machdep.c revision 1.365 1 /* $NetBSD: machdep.c,v 1.365 2020/09/27 23:16:10 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_execfmt.h"
67
68 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
69
70 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.365 2020/09/27 23:16:10 thorpej Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/signalvar.h>
75 #include <sys/kernel.h>
76 #include <sys/cpu.h>
77 #include <sys/proc.h>
78 #include <sys/ras.h>
79 #include <sys/sched.h>
80 #include <sys/reboot.h>
81 #include <sys/device.h>
82 #include <sys/malloc.h>
83 #include <sys/module.h>
84 #include <sys/mman.h>
85 #include <sys/msgbuf.h>
86 #include <sys/ioctl.h>
87 #include <sys/tty.h>
88 #include <sys/exec.h>
89 #include <sys/exec_aout.h> /* for MID_* */
90 #include <sys/exec_ecoff.h>
91 #include <sys/core.h>
92 #include <sys/kcore.h>
93 #include <sys/ucontext.h>
94 #include <sys/conf.h>
95 #include <sys/ksyms.h>
96 #include <sys/kauth.h>
97 #include <sys/atomic.h>
98 #include <sys/cpu.h>
99
100 #include <machine/kcore.h>
101 #include <machine/fpu.h>
102
103 #include <sys/mount.h>
104 #include <sys/syscallargs.h>
105
106 #include <uvm/uvm.h>
107 #include <sys/sysctl.h>
108
109 #include <dev/cons.h>
110 #include <dev/mm.h>
111
112 #include <machine/autoconf.h>
113 #include <machine/reg.h>
114 #include <machine/rpb.h>
115 #include <machine/prom.h>
116 #include <machine/cpuconf.h>
117 #include <machine/ieeefp.h>
118
119 #ifdef DDB
120 #include <machine/db_machdep.h>
121 #include <ddb/db_access.h>
122 #include <ddb/db_sym.h>
123 #include <ddb/db_extern.h>
124 #include <ddb/db_interface.h>
125 #endif
126
127 #ifdef KGDB
128 #include <sys/kgdb.h>
129 #endif
130
131 #ifdef DEBUG
132 #include <machine/sigdebug.h>
133 int sigdebug = 0x0;
134 int sigpid = 0;
135 #endif
136
137 #include <machine/alpha.h>
138
139 #include "ksyms.h"
140
141 struct vm_map *phys_map = NULL;
142
143 void *msgbufaddr;
144
145 int maxmem; /* max memory per process */
146
147 int totalphysmem; /* total amount of physical memory in system */
148 int resvmem; /* amount of memory reserved for PROM */
149 int unusedmem; /* amount of memory for OS that we don't use */
150 int unknownmem; /* amount of memory with an unknown use */
151
152 int cputype; /* system type, from the RPB */
153 bool alpha_is_qemu; /* true if we've detected runnnig in qemu */
154
155 int bootdev_debug = 0; /* patchable, or from DDB */
156
157 /*
158 * XXX We need an address to which we can assign things so that they
159 * won't be optimized away because we didn't use the value.
160 */
161 uint32_t no_optimize;
162
163 /* the following is used externally (sysctl_hw) */
164 char machine[] = MACHINE; /* from <machine/param.h> */
165 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
166
167 /* Number of machine cycles per microsecond */
168 uint64_t cycles_per_usec;
169
170 /* number of CPUs in the box. really! */
171 int ncpus;
172
173 struct bootinfo_kernel bootinfo;
174
175 /* For built-in TCDS */
176 #if defined(DEC_3000_300) || defined(DEC_3000_500)
177 uint8_t dec_3000_scsiid[3], dec_3000_scsifast[3];
178 #endif
179
180 struct platform platform;
181
182 #if NKSYMS || defined(DDB) || defined(MODULAR)
183 /* start and end of kernel symbol table */
184 void *ksym_start, *ksym_end;
185 #endif
186
187 /* for cpu_sysctl() */
188 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
189 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
190 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
191 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
192
193 /*
194 * XXX This should be dynamically sized, but we have the chicken-egg problem!
195 * XXX it should also be larger than it is, because not all of the mddt
196 * XXX clusters end up being used for VM.
197 */
198 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
199 int mem_cluster_cnt;
200
201 int cpu_dump(void);
202 int cpu_dumpsize(void);
203 u_long cpu_dump_mempagecnt(void);
204 void dumpsys(void);
205 void identifycpu(void);
206 void printregs(struct reg *);
207
208 const pcu_ops_t fpu_ops = {
209 .pcu_id = PCU_FPU,
210 .pcu_state_load = fpu_state_load,
211 .pcu_state_save = fpu_state_save,
212 .pcu_state_release = fpu_state_release,
213 };
214
215 const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
216 [PCU_FPU] = &fpu_ops,
217 };
218
219 void
220 alpha_init(u_long xxx_pfn __unused, u_long ptb, u_long bim, u_long bip,
221 u_long biv)
222 /* pfn: first free PFN number (no longer used) */
223 /* ptb: PFN of current level 1 page table */
224 /* bim: bootinfo magic */
225 /* bip: bootinfo pointer */
226 /* biv: bootinfo version */
227 {
228 extern char kernel_text[], _end[];
229 struct mddt *mddtp;
230 struct mddt_cluster *memc;
231 int i, mddtweird;
232 struct pcb *pcb0;
233 vaddr_t kernstart, kernend, v;
234 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
235 cpuid_t cpu_id;
236 struct cpu_info *ci;
237 char *p;
238 const char *bootinfo_msg;
239 const struct cpuinit *c;
240
241 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
242
243 /*
244 * Turn off interrupts (not mchecks) and floating point.
245 * Make sure the instruction and data streams are consistent.
246 */
247 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
248 alpha_pal_wrfen(0);
249 ALPHA_TBIA();
250 alpha_pal_imb();
251
252 /* Initialize the SCB. */
253 scb_init();
254
255 cpu_id = cpu_number();
256
257 ci = &cpu_info_primary;
258 ci->ci_cpuid = cpu_id;
259
260 #if defined(MULTIPROCESSOR)
261 /*
262 * Set the SysValue to &lwp0, after making sure that lwp0
263 * is pointing at the primary CPU. Secondary processors do
264 * this in their spinup trampoline.
265 */
266 lwp0.l_cpu = ci;
267 cpu_info[cpu_id] = ci;
268 alpha_pal_wrval((u_long)&lwp0);
269 #endif
270
271 /*
272 * Get critical system information (if possible, from the
273 * information provided by the boot program).
274 */
275 bootinfo_msg = NULL;
276 if (bim == BOOTINFO_MAGIC) {
277 if (biv == 0) { /* backward compat */
278 biv = *(u_long *)bip;
279 bip += 8;
280 }
281 switch (biv) {
282 case 1: {
283 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
284
285 bootinfo.ssym = v1p->ssym;
286 bootinfo.esym = v1p->esym;
287 /* hwrpb may not be provided by boot block in v1 */
288 if (v1p->hwrpb != NULL) {
289 bootinfo.hwrpb_phys =
290 ((struct rpb *)v1p->hwrpb)->rpb_phys;
291 bootinfo.hwrpb_size = v1p->hwrpbsize;
292 } else {
293 bootinfo.hwrpb_phys =
294 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
295 bootinfo.hwrpb_size =
296 ((struct rpb *)HWRPB_ADDR)->rpb_size;
297 }
298 memcpy(bootinfo.boot_flags, v1p->boot_flags,
299 uimin(sizeof v1p->boot_flags,
300 sizeof bootinfo.boot_flags));
301 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
302 uimin(sizeof v1p->booted_kernel,
303 sizeof bootinfo.booted_kernel));
304 /* booted dev not provided in bootinfo */
305 init_prom_interface(ptb, (struct rpb *)
306 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
307 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
308 sizeof bootinfo.booted_dev);
309 break;
310 }
311 default:
312 bootinfo_msg = "unknown bootinfo version";
313 goto nobootinfo;
314 }
315 } else {
316 bootinfo_msg = "boot program did not pass bootinfo";
317 nobootinfo:
318 bootinfo.ssym = (u_long)_end;
319 bootinfo.esym = (u_long)_end;
320 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
321 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
322 init_prom_interface(ptb, (struct rpb *)HWRPB_ADDR);
323 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
324 sizeof bootinfo.boot_flags);
325 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
326 sizeof bootinfo.booted_kernel);
327 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
328 sizeof bootinfo.booted_dev);
329 }
330
331 /*
332 * Initialize the kernel's mapping of the RPB. It's needed for
333 * lots of things.
334 */
335 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
336
337 #if defined(DEC_3000_300) || defined(DEC_3000_500)
338 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
339 hwrpb->rpb_type == ST_DEC_3000_500) {
340 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
341 sizeof(dec_3000_scsiid));
342 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
343 sizeof(dec_3000_scsifast));
344 }
345 #endif
346
347 /*
348 * Remember how many cycles there are per microsecond,
349 * so that we can use delay(). Round up, for safety.
350 */
351 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
352
353 /*
354 * Initialize the (temporary) bootstrap console interface, so
355 * we can use printf until the VM system starts being setup.
356 * The real console is initialized before then.
357 */
358 init_bootstrap_console();
359
360 /* OUTPUT NOW ALLOWED */
361
362 /* delayed from above */
363 if (bootinfo_msg)
364 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
365 bootinfo_msg, bim, bip, biv);
366
367 /* Initialize the trap vectors on the primary processor. */
368 trap_init();
369
370 /*
371 * Find out this system's page size, and initialize
372 * PAGE_SIZE-dependent variables.
373 */
374 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
375 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
376 ALPHA_PGBYTES);
377 uvmexp.pagesize = hwrpb->rpb_page_size;
378 uvm_md_init();
379
380 /*
381 * cputype has been initialized in init_prom_interface().
382 * Perform basic platform initialization using this info.
383 */
384 KASSERT(prom_interface_initialized);
385 c = platform_lookup(cputype);
386 if (c == NULL) {
387 platform_not_supported();
388 /* NOTREACHED */
389 }
390 (*c->init)();
391 cpu_setmodel("%s", platform.model);
392
393 /*
394 * Initialize the real console, so that the bootstrap console is
395 * no longer necessary.
396 */
397 (*platform.cons_init)();
398
399 #ifdef DIAGNOSTIC
400 /* Paranoid sanity checking */
401
402 /* We should always be running on the primary. */
403 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
404
405 /*
406 * On single-CPU systypes, the primary should always be CPU 0,
407 * except on Alpha 8200 systems where the CPU id is related
408 * to the VID, which is related to the Turbo Laser node id.
409 */
410 if (cputype != ST_DEC_21000)
411 assert(hwrpb->rpb_primary_cpu_id == 0);
412 #endif
413
414 /* NO MORE FIRMWARE ACCESS ALLOWED */
415 /* XXX Unless prom_uses_prom_console() evaluates to non-zero.) */
416
417 /*
418 * Find the beginning and end of the kernel (and leave a
419 * bit of space before the beginning for the bootstrap
420 * stack).
421 */
422 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
423 #if NKSYMS || defined(DDB) || defined(MODULAR)
424 ksym_start = (void *)bootinfo.ssym;
425 ksym_end = (void *)bootinfo.esym;
426 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
427 #else
428 kernend = (vaddr_t)round_page((vaddr_t)_end);
429 #endif
430
431 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
432 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
433
434 /*
435 * Find out how much memory is available, by looking at
436 * the memory cluster descriptors. This also tries to do
437 * its best to detect things things that have never been seen
438 * before...
439 */
440 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
441
442 /* MDDT SANITY CHECKING */
443 mddtweird = 0;
444 if (mddtp->mddt_cluster_cnt < 2) {
445 mddtweird = 1;
446 printf("WARNING: weird number of mem clusters: %lu\n",
447 mddtp->mddt_cluster_cnt);
448 }
449
450 #if 0
451 printf("Memory cluster count: %" PRIu64 "\n", mddtp->mddt_cluster_cnt);
452 #endif
453
454 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
455 memc = &mddtp->mddt_clusters[i];
456 #if 0
457 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
458 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
459 #endif
460 totalphysmem += memc->mddt_pg_cnt;
461 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
462 mem_clusters[mem_cluster_cnt].start =
463 ptoa(memc->mddt_pfn);
464 mem_clusters[mem_cluster_cnt].size =
465 ptoa(memc->mddt_pg_cnt);
466 if (memc->mddt_usage & MDDT_mbz ||
467 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
468 memc->mddt_usage & MDDT_PALCODE)
469 mem_clusters[mem_cluster_cnt].size |=
470 PROT_READ;
471 else
472 mem_clusters[mem_cluster_cnt].size |=
473 PROT_READ | PROT_WRITE | PROT_EXEC;
474 mem_cluster_cnt++;
475 }
476
477 if (memc->mddt_usage & MDDT_mbz) {
478 mddtweird = 1;
479 printf("WARNING: mem cluster %d has weird "
480 "usage 0x%lx\n", i, memc->mddt_usage);
481 unknownmem += memc->mddt_pg_cnt;
482 continue;
483 }
484 if (memc->mddt_usage & MDDT_NONVOLATILE) {
485 /* XXX should handle these... */
486 printf("WARNING: skipping non-volatile mem "
487 "cluster %d\n", i);
488 unusedmem += memc->mddt_pg_cnt;
489 continue;
490 }
491 if (memc->mddt_usage & MDDT_PALCODE) {
492 resvmem += memc->mddt_pg_cnt;
493 continue;
494 }
495
496 /*
497 * We have a memory cluster available for system
498 * software use. We must determine if this cluster
499 * holds the kernel.
500 */
501
502 /*
503 * XXX If the kernel uses the PROM console, we only use the
504 * XXX memory after the kernel in the first system segment,
505 * XXX to avoid clobbering prom mapping, data, etc.
506 */
507 physmem += memc->mddt_pg_cnt;
508 pfn0 = memc->mddt_pfn;
509 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
510 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
511 /*
512 * Must compute the location of the kernel
513 * within the segment.
514 */
515 #if 0
516 printf("Cluster %d contains kernel\n", i);
517 #endif
518 if (pfn0 < kernstartpfn && !prom_uses_prom_console()) {
519 /*
520 * There is a chunk before the kernel.
521 */
522 #if 0
523 printf("Loading chunk before kernel: "
524 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
525 #endif
526 uvm_page_physload(pfn0, kernstartpfn,
527 pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
528 }
529 if (kernendpfn < pfn1) {
530 /*
531 * There is a chunk after the kernel.
532 */
533 #if 0
534 printf("Loading chunk after kernel: "
535 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
536 #endif
537 uvm_page_physload(kernendpfn, pfn1,
538 kernendpfn, pfn1, VM_FREELIST_DEFAULT);
539 }
540 } else {
541 /*
542 * Just load this cluster as one chunk.
543 */
544 #if 0
545 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
546 pfn0, pfn1);
547 #endif
548 uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
549 VM_FREELIST_DEFAULT);
550 }
551 }
552
553 /*
554 * Dump out the MDDT if it looks odd...
555 */
556 if (mddtweird) {
557 printf("\n");
558 printf("complete memory cluster information:\n");
559 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
560 printf("mddt %d:\n", i);
561 printf("\tpfn %lx\n",
562 mddtp->mddt_clusters[i].mddt_pfn);
563 printf("\tcnt %lx\n",
564 mddtp->mddt_clusters[i].mddt_pg_cnt);
565 printf("\ttest %lx\n",
566 mddtp->mddt_clusters[i].mddt_pg_test);
567 printf("\tbva %lx\n",
568 mddtp->mddt_clusters[i].mddt_v_bitaddr);
569 printf("\tbpa %lx\n",
570 mddtp->mddt_clusters[i].mddt_p_bitaddr);
571 printf("\tbcksum %lx\n",
572 mddtp->mddt_clusters[i].mddt_bit_cksum);
573 printf("\tusage %lx\n",
574 mddtp->mddt_clusters[i].mddt_usage);
575 }
576 printf("\n");
577 }
578
579 if (totalphysmem == 0)
580 panic("can't happen: system seems to have no memory!");
581 maxmem = physmem;
582 #if 0
583 printf("totalphysmem = %d\n", totalphysmem);
584 printf("physmem = %lu\n", physmem);
585 printf("resvmem = %d\n", resvmem);
586 printf("unusedmem = %d\n", unusedmem);
587 printf("unknownmem = %d\n", unknownmem);
588 #endif
589
590 /*
591 * Initialize error message buffer (at end of core).
592 */
593 {
594 paddr_t end;
595 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
596 vsize_t reqsz = sz;
597 uvm_physseg_t bank;
598
599 bank = uvm_physseg_get_last();
600
601 /* shrink so that it'll fit in the last segment */
602 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < atop(sz))
603 sz = ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank));
604
605 end = uvm_physseg_get_end(bank);
606 end -= atop(sz);
607
608 uvm_physseg_unplug(end, atop(sz));
609 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(end));
610
611 initmsgbuf(msgbufaddr, sz);
612
613 /* warn if the message buffer had to be shrunk */
614 if (sz != reqsz)
615 printf("WARNING: %ld bytes not available for msgbuf "
616 "in last cluster (%ld used)\n", reqsz, sz);
617
618 }
619
620 /*
621 * NOTE: It is safe to use uvm_pageboot_alloc() before
622 * pmap_bootstrap() because our pmap_virtual_space()
623 * returns compile-time constants.
624 */
625
626 /*
627 * Allocate uarea page for lwp0 and set it.
628 */
629 v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
630 uvm_lwp_setuarea(&lwp0, v);
631
632 /*
633 * Initialize the virtual memory system, and set the
634 * page table base register in proc 0's PCB.
635 */
636 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
637 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
638
639 /*
640 * Initialize the rest of lwp0's PCB and cache its physical address.
641 */
642 pcb0 = lwp_getpcb(&lwp0);
643 lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
644
645 /*
646 * Set the kernel sp, reserving space for an (empty) trapframe,
647 * and make lwp0's trapframe pointer point to it for sanity.
648 */
649 pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
650 lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
651
652 /* Indicate that lwp0 has a CPU. */
653 lwp0.l_cpu = ci;
654
655 /*
656 * Look at arguments passed to us and compute boothowto.
657 */
658
659 boothowto = RB_SINGLE;
660 #ifdef KADB
661 boothowto |= RB_KDB;
662 #endif
663 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
664 /*
665 * Note that we'd really like to differentiate case here,
666 * but the Alpha AXP Architecture Reference Manual
667 * says that we shouldn't.
668 */
669 switch (*p) {
670 case 'a': /* autoboot */
671 case 'A':
672 boothowto &= ~RB_SINGLE;
673 break;
674
675 #ifdef DEBUG
676 case 'c': /* crash dump immediately after autoconfig */
677 case 'C':
678 boothowto |= RB_DUMP;
679 break;
680 #endif
681
682 #if defined(KGDB) || defined(DDB)
683 case 'd': /* break into the kernel debugger ASAP */
684 case 'D':
685 boothowto |= RB_KDB;
686 break;
687 #endif
688
689 case 'h': /* always halt, never reboot */
690 case 'H':
691 boothowto |= RB_HALT;
692 break;
693
694 #if 0
695 case 'm': /* mini root present in memory */
696 case 'M':
697 boothowto |= RB_MINIROOT;
698 break;
699 #endif
700
701 case 'n': /* askname */
702 case 'N':
703 boothowto |= RB_ASKNAME;
704 break;
705
706 case 's': /* single-user (default, supported for sanity) */
707 case 'S':
708 boothowto |= RB_SINGLE;
709 break;
710
711 case 'q': /* quiet boot */
712 case 'Q':
713 boothowto |= AB_QUIET;
714 break;
715
716 case 'v': /* verbose boot */
717 case 'V':
718 boothowto |= AB_VERBOSE;
719 break;
720
721 case '-':
722 /*
723 * Just ignore this. It's not required, but it's
724 * common for it to be passed regardless.
725 */
726 break;
727
728 default:
729 printf("Unrecognized boot flag '%c'.\n", *p);
730 break;
731 }
732 }
733
734 /*
735 * Perform any initial kernel patches based on the running system.
736 * We may perform more later if we attach additional CPUs.
737 */
738 alpha_patch(false);
739
740 /*
741 * Figure out the number of CPUs in the box, from RPB fields.
742 * Really. We mean it.
743 */
744 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
745 struct pcs *pcsp;
746
747 pcsp = LOCATE_PCS(hwrpb, i);
748 if ((pcsp->pcs_flags & PCS_PP) != 0)
749 ncpus++;
750 }
751
752 /*
753 * Initialize debuggers, and break into them if appropriate.
754 */
755 #if NKSYMS || defined(DDB) || defined(MODULAR)
756 ksyms_addsyms_elf((int)((uint64_t)ksym_end - (uint64_t)ksym_start),
757 ksym_start, ksym_end);
758 #endif
759
760 if (boothowto & RB_KDB) {
761 #if defined(KGDB)
762 kgdb_debug_init = 1;
763 kgdb_connect(1);
764 #elif defined(DDB)
765 Debugger();
766 #endif
767 }
768
769 #ifdef DIAGNOSTIC
770 /*
771 * Check our clock frequency, from RPB fields.
772 */
773 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
774 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
775 hwrpb->rpb_intr_freq, hz);
776 #endif
777 }
778
779 #ifdef MODULAR
780 /* Push any modules loaded by the boot loader */
781 void
782 module_init_md(void)
783 {
784 /* nada. */
785 }
786 #endif /* MODULAR */
787
788 void
789 consinit(void)
790 {
791
792 /*
793 * Everything related to console initialization is done
794 * in alpha_init().
795 */
796 #if defined(DIAGNOSTIC) && defined(_PROM_MAY_USE_PROM_CONSOLE)
797 printf("consinit: %susing prom console\n",
798 prom_uses_prom_console() ? "" : "not ");
799 #endif
800 }
801
802 void
803 cpu_startup(void)
804 {
805 extern struct evcnt fpevent_use, fpevent_reuse;
806 vaddr_t minaddr, maxaddr;
807 char pbuf[9];
808 #if defined(DEBUG)
809 extern int pmapdebug;
810 int opmapdebug = pmapdebug;
811
812 pmapdebug = 0;
813 #endif
814
815 /*
816 * Good {morning,afternoon,evening,night}.
817 */
818 printf("%s%s", copyright, version);
819 identifycpu();
820 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
821 printf("total memory = %s\n", pbuf);
822 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
823 printf("(%s reserved for PROM, ", pbuf);
824 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
825 printf("%s used by NetBSD)\n", pbuf);
826 if (unusedmem) {
827 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
828 printf("WARNING: unused memory = %s\n", pbuf);
829 }
830 if (unknownmem) {
831 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
832 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
833 }
834
835 minaddr = 0;
836
837 /*
838 * Allocate a submap for physio
839 */
840 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
841 VM_PHYS_SIZE, 0, false, NULL);
842
843 /*
844 * No need to allocate an mbuf cluster submap. Mbuf clusters
845 * are allocated via the pool allocator, and we use K0SEG to
846 * map those pages.
847 */
848
849 #if defined(DEBUG)
850 pmapdebug = opmapdebug;
851 #endif
852 format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
853 printf("avail memory = %s\n", pbuf);
854 #if 0
855 {
856 extern u_long pmap_pages_stolen;
857
858 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
859 printf("stolen memory for VM structures = %s\n", pbuf);
860 }
861 #endif
862
863 /*
864 * Set up the HWPCB so that it's safe to configure secondary
865 * CPUs.
866 */
867 hwrpb_primary_init();
868
869 /*
870 * Initialize some trap event counters.
871 */
872 evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
873 "FP", "proc use");
874 evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
875 "FP", "proc re-use");
876 }
877
878 /*
879 * Retrieve the platform name from the DSR.
880 */
881 const char *
882 alpha_dsr_sysname(void)
883 {
884 struct dsrdb *dsr;
885 const char *sysname;
886
887 /*
888 * DSR does not exist on early HWRPB versions.
889 */
890 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
891 return (NULL);
892
893 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
894 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
895 sizeof(uint64_t)));
896 return (sysname);
897 }
898
899 /*
900 * Lookup the system specified system variation in the provided table,
901 * returning the model string on match.
902 */
903 const char *
904 alpha_variation_name(uint64_t variation, const struct alpha_variation_table *avtp)
905 {
906 int i;
907
908 for (i = 0; avtp[i].avt_model != NULL; i++)
909 if (avtp[i].avt_variation == variation)
910 return (avtp[i].avt_model);
911 return (NULL);
912 }
913
914 /*
915 * Generate a default platform name based for unknown system variations.
916 */
917 const char *
918 alpha_unknown_sysname(void)
919 {
920 static char s[128]; /* safe size */
921
922 snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx",
923 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
924 return ((const char *)s);
925 }
926
927 void
928 identifycpu(void)
929 {
930 const char *s;
931 int i;
932
933 /*
934 * print out CPU identification information.
935 */
936 printf("%s", cpu_getmodel());
937 for(s = cpu_getmodel(); *s; ++s)
938 if(strncasecmp(s, "MHz", 3) == 0)
939 goto skipMHz;
940 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
941 skipMHz:
942 printf(", s/n ");
943 for (i = 0; i < 10; i++)
944 printf("%c", hwrpb->rpb_ssn[i]);
945 printf("\n");
946 printf("%ld byte page size, %d processor%s.\n",
947 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
948 }
949
950 int waittime = -1;
951 struct pcb dumppcb;
952
953 void
954 cpu_reboot(int howto, char *bootstr)
955 {
956 #if defined(MULTIPROCESSOR)
957 u_long cpu_id = cpu_number();
958 u_long wait_mask;
959 int i;
960 #endif
961
962 /* If "always halt" was specified as a boot flag, obey. */
963 if ((boothowto & RB_HALT) != 0)
964 howto |= RB_HALT;
965
966 boothowto = howto;
967
968 /* If system is cold, just halt. */
969 if (cold) {
970 boothowto |= RB_HALT;
971 goto haltsys;
972 }
973
974 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
975 waittime = 0;
976 vfs_shutdown();
977 /*
978 * If we've been adjusting the clock, the todr
979 * will be out of synch; adjust it now.
980 */
981 resettodr();
982 }
983
984 /* Disable interrupts. */
985 splhigh();
986
987 #if defined(MULTIPROCESSOR)
988 /*
989 * Halt all other CPUs. If we're not the primary, the
990 * primary will spin, waiting for us to halt.
991 */
992 cpu_id = cpu_number(); /* may have changed cpu */
993 wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
994
995 alpha_broadcast_ipi(ALPHA_IPI_HALT);
996
997 /* Ensure any CPUs paused by DDB resume execution so they can halt */
998 cpus_paused = 0;
999
1000 for (i = 0; i < 10000; i++) {
1001 alpha_mb();
1002 if (cpus_running == wait_mask)
1003 break;
1004 delay(1000);
1005 }
1006 alpha_mb();
1007 if (cpus_running != wait_mask)
1008 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1009 cpus_running);
1010 #endif /* MULTIPROCESSOR */
1011
1012 /* If rebooting and a dump is requested do it. */
1013 #if 0
1014 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1015 #else
1016 if (boothowto & RB_DUMP)
1017 #endif
1018 dumpsys();
1019
1020 haltsys:
1021
1022 /* run any shutdown hooks */
1023 doshutdownhooks();
1024
1025 pmf_system_shutdown(boothowto);
1026
1027 #ifdef BOOTKEY
1028 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1029 cnpollc(1); /* for proper keyboard command handling */
1030 cngetc();
1031 cnpollc(0);
1032 printf("\n");
1033 #endif
1034
1035 /* Finally, powerdown/halt/reboot the system. */
1036 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1037 platform.powerdown != NULL) {
1038 (*platform.powerdown)();
1039 printf("WARNING: powerdown failed!\n");
1040 }
1041 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1042 #if defined(MULTIPROCESSOR)
1043 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1044 cpu_halt();
1045 else
1046 #endif
1047 prom_halt(boothowto & RB_HALT);
1048 /*NOTREACHED*/
1049 }
1050
1051 /*
1052 * These variables are needed by /sbin/savecore
1053 */
1054 uint32_t dumpmag = 0x8fca0101; /* magic number */
1055 int dumpsize = 0; /* pages */
1056 long dumplo = 0; /* blocks */
1057
1058 /*
1059 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1060 */
1061 int
1062 cpu_dumpsize(void)
1063 {
1064 int size;
1065
1066 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1067 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1068 if (roundup(size, dbtob(1)) != dbtob(1))
1069 return -1;
1070
1071 return (1);
1072 }
1073
1074 /*
1075 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1076 */
1077 u_long
1078 cpu_dump_mempagecnt(void)
1079 {
1080 u_long i, n;
1081
1082 n = 0;
1083 for (i = 0; i < mem_cluster_cnt; i++)
1084 n += atop(mem_clusters[i].size);
1085 return (n);
1086 }
1087
1088 /*
1089 * cpu_dump: dump machine-dependent kernel core dump headers.
1090 */
1091 int
1092 cpu_dump(void)
1093 {
1094 int (*dump)(dev_t, daddr_t, void *, size_t);
1095 char buf[dbtob(1)];
1096 kcore_seg_t *segp;
1097 cpu_kcore_hdr_t *cpuhdrp;
1098 phys_ram_seg_t *memsegp;
1099 const struct bdevsw *bdev;
1100 int i;
1101
1102 bdev = bdevsw_lookup(dumpdev);
1103 if (bdev == NULL)
1104 return (ENXIO);
1105 dump = bdev->d_dump;
1106
1107 memset(buf, 0, sizeof buf);
1108 segp = (kcore_seg_t *)buf;
1109 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1110 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1111 ALIGN(sizeof(*cpuhdrp))];
1112
1113 /*
1114 * Generate a segment header.
1115 */
1116 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1117 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1118
1119 /*
1120 * Add the machine-dependent header info.
1121 */
1122 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1123 cpuhdrp->page_size = PAGE_SIZE;
1124 cpuhdrp->nmemsegs = mem_cluster_cnt;
1125
1126 /*
1127 * Fill in the memory segment descriptors.
1128 */
1129 for (i = 0; i < mem_cluster_cnt; i++) {
1130 memsegp[i].start = mem_clusters[i].start;
1131 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1132 }
1133
1134 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1135 }
1136
1137 /*
1138 * This is called by main to set dumplo and dumpsize.
1139 * Dumps always skip the first PAGE_SIZE of disk space
1140 * in case there might be a disk label stored there.
1141 * If there is extra space, put dump at the end to
1142 * reduce the chance that swapping trashes it.
1143 */
1144 void
1145 cpu_dumpconf(void)
1146 {
1147 int nblks, dumpblks; /* size of dump area */
1148
1149 if (dumpdev == NODEV)
1150 goto bad;
1151 nblks = bdev_size(dumpdev);
1152 if (nblks <= ctod(1))
1153 goto bad;
1154
1155 dumpblks = cpu_dumpsize();
1156 if (dumpblks < 0)
1157 goto bad;
1158 dumpblks += ctod(cpu_dump_mempagecnt());
1159
1160 /* If dump won't fit (incl. room for possible label), punt. */
1161 if (dumpblks > (nblks - ctod(1)))
1162 goto bad;
1163
1164 /* Put dump at end of partition */
1165 dumplo = nblks - dumpblks;
1166
1167 /* dumpsize is in page units, and doesn't include headers. */
1168 dumpsize = cpu_dump_mempagecnt();
1169 return;
1170
1171 bad:
1172 dumpsize = 0;
1173 return;
1174 }
1175
1176 /*
1177 * Dump the kernel's image to the swap partition.
1178 */
1179 #define BYTES_PER_DUMP PAGE_SIZE
1180
1181 void
1182 dumpsys(void)
1183 {
1184 const struct bdevsw *bdev;
1185 u_long totalbytesleft, bytes, i, n, memcl;
1186 u_long maddr;
1187 int psize;
1188 daddr_t blkno;
1189 int (*dump)(dev_t, daddr_t, void *, size_t);
1190 int error;
1191
1192 /* Save registers. */
1193 savectx(&dumppcb);
1194
1195 if (dumpdev == NODEV)
1196 return;
1197 bdev = bdevsw_lookup(dumpdev);
1198 if (bdev == NULL || bdev->d_psize == NULL)
1199 return;
1200
1201 /*
1202 * For dumps during autoconfiguration,
1203 * if dump device has already configured...
1204 */
1205 if (dumpsize == 0)
1206 cpu_dumpconf();
1207 if (dumplo <= 0) {
1208 printf("\ndump to dev %u,%u not possible\n",
1209 major(dumpdev), minor(dumpdev));
1210 return;
1211 }
1212 printf("\ndumping to dev %u,%u offset %ld\n",
1213 major(dumpdev), minor(dumpdev), dumplo);
1214
1215 psize = bdev_size(dumpdev);
1216 printf("dump ");
1217 if (psize == -1) {
1218 printf("area unavailable\n");
1219 return;
1220 }
1221
1222 /* XXX should purge all outstanding keystrokes. */
1223
1224 if ((error = cpu_dump()) != 0)
1225 goto err;
1226
1227 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1228 blkno = dumplo + cpu_dumpsize();
1229 dump = bdev->d_dump;
1230 error = 0;
1231
1232 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1233 maddr = mem_clusters[memcl].start;
1234 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1235
1236 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1237
1238 /* Print out how many MBs we to go. */
1239 if ((totalbytesleft % (1024*1024)) == 0)
1240 printf_nolog("%ld ",
1241 totalbytesleft / (1024 * 1024));
1242
1243 /* Limit size for next transfer. */
1244 n = bytes - i;
1245 if (n > BYTES_PER_DUMP)
1246 n = BYTES_PER_DUMP;
1247
1248 error = (*dump)(dumpdev, blkno,
1249 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1250 if (error)
1251 goto err;
1252 maddr += n;
1253 blkno += btodb(n); /* XXX? */
1254
1255 /* XXX should look for keystrokes, to cancel. */
1256 }
1257 }
1258
1259 err:
1260 switch (error) {
1261
1262 case ENXIO:
1263 printf("device bad\n");
1264 break;
1265
1266 case EFAULT:
1267 printf("device not ready\n");
1268 break;
1269
1270 case EINVAL:
1271 printf("area improper\n");
1272 break;
1273
1274 case EIO:
1275 printf("i/o error\n");
1276 break;
1277
1278 case EINTR:
1279 printf("aborted from console\n");
1280 break;
1281
1282 case 0:
1283 printf("succeeded\n");
1284 break;
1285
1286 default:
1287 printf("error %d\n", error);
1288 break;
1289 }
1290 printf("\n\n");
1291 delay(1000);
1292 }
1293
1294 void
1295 frametoreg(const struct trapframe *framep, struct reg *regp)
1296 {
1297
1298 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1299 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1300 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1301 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1302 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1303 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1304 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1305 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1306 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1307 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1308 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1309 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1310 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1311 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1312 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1313 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1314 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1315 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1316 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1317 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1318 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1319 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1320 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1321 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1322 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1323 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1324 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1325 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1326 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1327 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1328 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1329 regp->r_regs[R_ZERO] = 0;
1330 }
1331
1332 void
1333 regtoframe(const struct reg *regp, struct trapframe *framep)
1334 {
1335
1336 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1337 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1338 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1339 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1340 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1341 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1342 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1343 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1344 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1345 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1346 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1347 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1348 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1349 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1350 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1351 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1352 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1353 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1354 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1355 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1356 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1357 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1358 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1359 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1360 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1361 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1362 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1363 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1364 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1365 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1366 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1367 /* ??? = regp->r_regs[R_ZERO]; */
1368 }
1369
1370 void
1371 printregs(struct reg *regp)
1372 {
1373 int i;
1374
1375 for (i = 0; i < 32; i++)
1376 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1377 i & 1 ? "\n" : "\t");
1378 }
1379
1380 void
1381 regdump(struct trapframe *framep)
1382 {
1383 struct reg reg;
1384
1385 frametoreg(framep, ®);
1386 reg.r_regs[R_SP] = alpha_pal_rdusp();
1387
1388 printf("REGISTERS:\n");
1389 printregs(®);
1390 }
1391
1392
1393
1394 void *
1395 getframe(const struct lwp *l, int sig, int *onstack)
1396 {
1397 void *frame;
1398
1399 /* Do we need to jump onto the signal stack? */
1400 *onstack =
1401 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1402 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1403
1404 if (*onstack)
1405 frame = (void *)((char *)l->l_sigstk.ss_sp +
1406 l->l_sigstk.ss_size);
1407 else
1408 frame = (void *)(alpha_pal_rdusp());
1409 return (frame);
1410 }
1411
1412 void
1413 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1414 {
1415 struct trapframe *tf = l->l_md.md_tf;
1416
1417 tf->tf_regs[FRAME_RA] = (uint64_t)tramp;
1418 tf->tf_regs[FRAME_PC] = (uint64_t)catcher;
1419 tf->tf_regs[FRAME_T12] = (uint64_t)catcher;
1420 alpha_pal_wrusp((unsigned long)fp);
1421 }
1422
1423
1424 /*
1425 * Send an interrupt to process, new style
1426 */
1427 void
1428 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1429 {
1430 struct lwp *l = curlwp;
1431 struct proc *p = l->l_proc;
1432 struct sigacts *ps = p->p_sigacts;
1433 int onstack, sig = ksi->ksi_signo, error;
1434 struct sigframe_siginfo *fp, frame;
1435 struct trapframe *tf;
1436 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1437
1438 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1439 tf = l->l_md.md_tf;
1440
1441 /* Allocate space for the signal handler context. */
1442 fp--;
1443
1444 #ifdef DEBUG
1445 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1446 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1447 sig, &onstack, fp);
1448 #endif
1449
1450 /* Build stack frame for signal trampoline. */
1451 memset(&frame, 0, sizeof(frame));
1452 frame.sf_si._info = ksi->ksi_info;
1453 frame.sf_uc.uc_flags = _UC_SIGMASK;
1454 frame.sf_uc.uc_sigmask = *mask;
1455 frame.sf_uc.uc_link = l->l_ctxlink;
1456 sendsig_reset(l, sig);
1457 mutex_exit(p->p_lock);
1458 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1459 error = copyout(&frame, fp, sizeof(frame));
1460 mutex_enter(p->p_lock);
1461
1462 if (error != 0) {
1463 /*
1464 * Process has trashed its stack; give it an illegal
1465 * instruction to halt it in its tracks.
1466 */
1467 #ifdef DEBUG
1468 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1469 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1470 p->p_pid, sig);
1471 #endif
1472 sigexit(l, SIGILL);
1473 /* NOTREACHED */
1474 }
1475
1476 #ifdef DEBUG
1477 if (sigdebug & SDB_FOLLOW)
1478 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1479 p->p_pid, sig, fp, ksi->ksi_code);
1480 #endif
1481
1482 /*
1483 * Set up the registers to directly invoke the signal handler. The
1484 * signal trampoline is then used to return from the signal. Note
1485 * the trampoline version numbers are coordinated with machine-
1486 * dependent code in libc.
1487 */
1488
1489 tf->tf_regs[FRAME_A0] = sig;
1490 tf->tf_regs[FRAME_A1] = (uint64_t)&fp->sf_si;
1491 tf->tf_regs[FRAME_A2] = (uint64_t)&fp->sf_uc;
1492
1493 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1494
1495 /* Remember that we're now on the signal stack. */
1496 if (onstack)
1497 l->l_sigstk.ss_flags |= SS_ONSTACK;
1498
1499 #ifdef DEBUG
1500 if (sigdebug & SDB_FOLLOW)
1501 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1502 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1503 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1504 printf("sendsig_siginfo(%d): sig %d returns\n",
1505 p->p_pid, sig);
1506 #endif
1507 }
1508
1509 /*
1510 * machine dependent system variables.
1511 */
1512 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1513 {
1514
1515 sysctl_createv(clog, 0, NULL, NULL,
1516 CTLFLAG_PERMANENT,
1517 CTLTYPE_NODE, "machdep", NULL,
1518 NULL, 0, NULL, 0,
1519 CTL_MACHDEP, CTL_EOL);
1520
1521 sysctl_createv(clog, 0, NULL, NULL,
1522 CTLFLAG_PERMANENT,
1523 CTLTYPE_STRUCT, "console_device", NULL,
1524 sysctl_consdev, 0, NULL, sizeof(dev_t),
1525 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1526 sysctl_createv(clog, 0, NULL, NULL,
1527 CTLFLAG_PERMANENT,
1528 CTLTYPE_STRING, "root_device", NULL,
1529 sysctl_root_device, 0, NULL, 0,
1530 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1531 sysctl_createv(clog, 0, NULL, NULL,
1532 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1533 CTLTYPE_INT, "unaligned_print",
1534 SYSCTL_DESCR("Warn about unaligned accesses"),
1535 NULL, 0, &alpha_unaligned_print, 0,
1536 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1537 sysctl_createv(clog, 0, NULL, NULL,
1538 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1539 CTLTYPE_INT, "unaligned_fix",
1540 SYSCTL_DESCR("Fix up unaligned accesses"),
1541 NULL, 0, &alpha_unaligned_fix, 0,
1542 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1543 sysctl_createv(clog, 0, NULL, NULL,
1544 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1545 CTLTYPE_INT, "unaligned_sigbus",
1546 SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"),
1547 NULL, 0, &alpha_unaligned_sigbus, 0,
1548 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1549 sysctl_createv(clog, 0, NULL, NULL,
1550 CTLFLAG_PERMANENT,
1551 CTLTYPE_STRING, "booted_kernel", NULL,
1552 NULL, 0, bootinfo.booted_kernel, 0,
1553 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1554 sysctl_createv(clog, 0, NULL, NULL,
1555 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1556 CTLTYPE_INT, "fp_sync_complete", NULL,
1557 NULL, 0, &alpha_fp_sync_complete, 0,
1558 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1559 }
1560
1561 /*
1562 * Set registers on exec.
1563 */
1564 void
1565 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1566 {
1567 struct trapframe *tfp = l->l_md.md_tf;
1568 struct pcb *pcb;
1569 #ifdef DEBUG
1570 int i;
1571 #endif
1572
1573 #ifdef DEBUG
1574 /*
1575 * Crash and dump, if the user requested it.
1576 */
1577 if (boothowto & RB_DUMP)
1578 panic("crash requested by boot flags");
1579 #endif
1580
1581 #ifdef DEBUG
1582 for (i = 0; i < FRAME_SIZE; i++)
1583 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1584 #else
1585 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1586 #endif
1587 pcb = lwp_getpcb(l);
1588 memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1589 alpha_pal_wrusp(stack);
1590 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1591 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1592
1593 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1594 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1595 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1596 tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp; /* a3 = ps_strings */
1597 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1598
1599 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1600 l->l_md.md_flags &= ~MDLWP_FP_C;
1601 pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1602 }
1603 }
1604
1605 /*
1606 * Wait "n" microseconds.
1607 */
1608 void
1609 delay(unsigned long n)
1610 {
1611 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1612
1613 if (n == 0)
1614 return;
1615
1616 pcc0 = alpha_rpcc() & 0xffffffffUL;
1617 cycles = 0;
1618 usec = 0;
1619
1620 while (usec <= n) {
1621 /*
1622 * Get the next CPU cycle count- assumes that we cannot
1623 * have had more than one 32 bit overflow.
1624 */
1625 pcc1 = alpha_rpcc() & 0xffffffffUL;
1626 if (pcc1 < pcc0)
1627 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1628 else
1629 curcycle = pcc1 - pcc0;
1630
1631 /*
1632 * We now have the number of processor cycles since we
1633 * last checked. Add the current cycle count to the
1634 * running total. If it's over cycles_per_usec, increment
1635 * the usec counter.
1636 */
1637 cycles += curcycle;
1638 while (cycles > cycles_per_usec) {
1639 usec++;
1640 cycles -= cycles_per_usec;
1641 }
1642 pcc0 = pcc1;
1643 }
1644 }
1645
1646 #ifdef EXEC_ECOFF
1647 void
1648 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1649 {
1650 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1651
1652 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1653 }
1654
1655 /*
1656 * cpu_exec_ecoff_hook():
1657 * cpu-dependent ECOFF format hook for execve().
1658 *
1659 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1660 *
1661 */
1662 int
1663 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1664 {
1665 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1666 int error;
1667
1668 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1669 error = 0;
1670 else
1671 error = ENOEXEC;
1672
1673 return (error);
1674 }
1675 #endif /* EXEC_ECOFF */
1676
1677 int
1678 mm_md_physacc(paddr_t pa, vm_prot_t prot)
1679 {
1680 u_quad_t size;
1681 int i;
1682
1683 for (i = 0; i < mem_cluster_cnt; i++) {
1684 if (pa < mem_clusters[i].start)
1685 continue;
1686 size = mem_clusters[i].size & ~PAGE_MASK;
1687 if (pa >= (mem_clusters[i].start + size))
1688 continue;
1689 if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
1690 return 0;
1691 }
1692 return EFAULT;
1693 }
1694
1695 bool
1696 mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
1697 {
1698 vaddr_t va = (vaddr_t)addr;
1699
1700 if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
1701 *paddr = ALPHA_K0SEG_TO_PHYS(va);
1702 return true;
1703 }
1704 return false;
1705 }
1706
1707 bool
1708 mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
1709 {
1710
1711 *vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
1712 return true;
1713 }
1714
1715 /* XXX XXX BEGIN XXX XXX */
1716 paddr_t alpha_XXX_dmamap_or; /* XXX */
1717 /* XXX */
1718 paddr_t /* XXX */
1719 alpha_XXX_dmamap(vaddr_t v) /* XXX */
1720 { /* XXX */
1721 /* XXX */
1722 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1723 } /* XXX */
1724 /* XXX XXX END XXX XXX */
1725
1726 char *
1727 dot_conv(unsigned long x)
1728 {
1729 int i;
1730 char *xc;
1731 static int next;
1732 static char space[2][20];
1733
1734 xc = space[next ^= 1] + sizeof space[0];
1735 *--xc = '\0';
1736 for (i = 0;; ++i) {
1737 if (i && (i & 3) == 0)
1738 *--xc = '.';
1739 *--xc = hexdigits[x & 0xf];
1740 x >>= 4;
1741 if (x == 0)
1742 break;
1743 }
1744 return xc;
1745 }
1746
1747 void
1748 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1749 {
1750 struct trapframe *frame = l->l_md.md_tf;
1751 struct pcb *pcb = lwp_getpcb(l);
1752 __greg_t *gr = mcp->__gregs;
1753 __greg_t ras_pc;
1754
1755 /* Save register context. */
1756 frametoreg(frame, (struct reg *)gr);
1757 /* XXX if there's a better, general way to get the USP of
1758 * an LWP that might or might not be curlwp, I'd like to know
1759 * about it.
1760 */
1761 if (l == curlwp) {
1762 gr[_REG_SP] = alpha_pal_rdusp();
1763 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1764 } else {
1765 gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1766 gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1767 }
1768 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1769 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1770
1771 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1772 (void *) gr[_REG_PC])) != -1)
1773 gr[_REG_PC] = ras_pc;
1774
1775 *flags |= _UC_CPU | _UC_TLSBASE;
1776
1777 /* Save floating point register context, if any, and copy it. */
1778 if (fpu_valid_p(l)) {
1779 fpu_save(l);
1780 (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1781 sizeof (mcp->__fpregs));
1782 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1783 *flags |= _UC_FPU;
1784 }
1785 }
1786
1787 int
1788 cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
1789 {
1790 const __greg_t *gr = mcp->__gregs;
1791
1792 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1793 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1794 return EINVAL;
1795
1796 return 0;
1797 }
1798
1799 int
1800 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1801 {
1802 struct trapframe *frame = l->l_md.md_tf;
1803 struct pcb *pcb = lwp_getpcb(l);
1804 const __greg_t *gr = mcp->__gregs;
1805 int error;
1806
1807 /* Restore register context, if any. */
1808 if (flags & _UC_CPU) {
1809 /* Check for security violations first. */
1810 error = cpu_mcontext_validate(l, mcp);
1811 if (error)
1812 return error;
1813
1814 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1815 if (l == curlwp)
1816 alpha_pal_wrusp(gr[_REG_SP]);
1817 else
1818 pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1819 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1820 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1821 }
1822 if (flags & _UC_TLSBASE)
1823 lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
1824 /* Restore floating point register context, if any. */
1825 if (flags & _UC_FPU) {
1826 /* If we have an FP register context, get rid of it. */
1827 fpu_discard(l, true);
1828 (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1829 sizeof (pcb->pcb_fp));
1830 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
1831 }
1832
1833 return (0);
1834 }
1835
1836 static void
1837 cpu_kick(struct cpu_info * const ci)
1838 {
1839 #if defined(MULTIPROCESSOR)
1840 alpha_send_ipi(ci->ci_cpuid, ALPHA_IPI_AST);
1841 #endif /* MULTIPROCESSOR */
1842 }
1843
1844 /*
1845 * Preempt the current process if in interrupt from user mode,
1846 * or after the current trap/syscall if in system mode.
1847 */
1848 void
1849 cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags)
1850 {
1851
1852 KASSERT(kpreempt_disabled());
1853
1854 if ((flags & RESCHED_IDLE) != 0) {
1855 /*
1856 * Nothing to do here; we are not currently using WTINT
1857 * in cpu_idle().
1858 */
1859 return;
1860 }
1861
1862 /* XXX RESCHED_KPREEMPT XXX */
1863
1864 KASSERT((flags & RESCHED_UPREEMPT) != 0);
1865 if ((flags & RESCHED_REMOTE) != 0) {
1866 cpu_kick(ci);
1867 } else {
1868 aston(l);
1869 }
1870 }
1871
1872 /*
1873 * Notify the current lwp (l) that it has a signal pending,
1874 * process as soon as possible.
1875 */
1876 void
1877 cpu_signotify(struct lwp *l)
1878 {
1879
1880 KASSERT(kpreempt_disabled());
1881
1882 if (l->l_cpu != curcpu()) {
1883 cpu_kick(l->l_cpu);
1884 } else {
1885 aston(l);
1886 }
1887 }
1888
1889 /*
1890 * Give a profiling tick to the current process when the user profiling
1891 * buffer pages are invalid. On the alpha, request an AST to send us
1892 * through trap, marking the proc as needing a profiling tick.
1893 */
1894 void
1895 cpu_need_proftick(struct lwp *l)
1896 {
1897
1898 KASSERT(kpreempt_disabled());
1899 KASSERT(l->l_cpu == curcpu());
1900
1901 l->l_pflag |= LP_OWEUPC;
1902 aston(l);
1903 }
1904