = howto;
996
997 /* If system is cold, just halt. */
998 if (cold) {
999 boothowto |= RB_HALT;
1000 goto haltsys;
1001 }
1002
1003 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1004 waittime = 0;
1005 vfs_shutdown();
1006 /*
1007 * If we've been adjusting the clock, the todr
1008 * will be out of synch; adjust it now.
1009 */
1010 resettodr();
1011 }
1012
1013 /* Disable interrupts. */
1014 splhigh();
1015
1016 #if defined(MULTIPROCESSOR)
1017 /*
1018 * Halt all other CPUs. If we're not the primary, the
1019 * primary will spin, waiting for us to halt.
1020 */
1021 cpu_id = cpu_number(); /* may have changed cpu */
1022 wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
1023
1024 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1025
1026 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1027 cpus_paused = 0;
1028
1029 for (i = 0; i < 10000; i++) {
1030 alpha_mb();
1031 if (cpus_running == wait_mask)
1032 break;
1033 delay(1000);
1034 }
1035 alpha_mb();
1036 if (cpus_running != wait_mask)
1037 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1038 cpus_running);
1039 #endif /* MULTIPROCESSOR */
1040
1041 /* If rebooting and a dump is requested do it. */
1042 #if 0
1043 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1044 #else
1045 if (boothowto & RB_DUMP)
1046 #endif
1047 dumpsys();
1048
1049 haltsys:
1050
1051 /* run any shutdown hooks */
1052 doshutdownhooks();
1053
1054 pmf_system_shutdown(boothowto);
1055
1056 #ifdef BOOTKEY
1057 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1058 cnpollc(1); /* for proper keyboard command handling */
1059 cngetc();
1060 cnpollc(0);
1061 printf("\n");
1062 #endif
1063
1064 /* Finally, powerdown/halt/reboot the system. */
1065 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1066 platform.powerdown != NULL) {
1067 (*platform.powerdown)();
1068 printf("WARNING: powerdown failed!\n");
1069 }
1070 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1071 #if defined(MULTIPROCESSOR)
1072 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1073 cpu_halt();
1074 else
1075 #endif
1076 prom_halt(boothowto & RB_HALT);
1077 /*NOTREACHED*/
1078 }
1079
1080 /*
1081 * These variables are needed by /sbin/savecore
1082 */
1083 uint32_t dumpmag = 0x8fca0101; /* magic number */
1084 int dumpsize = 0; /* pages */
1085 long dumplo = 0; /* blocks */
1086
1087 /*
1088 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1089 */
1090 int
1091 cpu_dumpsize(void)
1092 {
1093 int size;
1094
1095 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1096 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1097 if (roundup(size, dbtob(1)) != dbtob(1))
1098 return -1;
1099
1100 return (1);
1101 }
1102
1103 /*
1104 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1105 */
1106 u_long
1107 cpu_dump_mempagecnt(void)
1108 {
1109 u_long i, n;
1110
1111 n = 0;
1112 for (i = 0; i < mem_cluster_cnt; i++)
1113 n += atop(mem_clusters[i].size);
1114 return (n);
1115 }
1116
1117 /*
1118 * cpu_dump: dump machine-dependent kernel core dump headers.
1119 */
1120 int
1121 cpu_dump(void)
1122 {
1123 int (*dump)(dev_t, daddr_t, void *, size_t);
1124 char buf[dbtob(1)];
1125 kcore_seg_t *segp;
1126 cpu_kcore_hdr_t *cpuhdrp;
1127 phys_ram_seg_t *memsegp;
1128 const struct bdevsw *bdev;
1129 int i;
1130
1131 bdev = bdevsw_lookup(dumpdev);
1132 if (bdev == NULL)
1133 return (ENXIO);
1134 dump = bdev->d_dump;
1135
1136 memset(buf, 0, sizeof buf);
1137 segp = (kcore_seg_t *)buf;
1138 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1139 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1140 ALIGN(sizeof(*cpuhdrp))];
1141
1142 /*
1143 * Generate a segment header.
1144 */
1145 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1146 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1147
1148 /*
1149 * Add the machine-dependent header info.
1150 */
1151 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1152 cpuhdrp->page_size = PAGE_SIZE;
1153 cpuhdrp->nmemsegs = mem_cluster_cnt;
1154
1155 /*
1156 * Fill in the memory segment descriptors.
1157 */
1158 for (i = 0; i < mem_cluster_cnt; i++) {
1159 memsegp[i].start = mem_clusters[i].start;
1160 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1161 }
1162
1163 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1164 }
1165
1166 /*
1167 * This is called by main to set dumplo and dumpsize.
1168 * Dumps always skip the first PAGE_SIZE of disk space
1169 * in case there might be a disk label stored there.
1170 * If there is extra space, put dump at the end to
1171 * reduce the chance that swapping trashes it.
1172 */
1173 void
1174 cpu_dumpconf(void)
1175 {
1176 int nblks, dumpblks; /* size of dump area */
1177
1178 if (dumpdev == NODEV)
1179 goto bad;
1180 nblks = bdev_size(dumpdev);
1181 if (nblks <= ctod(1))
1182 goto bad;
1183
1184 dumpblks = cpu_dumpsize();
1185 if (dumpblks < 0)
1186 goto bad;
1187 dumpblks += ctod(cpu_dump_mempagecnt());
1188
1189 /* If dump won't fit (incl. room for possible label), punt. */
1190 if (dumpblks > (nblks - ctod(1)))
1191 goto bad;
1192
1193 /* Put dump at end of partition */
1194 dumplo = nblks - dumpblks;
1195
1196 /* dumpsize is in page units, and doesn't include headers. */
1197 dumpsize = cpu_dump_mempagecnt();
1198 return;
1199
1200 bad:
1201 dumpsize = 0;
1202 return;
1203 }
1204
1205 /*
1206 * Dump the kernel's image to the swap partition.
1207 */
1208 #define BYTES_PER_DUMP PAGE_SIZE
1209
1210 void
1211 dumpsys(void)
1212 {
1213 const struct bdevsw *bdev;
1214 u_long totalbytesleft, bytes, i, n, memcl;
1215 u_long maddr;
1216 int psize;
1217 daddr_t blkno;
1218 int (*dump)(dev_t, daddr_t, void *, size_t);
1219 int error;
1220
1221 /* Save registers. */
1222 savectx(&dumppcb);
1223
1224 if (dumpdev == NODEV)
1225 return;
1226 bdev = bdevsw_lookup(dumpdev);
1227 if (bdev == NULL || bdev->d_psize == NULL)
1228 return;
1229
1230 /*
1231 * For dumps during autoconfiguration,
1232 * if dump device has already configured...
1233 */
1234 if (dumpsize == 0)
1235 cpu_dumpconf();
1236 if (dumplo <= 0) {
1237 printf("\ndump to dev %u,%u not possible\n",
1238 major(dumpdev), minor(dumpdev));
1239 return;
1240 }
1241 printf("\ndumping to dev %u,%u offset %ld\n",
1242 major(dumpdev), minor(dumpdev), dumplo);
1243
1244 psize = bdev_size(dumpdev);
1245 printf("dump ");
1246 if (psize == -1) {
1247 printf("area unavailable\n");
1248 return;
1249 }
1250
1251 /* XXX should purge all outstanding keystrokes. */
1252
1253 if ((error = cpu_dump()) != 0)
1254 goto err;
1255
1256 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1257 blkno = dumplo + cpu_dumpsize();
1258 dump = bdev->d_dump;
1259 error = 0;
1260
1261 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1262 maddr = mem_clusters[memcl].start;
1263 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1264
1265 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1266
1267 /* Print out how many MBs we to go. */
1268 if ((totalbytesleft % (1024*1024)) == 0)
1269 printf_nolog("%ld ",
1270 totalbytesleft / (1024 * 1024));
1271
1272 /* Limit size for next transfer. */
1273 n = bytes - i;
1274 if (n > BYTES_PER_DUMP)
1275 n = BYTES_PER_DUMP;
1276
1277 error = (*dump)(dumpdev, blkno,
1278 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1279 if (error)
1280 goto err;
1281 maddr += n;
1282 blkno += btodb(n); /* XXX? */
1283
1284 /* XXX should look for keystrokes, to cancel. */
1285 }
1286 }
1287
1288 err:
1289 switch (error) {
1290
1291 case ENXIO:
1292 printf("device bad\n");
1293 break;
1294
1295 case EFAULT:
1296 printf("device not ready\n");
1297 break;
1298
1299 case EINVAL:
1300 printf("area improper\n");
1301 break;
1302
1303 case EIO:
1304 printf("i/o error\n");
1305 break;
1306
1307 case EINTR:
1308 printf("aborted from console\n");
1309 break;
1310
1311 case 0:
1312 printf("succeeded\n");
1313 break;
1314
1315 default:
1316 printf("error %d\n", error);
1317 break;
1318 }
1319 printf("\n\n");
1320 delay(1000);
1321 }
1322
1323 void
1324 frametoreg(const struct trapframe *framep, struct reg *regp)
1325 {
1326
1327 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1328 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1329 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1330 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1331 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1332 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1333 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1334 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1335 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1336 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1337 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1338 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1339 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1340 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1341 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1342 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1343 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1344 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1345 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1346 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1347 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1348 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1349 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1350 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1351 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1352 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1353 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1354 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1355 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1356 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1357 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1358 regp->r_regs[R_ZERO] = 0;
1359 }
1360
1361 void
1362 regtoframe(const struct reg *regp, struct trapframe *framep)
1363 {
1364
1365 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1366 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1367 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1368 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1369 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1370 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1371 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1372 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1373 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1374 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1375 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1376 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1377 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1378 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1379 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1380 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1381 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1382 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1383 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1384 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1385 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1386 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1387 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1388 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1389 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1390 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1391 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1392 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1393 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1394 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1395 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1396 /* ??? = regp->r_regs[R_ZERO]; */
1397 }
1398
1399 void
1400 printregs(struct reg *regp)
1401 {
1402 int i;
1403
1404 for (i = 0; i < 32; i++)
1405 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1406 i & 1 ? "\n" : "\t");
1407 }
1408
1409 void
1410 regdump(struct trapframe *framep)
1411 {
1412 struct reg reg;
1413
1414 frametoreg(framep, ®);
1415 reg.r_regs[R_SP] = alpha_pal_rdusp();
1416
1417 printf("REGISTERS:\n");
1418 printregs(®);
1419 }
1420
1421
1422
1423 void *
1424 getframe(const struct lwp *l, int sig, int *onstack)
1425 {
1426 void *frame;
1427
1428 /* Do we need to jump onto the signal stack? */
1429 *onstack =
1430 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1431 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1432
1433 if (*onstack)
1434 frame = (void *)((char *)l->l_sigstk.ss_sp +
1435 l->l_sigstk.ss_size);
1436 else
1437 frame = (void *)(alpha_pal_rdusp());
1438 return (frame);
1439 }
1440
1441 void
1442 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1443 {
1444 struct trapframe *tf = l->l_md.md_tf;
1445
1446 tf->tf_regs[FRAME_RA] = (uint64_t)tramp;
1447 tf->tf_regs[FRAME_PC] = (uint64_t)catcher;
1448 tf->tf_regs[FRAME_T12] = (uint64_t)catcher;
1449 alpha_pal_wrusp((unsigned long)fp);
1450 }
1451
1452
1453 /*
1454 * Send an interrupt to process, new style
1455 */
1456 void
1457 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1458 {
1459 struct lwp *l = curlwp;
1460 struct proc *p = l->l_proc;
1461 struct sigacts *ps = p->p_sigacts;
1462 int onstack, sig = ksi->ksi_signo, error;
1463 struct sigframe_siginfo *fp, frame;
1464 struct trapframe *tf;
1465 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1466
1467 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1468 tf = l->l_md.md_tf;
1469
1470 /* Allocate space for the signal handler context. */
1471 fp--;
1472
1473 #ifdef DEBUG
1474 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1475 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1476 sig, &onstack, fp);
1477 #endif
1478
1479 /* Build stack frame for signal trampoline. */
1480 memset(&frame, 0, sizeof(frame));
1481 frame.sf_si._info = ksi->ksi_info;
1482 frame.sf_uc.uc_flags = _UC_SIGMASK;
1483 frame.sf_uc.uc_sigmask = *mask;
1484 frame.sf_uc.uc_link = l->l_ctxlink;
1485 sendsig_reset(l, sig);
1486 mutex_exit(p->p_lock);
1487 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1488 error = copyout(&frame, fp, sizeof(frame));
1489 mutex_enter(p->p_lock);
1490
1491 if (error != 0) {
1492 /*
1493 * Process has trashed its stack; give it an illegal
1494 * instruction to halt it in its tracks.
1495 */
1496 #ifdef DEBUG
1497 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1498 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1499 p->p_pid, sig);
1500 #endif
1501 sigexit(l, SIGILL);
1502 /* NOTREACHED */
1503 }
1504
1505 #ifdef DEBUG
1506 if (sigdebug & SDB_FOLLOW)
1507 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1508 p->p_pid, sig, fp, ksi->ksi_code);
1509 #endif
1510
1511 /*
1512 * Set up the registers to directly invoke the signal handler. The
1513 * signal trampoline is then used to return from the signal. Note
1514 * the trampoline version numbers are coordinated with machine-
1515 * dependent code in libc.
1516 */
1517
1518 tf->tf_regs[FRAME_A0] = sig;
1519 tf->tf_regs[FRAME_A1] = (uint64_t)&fp->sf_si;
1520 tf->tf_regs[FRAME_A2] = (uint64_t)&fp->sf_uc;
1521
1522 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1523
1524 /* Remember that we're now on the signal stack. */
1525 if (onstack)
1526 l->l_sigstk.ss_flags |= SS_ONSTACK;
1527
1528 #ifdef DEBUG
1529 if (sigdebug & SDB_FOLLOW)
1530 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1531 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1532 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1533 printf("sendsig_siginfo(%d): sig %d returns\n",
1534 p->p_pid, sig);
1535 #endif
1536 }
1537
1538 /*
1539 * machine dependent system variables.
1540 */
1541 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1542 {
1543
1544 sysctl_createv(clog, 0, NULL, NULL,
1545 CTLFLAG_PERMANENT,
1546 CTLTYPE_NODE, "machdep", NULL,
1547 NULL, 0, NULL, 0,
1548 CTL_MACHDEP, CTL_EOL);
1549
1550 sysctl_createv(clog, 0, NULL, NULL,
1551 CTLFLAG_PERMANENT,
1552 CTLTYPE_STRUCT, "console_device", NULL,
1553 sysctl_consdev, 0, NULL, sizeof(dev_t),
1554 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1555 sysctl_createv(clog, 0, NULL, NULL,
1556 CTLFLAG_PERMANENT,
1557 CTLTYPE_STRING, "root_device", NULL,
1558 sysctl_root_device, 0, NULL, 0,
1559 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1560 sysctl_createv(clog, 0, NULL, NULL,
1561 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1562 CTLTYPE_INT, "unaligned_print",
1563 SYSCTL_DESCR("Warn about unaligned accesses"),
1564 NULL, 0, &alpha_unaligned_print, 0,
1565 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1566 sysctl_createv(clog, 0, NULL, NULL,
1567 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1568 CTLTYPE_INT, "unaligned_fix",
1569 SYSCTL_DESCR("Fix up unaligned accesses"),
1570 NULL, 0, &alpha_unaligned_fix, 0,
1571 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1572 sysctl_createv(clog, 0, NULL, NULL,
1573 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1574 CTLTYPE_INT, "unaligned_sigbus",
1575 SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"),
1576 NULL, 0, &alpha_unaligned_sigbus, 0,
1577 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1578 sysctl_createv(clog, 0, NULL, NULL,
1579 CTLFLAG_PERMANENT,
1580 CTLTYPE_STRING, "booted_kernel", NULL,
1581 NULL, 0, bootinfo.booted_kernel, 0,
1582 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1583 sysctl_createv(clog, 0, NULL, NULL,
1584 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1585 CTLTYPE_INT, "fp_sync_complete", NULL,
1586 NULL, 0, &alpha_fp_sync_complete, 0,
1587 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1588 }
1589
1590 /*
1591 * Set registers on exec.
1592 */
1593 void
1594 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1595 {
1596 struct trapframe *tfp = l->l_md.md_tf;
1597 struct pcb *pcb;
1598 #ifdef DEBUG
1599 int i;
1600 #endif
1601
1602 #ifdef DEBUG
1603 /*
1604 * Crash and dump, if the user requested it.
1605 */
1606 if (boothowto & RB_DUMP)
1607 panic("crash requested by boot flags");
1608 #endif
1609
1610 #ifdef DEBUG
1611 for (i = 0; i < FRAME_SIZE; i++)
1612 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1613 #else
1614 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1615 #endif
1616 pcb = lwp_getpcb(l);
1617 memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1618 alpha_pal_wrusp(stack);
1619 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1620 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1621
1622 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1623 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1624 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1625 tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp; /* a3 = ps_strings */
1626 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1627
1628 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1629 l->l_md.md_flags &= ~MDLWP_FP_C;
1630 pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1631 }
1632 }
1633
1634 /*
1635 * Wait "n" microseconds.
1636 */
1637 void
1638 delay(unsigned long n)
1639 {
1640 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1641
1642 if (n == 0)
1643 return;
1644
1645 pcc0 = alpha_rpcc() & 0xffffffffUL;
1646 cycles = 0;
1647 usec = 0;
1648
1649 while (usec <= n) {
1650 /*
1651 * Get the next CPU cycle count- assumes that we cannot
1652 * have had more than one 32 bit overflow.
1653 */
1654 pcc1 = alpha_rpcc() & 0xffffffffUL;
1655 if (pcc1 < pcc0)
1656 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1657 else
1658 curcycle = pcc1 - pcc0;
1659
1660 /*
1661 * We now have the number of processor cycles since we
1662 * last checked. Add the current cycle count to the
1663 * running total. If it's over cycles_per_usec, increment
1664 * the usec counter.
1665 */
1666 cycles += curcycle;
1667 while (cycles > cycles_per_usec) {
1668 usec++;
1669 cycles -= cycles_per_usec;
1670 }
1671 pcc0 = pcc1;
1672 }
1673 }
1674
1675 #ifdef EXEC_ECOFF
1676 void
1677 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1678 {
1679 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1680
1681 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1682 }
1683
1684 /*
1685 * cpu_exec_ecoff_hook():
1686 * cpu-dependent ECOFF format hook for execve().
1687 *
1688 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1689 *
1690 */
1691 int
1692 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1693 {
1694 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1695 int error;
1696
1697 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1698 error = 0;
1699 else
1700 error = ENOEXEC;
1701
1702 return (error);
1703 }
1704 #endif /* EXEC_ECOFF */
1705
1706 int
1707 mm_md_physacc(paddr_t pa, vm_prot_t prot)
1708 {
1709 u_quad_t size;
1710 int i;
1711
1712 for (i = 0; i < mem_cluster_cnt; i++) {
1713 if (pa < mem_clusters[i].start)
1714 continue;
1715 size = mem_clusters[i].size & ~PAGE_MASK;
1716 if (pa >= (mem_clusters[i].start + size))
1717 continue;
1718 if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
1719 return 0;
1720 }
1721 return EFAULT;
1722 }
1723
1724 bool
1725 mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
1726 {
1727 vaddr_t va = (vaddr_t)addr;
1728
1729 if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
1730 *paddr = ALPHA_K0SEG_TO_PHYS(va);
1731 return true;
1732 }
1733 return false;
1734 }
1735
1736 bool
1737 mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
1738 {
1739
1740 *vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
1741 return true;
1742 }
1743
1744 /* XXX XXX BEGIN XXX XXX */
1745 paddr_t alpha_XXX_dmamap_or; /* XXX */
1746 /* XXX */
1747 paddr_t /* XXX */
1748 alpha_XXX_dmamap(vaddr_t v) /* XXX */
1749 { /* XXX */
1750 /* XXX */
1751 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1752 } /* XXX */
1753 /* XXX XXX END XXX XXX */
1754
1755 char *
1756 dot_conv(unsigned long x)
1757 {
1758 int i;
1759 char *xc;
1760 static int next;
1761 static char space[2][20];
1762
1763 xc = space[next ^= 1] + sizeof space[0];
1764 *--xc = '\0';
1765 for (i = 0;; ++i) {
1766 if (i && (i & 3) == 0)
1767 *--xc = '.';
1768 *--xc = hexdigits[x & 0xf];
1769 x >>= 4;
1770 if (x == 0)
1771 break;
1772 }
1773 return xc;
1774 }
1775
1776 void
1777 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1778 {
1779 struct trapframe *frame = l->l_md.md_tf;
1780 struct pcb *pcb = lwp_getpcb(l);
1781 __greg_t *gr = mcp->__gregs;
1782 __greg_t ras_pc;
1783
1784 /* Save register context. */
1785 frametoreg(frame, (struct reg *)gr);
1786 /* XXX if there's a better, general way to get the USP of
1787 * an LWP that might or might not be curlwp, I'd like to know
1788 * about it.
1789 */
1790 if (l == curlwp) {
1791 gr[_REG_SP] = alpha_pal_rdusp();
1792 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1793 } else {
1794 gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1795 gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1796 }
1797 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1798 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1799
1800 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1801 (void *) gr[_REG_PC])) != -1)
1802 gr[_REG_PC] = ras_pc;
1803
1804 *flags |= _UC_CPU | _UC_TLSBASE;
1805
1806 /* Save floating point register context, if any, and copy it. */
1807 if (fpu_valid_p(l)) {
1808 fpu_save(l);
1809 (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1810 sizeof (mcp->__fpregs));
1811 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1812 *flags |= _UC_FPU;
1813 }
1814 }
1815
1816 int
1817 cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
1818 {
1819 const __greg_t *gr = mcp->__gregs;
1820
1821 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1822 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1823 return EINVAL;
1824
1825 return 0;
1826 }
1827
1828 int
1829 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1830 {
1831 struct trapframe *frame = l->l_md.md_tf;
1832 struct pcb *pcb = lwp_getpcb(l);
1833 const __greg_t *gr = mcp->__gregs;
1834 int error;
1835
1836 /* Restore register context, if any. */
1837 if (flags & _UC_CPU) {
1838 /* Check for security violations first. */
1839 error = cpu_mcontext_validate(l, mcp);
1840 if (error)
1841 return error;
1842
1843 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1844 if (l == curlwp)
1845 alpha_pal_wrusp(gr[_REG_SP]);
1846 else
1847 pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1848 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1849 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1850 }
1851 if (flags & _UC_TLSBASE)
1852 lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
1853 /* Restore floating point register context, if any. */
1854 if (flags & _UC_FPU) {
1855 /* If we have an FP register context, get rid of it. */
1856 fpu_discard(l, true);
1857 (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1858 sizeof (pcb->pcb_fp));
1859 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
1860 }
1861
1862 return (0);
1863 }
1864
1865 static void
1866 cpu_kick(struct cpu_info * const ci)
1867 {
1868 #if defined(MULTIPROCESSOR)
1869 alpha_send_ipi(ci->ci_cpuid, ALPHA_IPI_AST);
1870 #endif /* MULTIPROCESSOR */
1871 }
1872
1873 /*
1874 * Preempt the current process if in interrupt from user mode,
1875 * or after the current trap/syscall if in system mode.
1876 */
1877 void
1878 cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags)
1879 {
1880
1881 KASSERT(kpreempt_disabled());
1882
1883 if ((flags & RESCHED_IDLE) != 0) {
1884 /*
1885 * Nothing to do here; we are not currently using WTINT
1886 * in cpu_idle().
1887 */
1888 return;
1889 }
1890
1891 /* XXX RESCHED_KPREEMPT XXX */
1892
1893 KASSERT((flags & RESCHED_UPREEMPT) != 0);
1894 if ((flags & RESCHED_REMOTE) != 0) {
1895 cpu_kick(ci);
1896 } else {
1897 aston(l);
1898 }
1899 }
1900
1901 /*
1902 * Notify the current lwp (l) that it has a signal pending,
1903 * process as soon as possible.
1904 */
1905 void
1906 cpu_signotify(struct lwp *l)
1907 {
1908
1909 KASSERT(kpreempt_disabled());
1910
1911 if (l->l_cpu != curcpu()) {
1912 cpu_kick(l->l_cpu);
1913 } else {
1914 aston(l);
1915 }
1916 }
1917
1918 /*
1919 * Give a profiling tick to the current process when the user profiling
1920 * buffer pages are invalid. On the alpha, request an AST to send us
1921 * through trap, marking the proc as needing a profiling tick.
1922 */
1923 void
1924 cpu_need_proftick(struct lwp *l)
1925 {
1926
1927 KASSERT(kpreempt_disabled());
1928 KASSERT(l->l_cpu == curcpu());
1929
1930 l->l_pflag |= LP_OWEUPC;
1931 aston(l);
1932 }
1933