Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.366
      1 /* $NetBSD: machdep.c,v 1.366 2020/10/03 17:31:46 thorpej Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 1998, 1999, 2000, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     35  * All rights reserved.
     36  *
     37  * Author: Chris G. Demetriou
     38  *
     39  * Permission to use, copy, modify and distribute this software and
     40  * its documentation is hereby granted, provided that both the copyright
     41  * notice and this permission notice appear in all copies of the
     42  * software, derivative works or modified versions, and any portions
     43  * thereof, and that both notices appear in supporting documentation.
     44  *
     45  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     46  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     47  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     48  *
     49  * Carnegie Mellon requests users of this software to return to
     50  *
     51  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     52  *  School of Computer Science
     53  *  Carnegie Mellon University
     54  *  Pittsburgh PA 15213-3890
     55  *
     56  * any improvements or extensions that they make and grant Carnegie the
     57  * rights to redistribute these changes.
     58  */
     59 
     60 #include "opt_ddb.h"
     61 #include "opt_kgdb.h"
     62 #include "opt_modular.h"
     63 #include "opt_multiprocessor.h"
     64 #include "opt_dec_3000_300.h"
     65 #include "opt_dec_3000_500.h"
     66 #include "opt_execfmt.h"
     67 
     68 #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     69 
     70 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.366 2020/10/03 17:31:46 thorpej Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/signalvar.h>
     75 #include <sys/kernel.h>
     76 #include <sys/cpu.h>
     77 #include <sys/proc.h>
     78 #include <sys/ras.h>
     79 #include <sys/sched.h>
     80 #include <sys/reboot.h>
     81 #include <sys/device.h>
     82 #include <sys/malloc.h>
     83 #include <sys/module.h>
     84 #include <sys/mman.h>
     85 #include <sys/msgbuf.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/tty.h>
     88 #include <sys/exec.h>
     89 #include <sys/exec_aout.h>		/* for MID_* */
     90 #include <sys/exec_ecoff.h>
     91 #include <sys/core.h>
     92 #include <sys/kcore.h>
     93 #include <sys/ucontext.h>
     94 #include <sys/conf.h>
     95 #include <sys/ksyms.h>
     96 #include <sys/kauth.h>
     97 #include <sys/atomic.h>
     98 #include <sys/cpu.h>
     99 
    100 #include <machine/kcore.h>
    101 #include <machine/fpu.h>
    102 
    103 #include <sys/mount.h>
    104 #include <sys/syscallargs.h>
    105 
    106 #include <uvm/uvm.h>
    107 #include <sys/sysctl.h>
    108 
    109 #include <dev/cons.h>
    110 #include <dev/mm.h>
    111 
    112 #include <machine/autoconf.h>
    113 #include <machine/reg.h>
    114 #include <machine/rpb.h>
    115 #include <machine/prom.h>
    116 #include <machine/cpuconf.h>
    117 #include <machine/ieeefp.h>
    118 
    119 #ifdef DDB
    120 #include <machine/db_machdep.h>
    121 #include <ddb/db_access.h>
    122 #include <ddb/db_sym.h>
    123 #include <ddb/db_extern.h>
    124 #include <ddb/db_interface.h>
    125 #endif
    126 
    127 #ifdef KGDB
    128 #include <sys/kgdb.h>
    129 #endif
    130 
    131 #ifdef DEBUG
    132 #include <machine/sigdebug.h>
    133 int sigdebug = 0x0;
    134 int sigpid = 0;
    135 #endif
    136 
    137 #include <machine/alpha.h>
    138 
    139 #include "ksyms.h"
    140 
    141 struct vm_map *phys_map = NULL;
    142 
    143 void *msgbufaddr;
    144 
    145 int	maxmem;			/* max memory per process */
    146 
    147 int	totalphysmem;		/* total amount of physical memory in system */
    148 int	resvmem;		/* amount of memory reserved for PROM */
    149 int	unusedmem;		/* amount of memory for OS that we don't use */
    150 int	unknownmem;		/* amount of memory with an unknown use */
    151 
    152 int	cputype;		/* system type, from the RPB */
    153 bool	alpha_is_qemu;		/* true if we've detected runnnig in qemu */
    154 
    155 int	bootdev_debug = 0;	/* patchable, or from DDB */
    156 
    157 /*
    158  * XXX We need an address to which we can assign things so that they
    159  * won't be optimized away because we didn't use the value.
    160  */
    161 uint32_t no_optimize;
    162 
    163 /* the following is used externally (sysctl_hw) */
    164 char	machine[] = MACHINE;		/* from <machine/param.h> */
    165 char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    166 
    167 /* Number of machine cycles per microsecond */
    168 uint64_t	cycles_per_usec;
    169 
    170 /* number of CPUs in the box.  really! */
    171 int		ncpus;
    172 
    173 struct bootinfo_kernel bootinfo;
    174 
    175 /* For built-in TCDS */
    176 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    177 uint8_t	dec_3000_scsiid[3], dec_3000_scsifast[3];
    178 #endif
    179 
    180 struct platform platform;
    181 
    182 #if NKSYMS || defined(DDB) || defined(MODULAR)
    183 /* start and end of kernel symbol table */
    184 void	*ksym_start, *ksym_end;
    185 #endif
    186 
    187 /* for cpu_sysctl() */
    188 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    189 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    190 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    191 int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    192 
    193 /*
    194  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    195  * XXX it should also be larger than it is, because not all of the mddt
    196  * XXX clusters end up being used for VM.
    197  */
    198 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    199 int	mem_cluster_cnt;
    200 
    201 int	cpu_dump(void);
    202 int	cpu_dumpsize(void);
    203 u_long	cpu_dump_mempagecnt(void);
    204 void	dumpsys(void);
    205 void	identifycpu(void);
    206 void	printregs(struct reg *);
    207 
    208 const pcu_ops_t fpu_ops = {
    209 	.pcu_id = PCU_FPU,
    210 	.pcu_state_load = fpu_state_load,
    211 	.pcu_state_save = fpu_state_save,
    212 	.pcu_state_release = fpu_state_release,
    213 };
    214 
    215 const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
    216 	[PCU_FPU] = &fpu_ops,
    217 };
    218 
    219 void
    220 alpha_init(u_long xxx_pfn __unused, u_long ptb, u_long bim, u_long bip,
    221     u_long biv)
    222 	/* pfn:		 first free PFN number (no longer used) */
    223 	/* ptb:		 PFN of current level 1 page table */
    224 	/* bim:		 bootinfo magic */
    225 	/* bip:		 bootinfo pointer */
    226 	/* biv:		 bootinfo version */
    227 {
    228 	extern char kernel_text[], _end[];
    229 	struct mddt *mddtp;
    230 	struct mddt_cluster *memc;
    231 	int i, mddtweird;
    232 	struct pcb *pcb0;
    233 	vaddr_t kernstart, kernend, v;
    234 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    235 	cpuid_t cpu_id;
    236 	struct cpu_info *ci;
    237 	char *p;
    238 	const char *bootinfo_msg;
    239 	const struct cpuinit *c;
    240 
    241 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    242 
    243 	/*
    244 	 * Turn off interrupts (not mchecks) and floating point.
    245 	 * Make sure the instruction and data streams are consistent.
    246 	 */
    247 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    248 	alpha_pal_wrfen(0);
    249 	ALPHA_TBIA();
    250 	alpha_pal_imb();
    251 
    252 	/* Initialize the SCB. */
    253 	scb_init();
    254 
    255 	cpu_id = cpu_number();
    256 
    257 	ci = &cpu_info_primary;
    258 	ci->ci_cpuid = cpu_id;
    259 
    260 #if defined(MULTIPROCESSOR)
    261 	/*
    262 	 * Set the SysValue to &lwp0, after making sure that lwp0
    263 	 * is pointing at the primary CPU.  Secondary processors do
    264 	 * this in their spinup trampoline.
    265 	 */
    266 	lwp0.l_cpu = ci;
    267 	cpu_info[cpu_id] = ci;
    268 	alpha_pal_wrval((u_long)&lwp0);
    269 #endif
    270 
    271 	/*
    272 	 * Get critical system information (if possible, from the
    273 	 * information provided by the boot program).
    274 	 */
    275 	bootinfo_msg = NULL;
    276 	if (bim == BOOTINFO_MAGIC) {
    277 		if (biv == 0) {		/* backward compat */
    278 			biv = *(u_long *)bip;
    279 			bip += 8;
    280 		}
    281 		switch (biv) {
    282 		case 1: {
    283 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    284 
    285 			bootinfo.ssym = v1p->ssym;
    286 			bootinfo.esym = v1p->esym;
    287 			/* hwrpb may not be provided by boot block in v1 */
    288 			if (v1p->hwrpb != NULL) {
    289 				bootinfo.hwrpb_phys =
    290 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    291 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    292 			} else {
    293 				bootinfo.hwrpb_phys =
    294 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    295 				bootinfo.hwrpb_size =
    296 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    297 			}
    298 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    299 			    uimin(sizeof v1p->boot_flags,
    300 			      sizeof bootinfo.boot_flags));
    301 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    302 			    uimin(sizeof v1p->booted_kernel,
    303 			      sizeof bootinfo.booted_kernel));
    304 			/* booted dev not provided in bootinfo */
    305 			init_prom_interface(ptb, (struct rpb *)
    306 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    307 	        	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    308 			    sizeof bootinfo.booted_dev);
    309 			break;
    310 		}
    311 		default:
    312 			bootinfo_msg = "unknown bootinfo version";
    313 			goto nobootinfo;
    314 		}
    315 	} else {
    316 		bootinfo_msg = "boot program did not pass bootinfo";
    317 nobootinfo:
    318 		bootinfo.ssym = (u_long)_end;
    319 		bootinfo.esym = (u_long)_end;
    320 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    321 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    322 		init_prom_interface(ptb, (struct rpb *)HWRPB_ADDR);
    323 		if (alpha_is_qemu) {
    324 			/*
    325 			 * Grab boot flags from kernel command line.
    326 			 * Assume autoboot if not supplied.
    327 			 */
    328 			if (! prom_qemu_getenv("flags", bootinfo.boot_flags,
    329 					       sizeof(bootinfo.boot_flags))) {
    330 				strlcpy(bootinfo.boot_flags, "A",
    331 					sizeof(bootinfo.boot_flags));
    332 			}
    333 		} else {
    334 			prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    335 			    sizeof bootinfo.boot_flags);
    336 			prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    337 			    sizeof bootinfo.booted_kernel);
    338 			prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    339 			    sizeof bootinfo.booted_dev);
    340 		}
    341 	}
    342 
    343 	/*
    344 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    345 	 * lots of things.
    346 	 */
    347 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    348 
    349 #if defined(DEC_3000_300) || defined(DEC_3000_500)
    350 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    351 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    352 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    353 		    sizeof(dec_3000_scsiid));
    354 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    355 		    sizeof(dec_3000_scsifast));
    356 	}
    357 #endif
    358 
    359 	/*
    360 	 * Remember how many cycles there are per microsecond,
    361 	 * so that we can use delay().  Round up, for safety.
    362 	 */
    363 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    364 
    365 	/*
    366 	 * Initialize the (temporary) bootstrap console interface, so
    367 	 * we can use printf until the VM system starts being setup.
    368 	 * The real console is initialized before then.
    369 	 */
    370 	init_bootstrap_console();
    371 
    372 	/* OUTPUT NOW ALLOWED */
    373 
    374 	/* delayed from above */
    375 	if (bootinfo_msg)
    376 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    377 		    bootinfo_msg, bim, bip, biv);
    378 
    379 	/* Initialize the trap vectors on the primary processor. */
    380 	trap_init();
    381 
    382 	/*
    383 	 * Find out this system's page size, and initialize
    384 	 * PAGE_SIZE-dependent variables.
    385 	 */
    386 	if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
    387 		panic("page size %lu != %d?!", hwrpb->rpb_page_size,
    388 		    ALPHA_PGBYTES);
    389 	uvmexp.pagesize = hwrpb->rpb_page_size;
    390 	uvm_md_init();
    391 
    392 	/*
    393 	 * cputype has been initialized in init_prom_interface().
    394 	 * Perform basic platform initialization using this info.
    395 	 */
    396 	KASSERT(prom_interface_initialized);
    397 	c = platform_lookup(cputype);
    398 	if (c == NULL) {
    399 		platform_not_supported();
    400 		/* NOTREACHED */
    401 	}
    402 	(*c->init)();
    403 	cpu_setmodel("%s", platform.model);
    404 
    405 	/*
    406 	 * Initialize the real console, so that the bootstrap console is
    407 	 * no longer necessary.
    408 	 */
    409 	(*platform.cons_init)();
    410 
    411 #ifdef DIAGNOSTIC
    412 	/* Paranoid sanity checking */
    413 
    414 	/* We should always be running on the primary. */
    415 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    416 
    417 	/*
    418 	 * On single-CPU systypes, the primary should always be CPU 0,
    419 	 * except on Alpha 8200 systems where the CPU id is related
    420 	 * to the VID, which is related to the Turbo Laser node id.
    421 	 */
    422 	if (cputype != ST_DEC_21000)
    423 		assert(hwrpb->rpb_primary_cpu_id == 0);
    424 #endif
    425 
    426 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    427 	/* XXX Unless prom_uses_prom_console() evaluates to non-zero.) */
    428 
    429 	/*
    430 	 * Find the beginning and end of the kernel (and leave a
    431 	 * bit of space before the beginning for the bootstrap
    432 	 * stack).
    433 	 */
    434 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    435 #if NKSYMS || defined(DDB) || defined(MODULAR)
    436 	ksym_start = (void *)bootinfo.ssym;
    437 	ksym_end   = (void *)bootinfo.esym;
    438 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    439 #else
    440 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    441 #endif
    442 
    443 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    444 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    445 
    446 	/*
    447 	 * Find out how much memory is available, by looking at
    448 	 * the memory cluster descriptors.  This also tries to do
    449 	 * its best to detect things things that have never been seen
    450 	 * before...
    451 	 */
    452 	mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
    453 
    454 	/* MDDT SANITY CHECKING */
    455 	mddtweird = 0;
    456 	if (mddtp->mddt_cluster_cnt < 2) {
    457 		mddtweird = 1;
    458 		printf("WARNING: weird number of mem clusters: %lu\n",
    459 		    mddtp->mddt_cluster_cnt);
    460 	}
    461 
    462 #if 0
    463 	printf("Memory cluster count: %" PRIu64 "\n", mddtp->mddt_cluster_cnt);
    464 #endif
    465 
    466 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    467 		memc = &mddtp->mddt_clusters[i];
    468 #if 0
    469 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    470 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    471 #endif
    472 		totalphysmem += memc->mddt_pg_cnt;
    473 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    474 			mem_clusters[mem_cluster_cnt].start =
    475 			    ptoa(memc->mddt_pfn);
    476 			mem_clusters[mem_cluster_cnt].size =
    477 			    ptoa(memc->mddt_pg_cnt);
    478 			if (memc->mddt_usage & MDDT_mbz ||
    479 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    480 			    memc->mddt_usage & MDDT_PALCODE)
    481 				mem_clusters[mem_cluster_cnt].size |=
    482 				    PROT_READ;
    483 			else
    484 				mem_clusters[mem_cluster_cnt].size |=
    485 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    486 			mem_cluster_cnt++;
    487 		}
    488 
    489 		if (memc->mddt_usage & MDDT_mbz) {
    490 			mddtweird = 1;
    491 			printf("WARNING: mem cluster %d has weird "
    492 			    "usage 0x%lx\n", i, memc->mddt_usage);
    493 			unknownmem += memc->mddt_pg_cnt;
    494 			continue;
    495 		}
    496 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    497 			/* XXX should handle these... */
    498 			printf("WARNING: skipping non-volatile mem "
    499 			    "cluster %d\n", i);
    500 			unusedmem += memc->mddt_pg_cnt;
    501 			continue;
    502 		}
    503 		if (memc->mddt_usage & MDDT_PALCODE) {
    504 			resvmem += memc->mddt_pg_cnt;
    505 			continue;
    506 		}
    507 
    508 		/*
    509 		 * We have a memory cluster available for system
    510 		 * software use.  We must determine if this cluster
    511 		 * holds the kernel.
    512 		 */
    513 
    514 		/*
    515 		 * XXX If the kernel uses the PROM console, we only use the
    516 		 * XXX memory after the kernel in the first system segment,
    517 		 * XXX to avoid clobbering prom mapping, data, etc.
    518 		 */
    519 		physmem += memc->mddt_pg_cnt;
    520 		pfn0 = memc->mddt_pfn;
    521 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    522 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    523 			/*
    524 			 * Must compute the location of the kernel
    525 			 * within the segment.
    526 			 */
    527 #if 0
    528 			printf("Cluster %d contains kernel\n", i);
    529 #endif
    530 			if (pfn0 < kernstartpfn && !prom_uses_prom_console()) {
    531 				/*
    532 				 * There is a chunk before the kernel.
    533 				 */
    534 #if 0
    535 				printf("Loading chunk before kernel: "
    536 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    537 #endif
    538 				uvm_page_physload(pfn0, kernstartpfn,
    539 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    540 			}
    541 			if (kernendpfn < pfn1) {
    542 				/*
    543 				 * There is a chunk after the kernel.
    544 				 */
    545 #if 0
    546 				printf("Loading chunk after kernel: "
    547 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    548 #endif
    549 				uvm_page_physload(kernendpfn, pfn1,
    550 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    551 			}
    552 		} else {
    553 			/*
    554 			 * Just load this cluster as one chunk.
    555 			 */
    556 #if 0
    557 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    558 			    pfn0, pfn1);
    559 #endif
    560 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    561 			    VM_FREELIST_DEFAULT);
    562 		}
    563 	}
    564 
    565 	/*
    566 	 * Dump out the MDDT if it looks odd...
    567 	 */
    568 	if (mddtweird) {
    569 		printf("\n");
    570 		printf("complete memory cluster information:\n");
    571 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    572 			printf("mddt %d:\n", i);
    573 			printf("\tpfn %lx\n",
    574 			    mddtp->mddt_clusters[i].mddt_pfn);
    575 			printf("\tcnt %lx\n",
    576 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    577 			printf("\ttest %lx\n",
    578 			    mddtp->mddt_clusters[i].mddt_pg_test);
    579 			printf("\tbva %lx\n",
    580 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    581 			printf("\tbpa %lx\n",
    582 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    583 			printf("\tbcksum %lx\n",
    584 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    585 			printf("\tusage %lx\n",
    586 			    mddtp->mddt_clusters[i].mddt_usage);
    587 		}
    588 		printf("\n");
    589 	}
    590 
    591 	if (totalphysmem == 0)
    592 		panic("can't happen: system seems to have no memory!");
    593 	maxmem = physmem;
    594 #if 0
    595 	printf("totalphysmem = %d\n", totalphysmem);
    596 	printf("physmem = %lu\n", physmem);
    597 	printf("resvmem = %d\n", resvmem);
    598 	printf("unusedmem = %d\n", unusedmem);
    599 	printf("unknownmem = %d\n", unknownmem);
    600 #endif
    601 
    602 	/*
    603 	 * Initialize error message buffer (at end of core).
    604 	 */
    605 	{
    606 		paddr_t end;
    607 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    608 		vsize_t reqsz = sz;
    609 		uvm_physseg_t bank;
    610 
    611 		bank = uvm_physseg_get_last();
    612 
    613 		/* shrink so that it'll fit in the last segment */
    614 		if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < atop(sz))
    615 			sz = ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank));
    616 
    617 		end = uvm_physseg_get_end(bank);
    618 		end -= atop(sz);
    619 
    620 		uvm_physseg_unplug(end, atop(sz));
    621 		msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(end));
    622 
    623 		initmsgbuf(msgbufaddr, sz);
    624 
    625 		/* warn if the message buffer had to be shrunk */
    626 		if (sz != reqsz)
    627 			printf("WARNING: %ld bytes not available for msgbuf "
    628 			    "in last cluster (%ld used)\n", reqsz, sz);
    629 
    630 	}
    631 
    632 	/*
    633 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    634 	 * pmap_bootstrap() because our pmap_virtual_space()
    635 	 * returns compile-time constants.
    636 	 */
    637 
    638 	/*
    639 	 * Allocate uarea page for lwp0 and set it.
    640 	 */
    641 	v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    642 	uvm_lwp_setuarea(&lwp0, v);
    643 
    644 	/*
    645 	 * Initialize the virtual memory system, and set the
    646 	 * page table base register in proc 0's PCB.
    647 	 */
    648 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    649 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    650 
    651 	/*
    652 	 * Initialize the rest of lwp0's PCB and cache its physical address.
    653 	 */
    654 	pcb0 = lwp_getpcb(&lwp0);
    655 	lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
    656 
    657 	/*
    658 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    659 	 * and make lwp0's trapframe pointer point to it for sanity.
    660 	 */
    661 	pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
    662 	lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
    663 
    664 	/* Indicate that lwp0 has a CPU. */
    665 	lwp0.l_cpu = ci;
    666 
    667 	/*
    668 	 * Look at arguments passed to us and compute boothowto.
    669 	 */
    670 
    671 	boothowto = RB_SINGLE;
    672 #ifdef KADB
    673 	boothowto |= RB_KDB;
    674 #endif
    675 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    676 		/*
    677 		 * Note that we'd really like to differentiate case here,
    678 		 * but the Alpha AXP Architecture Reference Manual
    679 		 * says that we shouldn't.
    680 		 */
    681 		switch (*p) {
    682 		case 'a': /* autoboot */
    683 		case 'A':
    684 			boothowto &= ~RB_SINGLE;
    685 			break;
    686 
    687 #ifdef DEBUG
    688 		case 'c': /* crash dump immediately after autoconfig */
    689 		case 'C':
    690 			boothowto |= RB_DUMP;
    691 			break;
    692 #endif
    693 
    694 #if defined(KGDB) || defined(DDB)
    695 		case 'd': /* break into the kernel debugger ASAP */
    696 		case 'D':
    697 			boothowto |= RB_KDB;
    698 			break;
    699 #endif
    700 
    701 		case 'h': /* always halt, never reboot */
    702 		case 'H':
    703 			boothowto |= RB_HALT;
    704 			break;
    705 
    706 #if 0
    707 		case 'm': /* mini root present in memory */
    708 		case 'M':
    709 			boothowto |= RB_MINIROOT;
    710 			break;
    711 #endif
    712 
    713 		case 'n': /* askname */
    714 		case 'N':
    715 			boothowto |= RB_ASKNAME;
    716 			break;
    717 
    718 		case 's': /* single-user (default, supported for sanity) */
    719 		case 'S':
    720 			boothowto |= RB_SINGLE;
    721 			break;
    722 
    723 		case 'q': /* quiet boot */
    724 		case 'Q':
    725 			boothowto |= AB_QUIET;
    726 			break;
    727 
    728 		case 'v': /* verbose boot */
    729 		case 'V':
    730 			boothowto |= AB_VERBOSE;
    731 			break;
    732 
    733 		case '-':
    734 			/*
    735 			 * Just ignore this.  It's not required, but it's
    736 			 * common for it to be passed regardless.
    737 			 */
    738 			break;
    739 
    740 		default:
    741 			printf("Unrecognized boot flag '%c'.\n", *p);
    742 			break;
    743 		}
    744 	}
    745 
    746 	/*
    747 	 * Perform any initial kernel patches based on the running system.
    748 	 * We may perform more later if we attach additional CPUs.
    749 	 */
    750 	alpha_patch(false);
    751 
    752 	/*
    753 	 * Figure out the number of CPUs in the box, from RPB fields.
    754 	 * Really.  We mean it.
    755 	 */
    756 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    757 		struct pcs *pcsp;
    758 
    759 		pcsp = LOCATE_PCS(hwrpb, i);
    760 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    761 			ncpus++;
    762 	}
    763 
    764 	/*
    765 	 * Initialize debuggers, and break into them if appropriate.
    766 	 */
    767 #if NKSYMS || defined(DDB) || defined(MODULAR)
    768 	ksyms_addsyms_elf((int)((uint64_t)ksym_end - (uint64_t)ksym_start),
    769 	    ksym_start, ksym_end);
    770 #endif
    771 
    772 	if (boothowto & RB_KDB) {
    773 #if defined(KGDB)
    774 		kgdb_debug_init = 1;
    775 		kgdb_connect(1);
    776 #elif defined(DDB)
    777 		Debugger();
    778 #endif
    779 	}
    780 
    781 #ifdef DIAGNOSTIC
    782 	/*
    783 	 * Check our clock frequency, from RPB fields.
    784 	 */
    785 	if ((hwrpb->rpb_intr_freq >> 12) != 1024)
    786 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    787 			hwrpb->rpb_intr_freq, hz);
    788 #endif
    789 }
    790 
    791 #ifdef MODULAR
    792 /* Push any modules loaded by the boot loader */
    793 void
    794 module_init_md(void)
    795 {
    796 	/* nada. */
    797 }
    798 #endif /* MODULAR */
    799 
    800 void
    801 consinit(void)
    802 {
    803 
    804 	/*
    805 	 * Everything related to console initialization is done
    806 	 * in alpha_init().
    807 	 */
    808 #if defined(DIAGNOSTIC) && defined(_PROM_MAY_USE_PROM_CONSOLE)
    809 	printf("consinit: %susing prom console\n",
    810 	    prom_uses_prom_console() ? "" : "not ");
    811 #endif
    812 }
    813 
    814 void
    815 cpu_startup(void)
    816 {
    817 	extern struct evcnt fpevent_use, fpevent_reuse;
    818 	vaddr_t minaddr, maxaddr;
    819 	char pbuf[9];
    820 #if defined(DEBUG)
    821 	extern int pmapdebug;
    822 	int opmapdebug = pmapdebug;
    823 
    824 	pmapdebug = 0;
    825 #endif
    826 
    827 	/*
    828 	 * Good {morning,afternoon,evening,night}.
    829 	 */
    830 	printf("%s%s", copyright, version);
    831 	identifycpu();
    832 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    833 	printf("total memory = %s\n", pbuf);
    834 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    835 	printf("(%s reserved for PROM, ", pbuf);
    836 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    837 	printf("%s used by NetBSD)\n", pbuf);
    838 	if (unusedmem) {
    839 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    840 		printf("WARNING: unused memory = %s\n", pbuf);
    841 	}
    842 	if (unknownmem) {
    843 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    844 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    845 	}
    846 
    847 	minaddr = 0;
    848 
    849 	/*
    850 	 * Allocate a submap for physio
    851 	 */
    852 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    853 				   VM_PHYS_SIZE, 0, false, NULL);
    854 
    855 	/*
    856 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    857 	 * are allocated via the pool allocator, and we use K0SEG to
    858 	 * map those pages.
    859 	 */
    860 
    861 #if defined(DEBUG)
    862 	pmapdebug = opmapdebug;
    863 #endif
    864 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
    865 	printf("avail memory = %s\n", pbuf);
    866 #if 0
    867 	{
    868 		extern u_long pmap_pages_stolen;
    869 
    870 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    871 		printf("stolen memory for VM structures = %s\n", pbuf);
    872 	}
    873 #endif
    874 
    875 	/*
    876 	 * Set up the HWPCB so that it's safe to configure secondary
    877 	 * CPUs.
    878 	 */
    879 	hwrpb_primary_init();
    880 
    881 	/*
    882 	 * Initialize some trap event counters.
    883 	 */
    884 	evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
    885 	    "FP", "proc use");
    886 	evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
    887 	    "FP", "proc re-use");
    888 }
    889 
    890 /*
    891  * Retrieve the platform name from the DSR.
    892  */
    893 const char *
    894 alpha_dsr_sysname(void)
    895 {
    896 	struct dsrdb *dsr;
    897 	const char *sysname;
    898 
    899 	/*
    900 	 * DSR does not exist on early HWRPB versions.
    901 	 */
    902 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    903 		return (NULL);
    904 
    905 	dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
    906 	sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
    907 	    sizeof(uint64_t)));
    908 	return (sysname);
    909 }
    910 
    911 /*
    912  * Lookup the system specified system variation in the provided table,
    913  * returning the model string on match.
    914  */
    915 const char *
    916 alpha_variation_name(uint64_t variation, const struct alpha_variation_table *avtp)
    917 {
    918 	int i;
    919 
    920 	for (i = 0; avtp[i].avt_model != NULL; i++)
    921 		if (avtp[i].avt_variation == variation)
    922 			return (avtp[i].avt_model);
    923 	return (NULL);
    924 }
    925 
    926 /*
    927  * Generate a default platform name based for unknown system variations.
    928  */
    929 const char *
    930 alpha_unknown_sysname(void)
    931 {
    932 	static char s[128];		/* safe size */
    933 
    934 	snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx",
    935 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    936 	return ((const char *)s);
    937 }
    938 
    939 void
    940 identifycpu(void)
    941 {
    942 	const char *s;
    943 	int i;
    944 
    945 	/*
    946 	 * print out CPU identification information.
    947 	 */
    948 	printf("%s", cpu_getmodel());
    949 	for(s = cpu_getmodel(); *s; ++s)
    950 		if(strncasecmp(s, "MHz", 3) == 0)
    951 			goto skipMHz;
    952 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
    953 skipMHz:
    954 	printf(", s/n ");
    955 	for (i = 0; i < 10; i++)
    956 		printf("%c", hwrpb->rpb_ssn[i]);
    957 	printf("\n");
    958 	printf("%ld byte page size, %d processor%s.\n",
    959 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    960 }
    961 
    962 int	waittime = -1;
    963 struct pcb dumppcb;
    964 
    965 void
    966 cpu_reboot(int howto, char *bootstr)
    967 {
    968 #if defined(MULTIPROCESSOR)
    969 	u_long cpu_id = cpu_number();
    970 	u_long wait_mask;
    971 	int i;
    972 #endif
    973 
    974 	/* If "always halt" was specified as a boot flag, obey. */
    975 	if ((boothowto & RB_HALT) != 0)
    976 		howto |= RB_HALT;
    977 
    978 	boothowto = howto;
    979 
    980 	/* If system is cold, just halt. */
    981 	if (cold) {
    982 		boothowto |= RB_HALT;
    983 		goto haltsys;
    984 	}
    985 
    986 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
    987 		waittime = 0;
    988 		vfs_shutdown();
    989 		/*
    990 		 * If we've been adjusting the clock, the todr
    991 		 * will be out of synch; adjust it now.
    992 		 */
    993 		resettodr();
    994 	}
    995 
    996 	/* Disable interrupts. */
    997 	splhigh();
    998 
    999 #if defined(MULTIPROCESSOR)
   1000 	/*
   1001 	 * Halt all other CPUs.  If we're not the primary, the
   1002 	 * primary will spin, waiting for us to halt.
   1003 	 */
   1004 	cpu_id = cpu_number();		/* may have changed cpu */
   1005 	wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
   1006 
   1007 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1008 
   1009 	/* Ensure any CPUs paused by DDB resume execution so they can halt */
   1010 	cpus_paused = 0;
   1011 
   1012 	for (i = 0; i < 10000; i++) {
   1013 		alpha_mb();
   1014 		if (cpus_running == wait_mask)
   1015 			break;
   1016 		delay(1000);
   1017 	}
   1018 	alpha_mb();
   1019 	if (cpus_running != wait_mask)
   1020 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1021 		    cpus_running);
   1022 #endif /* MULTIPROCESSOR */
   1023 
   1024 	/* If rebooting and a dump is requested do it. */
   1025 #if 0
   1026 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1027 #else
   1028 	if (boothowto & RB_DUMP)
   1029 #endif
   1030 		dumpsys();
   1031 
   1032 haltsys:
   1033 
   1034 	/* run any shutdown hooks */
   1035 	doshutdownhooks();
   1036 
   1037 	pmf_system_shutdown(boothowto);
   1038 
   1039 #ifdef BOOTKEY
   1040 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1041 	cnpollc(1);	/* for proper keyboard command handling */
   1042 	cngetc();
   1043 	cnpollc(0);
   1044 	printf("\n");
   1045 #endif
   1046 
   1047 	/* Finally, powerdown/halt/reboot the system. */
   1048 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1049 	    platform.powerdown != NULL) {
   1050 		(*platform.powerdown)();
   1051 		printf("WARNING: powerdown failed!\n");
   1052 	}
   1053 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1054 #if defined(MULTIPROCESSOR)
   1055 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1056 		cpu_halt();
   1057 	else
   1058 #endif
   1059 		prom_halt(boothowto & RB_HALT);
   1060 	/*NOTREACHED*/
   1061 }
   1062 
   1063 /*
   1064  * These variables are needed by /sbin/savecore
   1065  */
   1066 uint32_t dumpmag = 0x8fca0101;	/* magic number */
   1067 int 	dumpsize = 0;		/* pages */
   1068 long	dumplo = 0; 		/* blocks */
   1069 
   1070 /*
   1071  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1072  */
   1073 int
   1074 cpu_dumpsize(void)
   1075 {
   1076 	int size;
   1077 
   1078 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1079 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1080 	if (roundup(size, dbtob(1)) != dbtob(1))
   1081 		return -1;
   1082 
   1083 	return (1);
   1084 }
   1085 
   1086 /*
   1087  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1088  */
   1089 u_long
   1090 cpu_dump_mempagecnt(void)
   1091 {
   1092 	u_long i, n;
   1093 
   1094 	n = 0;
   1095 	for (i = 0; i < mem_cluster_cnt; i++)
   1096 		n += atop(mem_clusters[i].size);
   1097 	return (n);
   1098 }
   1099 
   1100 /*
   1101  * cpu_dump: dump machine-dependent kernel core dump headers.
   1102  */
   1103 int
   1104 cpu_dump(void)
   1105 {
   1106 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1107 	char buf[dbtob(1)];
   1108 	kcore_seg_t *segp;
   1109 	cpu_kcore_hdr_t *cpuhdrp;
   1110 	phys_ram_seg_t *memsegp;
   1111 	const struct bdevsw *bdev;
   1112 	int i;
   1113 
   1114 	bdev = bdevsw_lookup(dumpdev);
   1115 	if (bdev == NULL)
   1116 		return (ENXIO);
   1117 	dump = bdev->d_dump;
   1118 
   1119 	memset(buf, 0, sizeof buf);
   1120 	segp = (kcore_seg_t *)buf;
   1121 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1122 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1123 	    ALIGN(sizeof(*cpuhdrp))];
   1124 
   1125 	/*
   1126 	 * Generate a segment header.
   1127 	 */
   1128 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1129 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1130 
   1131 	/*
   1132 	 * Add the machine-dependent header info.
   1133 	 */
   1134 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1135 	cpuhdrp->page_size = PAGE_SIZE;
   1136 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1137 
   1138 	/*
   1139 	 * Fill in the memory segment descriptors.
   1140 	 */
   1141 	for (i = 0; i < mem_cluster_cnt; i++) {
   1142 		memsegp[i].start = mem_clusters[i].start;
   1143 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1144 	}
   1145 
   1146 	return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
   1147 }
   1148 
   1149 /*
   1150  * This is called by main to set dumplo and dumpsize.
   1151  * Dumps always skip the first PAGE_SIZE of disk space
   1152  * in case there might be a disk label stored there.
   1153  * If there is extra space, put dump at the end to
   1154  * reduce the chance that swapping trashes it.
   1155  */
   1156 void
   1157 cpu_dumpconf(void)
   1158 {
   1159 	int nblks, dumpblks;	/* size of dump area */
   1160 
   1161 	if (dumpdev == NODEV)
   1162 		goto bad;
   1163 	nblks = bdev_size(dumpdev);
   1164 	if (nblks <= ctod(1))
   1165 		goto bad;
   1166 
   1167 	dumpblks = cpu_dumpsize();
   1168 	if (dumpblks < 0)
   1169 		goto bad;
   1170 	dumpblks += ctod(cpu_dump_mempagecnt());
   1171 
   1172 	/* If dump won't fit (incl. room for possible label), punt. */
   1173 	if (dumpblks > (nblks - ctod(1)))
   1174 		goto bad;
   1175 
   1176 	/* Put dump at end of partition */
   1177 	dumplo = nblks - dumpblks;
   1178 
   1179 	/* dumpsize is in page units, and doesn't include headers. */
   1180 	dumpsize = cpu_dump_mempagecnt();
   1181 	return;
   1182 
   1183 bad:
   1184 	dumpsize = 0;
   1185 	return;
   1186 }
   1187 
   1188 /*
   1189  * Dump the kernel's image to the swap partition.
   1190  */
   1191 #define	BYTES_PER_DUMP	PAGE_SIZE
   1192 
   1193 void
   1194 dumpsys(void)
   1195 {
   1196 	const struct bdevsw *bdev;
   1197 	u_long totalbytesleft, bytes, i, n, memcl;
   1198 	u_long maddr;
   1199 	int psize;
   1200 	daddr_t blkno;
   1201 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1202 	int error;
   1203 
   1204 	/* Save registers. */
   1205 	savectx(&dumppcb);
   1206 
   1207 	if (dumpdev == NODEV)
   1208 		return;
   1209 	bdev = bdevsw_lookup(dumpdev);
   1210 	if (bdev == NULL || bdev->d_psize == NULL)
   1211 		return;
   1212 
   1213 	/*
   1214 	 * For dumps during autoconfiguration,
   1215 	 * if dump device has already configured...
   1216 	 */
   1217 	if (dumpsize == 0)
   1218 		cpu_dumpconf();
   1219 	if (dumplo <= 0) {
   1220 		printf("\ndump to dev %u,%u not possible\n",
   1221 		    major(dumpdev), minor(dumpdev));
   1222 		return;
   1223 	}
   1224 	printf("\ndumping to dev %u,%u offset %ld\n",
   1225 	    major(dumpdev), minor(dumpdev), dumplo);
   1226 
   1227 	psize = bdev_size(dumpdev);
   1228 	printf("dump ");
   1229 	if (psize == -1) {
   1230 		printf("area unavailable\n");
   1231 		return;
   1232 	}
   1233 
   1234 	/* XXX should purge all outstanding keystrokes. */
   1235 
   1236 	if ((error = cpu_dump()) != 0)
   1237 		goto err;
   1238 
   1239 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1240 	blkno = dumplo + cpu_dumpsize();
   1241 	dump = bdev->d_dump;
   1242 	error = 0;
   1243 
   1244 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1245 		maddr = mem_clusters[memcl].start;
   1246 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1247 
   1248 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1249 
   1250 			/* Print out how many MBs we to go. */
   1251 			if ((totalbytesleft % (1024*1024)) == 0)
   1252 				printf_nolog("%ld ",
   1253 				    totalbytesleft / (1024 * 1024));
   1254 
   1255 			/* Limit size for next transfer. */
   1256 			n = bytes - i;
   1257 			if (n > BYTES_PER_DUMP)
   1258 				n =  BYTES_PER_DUMP;
   1259 
   1260 			error = (*dump)(dumpdev, blkno,
   1261 			    (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1262 			if (error)
   1263 				goto err;
   1264 			maddr += n;
   1265 			blkno += btodb(n);			/* XXX? */
   1266 
   1267 			/* XXX should look for keystrokes, to cancel. */
   1268 		}
   1269 	}
   1270 
   1271 err:
   1272 	switch (error) {
   1273 
   1274 	case ENXIO:
   1275 		printf("device bad\n");
   1276 		break;
   1277 
   1278 	case EFAULT:
   1279 		printf("device not ready\n");
   1280 		break;
   1281 
   1282 	case EINVAL:
   1283 		printf("area improper\n");
   1284 		break;
   1285 
   1286 	case EIO:
   1287 		printf("i/o error\n");
   1288 		break;
   1289 
   1290 	case EINTR:
   1291 		printf("aborted from console\n");
   1292 		break;
   1293 
   1294 	case 0:
   1295 		printf("succeeded\n");
   1296 		break;
   1297 
   1298 	default:
   1299 		printf("error %d\n", error);
   1300 		break;
   1301 	}
   1302 	printf("\n\n");
   1303 	delay(1000);
   1304 }
   1305 
   1306 void
   1307 frametoreg(const struct trapframe *framep, struct reg *regp)
   1308 {
   1309 
   1310 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1311 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1312 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1313 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1314 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1315 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1316 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1317 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1318 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1319 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1320 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1321 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1322 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1323 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1324 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1325 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1326 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1327 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1328 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1329 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1330 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1331 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1332 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1333 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1334 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1335 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1336 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1337 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1338 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1339 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1340 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1341 	regp->r_regs[R_ZERO] = 0;
   1342 }
   1343 
   1344 void
   1345 regtoframe(const struct reg *regp, struct trapframe *framep)
   1346 {
   1347 
   1348 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1349 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1350 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1351 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1352 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1353 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1354 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1355 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1356 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1357 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1358 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1359 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1360 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1361 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1362 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1363 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1364 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1365 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1366 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1367 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1368 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1369 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1370 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1371 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1372 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1373 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1374 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1375 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1376 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1377 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1378 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1379 	/* ??? = regp->r_regs[R_ZERO]; */
   1380 }
   1381 
   1382 void
   1383 printregs(struct reg *regp)
   1384 {
   1385 	int i;
   1386 
   1387 	for (i = 0; i < 32; i++)
   1388 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1389 		   i & 1 ? "\n" : "\t");
   1390 }
   1391 
   1392 void
   1393 regdump(struct trapframe *framep)
   1394 {
   1395 	struct reg reg;
   1396 
   1397 	frametoreg(framep, &reg);
   1398 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1399 
   1400 	printf("REGISTERS:\n");
   1401 	printregs(&reg);
   1402 }
   1403 
   1404 
   1405 
   1406 void *
   1407 getframe(const struct lwp *l, int sig, int *onstack)
   1408 {
   1409 	void *frame;
   1410 
   1411 	/* Do we need to jump onto the signal stack? */
   1412 	*onstack =
   1413 	    (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1414 	    (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
   1415 
   1416 	if (*onstack)
   1417 		frame = (void *)((char *)l->l_sigstk.ss_sp +
   1418 					l->l_sigstk.ss_size);
   1419 	else
   1420 		frame = (void *)(alpha_pal_rdusp());
   1421 	return (frame);
   1422 }
   1423 
   1424 void
   1425 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
   1426 {
   1427 	struct trapframe *tf = l->l_md.md_tf;
   1428 
   1429 	tf->tf_regs[FRAME_RA] = (uint64_t)tramp;
   1430 	tf->tf_regs[FRAME_PC] = (uint64_t)catcher;
   1431 	tf->tf_regs[FRAME_T12] = (uint64_t)catcher;
   1432 	alpha_pal_wrusp((unsigned long)fp);
   1433 }
   1434 
   1435 
   1436 /*
   1437  * Send an interrupt to process, new style
   1438  */
   1439 void
   1440 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
   1441 {
   1442 	struct lwp *l = curlwp;
   1443 	struct proc *p = l->l_proc;
   1444 	struct sigacts *ps = p->p_sigacts;
   1445 	int onstack, sig = ksi->ksi_signo, error;
   1446 	struct sigframe_siginfo *fp, frame;
   1447 	struct trapframe *tf;
   1448 	sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
   1449 
   1450 	fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
   1451 	tf = l->l_md.md_tf;
   1452 
   1453 	/* Allocate space for the signal handler context. */
   1454 	fp--;
   1455 
   1456 #ifdef DEBUG
   1457 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1458 		printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1459 		    sig, &onstack, fp);
   1460 #endif
   1461 
   1462 	/* Build stack frame for signal trampoline. */
   1463 	memset(&frame, 0, sizeof(frame));
   1464 	frame.sf_si._info = ksi->ksi_info;
   1465 	frame.sf_uc.uc_flags = _UC_SIGMASK;
   1466 	frame.sf_uc.uc_sigmask = *mask;
   1467 	frame.sf_uc.uc_link = l->l_ctxlink;
   1468 	sendsig_reset(l, sig);
   1469 	mutex_exit(p->p_lock);
   1470 	cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
   1471 	error = copyout(&frame, fp, sizeof(frame));
   1472 	mutex_enter(p->p_lock);
   1473 
   1474 	if (error != 0) {
   1475 		/*
   1476 		 * Process has trashed its stack; give it an illegal
   1477 		 * instruction to halt it in its tracks.
   1478 		 */
   1479 #ifdef DEBUG
   1480 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1481 			printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
   1482 			    p->p_pid, sig);
   1483 #endif
   1484 		sigexit(l, SIGILL);
   1485 		/* NOTREACHED */
   1486 	}
   1487 
   1488 #ifdef DEBUG
   1489 	if (sigdebug & SDB_FOLLOW)
   1490 		printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
   1491 		       p->p_pid, sig, fp, ksi->ksi_code);
   1492 #endif
   1493 
   1494 	/*
   1495 	 * Set up the registers to directly invoke the signal handler.  The
   1496 	 * signal trampoline is then used to return from the signal.  Note
   1497 	 * the trampoline version numbers are coordinated with machine-
   1498 	 * dependent code in libc.
   1499 	 */
   1500 
   1501 	tf->tf_regs[FRAME_A0] = sig;
   1502 	tf->tf_regs[FRAME_A1] = (uint64_t)&fp->sf_si;
   1503 	tf->tf_regs[FRAME_A2] = (uint64_t)&fp->sf_uc;
   1504 
   1505 	buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
   1506 
   1507 	/* Remember that we're now on the signal stack. */
   1508 	if (onstack)
   1509 		l->l_sigstk.ss_flags |= SS_ONSTACK;
   1510 
   1511 #ifdef DEBUG
   1512 	if (sigdebug & SDB_FOLLOW)
   1513 		printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
   1514 		    tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
   1515 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1516 		printf("sendsig_siginfo(%d): sig %d returns\n",
   1517 		    p->p_pid, sig);
   1518 #endif
   1519 }
   1520 
   1521 /*
   1522  * machine dependent system variables.
   1523  */
   1524 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
   1525 {
   1526 
   1527 	sysctl_createv(clog, 0, NULL, NULL,
   1528 		       CTLFLAG_PERMANENT,
   1529 		       CTLTYPE_NODE, "machdep", NULL,
   1530 		       NULL, 0, NULL, 0,
   1531 		       CTL_MACHDEP, CTL_EOL);
   1532 
   1533 	sysctl_createv(clog, 0, NULL, NULL,
   1534 		       CTLFLAG_PERMANENT,
   1535 		       CTLTYPE_STRUCT, "console_device", NULL,
   1536 		       sysctl_consdev, 0, NULL, sizeof(dev_t),
   1537 		       CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
   1538 	sysctl_createv(clog, 0, NULL, NULL,
   1539 		       CTLFLAG_PERMANENT,
   1540 		       CTLTYPE_STRING, "root_device", NULL,
   1541 		       sysctl_root_device, 0, NULL, 0,
   1542 		       CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
   1543 	sysctl_createv(clog, 0, NULL, NULL,
   1544 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1545 		       CTLTYPE_INT, "unaligned_print",
   1546 		       SYSCTL_DESCR("Warn about unaligned accesses"),
   1547 		       NULL, 0, &alpha_unaligned_print, 0,
   1548 		       CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
   1549 	sysctl_createv(clog, 0, NULL, NULL,
   1550 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1551 		       CTLTYPE_INT, "unaligned_fix",
   1552 		       SYSCTL_DESCR("Fix up unaligned accesses"),
   1553 		       NULL, 0, &alpha_unaligned_fix, 0,
   1554 		       CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
   1555 	sysctl_createv(clog, 0, NULL, NULL,
   1556 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1557 		       CTLTYPE_INT, "unaligned_sigbus",
   1558 		       SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"),
   1559 		       NULL, 0, &alpha_unaligned_sigbus, 0,
   1560 		       CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
   1561 	sysctl_createv(clog, 0, NULL, NULL,
   1562 		       CTLFLAG_PERMANENT,
   1563 		       CTLTYPE_STRING, "booted_kernel", NULL,
   1564 		       NULL, 0, bootinfo.booted_kernel, 0,
   1565 		       CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
   1566 	sysctl_createv(clog, 0, NULL, NULL,
   1567 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1568 		       CTLTYPE_INT, "fp_sync_complete", NULL,
   1569 		       NULL, 0, &alpha_fp_sync_complete, 0,
   1570 		       CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
   1571 }
   1572 
   1573 /*
   1574  * Set registers on exec.
   1575  */
   1576 void
   1577 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
   1578 {
   1579 	struct trapframe *tfp = l->l_md.md_tf;
   1580 	struct pcb *pcb;
   1581 #ifdef DEBUG
   1582 	int i;
   1583 #endif
   1584 
   1585 #ifdef DEBUG
   1586 	/*
   1587 	 * Crash and dump, if the user requested it.
   1588 	 */
   1589 	if (boothowto & RB_DUMP)
   1590 		panic("crash requested by boot flags");
   1591 #endif
   1592 
   1593 #ifdef DEBUG
   1594 	for (i = 0; i < FRAME_SIZE; i++)
   1595 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1596 #else
   1597 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1598 #endif
   1599 	pcb = lwp_getpcb(l);
   1600 	memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
   1601 	alpha_pal_wrusp(stack);
   1602 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1603 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1604 
   1605 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1606 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1607 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1608 	tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp;	/* a3 = ps_strings */
   1609 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1610 
   1611 	if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
   1612 		l->l_md.md_flags &= ~MDLWP_FP_C;
   1613 		pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
   1614 	}
   1615 }
   1616 
   1617 void	(*alpha_delay_fn)(unsigned long);
   1618 
   1619 /*
   1620  * Wait "n" microseconds.
   1621  */
   1622 void
   1623 delay(unsigned long n)
   1624 {
   1625 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1626 
   1627 	if (n == 0)
   1628 		return;
   1629 
   1630 	/*
   1631 	 * If we have an alternative delay function, go ahead and
   1632 	 * use it.
   1633 	 */
   1634 	if (alpha_delay_fn != NULL) {
   1635 		(*alpha_delay_fn)(n);
   1636 		return;
   1637 	}
   1638 
   1639 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1640 	cycles = 0;
   1641 	usec = 0;
   1642 
   1643 	while (usec <= n) {
   1644 		/*
   1645 		 * Get the next CPU cycle count- assumes that we cannot
   1646 		 * have had more than one 32 bit overflow.
   1647 		 */
   1648 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1649 		if (pcc1 < pcc0)
   1650 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1651 		else
   1652 			curcycle = pcc1 - pcc0;
   1653 
   1654 		/*
   1655 		 * We now have the number of processor cycles since we
   1656 		 * last checked. Add the current cycle count to the
   1657 		 * running total. If it's over cycles_per_usec, increment
   1658 		 * the usec counter.
   1659 		 */
   1660 		cycles += curcycle;
   1661 		while (cycles > cycles_per_usec) {
   1662 			usec++;
   1663 			cycles -= cycles_per_usec;
   1664 		}
   1665 		pcc0 = pcc1;
   1666 	}
   1667 }
   1668 
   1669 #ifdef EXEC_ECOFF
   1670 void
   1671 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
   1672 {
   1673 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1674 
   1675 	l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1676 }
   1677 
   1678 /*
   1679  * cpu_exec_ecoff_hook():
   1680  *	cpu-dependent ECOFF format hook for execve().
   1681  *
   1682  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1683  *
   1684  */
   1685 int
   1686 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
   1687 {
   1688 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1689 	int error;
   1690 
   1691 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   1692 		error = 0;
   1693 	else
   1694 		error = ENOEXEC;
   1695 
   1696 	return (error);
   1697 }
   1698 #endif /* EXEC_ECOFF */
   1699 
   1700 int
   1701 mm_md_physacc(paddr_t pa, vm_prot_t prot)
   1702 {
   1703 	u_quad_t size;
   1704 	int i;
   1705 
   1706 	for (i = 0; i < mem_cluster_cnt; i++) {
   1707 		if (pa < mem_clusters[i].start)
   1708 			continue;
   1709 		size = mem_clusters[i].size & ~PAGE_MASK;
   1710 		if (pa >= (mem_clusters[i].start + size))
   1711 			continue;
   1712 		if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
   1713 			return 0;
   1714 	}
   1715 	return EFAULT;
   1716 }
   1717 
   1718 bool
   1719 mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
   1720 {
   1721 	vaddr_t va = (vaddr_t)addr;
   1722 
   1723 	if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
   1724 		*paddr = ALPHA_K0SEG_TO_PHYS(va);
   1725 		return true;
   1726 	}
   1727 	return false;
   1728 }
   1729 
   1730 bool
   1731 mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
   1732 {
   1733 
   1734 	*vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
   1735 	return true;
   1736 }
   1737 
   1738 /* XXX XXX BEGIN XXX XXX */
   1739 paddr_t alpha_XXX_dmamap_or;					/* XXX */
   1740 								/* XXX */
   1741 paddr_t								/* XXX */
   1742 alpha_XXX_dmamap(vaddr_t v)					/* XXX */
   1743 {								/* XXX */
   1744 								/* XXX */
   1745 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1746 }								/* XXX */
   1747 /* XXX XXX END XXX XXX */
   1748 
   1749 char *
   1750 dot_conv(unsigned long x)
   1751 {
   1752 	int i;
   1753 	char *xc;
   1754 	static int next;
   1755 	static char space[2][20];
   1756 
   1757 	xc = space[next ^= 1] + sizeof space[0];
   1758 	*--xc = '\0';
   1759 	for (i = 0;; ++i) {
   1760 		if (i && (i & 3) == 0)
   1761 			*--xc = '.';
   1762 		*--xc = hexdigits[x & 0xf];
   1763 		x >>= 4;
   1764 		if (x == 0)
   1765 			break;
   1766 	}
   1767 	return xc;
   1768 }
   1769 
   1770 void
   1771 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
   1772 {
   1773 	struct trapframe *frame = l->l_md.md_tf;
   1774 	struct pcb *pcb = lwp_getpcb(l);
   1775 	__greg_t *gr = mcp->__gregs;
   1776 	__greg_t ras_pc;
   1777 
   1778 	/* Save register context. */
   1779 	frametoreg(frame, (struct reg *)gr);
   1780 	/* XXX if there's a better, general way to get the USP of
   1781 	 * an LWP that might or might not be curlwp, I'd like to know
   1782 	 * about it.
   1783 	 */
   1784 	if (l == curlwp) {
   1785 		gr[_REG_SP] = alpha_pal_rdusp();
   1786 		gr[_REG_UNIQUE] = alpha_pal_rdunique();
   1787 	} else {
   1788 		gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
   1789 		gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
   1790 	}
   1791 	gr[_REG_PC] = frame->tf_regs[FRAME_PC];
   1792 	gr[_REG_PS] = frame->tf_regs[FRAME_PS];
   1793 
   1794 	if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
   1795 	    (void *) gr[_REG_PC])) != -1)
   1796 		gr[_REG_PC] = ras_pc;
   1797 
   1798 	*flags |= _UC_CPU | _UC_TLSBASE;
   1799 
   1800 	/* Save floating point register context, if any, and copy it. */
   1801 	if (fpu_valid_p(l)) {
   1802 		fpu_save(l);
   1803 		(void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
   1804 		    sizeof (mcp->__fpregs));
   1805 		mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
   1806 		*flags |= _UC_FPU;
   1807 	}
   1808 }
   1809 
   1810 int
   1811 cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
   1812 {
   1813 	const __greg_t *gr = mcp->__gregs;
   1814 
   1815 	if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
   1816 	    (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
   1817 		return EINVAL;
   1818 
   1819 	return 0;
   1820 }
   1821 
   1822 int
   1823 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
   1824 {
   1825 	struct trapframe *frame = l->l_md.md_tf;
   1826 	struct pcb *pcb = lwp_getpcb(l);
   1827 	const __greg_t *gr = mcp->__gregs;
   1828 	int error;
   1829 
   1830 	/* Restore register context, if any. */
   1831 	if (flags & _UC_CPU) {
   1832 		/* Check for security violations first. */
   1833 		error = cpu_mcontext_validate(l, mcp);
   1834 		if (error)
   1835 			return error;
   1836 
   1837 		regtoframe((const struct reg *)gr, l->l_md.md_tf);
   1838 		if (l == curlwp)
   1839 			alpha_pal_wrusp(gr[_REG_SP]);
   1840 		else
   1841 			pcb->pcb_hw.apcb_usp = gr[_REG_SP];
   1842 		frame->tf_regs[FRAME_PC] = gr[_REG_PC];
   1843 		frame->tf_regs[FRAME_PS] = gr[_REG_PS];
   1844 	}
   1845 	if (flags & _UC_TLSBASE)
   1846 		lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
   1847 	/* Restore floating point register context, if any. */
   1848 	if (flags & _UC_FPU) {
   1849 		/* If we have an FP register context, get rid of it. */
   1850 		fpu_discard(l, true);
   1851 		(void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
   1852 		    sizeof (pcb->pcb_fp));
   1853 		l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
   1854 	}
   1855 
   1856 	return (0);
   1857 }
   1858 
   1859 static void
   1860 cpu_kick(struct cpu_info * const ci)
   1861 {
   1862 #if defined(MULTIPROCESSOR)
   1863 	alpha_send_ipi(ci->ci_cpuid, ALPHA_IPI_AST);
   1864 #endif /* MULTIPROCESSOR */
   1865 }
   1866 
   1867 /*
   1868  * Preempt the current process if in interrupt from user mode,
   1869  * or after the current trap/syscall if in system mode.
   1870  */
   1871 void
   1872 cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags)
   1873 {
   1874 
   1875 	KASSERT(kpreempt_disabled());
   1876 
   1877 	if ((flags & RESCHED_IDLE) != 0) {
   1878 		/*
   1879 		 * Nothing to do here; we are not currently using WTINT
   1880 		 * in cpu_idle().
   1881 		 */
   1882 		return;
   1883 	}
   1884 
   1885 	/* XXX RESCHED_KPREEMPT XXX */
   1886 
   1887 	KASSERT((flags & RESCHED_UPREEMPT) != 0);
   1888 	if ((flags & RESCHED_REMOTE) != 0) {
   1889 		cpu_kick(ci);
   1890 	} else {
   1891 		aston(l);
   1892 	}
   1893 }
   1894 
   1895 /*
   1896  * Notify the current lwp (l) that it has a signal pending,
   1897  * process as soon as possible.
   1898  */
   1899 void
   1900 cpu_signotify(struct lwp *l)
   1901 {
   1902 
   1903 	KASSERT(kpreempt_disabled());
   1904 
   1905 	if (l->l_cpu != curcpu()) {
   1906 		cpu_kick(l->l_cpu);
   1907 	} else {
   1908 		aston(l);
   1909 	}
   1910 }
   1911 
   1912 /*
   1913  * Give a profiling tick to the current process when the user profiling
   1914  * buffer pages are invalid.  On the alpha, request an AST to send us
   1915  * through trap, marking the proc as needing a profiling tick.
   1916  */
   1917 void
   1918 cpu_need_proftick(struct lwp *l)
   1919 {
   1920 
   1921 	KASSERT(kpreempt_disabled());
   1922 	KASSERT(l->l_cpu == curcpu());
   1923 
   1924 	l->l_pflag |= LP_OWEUPC;
   1925 	aston(l);
   1926 }
   1927