machdep.c revision 1.382 1 /* $NetBSD: machdep.c,v 1.382 2025/03/16 19:27:30 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_execfmt.h"
67
68 #define __RWLOCK_PRIVATE
69
70 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
71
72 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.382 2025/03/16 19:27:30 thorpej Exp $");
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/signalvar.h>
77 #include <sys/kernel.h>
78 #include <sys/cpu.h>
79 #include <sys/proc.h>
80 #include <sys/ras.h>
81 #include <sys/sched.h>
82 #include <sys/reboot.h>
83 #include <sys/device.h>
84 #include <sys/module.h>
85 #include <sys/mman.h>
86 #include <sys/msgbuf.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/exec.h>
90 #include <sys/exec_aout.h> /* for MID_* */
91 #include <sys/exec_ecoff.h>
92 #include <sys/core.h>
93 #include <sys/kcore.h>
94 #include <sys/ucontext.h>
95 #include <sys/conf.h>
96 #include <sys/ksyms.h>
97 #include <sys/kauth.h>
98 #include <sys/atomic.h>
99 #include <sys/cpu.h>
100 #include <sys/rwlock.h>
101
102 #include <machine/kcore.h>
103 #include <machine/fpu.h>
104
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107
108 #include <uvm/uvm.h>
109 #include <sys/sysctl.h>
110
111 #include <dev/cons.h>
112 #include <dev/mm.h>
113
114 #include <machine/autoconf.h>
115 #include <machine/reg.h>
116 #include <machine/rpb.h>
117 #include <machine/prom.h>
118 #include <machine/cpuconf.h>
119 #include <machine/ieeefp.h>
120
121 #ifdef DDB
122 #include <machine/db_machdep.h>
123 #include <ddb/db_access.h>
124 #include <ddb/db_sym.h>
125 #include <ddb/db_extern.h>
126 #include <ddb/db_interface.h>
127 #endif
128
129 #ifdef KGDB
130 #include <sys/kgdb.h>
131 #endif
132
133 #ifdef DEBUG
134 #include <machine/sigdebug.h>
135 int sigdebug = 0x0;
136 int sigpid = 0;
137 #endif
138
139 /* Assert some assumptions made in lock_stubs.s */
140 __CTASSERT(RW_READER == 0);
141 __CTASSERT(RW_HAS_WAITERS == 1);
142
143 #include <machine/alpha.h>
144
145 #include "ksyms.h"
146
147 struct vm_map *phys_map = NULL;
148
149 void *msgbufaddr;
150
151 int maxmem; /* max memory per process */
152
153 int totalphysmem; /* total amount of physical memory in system */
154 int resvmem; /* amount of memory reserved for PROM */
155 int unusedmem; /* amount of memory for OS that we don't use */
156 int unknownmem; /* amount of memory with an unknown use */
157
158 int cputype; /* system type, from the RPB */
159 bool alpha_is_qemu; /* true if we've detected running in qemu */
160
161 int bootdev_debug = 0; /* patchable, or from DDB */
162
163 /*
164 * XXX We need an address to which we can assign things so that they
165 * won't be optimized away because we didn't use the value.
166 */
167 uint32_t no_optimize;
168
169 /* the following is used externally (sysctl_hw) */
170 char machine[] = MACHINE; /* from <machine/param.h> */
171 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
172
173 /* Number of machine cycles per microsecond */
174 uint64_t cycles_per_usec;
175
176 /* number of CPUs in the box. really! */
177 int ncpus;
178
179 struct bootinfo_kernel bootinfo;
180
181 /* For built-in TCDS */
182 #if defined(DEC_3000_300) || defined(DEC_3000_500)
183 uint8_t dec_3000_scsiid[3], dec_3000_scsifast[3];
184 #endif
185
186 struct platform platform;
187
188 #if NKSYMS || defined(DDB) || defined(MODULAR)
189 /* start and end of kernel symbol table */
190 void *ksym_start, *ksym_end;
191 #endif
192
193 /* for cpu_sysctl() */
194 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
195 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
196 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
197 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
198 int alpha_fp_complete_debug = 0; /* fp completion debug enabled */
199
200 /*
201 * XXX This should be dynamically sized, but we have the chicken-egg problem!
202 * XXX it should also be larger than it is, because not all of the mddt
203 * XXX clusters end up being used for VM.
204 */
205 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
206 int mem_cluster_cnt;
207
208 int cpu_dump(void);
209 int cpu_dumpsize(void);
210 u_long cpu_dump_mempagecnt(void);
211 void dumpsys(void);
212 void identifycpu(void);
213 void printregs(struct reg *);
214
215 const pcu_ops_t fpu_ops = {
216 .pcu_id = PCU_FPU,
217 .pcu_state_load = fpu_state_load,
218 .pcu_state_save = fpu_state_save,
219 .pcu_state_release = fpu_state_release,
220 };
221
222 const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
223 [PCU_FPU] = &fpu_ops,
224 };
225
226 static void
227 alpha_page_physload(unsigned long const start_pfn, unsigned long const end_pfn)
228 {
229
230 /*
231 * Some Alpha platforms may have unique requirements about
232 * how physical memory is managed (e.g. reserving memory
233 * ranges due to lack of SGMAP DMA).
234 */
235 if (platform.page_physload != NULL) {
236 (*platform.page_physload)(start_pfn, end_pfn);
237 return;
238 }
239
240 uvm_page_physload(start_pfn, end_pfn, start_pfn, end_pfn,
241 VM_FREELIST_DEFAULT);
242 }
243
244 void
245 alpha_page_physload_sheltered(unsigned long const start_pfn,
246 unsigned long const end_pfn, unsigned long const shelter_start_pfn,
247 unsigned long const shelter_end_pfn)
248 {
249
250 /*
251 * If the added region ends before or starts after the sheltered
252 * region, then it just goes on the default freelist.
253 */
254 if (end_pfn <= shelter_start_pfn || start_pfn >= shelter_end_pfn) {
255 uvm_page_physload(start_pfn, end_pfn,
256 start_pfn, end_pfn, VM_FREELIST_DEFAULT);
257 return;
258 }
259
260 /*
261 * Load any portion that comes before the sheltered region.
262 */
263 if (start_pfn < shelter_start_pfn) {
264 KASSERT(end_pfn > shelter_start_pfn);
265 uvm_page_physload(start_pfn, shelter_start_pfn,
266 start_pfn, shelter_start_pfn, VM_FREELIST_DEFAULT);
267 }
268
269 /*
270 * Load the portion that overlaps that sheltered region.
271 */
272 const unsigned long ov_start = MAX(start_pfn, shelter_start_pfn);
273 const unsigned long ov_end = MIN(end_pfn, shelter_end_pfn);
274 KASSERT(ov_start >= shelter_start_pfn);
275 KASSERT(ov_end <= shelter_end_pfn);
276 uvm_page_physload(ov_start, ov_end, ov_start, ov_end,
277 VM_FREELIST_SHELTERED);
278
279 /*
280 * Load any portion that comes after the sheltered region.
281 */
282 if (end_pfn > shelter_end_pfn) {
283 KASSERT(start_pfn < shelter_end_pfn);
284 uvm_page_physload(shelter_end_pfn, end_pfn,
285 shelter_end_pfn, end_pfn, VM_FREELIST_DEFAULT);
286 }
287 }
288
289 void
290 alpha_init(u_long xxx_pfn __unused, u_long ptb, u_long bim, u_long bip,
291 u_long biv)
292 /* pfn: first free PFN number (no longer used) */
293 /* ptb: PFN of current level 1 page table */
294 /* bim: bootinfo magic */
295 /* bip: bootinfo pointer */
296 /* biv: bootinfo version */
297 {
298 extern char kernel_text[], _end[];
299 struct mddt *mddtp;
300 struct mddt_cluster *memc;
301 int i, mddtweird;
302 struct pcb *pcb0;
303 vaddr_t kernstart, kernend, v;
304 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
305 cpuid_t cpu_id;
306 struct cpu_info *ci;
307 char *p;
308 const char *bootinfo_msg;
309 const struct cpuinit *c;
310
311 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
312
313 /*
314 * Turn off interrupts (not mchecks) and floating point.
315 * Make sure the instruction and data streams are consistent.
316 */
317 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
318 alpha_pal_wrfen(0);
319 ALPHA_TBIA();
320 alpha_pal_imb();
321
322 /* Initialize the SCB. */
323 scb_init();
324
325 cpu_id = cpu_number();
326
327 ci = &cpu_info_primary;
328 ci->ci_cpuid = cpu_id;
329
330 #if defined(MULTIPROCESSOR)
331 /*
332 * Set the SysValue to &lwp0, after making sure that lwp0
333 * is pointing at the primary CPU. Secondary processors do
334 * this in their spinup trampoline.
335 */
336 lwp0.l_cpu = ci;
337 cpu_info[cpu_id] = ci;
338 alpha_pal_wrval((u_long)&lwp0);
339 #endif
340
341 /*
342 * Get critical system information (if possible, from the
343 * information provided by the boot program).
344 */
345 bootinfo_msg = NULL;
346 if (bim == BOOTINFO_MAGIC) {
347 if (biv == 0) { /* backward compat */
348 biv = *(u_long *)bip;
349 bip += 8;
350 }
351 switch (biv) {
352 case 1: {
353 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
354
355 bootinfo.ssym = v1p->ssym;
356 bootinfo.esym = v1p->esym;
357 /* hwrpb may not be provided by boot block in v1 */
358 if (v1p->hwrpb != NULL) {
359 bootinfo.hwrpb_phys =
360 ((struct rpb *)v1p->hwrpb)->rpb_phys;
361 bootinfo.hwrpb_size = v1p->hwrpbsize;
362 } else {
363 bootinfo.hwrpb_phys =
364 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
365 bootinfo.hwrpb_size =
366 ((struct rpb *)HWRPB_ADDR)->rpb_size;
367 }
368 memcpy(bootinfo.boot_flags, v1p->boot_flags,
369 uimin(sizeof v1p->boot_flags,
370 sizeof bootinfo.boot_flags));
371 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
372 uimin(sizeof v1p->booted_kernel,
373 sizeof bootinfo.booted_kernel));
374 /* booted dev not provided in bootinfo */
375 init_prom_interface(ptb, (struct rpb *)
376 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
377 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
378 sizeof bootinfo.booted_dev);
379 break;
380 }
381 default:
382 bootinfo_msg = "unknown bootinfo version";
383 goto nobootinfo;
384 }
385 } else {
386 bootinfo_msg = "boot program did not pass bootinfo";
387 nobootinfo:
388 bootinfo.ssym = (u_long)_end;
389 bootinfo.esym = (u_long)_end;
390 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
391 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
392 init_prom_interface(ptb, (struct rpb *)HWRPB_ADDR);
393 if (alpha_is_qemu) {
394 /*
395 * Grab boot flags from kernel command line.
396 * Assume autoboot if not supplied.
397 */
398 if (! prom_qemu_getenv("flags", bootinfo.boot_flags,
399 sizeof(bootinfo.boot_flags))) {
400 strlcpy(bootinfo.boot_flags, "A",
401 sizeof(bootinfo.boot_flags));
402 }
403 } else {
404 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
405 sizeof bootinfo.boot_flags);
406 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
407 sizeof bootinfo.booted_kernel);
408 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
409 sizeof bootinfo.booted_dev);
410 }
411 }
412
413 /*
414 * Initialize the kernel's mapping of the RPB. It's needed for
415 * lots of things.
416 */
417 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
418
419 #if defined(DEC_3000_300) || defined(DEC_3000_500)
420 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
421 hwrpb->rpb_type == ST_DEC_3000_500) {
422 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
423 sizeof(dec_3000_scsiid));
424 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
425 sizeof(dec_3000_scsifast));
426 }
427 #endif
428
429 /*
430 * Remember how many cycles there are per microsecond,
431 * so that we can use delay(). Round up, for safety.
432 */
433 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
434
435 /*
436 * Initialize the (temporary) bootstrap console interface, so
437 * we can use printf until the VM system starts being setup.
438 * The real console is initialized before then.
439 */
440 init_bootstrap_console();
441
442 /* OUTPUT NOW ALLOWED */
443
444 /* delayed from above */
445 if (bootinfo_msg)
446 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
447 bootinfo_msg, bim, bip, biv);
448
449 /* Initialize the trap vectors on the primary processor. */
450 trap_init();
451
452 /*
453 * Find out this system's page size, and initialize
454 * PAGE_SIZE-dependent variables.
455 */
456 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
457 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
458 ALPHA_PGBYTES);
459 uvmexp.pagesize = hwrpb->rpb_page_size;
460 uvm_md_init();
461
462 /*
463 * cputype has been initialized in init_prom_interface().
464 * Perform basic platform initialization using this info.
465 */
466 KASSERT(prom_interface_initialized);
467 c = platform_lookup(cputype);
468 if (c == NULL) {
469 platform_not_supported();
470 /* NOTREACHED */
471 }
472 (*c->init)();
473 cpu_setmodel("%s", platform.model);
474
475 /*
476 * Initialize the real console, so that the bootstrap console is
477 * no longer necessary.
478 */
479 (*platform.cons_init)();
480
481 #ifdef DIAGNOSTIC
482 /* Paranoid sanity checking */
483
484 /* We should always be running on the primary. */
485 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
486
487 /*
488 * On single-CPU systypes, the primary should always be CPU 0,
489 * except on Alpha 8200 systems where the CPU id is related
490 * to the VID, which is related to the Turbo Laser node id.
491 */
492 if (cputype != ST_DEC_21000)
493 assert(hwrpb->rpb_primary_cpu_id == 0);
494 #endif
495
496 /* NO MORE FIRMWARE ACCESS ALLOWED */
497 /* XXX Unless prom_uses_prom_console() evaluates to non-zero.) */
498
499 /*
500 * Find the beginning and end of the kernel (and leave a
501 * bit of space before the beginning for the bootstrap
502 * stack).
503 */
504 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
505 #if NKSYMS || defined(DDB) || defined(MODULAR)
506 ksym_start = (void *)bootinfo.ssym;
507 ksym_end = (void *)bootinfo.esym;
508 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
509 #else
510 kernend = (vaddr_t)round_page((vaddr_t)_end);
511 #endif
512
513 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
514 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
515
516 /*
517 * Find out how much memory is available, by looking at
518 * the memory cluster descriptors. This also tries to do
519 * its best to detect things things that have never been seen
520 * before...
521 */
522 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
523
524 /* MDDT SANITY CHECKING */
525 mddtweird = 0;
526 if (mddtp->mddt_cluster_cnt < 2) {
527 mddtweird = 1;
528 printf("WARNING: weird number of mem clusters: %lu\n",
529 mddtp->mddt_cluster_cnt);
530 }
531
532 #if 0
533 printf("Memory cluster count: %" PRIu64 "\n", mddtp->mddt_cluster_cnt);
534 #endif
535
536 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
537 memc = &mddtp->mddt_clusters[i];
538 #if 0
539 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
540 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
541 #endif
542 totalphysmem += memc->mddt_pg_cnt;
543 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
544 mem_clusters[mem_cluster_cnt].start =
545 ptoa(memc->mddt_pfn);
546 mem_clusters[mem_cluster_cnt].size =
547 ptoa(memc->mddt_pg_cnt);
548 if (memc->mddt_usage & MDDT_mbz ||
549 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
550 memc->mddt_usage & MDDT_PALCODE)
551 mem_clusters[mem_cluster_cnt].size |=
552 PROT_READ;
553 else
554 mem_clusters[mem_cluster_cnt].size |=
555 PROT_READ | PROT_WRITE | PROT_EXEC;
556 mem_cluster_cnt++;
557 }
558
559 if (memc->mddt_usage & MDDT_mbz) {
560 mddtweird = 1;
561 printf("WARNING: mem cluster %d has weird "
562 "usage 0x%lx\n", i, memc->mddt_usage);
563 unknownmem += memc->mddt_pg_cnt;
564 continue;
565 }
566 if (memc->mddt_usage & MDDT_NONVOLATILE) {
567 /* XXX should handle these... */
568 printf("WARNING: skipping non-volatile mem "
569 "cluster %d\n", i);
570 unusedmem += memc->mddt_pg_cnt;
571 continue;
572 }
573 if (memc->mddt_usage & MDDT_PALCODE) {
574 resvmem += memc->mddt_pg_cnt;
575 continue;
576 }
577
578 /*
579 * We have a memory cluster available for system
580 * software use. We must determine if this cluster
581 * holds the kernel.
582 */
583
584 /*
585 * XXX If the kernel uses the PROM console, we only use the
586 * XXX memory after the kernel in the first system segment,
587 * XXX to avoid clobbering prom mapping, data, etc.
588 */
589 physmem += memc->mddt_pg_cnt;
590 pfn0 = memc->mddt_pfn;
591 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
592 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
593 /*
594 * Must compute the location of the kernel
595 * within the segment.
596 */
597 #if 0
598 printf("Cluster %d contains kernel\n", i);
599 #endif
600 if (pfn0 < kernstartpfn && !prom_uses_prom_console()) {
601 /*
602 * There is a chunk before the kernel.
603 */
604 #if 0
605 printf("Loading chunk before kernel: "
606 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
607 #endif
608 alpha_page_physload(pfn0, kernstartpfn);
609 }
610 if (kernendpfn < pfn1) {
611 /*
612 * There is a chunk after the kernel.
613 */
614 #if 0
615 printf("Loading chunk after kernel: "
616 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
617 #endif
618 alpha_page_physload(kernendpfn, pfn1);
619 }
620 } else {
621 /*
622 * Just load this cluster as one chunk.
623 */
624 #if 0
625 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
626 pfn0, pfn1);
627 #endif
628 alpha_page_physload(pfn0, pfn1);
629 }
630 }
631
632 /*
633 * Dump out the MDDT if it looks odd...
634 */
635 if (mddtweird) {
636 printf("\n");
637 printf("complete memory cluster information:\n");
638 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
639 printf("mddt %d:\n", i);
640 printf("\tpfn %lx\n",
641 mddtp->mddt_clusters[i].mddt_pfn);
642 printf("\tcnt %lx\n",
643 mddtp->mddt_clusters[i].mddt_pg_cnt);
644 printf("\ttest %lx\n",
645 mddtp->mddt_clusters[i].mddt_pg_test);
646 printf("\tbva %lx\n",
647 mddtp->mddt_clusters[i].mddt_v_bitaddr);
648 printf("\tbpa %lx\n",
649 mddtp->mddt_clusters[i].mddt_p_bitaddr);
650 printf("\tbcksum %lx\n",
651 mddtp->mddt_clusters[i].mddt_bit_cksum);
652 printf("\tusage %lx\n",
653 mddtp->mddt_clusters[i].mddt_usage);
654 }
655 printf("\n");
656 }
657
658 if (totalphysmem == 0)
659 panic("can't happen: system seems to have no memory!");
660 maxmem = physmem;
661 #if 0
662 printf("totalphysmem = %d\n", totalphysmem);
663 printf("physmem = %lu\n", physmem);
664 printf("resvmem = %d\n", resvmem);
665 printf("unusedmem = %d\n", unusedmem);
666 printf("unknownmem = %d\n", unknownmem);
667 #endif
668
669 /*
670 * Initialize error message buffer (at end of core).
671 */
672 {
673 paddr_t end;
674 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
675 vsize_t reqsz = sz;
676 uvm_physseg_t bank;
677
678 bank = uvm_physseg_get_last();
679
680 /* shrink so that it'll fit in the last segment */
681 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < atop(sz))
682 sz = ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank));
683
684 end = uvm_physseg_get_end(bank);
685 end -= atop(sz);
686
687 uvm_physseg_unplug(end, atop(sz));
688 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(end));
689
690 initmsgbuf(msgbufaddr, sz);
691
692 /* warn if the message buffer had to be shrunk */
693 if (sz != reqsz)
694 printf("WARNING: %ld bytes not available for msgbuf "
695 "in last cluster (%ld used)\n", reqsz, sz);
696
697 }
698
699 /*
700 * NOTE: It is safe to use uvm_pageboot_alloc() before
701 * pmap_bootstrap() because our pmap_virtual_space()
702 * returns compile-time constants.
703 */
704
705 /*
706 * Allocate uarea page for lwp0 and set it.
707 */
708 v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
709 uvm_lwp_setuarea(&lwp0, v);
710
711 /*
712 * Initialize the virtual memory system, and set the
713 * page table base register in proc 0's PCB.
714 */
715 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
716 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
717
718 /*
719 * Initialize the rest of lwp0's PCB and cache its physical address.
720 */
721 pcb0 = lwp_getpcb(&lwp0);
722 lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
723
724 /*
725 * Set the kernel sp, reserving space for an (empty) trapframe,
726 * and make lwp0's trapframe pointer point to it for sanity.
727 */
728 pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
729 lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
730
731 /* Indicate that lwp0 has a CPU. */
732 lwp0.l_cpu = ci;
733
734 /*
735 * Look at arguments passed to us and compute boothowto.
736 */
737
738 boothowto = RB_SINGLE;
739 #ifdef KADB
740 boothowto |= RB_KDB;
741 #endif
742 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
743 /*
744 * Note that we'd really like to differentiate case here,
745 * but the Alpha AXP Architecture Reference Manual
746 * says that we shouldn't.
747 */
748 switch (*p) {
749 case 'a': /* autoboot */
750 case 'A':
751 boothowto &= ~RB_SINGLE;
752 break;
753
754 #ifdef DEBUG
755 case 'c': /* crash dump immediately after autoconfig */
756 case 'C':
757 boothowto |= RB_DUMP;
758 break;
759 #endif
760
761 #if defined(KGDB) || defined(DDB)
762 case 'd': /* break into the kernel debugger ASAP */
763 case 'D':
764 boothowto |= RB_KDB;
765 break;
766 #endif
767
768 case 'h': /* always halt, never reboot */
769 case 'H':
770 boothowto |= RB_HALT;
771 break;
772
773 #if 0
774 case 'm': /* mini root present in memory */
775 case 'M':
776 boothowto |= RB_MINIROOT;
777 break;
778 #endif
779
780 case 'n': /* askname */
781 case 'N':
782 boothowto |= RB_ASKNAME;
783 break;
784
785 case 's': /* single-user (default, supported for sanity) */
786 case 'S':
787 boothowto |= RB_SINGLE;
788 break;
789
790 case 'q': /* quiet boot */
791 case 'Q':
792 boothowto |= AB_QUIET;
793 break;
794
795 case 'v': /* verbose boot */
796 case 'V':
797 boothowto |= AB_VERBOSE;
798 break;
799
800 case 'x': /* debug messages */
801 case 'X':
802 boothowto |= AB_DEBUG;
803 break;
804
805 case '-':
806 /*
807 * Just ignore this. It's not required, but it's
808 * common for it to be passed regardless.
809 */
810 break;
811
812 default:
813 printf("Unrecognized boot flag '%c'.\n", *p);
814 break;
815 }
816 }
817
818 /*
819 * Perform any initial kernel patches based on the running system.
820 * We may perform more later if we attach additional CPUs.
821 */
822 alpha_patch(false);
823
824 /*
825 * Figure out the number of CPUs in the box, from RPB fields.
826 * Really. We mean it.
827 */
828 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
829 struct pcs *pcsp;
830
831 pcsp = LOCATE_PCS(hwrpb, i);
832 if ((pcsp->pcs_flags & PCS_PP) != 0)
833 ncpus++;
834 }
835
836 /*
837 * Initialize debuggers, and break into them if appropriate.
838 */
839 #if NKSYMS || defined(DDB) || defined(MODULAR)
840 ksyms_addsyms_elf((int)((uint64_t)ksym_end - (uint64_t)ksym_start),
841 ksym_start, ksym_end);
842 #endif
843
844 if (boothowto & RB_KDB) {
845 #if defined(KGDB)
846 kgdb_debug_init = 1;
847 kgdb_connect(1);
848 #elif defined(DDB)
849 Debugger();
850 #endif
851 }
852
853 #ifdef DIAGNOSTIC
854 /*
855 * Check our clock frequency, from RPB fields.
856 */
857 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
858 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
859 hwrpb->rpb_intr_freq, hz);
860 #endif
861 }
862
863 #ifdef MODULAR
864 /* Push any modules loaded by the boot loader */
865 void
866 module_init_md(void)
867 {
868 /* nada. */
869 }
870 #endif /* MODULAR */
871
872 void
873 consinit(void)
874 {
875
876 /*
877 * Everything related to console initialization is done
878 * in alpha_init().
879 */
880 #if defined(DIAGNOSTIC) && defined(_PROM_MAY_USE_PROM_CONSOLE)
881 printf("consinit: %susing prom console\n",
882 prom_uses_prom_console() ? "" : "not ");
883 #endif
884 }
885
886 void
887 cpu_startup(void)
888 {
889 vaddr_t minaddr, maxaddr;
890 char pbuf[9];
891 #if defined(DEBUG)
892 extern int pmapdebug;
893 int opmapdebug = pmapdebug;
894
895 pmapdebug = 0;
896 #endif
897
898 /*
899 * Good {morning,afternoon,evening,night}.
900 */
901 printf("%s%s", copyright, version);
902 identifycpu();
903 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
904 printf("total memory = %s\n", pbuf);
905 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
906 printf("(%s reserved for PROM, ", pbuf);
907 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
908 printf("%s used by NetBSD)\n", pbuf);
909 if (unusedmem) {
910 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
911 printf("WARNING: unused memory = %s\n", pbuf);
912 }
913 if (unknownmem) {
914 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
915 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
916 }
917
918 minaddr = 0;
919
920 /*
921 * Allocate a submap for physio
922 */
923 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
924 VM_PHYS_SIZE, 0, false, NULL);
925
926 /*
927 * No need to allocate an mbuf cluster submap. Mbuf clusters
928 * are allocated via the pool allocator, and we use K0SEG to
929 * map those pages.
930 */
931
932 #if defined(DEBUG)
933 pmapdebug = opmapdebug;
934 #endif
935 format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
936 printf("avail memory = %s\n", pbuf);
937 #if 0
938 {
939 extern u_long pmap_pages_stolen;
940
941 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
942 printf("stolen memory for VM structures = %s\n", pbuf);
943 }
944 #endif
945
946 /*
947 * Set up the HWPCB so that it's safe to configure secondary
948 * CPUs.
949 */
950 hwrpb_primary_init();
951
952 /*
953 * Initialize FP handling.
954 */
955 alpha_fp_init();
956 }
957
958 /*
959 * Retrieve the platform name from the DSR.
960 */
961 const char *
962 alpha_dsr_sysname(void)
963 {
964 struct dsrdb *dsr;
965 const char *sysname;
966
967 /*
968 * DSR does not exist on early HWRPB versions.
969 */
970 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
971 return (NULL);
972
973 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
974 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
975 sizeof(uint64_t)));
976 return (sysname);
977 }
978
979 /*
980 * Lookup the system specified system variation in the provided table,
981 * returning the model string on match.
982 */
983 const char *
984 alpha_variation_name(uint64_t variation, const struct alpha_variation_table *avtp)
985 {
986 int i;
987
988 for (i = 0; avtp[i].avt_model != NULL; i++)
989 if (avtp[i].avt_variation == variation)
990 return (avtp[i].avt_model);
991 return (NULL);
992 }
993
994 /*
995 * Generate a default platform name based for unknown system variations.
996 */
997 const char *
998 alpha_unknown_sysname(void)
999 {
1000 static char s[128]; /* safe size */
1001
1002 snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx",
1003 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1004 return ((const char *)s);
1005 }
1006
1007 void
1008 identifycpu(void)
1009 {
1010 const char *s;
1011 int i;
1012
1013 /*
1014 * print out CPU identification information.
1015 */
1016 s = cpu_getmodel();
1017 printf("%s", s);
1018 for (; *s != '\0'; s++) {
1019 if (strncasecmp(s, "MHz", 3) == 0) {
1020 goto skipMHz;
1021 }
1022 }
1023 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1024 skipMHz:
1025 for (i = 0; i < 10; i++) {
1026 /* Only so long as there are printable characters. */
1027 if (! isprint((unsigned char)hwrpb->rpb_ssn[i])) {
1028 break;
1029 }
1030 if (i == 0) {
1031 printf(", s/n ");
1032 }
1033 printf("%c", hwrpb->rpb_ssn[i]);
1034 }
1035 printf("\n");
1036 printf("%ld byte page size, %d processor%s.\n",
1037 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1038 }
1039
1040 int waittime = -1;
1041 struct pcb dumppcb;
1042
1043 void
1044 cpu_reboot(int howto, char *bootstr)
1045 {
1046 #if defined(MULTIPROCESSOR)
1047 u_long cpu_id = cpu_number();
1048 u_long wait_mask;
1049 int i;
1050 #endif
1051
1052 /* If "always halt" was specified as a boot flag, obey. */
1053 if ((boothowto & RB_HALT) != 0)
1054 howto |= RB_HALT;
1055
1056 boothowto = howto;
1057
1058 /* If system is cold, just halt. */
1059 if (cold) {
1060 boothowto |= RB_HALT;
1061 goto haltsys;
1062 }
1063
1064 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1065 waittime = 0;
1066 vfs_shutdown();
1067 }
1068
1069 /* Disable interrupts. */
1070 splhigh();
1071
1072 #if defined(MULTIPROCESSOR)
1073 /*
1074 * Halt all other CPUs. If we're not the primary, the
1075 * primary will spin, waiting for us to halt.
1076 */
1077 cpu_id = cpu_number(); /* may have changed cpu */
1078 wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
1079
1080 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1081
1082 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1083 cpus_paused = 0;
1084
1085 for (i = 0; i < 10000; i++) {
1086 alpha_mb();
1087 if (cpus_running == wait_mask)
1088 break;
1089 delay(1000);
1090 }
1091 alpha_mb();
1092 if (cpus_running != wait_mask)
1093 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1094 cpus_running);
1095 #endif /* MULTIPROCESSOR */
1096
1097 /* If rebooting and a dump is requested do it. */
1098 #if 0
1099 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1100 #else
1101 if (boothowto & RB_DUMP)
1102 #endif
1103 dumpsys();
1104
1105 haltsys:
1106
1107 /* run any shutdown hooks */
1108 doshutdownhooks();
1109
1110 pmf_system_shutdown(boothowto);
1111
1112 #ifdef BOOTKEY
1113 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1114 cnpollc(1); /* for proper keyboard command handling */
1115 cngetc();
1116 cnpollc(0);
1117 printf("\n");
1118 #endif
1119
1120 /* Finally, powerdown/halt/reboot the system. */
1121 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1122 platform.powerdown != NULL) {
1123 (*platform.powerdown)();
1124 printf("WARNING: powerdown failed!\n");
1125 }
1126 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1127 #if defined(MULTIPROCESSOR)
1128 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1129 cpu_halt();
1130 else
1131 #endif
1132 prom_halt(boothowto & RB_HALT);
1133 /*NOTREACHED*/
1134 }
1135
1136 /*
1137 * These variables are needed by /sbin/savecore
1138 */
1139 uint32_t dumpmag = 0x8fca0101; /* magic number */
1140 int dumpsize = 0; /* pages */
1141 long dumplo = 0; /* blocks */
1142
1143 /*
1144 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1145 */
1146 int
1147 cpu_dumpsize(void)
1148 {
1149 int size;
1150
1151 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1152 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1153 if (roundup(size, dbtob(1)) != dbtob(1))
1154 return -1;
1155
1156 return (1);
1157 }
1158
1159 /*
1160 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1161 */
1162 u_long
1163 cpu_dump_mempagecnt(void)
1164 {
1165 u_long i, n;
1166
1167 n = 0;
1168 for (i = 0; i < mem_cluster_cnt; i++)
1169 n += atop(mem_clusters[i].size);
1170 return (n);
1171 }
1172
1173 /*
1174 * cpu_dump: dump machine-dependent kernel core dump headers.
1175 */
1176 int
1177 cpu_dump(void)
1178 {
1179 int (*dump)(dev_t, daddr_t, void *, size_t);
1180 char buf[dbtob(1)];
1181 kcore_seg_t *segp;
1182 cpu_kcore_hdr_t *cpuhdrp;
1183 phys_ram_seg_t *memsegp;
1184 const struct bdevsw *bdev;
1185 int i;
1186
1187 bdev = bdevsw_lookup(dumpdev);
1188 if (bdev == NULL)
1189 return (ENXIO);
1190 dump = bdev->d_dump;
1191
1192 memset(buf, 0, sizeof buf);
1193 segp = (kcore_seg_t *)buf;
1194 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1195 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1196 ALIGN(sizeof(*cpuhdrp))];
1197
1198 /*
1199 * Generate a segment header.
1200 */
1201 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1202 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1203
1204 /*
1205 * Add the machine-dependent header info.
1206 */
1207 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1208 cpuhdrp->page_size = PAGE_SIZE;
1209 cpuhdrp->nmemsegs = mem_cluster_cnt;
1210
1211 /*
1212 * Fill in the memory segment descriptors.
1213 */
1214 for (i = 0; i < mem_cluster_cnt; i++) {
1215 memsegp[i].start = mem_clusters[i].start;
1216 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1217 }
1218
1219 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1220 }
1221
1222 /*
1223 * This is called by main to set dumplo and dumpsize.
1224 * Dumps always skip the first PAGE_SIZE of disk space
1225 * in case there might be a disk label stored there.
1226 * If there is extra space, put dump at the end to
1227 * reduce the chance that swapping trashes it.
1228 */
1229 void
1230 cpu_dumpconf(void)
1231 {
1232 int nblks, dumpblks; /* size of dump area */
1233
1234 if (dumpdev == NODEV)
1235 goto bad;
1236 nblks = bdev_size(dumpdev);
1237 if (nblks <= ctod(1))
1238 goto bad;
1239
1240 dumpblks = cpu_dumpsize();
1241 if (dumpblks < 0)
1242 goto bad;
1243 dumpblks += ctod(cpu_dump_mempagecnt());
1244
1245 /* If dump won't fit (incl. room for possible label), punt. */
1246 if (dumpblks > (nblks - ctod(1)))
1247 goto bad;
1248
1249 /* Put dump at end of partition */
1250 dumplo = nblks - dumpblks;
1251
1252 /* dumpsize is in page units, and doesn't include headers. */
1253 dumpsize = cpu_dump_mempagecnt();
1254 return;
1255
1256 bad:
1257 dumpsize = 0;
1258 return;
1259 }
1260
1261 /*
1262 * Dump the kernel's image to the swap partition.
1263 */
1264 #define BYTES_PER_DUMP PAGE_SIZE
1265
1266 void
1267 dumpsys(void)
1268 {
1269 const struct bdevsw *bdev;
1270 u_long totalbytesleft, bytes, i, n, memcl;
1271 u_long maddr;
1272 int psize;
1273 daddr_t blkno;
1274 int (*dump)(dev_t, daddr_t, void *, size_t);
1275 int error;
1276
1277 /* Save registers. */
1278 savectx(&dumppcb);
1279
1280 if (dumpdev == NODEV)
1281 return;
1282 bdev = bdevsw_lookup(dumpdev);
1283 if (bdev == NULL || bdev->d_psize == NULL)
1284 return;
1285
1286 /*
1287 * For dumps during autoconfiguration,
1288 * if dump device has already configured...
1289 */
1290 if (dumpsize == 0)
1291 cpu_dumpconf();
1292 if (dumplo <= 0) {
1293 printf("\ndump to dev %u,%u not possible\n",
1294 major(dumpdev), minor(dumpdev));
1295 return;
1296 }
1297 printf("\ndumping to dev %u,%u offset %ld\n",
1298 major(dumpdev), minor(dumpdev), dumplo);
1299
1300 psize = bdev_size(dumpdev);
1301 printf("dump ");
1302 if (psize == -1) {
1303 printf("area unavailable\n");
1304 return;
1305 }
1306
1307 /* XXX should purge all outstanding keystrokes. */
1308
1309 if ((error = cpu_dump()) != 0)
1310 goto err;
1311
1312 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1313 blkno = dumplo + cpu_dumpsize();
1314 dump = bdev->d_dump;
1315 error = 0;
1316
1317 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1318 maddr = mem_clusters[memcl].start;
1319 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1320
1321 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1322
1323 /* Print out how many MBs we to go. */
1324 if ((totalbytesleft % (1024*1024)) == 0)
1325 printf_nolog("%ld ",
1326 totalbytesleft / (1024 * 1024));
1327
1328 /* Limit size for next transfer. */
1329 n = bytes - i;
1330 if (n > BYTES_PER_DUMP)
1331 n = BYTES_PER_DUMP;
1332
1333 error = (*dump)(dumpdev, blkno,
1334 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1335 if (error)
1336 goto err;
1337 maddr += n;
1338 blkno += btodb(n); /* XXX? */
1339
1340 /* XXX should look for keystrokes, to cancel. */
1341 }
1342 }
1343
1344 err:
1345 switch (error) {
1346
1347 case ENXIO:
1348 printf("device bad\n");
1349 break;
1350
1351 case EFAULT:
1352 printf("device not ready\n");
1353 break;
1354
1355 case EINVAL:
1356 printf("area improper\n");
1357 break;
1358
1359 case EIO:
1360 printf("i/o error\n");
1361 break;
1362
1363 case EINTR:
1364 printf("aborted from console\n");
1365 break;
1366
1367 case 0:
1368 printf("succeeded\n");
1369 break;
1370
1371 default:
1372 printf("error %d\n", error);
1373 break;
1374 }
1375 printf("\n\n");
1376 delay(1000);
1377 }
1378
1379 void
1380 frametoreg(const struct trapframe *framep, struct reg *regp)
1381 {
1382
1383 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1384 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1385 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1386 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1387 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1388 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1389 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1390 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1391 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1392 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1393 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1394 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1395 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1396 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1397 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1398 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1399 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1400 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1401 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1402 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1403 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1404 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1405 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1406 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1407 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1408 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1409 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1410 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1411 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1412 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1413 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1414 regp->r_regs[R_ZERO] = 0;
1415 }
1416
1417 void
1418 regtoframe(const struct reg *regp, struct trapframe *framep)
1419 {
1420
1421 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1422 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1423 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1424 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1425 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1426 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1427 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1428 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1429 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1430 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1431 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1432 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1433 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1434 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1435 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1436 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1437 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1438 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1439 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1440 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1441 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1442 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1443 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1444 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1445 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1446 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1447 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1448 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1449 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1450 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1451 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1452 /* ??? = regp->r_regs[R_ZERO]; */
1453 }
1454
1455 void
1456 printregs(struct reg *regp)
1457 {
1458 int i;
1459
1460 for (i = 0; i < 32; i++)
1461 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1462 i & 1 ? "\n" : "\t");
1463 }
1464
1465 void
1466 regdump(struct trapframe *framep)
1467 {
1468 struct reg reg;
1469
1470 frametoreg(framep, ®);
1471 reg.r_regs[R_SP] = alpha_pal_rdusp();
1472
1473 printf("REGISTERS:\n");
1474 printregs(®);
1475 }
1476
1477
1478
1479 void *
1480 getframe(const struct lwp *l, int sig, int *onstack)
1481 {
1482 void *frame;
1483
1484 /* Do we need to jump onto the signal stack? */
1485 *onstack =
1486 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1487 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1488
1489 if (*onstack)
1490 frame = (void *)((char *)l->l_sigstk.ss_sp +
1491 l->l_sigstk.ss_size);
1492 else
1493 frame = (void *)(alpha_pal_rdusp());
1494 return (frame);
1495 }
1496
1497 void
1498 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1499 {
1500 struct trapframe *tf = l->l_md.md_tf;
1501
1502 tf->tf_regs[FRAME_RA] = (uint64_t)tramp;
1503 tf->tf_regs[FRAME_PC] = (uint64_t)catcher;
1504 tf->tf_regs[FRAME_T12] = (uint64_t)catcher;
1505 alpha_pal_wrusp((unsigned long)fp);
1506 }
1507
1508
1509 /*
1510 * Send an interrupt to process, new style
1511 */
1512 void
1513 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1514 {
1515 struct lwp *l = curlwp;
1516 struct proc *p = l->l_proc;
1517 struct sigacts *ps = p->p_sigacts;
1518 int onstack, sig = ksi->ksi_signo, error;
1519 struct sigframe_siginfo *fp, frame;
1520 struct trapframe *tf;
1521 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1522
1523 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1524 tf = l->l_md.md_tf;
1525
1526 /* Allocate space for the signal handler context. */
1527 fp--;
1528
1529 #ifdef DEBUG
1530 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1531 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1532 sig, &onstack, fp);
1533 #endif
1534
1535 /* Build stack frame for signal trampoline. */
1536 memset(&frame, 0, sizeof(frame));
1537 frame.sf_si._info = ksi->ksi_info;
1538 frame.sf_uc.uc_flags = _UC_SIGMASK;
1539 frame.sf_uc.uc_sigmask = *mask;
1540 frame.sf_uc.uc_link = l->l_ctxlink;
1541 frame.sf_uc.uc_flags |= (l->l_sigstk.ss_flags & SS_ONSTACK)
1542 ? _UC_SETSTACK : _UC_CLRSTACK;
1543 sendsig_reset(l, sig);
1544 mutex_exit(p->p_lock);
1545 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1546 error = copyout(&frame, fp, sizeof(frame));
1547 mutex_enter(p->p_lock);
1548
1549 if (error != 0) {
1550 /*
1551 * Process has trashed its stack; give it an illegal
1552 * instruction to halt it in its tracks.
1553 */
1554 #ifdef DEBUG
1555 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1556 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1557 p->p_pid, sig);
1558 #endif
1559 sigexit(l, SIGILL);
1560 /* NOTREACHED */
1561 }
1562
1563 #ifdef DEBUG
1564 if (sigdebug & SDB_FOLLOW)
1565 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1566 p->p_pid, sig, fp, ksi->ksi_code);
1567 #endif
1568
1569 /*
1570 * Set up the registers to directly invoke the signal handler. The
1571 * signal trampoline is then used to return from the signal. Note
1572 * the trampoline version numbers are coordinated with machine-
1573 * dependent code in libc.
1574 */
1575
1576 tf->tf_regs[FRAME_A0] = sig;
1577 tf->tf_regs[FRAME_A1] = (uint64_t)&fp->sf_si;
1578 tf->tf_regs[FRAME_A2] = (uint64_t)&fp->sf_uc;
1579
1580 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1581
1582 /* Remember that we're now on the signal stack. */
1583 if (onstack)
1584 l->l_sigstk.ss_flags |= SS_ONSTACK;
1585
1586 #ifdef DEBUG
1587 if (sigdebug & SDB_FOLLOW)
1588 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1589 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1590 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1591 printf("sendsig_siginfo(%d): sig %d returns\n",
1592 p->p_pid, sig);
1593 #endif
1594 }
1595
1596 /*
1597 * machine dependent system variables.
1598 */
1599 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1600 {
1601
1602 sysctl_createv(clog, 0, NULL, NULL,
1603 CTLFLAG_PERMANENT,
1604 CTLTYPE_NODE, "machdep", NULL,
1605 NULL, 0, NULL, 0,
1606 CTL_MACHDEP, CTL_EOL);
1607
1608 sysctl_createv(clog, 0, NULL, NULL,
1609 CTLFLAG_PERMANENT,
1610 CTLTYPE_STRUCT, "console_device", NULL,
1611 sysctl_consdev, 0, NULL, sizeof(dev_t),
1612 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1613 sysctl_createv(clog, 0, NULL, NULL,
1614 CTLFLAG_PERMANENT,
1615 CTLTYPE_STRING, "root_device", NULL,
1616 sysctl_root_device, 0, NULL, 0,
1617 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1618 sysctl_createv(clog, 0, NULL, NULL,
1619 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1620 CTLTYPE_INT, "unaligned_print",
1621 SYSCTL_DESCR("Warn about unaligned accesses"),
1622 NULL, 0, &alpha_unaligned_print, 0,
1623 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1624 sysctl_createv(clog, 0, NULL, NULL,
1625 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1626 CTLTYPE_INT, "unaligned_fix",
1627 SYSCTL_DESCR("Fix up unaligned accesses"),
1628 NULL, 0, &alpha_unaligned_fix, 0,
1629 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1630 sysctl_createv(clog, 0, NULL, NULL,
1631 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1632 CTLTYPE_INT, "unaligned_sigbus",
1633 SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"),
1634 NULL, 0, &alpha_unaligned_sigbus, 0,
1635 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1636 sysctl_createv(clog, 0, NULL, NULL,
1637 CTLFLAG_PERMANENT,
1638 CTLTYPE_STRING, "booted_kernel", NULL,
1639 NULL, 0, bootinfo.booted_kernel, 0,
1640 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1641 sysctl_createv(clog, 0, NULL, NULL,
1642 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1643 CTLTYPE_INT, "fp_sync_complete", NULL,
1644 NULL, 0, &alpha_fp_sync_complete, 0,
1645 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1646 sysctl_createv(clog, 0, NULL, NULL,
1647 CTLFLAG_PERMANENT,
1648 CTLTYPE_INT, "cctr", NULL,
1649 NULL, 0, &alpha_use_cctr, 0,
1650 CTL_MACHDEP, CPU_CCTR, CTL_EOL);
1651 sysctl_createv(clog, 0, NULL, NULL,
1652 CTLFLAG_PERMANENT,
1653 CTLTYPE_BOOL, "is_qemu", NULL,
1654 NULL, 0, &alpha_is_qemu, 0,
1655 CTL_MACHDEP, CPU_IS_QEMU, CTL_EOL);
1656 sysctl_createv(clog, 0, NULL, NULL,
1657 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1658 CTLTYPE_INT, "fp_complete_debug", NULL,
1659 NULL, 0, &alpha_fp_complete_debug, 0,
1660 CTL_MACHDEP, CPU_FP_COMPLETE_DEBUG, CTL_EOL);
1661 sysctl_createv(clog, 0, NULL, NULL,
1662 CTLFLAG_PERMANENT,
1663 CTLTYPE_QUAD, "rpb_type", NULL,
1664 NULL, 0, &hwrpb->rpb_type, 0,
1665 CTL_MACHDEP, CPU_RPB_TYPE, CTL_EOL);
1666 sysctl_createv(clog, 0, NULL, NULL,
1667 CTLFLAG_PERMANENT,
1668 CTLTYPE_QUAD, "rpb_variation", NULL,
1669 NULL, 0, &hwrpb->rpb_variation, 0,
1670 CTL_MACHDEP, CPU_RPB_VARIATION, CTL_EOL);
1671 }
1672
1673 /*
1674 * Set registers on exec.
1675 */
1676 void
1677 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1678 {
1679 struct trapframe *tfp = l->l_md.md_tf;
1680 struct pcb *pcb;
1681 #ifdef DEBUG
1682 int i;
1683 #endif
1684
1685 #ifdef DEBUG
1686 /*
1687 * Crash and dump, if the user requested it.
1688 */
1689 if (boothowto & RB_DUMP)
1690 panic("crash requested by boot flags");
1691 #endif
1692
1693 memset(tfp, 0, sizeof(*tfp));
1694
1695 #ifdef DEBUG
1696 for (i = 0; i < FRAME_SIZE; i++)
1697 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1698 #endif
1699 pcb = lwp_getpcb(l);
1700 memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1701 alpha_pal_wrusp(stack);
1702 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1703 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1704
1705 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1706 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1707 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1708 tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp; /* a3 = ps_strings */
1709 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1710
1711 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1712 l->l_md.md_flags =
1713 (l->l_md.md_flags & ~(MDLWP_FP_C | MDLWP_FPACTIVE)) |
1714 FP_C_DEFAULT;
1715 pcb->pcb_fp.fpr_cr = FPCR_DEFAULT;
1716 }
1717 }
1718
1719 void (*alpha_delay_fn)(unsigned long);
1720
1721 /*
1722 * Wait "n" microseconds.
1723 */
1724 void
1725 delay(unsigned long n)
1726 {
1727 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1728
1729 if (n == 0)
1730 return;
1731
1732 /*
1733 * If we have an alternative delay function, go ahead and
1734 * use it.
1735 */
1736 if (alpha_delay_fn != NULL) {
1737 (*alpha_delay_fn)(n);
1738 return;
1739 }
1740
1741 lwp_t * const l = curlwp;
1742 KPREEMPT_DISABLE(l);
1743
1744 pcc0 = alpha_rpcc() & 0xffffffffUL;
1745 cycles = 0;
1746 usec = 0;
1747
1748 while (usec <= n) {
1749 /*
1750 * Get the next CPU cycle count- assumes that we cannot
1751 * have had more than one 32 bit overflow.
1752 */
1753 pcc1 = alpha_rpcc() & 0xffffffffUL;
1754 if (pcc1 < pcc0)
1755 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1756 else
1757 curcycle = pcc1 - pcc0;
1758
1759 /*
1760 * We now have the number of processor cycles since we
1761 * last checked. Add the current cycle count to the
1762 * running total. If it's over cycles_per_usec, increment
1763 * the usec counter.
1764 */
1765 cycles += curcycle;
1766 while (cycles > cycles_per_usec) {
1767 usec++;
1768 cycles -= cycles_per_usec;
1769 }
1770 pcc0 = pcc1;
1771 }
1772
1773 KPREEMPT_ENABLE(l);
1774 }
1775
1776 #ifdef EXEC_ECOFF
1777 void
1778 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1779 {
1780 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1781
1782 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1783 }
1784
1785 /*
1786 * cpu_exec_ecoff_hook():
1787 * cpu-dependent ECOFF format hook for execve().
1788 *
1789 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1790 *
1791 */
1792 int
1793 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1794 {
1795 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1796 int error;
1797
1798 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1799 error = 0;
1800 else
1801 error = ENOEXEC;
1802
1803 return (error);
1804 }
1805 #endif /* EXEC_ECOFF */
1806
1807 int
1808 mm_md_physacc(paddr_t pa, vm_prot_t prot)
1809 {
1810 u_quad_t size;
1811 int i;
1812
1813 for (i = 0; i < mem_cluster_cnt; i++) {
1814 if (pa < mem_clusters[i].start)
1815 continue;
1816 size = mem_clusters[i].size & ~PAGE_MASK;
1817 if (pa >= (mem_clusters[i].start + size))
1818 continue;
1819 if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
1820 return 0;
1821 }
1822 return EFAULT;
1823 }
1824
1825 bool
1826 mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
1827 {
1828 vaddr_t va = (vaddr_t)addr;
1829
1830 if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
1831 *paddr = ALPHA_K0SEG_TO_PHYS(va);
1832 return true;
1833 }
1834 return false;
1835 }
1836
1837 bool
1838 mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
1839 {
1840
1841 *vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
1842 return true;
1843 }
1844
1845 void
1846 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1847 {
1848 struct trapframe *frame = l->l_md.md_tf;
1849 struct pcb *pcb = lwp_getpcb(l);
1850 __greg_t *gr = mcp->__gregs;
1851 __greg_t ras_pc;
1852
1853 /* Save register context. */
1854 frametoreg(frame, (struct reg *)gr);
1855 /* XXX if there's a better, general way to get the USP of
1856 * an LWP that might or might not be curlwp, I'd like to know
1857 * about it.
1858 */
1859 if (l == curlwp) {
1860 gr[_REG_SP] = alpha_pal_rdusp();
1861 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1862 } else {
1863 gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1864 gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1865 }
1866 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1867 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1868
1869 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1870 (void *) gr[_REG_PC])) != -1)
1871 gr[_REG_PC] = ras_pc;
1872
1873 *flags |= _UC_CPU | _UC_TLSBASE;
1874
1875 /* Save floating point register context, if any, and copy it. */
1876 if (fpu_valid_p(l)) {
1877 fpu_save(l);
1878 (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1879 sizeof (mcp->__fpregs));
1880 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1881 *flags |= _UC_FPU;
1882 }
1883 }
1884
1885 int
1886 cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
1887 {
1888 const __greg_t *gr = mcp->__gregs;
1889
1890 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1891 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1892 return EINVAL;
1893
1894 return 0;
1895 }
1896
1897 int
1898 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1899 {
1900 struct trapframe *frame = l->l_md.md_tf;
1901 struct pcb *pcb = lwp_getpcb(l);
1902 const __greg_t *gr = mcp->__gregs;
1903 int error;
1904
1905 /* Restore register context, if any. */
1906 if (flags & _UC_CPU) {
1907 /* Check for security violations first. */
1908 error = cpu_mcontext_validate(l, mcp);
1909 if (error)
1910 return error;
1911
1912 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1913 if (l == curlwp)
1914 alpha_pal_wrusp(gr[_REG_SP]);
1915 else
1916 pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1917 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1918 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1919 }
1920
1921 if (flags & _UC_TLSBASE)
1922 lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
1923
1924 /* Restore floating point register context, if any. */
1925 if (flags & _UC_FPU) {
1926 /* If we have an FP register context, get rid of it. */
1927 fpu_discard(l, true);
1928 (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1929 sizeof (pcb->pcb_fp));
1930 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
1931 }
1932
1933 mutex_enter(l->l_proc->p_lock);
1934 if (flags & _UC_SETSTACK)
1935 l->l_sigstk.ss_flags |= SS_ONSTACK;
1936 if (flags & _UC_CLRSTACK)
1937 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
1938 mutex_exit(l->l_proc->p_lock);
1939
1940 return (0);
1941 }
1942
1943 static void
1944 cpu_kick(struct cpu_info * const ci)
1945 {
1946 #if defined(MULTIPROCESSOR)
1947 alpha_send_ipi(ci->ci_cpuid, ALPHA_IPI_AST);
1948 #endif /* MULTIPROCESSOR */
1949 }
1950
1951 /*
1952 * Preempt the current process if in interrupt from user mode,
1953 * or after the current trap/syscall if in system mode.
1954 */
1955 void
1956 cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags)
1957 {
1958
1959 KASSERT(kpreempt_disabled());
1960
1961 if ((flags & RESCHED_IDLE) != 0) {
1962 /*
1963 * Nothing to do here; we are not currently using WTINT
1964 * in cpu_idle().
1965 */
1966 return;
1967 }
1968
1969 /* XXX RESCHED_KPREEMPT XXX */
1970
1971 KASSERT((flags & RESCHED_UPREEMPT) != 0);
1972 if ((flags & RESCHED_REMOTE) != 0) {
1973 cpu_kick(ci);
1974 } else {
1975 aston(l);
1976 }
1977 }
1978
1979 /*
1980 * Notify the current lwp (l) that it has a signal pending,
1981 * process as soon as possible.
1982 */
1983 void
1984 cpu_signotify(struct lwp *l)
1985 {
1986
1987 KASSERT(kpreempt_disabled());
1988
1989 if (l->l_cpu != curcpu()) {
1990 cpu_kick(l->l_cpu);
1991 } else {
1992 aston(l);
1993 }
1994 }
1995
1996 /*
1997 * Give a profiling tick to the current process when the user profiling
1998 * buffer pages are invalid. On the alpha, request an AST to send us
1999 * through trap, marking the proc as needing a profiling tick.
2000 */
2001 void
2002 cpu_need_proftick(struct lwp *l)
2003 {
2004
2005 KASSERT(kpreempt_disabled());
2006 KASSERT(l->l_cpu == curcpu());
2007
2008 l->l_pflag |= LP_OWEUPC;
2009 aston(l);
2010 }
2011