machdep.c revision 1.43 1 /* $NetBSD: machdep.c,v 1.43 1996/10/01 18:41:08 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/conf.h>
40 #include <sys/file.h>
41 #ifdef REAL_CLISTS
42 #include <sys/clist.h>
43 #endif
44 #include <sys/callout.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/tty.h>
50 #include <sys/user.h>
51 #include <sys/exec.h>
52 #include <sys/exec_ecoff.h>
53 #include <sys/sysctl.h>
54 #include <sys/core.h>
55 #include <sys/kcore.h>
56 #include <machine/kcore.h>
57 #ifdef SYSVMSG
58 #include <sys/msg.h>
59 #endif
60 #ifdef SYSVSEM
61 #include <sys/sem.h>
62 #endif
63 #ifdef SYSVSHM
64 #include <sys/shm.h>
65 #endif
66
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69
70 #include <vm/vm_kern.h>
71
72 #include <dev/cons.h>
73
74 #include <machine/cpu.h>
75 #include <machine/reg.h>
76 #include <machine/rpb.h>
77 #include <machine/prom.h>
78
79 #ifdef DEC_3000_500
80 #include <alpha/alpha/dec_3000_500.h>
81 #endif
82 #ifdef DEC_3000_300
83 #include <alpha/alpha/dec_3000_300.h>
84 #endif
85 #ifdef DEC_2100_A50
86 #include <alpha/alpha/dec_2100_a50.h>
87 #endif
88 #ifdef DEC_KN20AA
89 #include <alpha/alpha/dec_kn20aa.h>
90 #endif
91 #ifdef DEC_AXPPCI_33
92 #include <alpha/alpha/dec_axppci_33.h>
93 #endif
94 #ifdef DEC_21000
95 #include <alpha/alpha/dec_21000.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/netisr.h>
100 #include <netinet/in.h>
101 #include <netinet/ip_var.h>
102 #include <netinet/if_arp.h>
103 #include "ether.h"
104
105 #include "le_ioasic.h" /* for le_iomem creation */
106
107 vm_map_t buffer_map;
108
109 void dumpsys __P((void));
110
111 /*
112 * Declare these as initialized data so we can patch them.
113 */
114 int nswbuf = 0;
115 #ifdef NBUF
116 int nbuf = NBUF;
117 #else
118 int nbuf = 0;
119 #endif
120 #ifdef BUFPAGES
121 int bufpages = BUFPAGES;
122 #else
123 int bufpages = 0;
124 #endif
125 int msgbufmapped = 0; /* set when safe to use msgbuf */
126 int maxmem; /* max memory per process */
127
128 int totalphysmem; /* total amount of physical memory in system */
129 int physmem; /* physical memory used by NetBSD + some rsvd */
130 int firstusablepage; /* first usable memory page */
131 int lastusablepage; /* last usable memory page */
132 int resvmem; /* amount of memory reserved for PROM */
133 int unusedmem; /* amount of memory for OS that we don't use */
134 int unknownmem; /* amount of memory with an unknown use */
135
136 int cputype; /* system type, from the RPB */
137
138 /*
139 * XXX We need an address to which we can assign things so that they
140 * won't be optimized away because we didn't use the value.
141 */
142 u_int32_t no_optimize;
143
144 /* the following is used externally (sysctl_hw) */
145 char machine[] = "alpha";
146 char cpu_model[128];
147 char *model_names[] = {
148 "UNKNOWN (0)",
149 "Alpha Demonstration Unit",
150 "DEC 4000 (\"Cobra\")",
151 "DEC 7000 (\"Ruby\")",
152 "DEC 3000/500 (\"Flamingo\") family",
153 "UNKNOWN (5)",
154 "DEC 2000/300 (\"Jensen\")",
155 "DEC 3000/300 (\"Pelican\")",
156 "UNKNOWN (8)",
157 "DEC 2100/A500 (\"Sable\")",
158 "AXPvme 64",
159 "AXPpci 33 (\"NoName\")",
160 "DEC 21000 (\"TurboLaser\")",
161 "DEC 2100/A50 (\"Avanti\") family",
162 "Mustang",
163 "DEC KN20AA",
164 "UNKNOWN (16)",
165 "DEC 1000 (\"Mikasa\")",
166 };
167 int nmodel_names = sizeof model_names/sizeof model_names[0];
168
169 struct user *proc0paddr;
170
171 /* Number of machine cycles per microsecond */
172 u_int64_t cycles_per_usec;
173
174 /* some memory areas for device DMA. "ick." */
175 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
176
177 /* Interrupt vectors (in locore) */
178 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
179
180 /* number of cpus in the box. really! */
181 int ncpus;
182
183 /* various CPU-specific functions. */
184 char *(*cpu_modelname) __P((void));
185 void (*cpu_consinit) __P((void));
186 void (*cpu_device_register) __P((struct device *dev, void *aux));
187 char *cpu_iobus;
188
189 char boot_flags[64];
190
191 /* for cpu_sysctl() */
192 char root_device[17];
193 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
194 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
195 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
196
197 void identifycpu();
198
199 int
200 alpha_init(pfn, ptb)
201 u_long pfn; /* first free PFN number */
202 u_long ptb; /* PFN of current level 1 page table */
203 {
204 extern char _end[];
205 caddr_t start, v;
206 struct mddt *mddtp;
207 int i, mddtweird;
208 char *p;
209
210 /*
211 * Turn off interrupts and floating point.
212 * Make sure the instruction and data streams are consistent.
213 */
214 (void)splhigh();
215 alpha_pal_wrfen(0);
216 ALPHA_TBIA();
217 alpha_pal_imb();
218
219 /*
220 * get address of the restart block, while we the bootstrap
221 * mapping is still around.
222 */
223 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
224 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
225
226 /*
227 * Remember how many cycles there are per microsecond,
228 * so that we can use delay(). Round up, for safety.
229 */
230 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
231
232 /*
233 * Init the PROM interface, so we can use printf
234 * until PROM mappings go away in consinit.
235 */
236 init_prom_interface();
237
238 /*
239 * Point interrupt/exception vectors to our own.
240 */
241 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
242 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
243 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
244 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
245 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
246 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
247
248 /*
249 * Disable System and Processor Correctable Error reporting.
250 * Clear pending machine checks and error reports, etc.
251 */
252 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
253
254 /*
255 * Find out how much memory is available, by looking at
256 * the memory cluster descriptors. This also tries to do
257 * its best to detect things things that have never been seen
258 * before...
259 *
260 * XXX Assumes that the first "system" cluster is the
261 * only one we can use. Is the second (etc.) system cluster
262 * (if one happens to exist) guaranteed to be contiguous? or...?
263 */
264 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
265
266 /*
267 * BEGIN MDDT WEIRDNESS CHECKING
268 */
269 mddtweird = 0;
270
271 #define cnt mddtp->mddt_cluster_cnt
272 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
273 if (cnt != 2 && cnt != 3) {
274 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
275 mddtweird = 1;
276 } else if (usage(0) != MDDT_PALCODE ||
277 usage(1) != MDDT_SYSTEM ||
278 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
279 mddtweird = 1;
280 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
281 }
282
283 for (i = 0; i < cnt; i++) {
284 if ((usage(i) & MDDT_mbz) != 0) {
285 printf("WARNING: mem cluster %d has weird usage %lx\n",
286 i, usage(i));
287 mddtweird = 1;
288 }
289 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
290 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
291 mddtweird = 1;
292 }
293 /* XXX other things to check? */
294 }
295 #undef cnt
296 #undef usage
297
298 if (mddtweird) {
299 printf("\n");
300 printf("complete memory cluster information:\n");
301 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
302 printf("mddt %d:\n", i);
303 printf("\tpfn %lx\n",
304 mddtp->mddt_clusters[i].mddt_pfn);
305 printf("\tcnt %lx\n",
306 mddtp->mddt_clusters[i].mddt_pg_cnt);
307 printf("\ttest %lx\n",
308 mddtp->mddt_clusters[i].mddt_pg_test);
309 printf("\tbva %lx\n",
310 mddtp->mddt_clusters[i].mddt_v_bitaddr);
311 printf("\tbpa %lx\n",
312 mddtp->mddt_clusters[i].mddt_p_bitaddr);
313 printf("\tbcksum %lx\n",
314 mddtp->mddt_clusters[i].mddt_bit_cksum);
315 printf("\tusage %lx\n",
316 mddtp->mddt_clusters[i].mddt_usage);
317 }
318 printf("\n");
319 }
320 /*
321 * END MDDT WEIRDNESS CHECKING
322 */
323
324 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
325 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
326 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
327 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
328 if ((usage(i) & MDDT_mbz) != 0)
329 unknownmem += pgcnt(i);
330 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
331 resvmem += pgcnt(i);
332 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
333 /*
334 * assumes that the system cluster listed is
335 * one we're in...
336 */
337 if (physmem != resvmem) {
338 physmem += pgcnt(i);
339 firstusablepage =
340 mddtp->mddt_clusters[i].mddt_pfn;
341 lastusablepage = firstusablepage + pgcnt(i) - 1;
342 } else
343 unusedmem += pgcnt(i);
344 }
345 #undef usage
346 #undef pgcnt
347 }
348 if (totalphysmem == 0)
349 panic("can't happen: system seems to have no memory!");
350 maxmem = physmem;
351
352 #if 0
353 printf("totalphysmem = %d\n", totalphysmem);
354 printf("physmem = %d\n", physmem);
355 printf("firstusablepage = %d\n", firstusablepage);
356 printf("lastusablepage = %d\n", lastusablepage);
357 printf("resvmem = %d\n", resvmem);
358 printf("unusedmem = %d\n", unusedmem);
359 printf("unknownmem = %d\n", unknownmem);
360 #endif
361
362 /*
363 * find out this CPU's page size
364 */
365 PAGE_SIZE = hwrpb->rpb_page_size;
366 if (PAGE_SIZE != 8192)
367 panic("page size %d != 8192?!", PAGE_SIZE);
368
369 v = (caddr_t)alpha_round_page(_end);
370 /*
371 * Init mapping for u page(s) for proc 0
372 */
373 start = v;
374 curproc->p_addr = proc0paddr = (struct user *)v;
375 v += UPAGES * NBPG;
376
377 /*
378 * Find out what hardware we're on, and remember its type name.
379 */
380 cputype = hwrpb->rpb_type;
381 switch (cputype) {
382 #ifdef DEC_3000_500 /* and 400, [6-9]00 */
383 case ST_DEC_3000_500:
384 cpu_modelname = dec_3000_500_modelname;
385 cpu_consinit = dec_3000_500_consinit;
386 cpu_device_register = dec_3000_500_device_register;
387 cpu_iobus = "tcasic";
388 break;
389 #endif
390
391 #ifdef DEC_3000_300
392 case ST_DEC_3000_300:
393 cpu_modelname = dec_3000_300_modelname;
394 cpu_consinit = dec_3000_300_consinit;
395 cpu_device_register = dec_3000_300_device_register;
396 cpu_iobus = "tcasic";
397 break;
398 #endif
399
400 #ifdef DEC_2100_A50
401 case ST_DEC_2100_A50:
402 cpu_modelname = dec_2100_a50_modelname;
403 cpu_consinit = dec_2100_a50_consinit;
404 cpu_device_register = dec_2100_a50_device_register;
405 cpu_iobus = "apecs";
406 break;
407 #endif
408
409 #ifdef DEC_KN20AA
410 case ST_DEC_KN20AA:
411 cpu_modelname = dec_kn20aa_modelname;
412 cpu_consinit = dec_kn20aa_consinit;
413 cpu_device_register = dec_kn20aa_device_register;
414 cpu_iobus = "cia";
415 break;
416 #endif
417
418 #ifdef DEC_AXPPCI_33
419 case ST_DEC_AXPPCI_33:
420 cpu_modelname = dec_axppci_33_modelname;
421 cpu_consinit = dec_axppci_33_consinit;
422 cpu_device_register = dec_axppci_33_device_register;
423 cpu_iobus = "lca";
424 break;
425 #endif
426
427 #ifdef DEC_2000_300
428 case ST_DEC_2000_300:
429 cpu_modelname = dec_2000_300_modelname;
430 cpu_consinit = dec_2000_300_consinit;
431 cpu_device_register = dec_2000_300_device_register;
432 cpu_iobus = "ibus";
433 XXX DEC 2000/300 NOT SUPPORTED
434 break;
435 #endif
436
437 #ifdef DEC_21000
438 case ST_DEC_21000:
439 cpu_modelname = dec_21000_modelname;
440 cpu_consinit = dec_21000_consinit;
441 cpu_device_register = dec_21000_device_register;
442 cpu_iobus = "tlsb";
443 XXX DEC 21000 NOT SUPPORTED
444 break;
445 #endif
446
447 default:
448 if (cputype > nmodel_names)
449 panic("Unknown system type %d", cputype);
450 else
451 panic("Support for %s system type not in kernel.",
452 model_names[cputype]);
453 }
454
455 if ((*cpu_modelname)() != NULL)
456 strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
457 else
458 strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
459 cpu_model[sizeof cpu_model - 1] = '\0';
460
461 #if NLE_IOASIC > 0
462 /*
463 * Grab 128K at the top of physical memory for the lance chip
464 * on machines where it does dma through the I/O ASIC.
465 * It must be physically contiguous and aligned on a 128K boundary.
466 *
467 * Note that since this is conditional on the presence of
468 * IOASIC-attached 'le' units in the kernel config, the
469 * message buffer may move on these systems. This shouldn't
470 * be a problem, because once people have a kernel config that
471 * they use, they're going to stick with it.
472 */
473 if (cputype == ST_DEC_3000_500 ||
474 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
475 lastusablepage -= btoc(128 * 1024);
476 le_iomem =
477 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
478 }
479 #endif /* NLE_IOASIC */
480
481 /*
482 * Initialize error message buffer (at end of core).
483 */
484 lastusablepage -= btoc(sizeof (struct msgbuf));
485 msgbufp =
486 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
487 msgbufmapped = 1;
488
489 /*
490 * Allocate space for system data structures.
491 * The first available kernel virtual address is in "v".
492 * As pages of kernel virtual memory are allocated, "v" is incremented.
493 *
494 * These data structures are allocated here instead of cpu_startup()
495 * because physical memory is directly addressable. We don't have
496 * to map these into virtual address space.
497 */
498 #define valloc(name, type, num) \
499 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
500 #define valloclim(name, type, num, lim) \
501 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
502 #ifdef REAL_CLISTS
503 valloc(cfree, struct cblock, nclist);
504 #endif
505 valloc(callout, struct callout, ncallout);
506 valloc(swapmap, struct map, nswapmap = maxproc * 2);
507 #ifdef SYSVSHM
508 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
509 #endif
510 #ifdef SYSVSEM
511 valloc(sema, struct semid_ds, seminfo.semmni);
512 valloc(sem, struct sem, seminfo.semmns);
513 /* This is pretty disgusting! */
514 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
515 #endif
516 #ifdef SYSVMSG
517 valloc(msgpool, char, msginfo.msgmax);
518 valloc(msgmaps, struct msgmap, msginfo.msgseg);
519 valloc(msghdrs, struct msg, msginfo.msgtql);
520 valloc(msqids, struct msqid_ds, msginfo.msgmni);
521 #endif
522
523 /*
524 * Determine how many buffers to allocate.
525 * We allocate 10% of memory for buffer space. Insure a
526 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
527 * headers as file i/o buffers.
528 */
529 if (bufpages == 0)
530 bufpages = (physmem * 10) / (CLSIZE * 100);
531 if (nbuf == 0) {
532 nbuf = bufpages;
533 if (nbuf < 16)
534 nbuf = 16;
535 }
536 if (nswbuf == 0) {
537 nswbuf = (nbuf / 2) &~ 1; /* force even */
538 if (nswbuf > 256)
539 nswbuf = 256; /* sanity */
540 }
541 valloc(swbuf, struct buf, nswbuf);
542 valloc(buf, struct buf, nbuf);
543
544 /*
545 * Clear allocated memory.
546 */
547 bzero(start, v - start);
548
549 /*
550 * Initialize the virtual memory system, and set the
551 * page table base register in proc 0's PCB.
552 */
553 #ifndef NEW_PMAP
554 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
555 #else
556 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
557 hwrpb->rpb_max_asn);
558 #endif
559
560 /*
561 * Initialize the rest of proc 0's PCB, and cache its physical
562 * address.
563 */
564 proc0.p_md.md_pcbpaddr =
565 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
566
567 /*
568 * Set the kernel sp, reserving space for an (empty) trapframe,
569 * and make proc0's trapframe pointer point to it for sanity.
570 */
571 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
572 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
573 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
574
575 #ifdef NEW_PMAP
576 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
577 #endif
578
579 /*
580 * Look at arguments passed to us and compute boothowto.
581 */
582 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
583 #if 0
584 printf("boot flags = \"%s\"\n", boot_flags);
585 #endif
586
587 boothowto = RB_SINGLE;
588 #ifdef KADB
589 boothowto |= RB_KDB;
590 #endif
591 for (p = boot_flags; p && *p != '\0'; p++) {
592 /*
593 * Note that we'd really like to differentiate case here,
594 * but the Alpha AXP Architecture Reference Manual
595 * says that we shouldn't.
596 */
597 switch (*p) {
598 case 'a': /* autoboot */
599 case 'A':
600 boothowto &= ~RB_SINGLE;
601 break;
602
603 #ifdef DEBUG
604 case 'c': /* crash dump immediately after autoconfig */
605 case 'C':
606 boothowto |= RB_DUMP;
607 break;
608 #endif
609
610 case 'h': /* always halt, never reboot */
611 case 'H':
612 boothowto |= RB_HALT;
613 break;
614
615 #if 0
616 case 'm': /* mini root present in memory */
617 case 'M':
618 boothowto |= RB_MINIROOT;
619 break;
620 #endif
621
622 case 'n': /* askname */
623 case 'N':
624 boothowto |= RB_ASKNAME;
625 break;
626 }
627 }
628
629 /*
630 * Figure out the number of cpus in the box, from RPB fields.
631 * Really. We mean it.
632 */
633 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
634 struct pcs *pcsp;
635
636 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
637 (i * hwrpb->rpb_pcs_size));
638 if ((pcsp->pcs_flags & PCS_PP) != 0)
639 ncpus++;
640 }
641
642 return (0);
643 }
644
645 void
646 consinit()
647 {
648
649 (*cpu_consinit)();
650 pmap_unmap_prom();
651 }
652
653 void
654 cpu_startup()
655 {
656 register unsigned i;
657 int base, residual;
658 vm_offset_t minaddr, maxaddr;
659 vm_size_t size;
660 #if defined(DEBUG)
661 extern int pmapdebug;
662 int opmapdebug = pmapdebug;
663
664 pmapdebug = 0;
665 #endif
666
667 /*
668 * Good {morning,afternoon,evening,night}.
669 */
670 printf(version);
671 identifycpu();
672 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
673 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
674 if (unusedmem)
675 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
676 if (unknownmem)
677 printf("WARNING: %d bytes of memory with unknown purpose\n",
678 ctob(unknownmem));
679
680 /*
681 * Allocate virtual address space for file I/O buffers.
682 * Note they are different than the array of headers, 'buf',
683 * and usually occupy more virtual memory than physical.
684 */
685 size = MAXBSIZE * nbuf;
686 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
687 &maxaddr, size, TRUE);
688 minaddr = (vm_offset_t)buffers;
689 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
690 &minaddr, size, FALSE) != KERN_SUCCESS)
691 panic("startup: cannot allocate buffers");
692 base = bufpages / nbuf;
693 residual = bufpages % nbuf;
694 for (i = 0; i < nbuf; i++) {
695 vm_size_t curbufsize;
696 vm_offset_t curbuf;
697
698 /*
699 * First <residual> buffers get (base+1) physical pages
700 * allocated for them. The rest get (base) physical pages.
701 *
702 * The rest of each buffer occupies virtual space,
703 * but has no physical memory allocated for it.
704 */
705 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
706 curbufsize = CLBYTES * (i < residual ? base+1 : base);
707 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
708 vm_map_simplify(buffer_map, curbuf);
709 }
710 /*
711 * Allocate a submap for exec arguments. This map effectively
712 * limits the number of processes exec'ing at any time.
713 */
714 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
715 16 * NCARGS, TRUE);
716
717 /*
718 * Allocate a submap for physio
719 */
720 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
721 VM_PHYS_SIZE, TRUE);
722
723 /*
724 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
725 * we use the more space efficient malloc in place of kmem_alloc.
726 */
727 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
728 M_MBUF, M_NOWAIT);
729 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
730 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
731 VM_MBUF_SIZE, FALSE);
732 /*
733 * Initialize callouts
734 */
735 callfree = callout;
736 for (i = 1; i < ncallout; i++)
737 callout[i-1].c_next = &callout[i];
738 callout[i-1].c_next = NULL;
739
740 #if defined(DEBUG)
741 pmapdebug = opmapdebug;
742 #endif
743 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
744 printf("using %ld buffers containing %ld bytes of memory\n",
745 (long)nbuf, (long)(bufpages * CLBYTES));
746
747 /*
748 * Set up buffers, so they can be used to read disk labels.
749 */
750 bufinit();
751
752 /*
753 * Configure the system.
754 */
755 configure();
756 }
757
758 void
759 identifycpu()
760 {
761
762 /*
763 * print out CPU identification information.
764 */
765 printf("%s, %ldMHz\n", cpu_model,
766 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
767 printf("%ld byte page size, %d processor%s.\n",
768 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
769 #if 0
770 /* this isn't defined for any systems that we run on? */
771 printf("serial number 0x%lx 0x%lx\n",
772 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
773
774 /* and these aren't particularly useful! */
775 printf("variation: 0x%lx, revision 0x%lx\n",
776 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
777 #endif
778 }
779
780 int waittime = -1;
781 struct pcb dumppcb;
782
783 void
784 boot(howto, bootstr)
785 int howto;
786 char *bootstr;
787 {
788 extern int cold;
789
790 /* If system is cold, just halt. */
791 if (cold) {
792 howto |= RB_HALT;
793 goto haltsys;
794 }
795
796 /* If "always halt" was specified as a boot flag, obey. */
797 if ((boothowto & RB_HALT) != 0)
798 howto |= RB_HALT;
799
800 boothowto = howto;
801 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
802 waittime = 0;
803 vfs_shutdown();
804 /*
805 * If we've been adjusting the clock, the todr
806 * will be out of synch; adjust it now.
807 */
808 resettodr();
809 }
810
811 /* Disable interrupts. */
812 splhigh();
813
814 /* If rebooting and a dump is requested do it. */
815 #if 0
816 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
817 #else
818 if (howto & RB_DUMP)
819 #endif
820 dumpsys();
821
822 haltsys:
823
824 /* run any shutdown hooks */
825 doshutdownhooks();
826
827 #ifdef BOOTKEY
828 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
829 cngetc();
830 printf("\n");
831 #endif
832
833 /* Finally, halt/reboot the system. */
834 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
835 prom_halt(howto & RB_HALT);
836 /*NOTREACHED*/
837 }
838
839 /*
840 * These variables are needed by /sbin/savecore
841 */
842 u_long dumpmag = 0x8fca0101; /* magic number */
843 int dumpsize = 0; /* pages */
844 long dumplo = 0; /* blocks */
845
846 /*
847 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
848 */
849 int
850 cpu_dumpsize()
851 {
852 int size;
853
854 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
855 if (roundup(size, dbtob(1)) != dbtob(1))
856 return -1;
857
858 return (1);
859 }
860
861 /*
862 * cpu_dump: dump machine-dependent kernel core dump headers.
863 */
864 int
865 cpu_dump()
866 {
867 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
868 long buf[dbtob(1) / sizeof (long)];
869 kcore_seg_t *segp;
870 cpu_kcore_hdr_t *cpuhdrp;
871
872 dump = bdevsw[major(dumpdev)].d_dump;
873
874 segp = (kcore_seg_t *)buf;
875 cpuhdrp =
876 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
877
878 /*
879 * Generate a segment header.
880 */
881 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
882 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
883
884 /*
885 * Add the machine-dependent header info
886 */
887 cpuhdrp->lev1map_pa = (u_int64_t)Lev1map;
888 cpuhdrp->page_size = PAGE_SIZE;
889 cpuhdrp->core_seg.start = ctob(firstusablepage);
890 cpuhdrp->core_seg.size = ctob(physmem);
891
892 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
893 }
894
895 /*
896 * This is called by configure to set dumplo and dumpsize.
897 * Dumps always skip the first CLBYTES of disk space
898 * in case there might be a disk label stored there.
899 * If there is extra space, put dump at the end to
900 * reduce the chance that swapping trashes it.
901 */
902 void
903 dumpconf()
904 {
905 int nblks, dumpblks; /* size of dump area */
906 int maj;
907
908 if (dumpdev == NODEV)
909 goto bad;
910 maj = major(dumpdev);
911 if (maj < 0 || maj >= nblkdev)
912 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
913 if (bdevsw[maj].d_psize == NULL)
914 goto bad;
915 nblks = (*bdevsw[maj].d_psize)(dumpdev);
916 if (nblks <= ctod(1))
917 goto bad;
918
919 dumpblks = cpu_dumpsize();
920 if (dumpblks < 0)
921 goto bad;
922 dumpblks += ctod(physmem);
923
924 /* If dump won't fit (incl. room for possible label), punt. */
925 if (dumpblks > (nblks - ctod(1)))
926 goto bad;
927
928 /* Put dump at end of partition */
929 dumplo = nblks - dumpblks;
930
931 /* dumpsize is in page units, and doesn't include headers. */
932 dumpsize = physmem;
933 return;
934
935 bad:
936 dumpsize = 0;
937 dumplo = -1;
938 return;
939 }
940
941 /*
942 * Dump the kernel's image to the swap partition.
943 */
944 #define BYTES_PER_DUMP NBPG
945
946 void
947 dumpsys()
948 {
949 unsigned bytes, i, n;
950 int maddr, psize;
951 daddr_t blkno;
952 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
953 int error;
954
955 /* Save registers. */
956 savectx(&dumppcb);
957
958 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
959 if (dumpdev == NODEV)
960 return;
961
962 /*
963 * For dumps during autoconfiguration,
964 * if dump device has already configured...
965 */
966 if (dumpsize == 0)
967 dumpconf();
968 if (dumplo < 0) {
969 printf("\ndump to dev %x not possible\n", dumpdev);
970 return;
971 }
972 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
973
974 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
975 printf("dump ");
976 if (psize == -1) {
977 printf("area unavailable\n");
978 return;
979 }
980
981 /* XXX should purge all outstanding keystrokes. */
982
983 if ((error = cpu_dump()) != 0)
984 goto err;
985
986 bytes = ctob(physmem);
987 maddr = ctob(firstusablepage);
988 blkno = dumplo + cpu_dumpsize();
989 dump = bdevsw[major(dumpdev)].d_dump;
990 error = 0;
991 for (i = 0; i < bytes; i += n) {
992
993 /* Print out how many MBs we to go. */
994 n = bytes - i;
995 if (n && (n % (1024*1024)) == 0)
996 printf("%d ", n / (1024 * 1024));
997
998 /* Limit size for next transfer. */
999 if (n > BYTES_PER_DUMP)
1000 n = BYTES_PER_DUMP;
1001
1002 error = (*dump)(dumpdev, blkno,
1003 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1004 if (error)
1005 break;
1006 maddr += n;
1007 blkno += btodb(n); /* XXX? */
1008
1009 /* XXX should look for keystrokes, to cancel. */
1010 }
1011
1012 err:
1013 switch (error) {
1014
1015 case ENXIO:
1016 printf("device bad\n");
1017 break;
1018
1019 case EFAULT:
1020 printf("device not ready\n");
1021 break;
1022
1023 case EINVAL:
1024 printf("area improper\n");
1025 break;
1026
1027 case EIO:
1028 printf("i/o error\n");
1029 break;
1030
1031 case EINTR:
1032 printf("aborted from console\n");
1033 break;
1034
1035 case 0:
1036 printf("succeeded\n");
1037 break;
1038
1039 default:
1040 printf("error %d\n", error);
1041 break;
1042 }
1043 printf("\n\n");
1044 delay(1000);
1045 }
1046
1047 void
1048 frametoreg(framep, regp)
1049 struct trapframe *framep;
1050 struct reg *regp;
1051 {
1052
1053 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1054 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1055 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1056 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1057 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1058 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1059 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1060 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1061 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1062 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1063 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1064 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1065 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1066 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1067 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1068 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1069 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1070 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1071 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1072 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1073 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1074 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1075 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1076 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1077 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1078 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1079 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1080 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1081 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1082 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1083 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1084 regp->r_regs[R_ZERO] = 0;
1085 }
1086
1087 void
1088 regtoframe(regp, framep)
1089 struct reg *regp;
1090 struct trapframe *framep;
1091 {
1092
1093 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1094 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1095 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1096 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1097 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1098 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1099 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1100 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1101 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1102 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1103 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1104 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1105 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1106 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1107 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1108 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1109 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1110 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1111 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1112 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1113 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1114 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1115 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1116 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1117 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1118 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1119 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1120 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1121 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1122 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1123 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1124 /* ??? = regp->r_regs[R_ZERO]; */
1125 }
1126
1127 void
1128 printregs(regp)
1129 struct reg *regp;
1130 {
1131 int i;
1132
1133 for (i = 0; i < 32; i++)
1134 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1135 i & 1 ? "\n" : "\t");
1136 }
1137
1138 void
1139 regdump(framep)
1140 struct trapframe *framep;
1141 {
1142 struct reg reg;
1143
1144 frametoreg(framep, ®);
1145 reg.r_regs[R_SP] = alpha_pal_rdusp();
1146
1147 printf("REGISTERS:\n");
1148 printregs(®);
1149 }
1150
1151 #ifdef DEBUG
1152 int sigdebug = 0;
1153 int sigpid = 0;
1154 #define SDB_FOLLOW 0x01
1155 #define SDB_KSTACK 0x02
1156 #endif
1157
1158 /*
1159 * Send an interrupt to process.
1160 */
1161 void
1162 sendsig(catcher, sig, mask, code)
1163 sig_t catcher;
1164 int sig, mask;
1165 u_long code;
1166 {
1167 struct proc *p = curproc;
1168 struct sigcontext *scp, ksc;
1169 struct trapframe *frame;
1170 struct sigacts *psp = p->p_sigacts;
1171 int oonstack, fsize, rndfsize;
1172 extern char sigcode[], esigcode[];
1173 extern struct proc *fpcurproc;
1174
1175 frame = p->p_md.md_tf;
1176 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1177 fsize = sizeof ksc;
1178 rndfsize = ((fsize + 15) / 16) * 16;
1179 /*
1180 * Allocate and validate space for the signal handler
1181 * context. Note that if the stack is in P0 space, the
1182 * call to grow() is a nop, and the useracc() check
1183 * will fail if the process has not already allocated
1184 * the space with a `brk'.
1185 */
1186 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1187 (psp->ps_sigonstack & sigmask(sig))) {
1188 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1189 psp->ps_sigstk.ss_size - rndfsize);
1190 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1191 } else
1192 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1193 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1194 (void)grow(p, (u_long)scp);
1195 #ifdef DEBUG
1196 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1197 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1198 sig, &oonstack, scp);
1199 #endif
1200 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1201 #ifdef DEBUG
1202 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1203 printf("sendsig(%d): useracc failed on sig %d\n",
1204 p->p_pid, sig);
1205 #endif
1206 /*
1207 * Process has trashed its stack; give it an illegal
1208 * instruction to halt it in its tracks.
1209 */
1210 SIGACTION(p, SIGILL) = SIG_DFL;
1211 sig = sigmask(SIGILL);
1212 p->p_sigignore &= ~sig;
1213 p->p_sigcatch &= ~sig;
1214 p->p_sigmask &= ~sig;
1215 psignal(p, SIGILL);
1216 return;
1217 }
1218
1219 /*
1220 * Build the signal context to be used by sigreturn.
1221 */
1222 ksc.sc_onstack = oonstack;
1223 ksc.sc_mask = mask;
1224 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1225 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1226
1227 /* copy the registers. */
1228 frametoreg(frame, (struct reg *)ksc.sc_regs);
1229 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1230 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1231
1232 /* save the floating-point state, if necessary, then copy it. */
1233 if (p == fpcurproc) {
1234 alpha_pal_wrfen(1);
1235 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1236 alpha_pal_wrfen(0);
1237 fpcurproc = NULL;
1238 }
1239 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1240 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1241 sizeof(struct fpreg));
1242 ksc.sc_fp_control = 0; /* XXX ? */
1243 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1244 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1245
1246
1247 #ifdef COMPAT_OSF1
1248 /*
1249 * XXX Create an OSF/1-style sigcontext and associated goo.
1250 */
1251 #endif
1252
1253 /*
1254 * copy the frame out to userland.
1255 */
1256 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1257 #ifdef DEBUG
1258 if (sigdebug & SDB_FOLLOW)
1259 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1260 scp, code);
1261 #endif
1262
1263 /*
1264 * Set up the registers to return to sigcode.
1265 */
1266 frame->tf_regs[FRAME_PC] =
1267 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1268 frame->tf_regs[FRAME_A0] = sig;
1269 frame->tf_regs[FRAME_A1] = code;
1270 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1271 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1272 alpha_pal_wrusp((unsigned long)scp);
1273
1274 #ifdef DEBUG
1275 if (sigdebug & SDB_FOLLOW)
1276 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1277 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1278 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1279 printf("sendsig(%d): sig %d returns\n",
1280 p->p_pid, sig);
1281 #endif
1282 }
1283
1284 /*
1285 * System call to cleanup state after a signal
1286 * has been taken. Reset signal mask and
1287 * stack state from context left by sendsig (above).
1288 * Return to previous pc and psl as specified by
1289 * context left by sendsig. Check carefully to
1290 * make sure that the user has not modified the
1291 * psl to gain improper priviledges or to cause
1292 * a machine fault.
1293 */
1294 /* ARGSUSED */
1295 int
1296 sys_sigreturn(p, v, retval)
1297 struct proc *p;
1298 void *v;
1299 register_t *retval;
1300 {
1301 struct sys_sigreturn_args /* {
1302 syscallarg(struct sigcontext *) sigcntxp;
1303 } */ *uap = v;
1304 struct sigcontext *scp, ksc;
1305 extern struct proc *fpcurproc;
1306
1307 scp = SCARG(uap, sigcntxp);
1308 #ifdef DEBUG
1309 if (sigdebug & SDB_FOLLOW)
1310 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1311 #endif
1312
1313 if (ALIGN(scp) != (u_int64_t)scp)
1314 return (EINVAL);
1315
1316 /*
1317 * Test and fetch the context structure.
1318 * We grab it all at once for speed.
1319 */
1320 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1321 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1322 return (EINVAL);
1323
1324 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1325 return (EINVAL);
1326 /*
1327 * Restore the user-supplied information
1328 */
1329 if (ksc.sc_onstack)
1330 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1331 else
1332 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1333 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1334
1335 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1336 p->p_md.md_tf->tf_regs[FRAME_PS] =
1337 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1338
1339 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1340 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1341
1342 /* XXX ksc.sc_ownedfp ? */
1343 if (p == fpcurproc)
1344 fpcurproc = NULL;
1345 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1346 sizeof(struct fpreg));
1347 /* XXX ksc.sc_fp_control ? */
1348
1349 #ifdef DEBUG
1350 if (sigdebug & SDB_FOLLOW)
1351 printf("sigreturn(%d): returns\n", p->p_pid);
1352 #endif
1353 return (EJUSTRETURN);
1354 }
1355
1356 /*
1357 * machine dependent system variables.
1358 */
1359 int
1360 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1361 int *name;
1362 u_int namelen;
1363 void *oldp;
1364 size_t *oldlenp;
1365 void *newp;
1366 size_t newlen;
1367 struct proc *p;
1368 {
1369 dev_t consdev;
1370
1371 /* all sysctl names at this level are terminal */
1372 if (namelen != 1)
1373 return (ENOTDIR); /* overloaded */
1374
1375 switch (name[0]) {
1376 case CPU_CONSDEV:
1377 if (cn_tab != NULL)
1378 consdev = cn_tab->cn_dev;
1379 else
1380 consdev = NODEV;
1381 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1382 sizeof consdev));
1383
1384 case CPU_ROOT_DEVICE:
1385 return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1386
1387 case CPU_UNALIGNED_PRINT:
1388 return (sysctl_int(oldp, oldlenp, newp, newlen,
1389 &alpha_unaligned_print));
1390
1391 case CPU_UNALIGNED_FIX:
1392 return (sysctl_int(oldp, oldlenp, newp, newlen,
1393 &alpha_unaligned_fix));
1394
1395 case CPU_UNALIGNED_SIGBUS:
1396 return (sysctl_int(oldp, oldlenp, newp, newlen,
1397 &alpha_unaligned_sigbus));
1398
1399 default:
1400 return (EOPNOTSUPP);
1401 }
1402 /* NOTREACHED */
1403 }
1404
1405 /*
1406 * Set registers on exec.
1407 */
1408 void
1409 setregs(p, pack, stack, retval)
1410 register struct proc *p;
1411 struct exec_package *pack;
1412 u_long stack;
1413 register_t *retval;
1414 {
1415 struct trapframe *tfp = p->p_md.md_tf;
1416 int i;
1417 extern struct proc *fpcurproc;
1418
1419 #ifdef DEBUG
1420 /*
1421 * Crash and dump, if the user requested it.
1422 */
1423 if (boothowto & RB_DUMP)
1424 panic("crash requested by boot flags");
1425 #endif
1426
1427 #ifdef DEBUG
1428 for (i = 0; i < FRAME_SIZE; i++)
1429 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1430 #else
1431 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1432 #endif
1433 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1434 #define FP_RN 2 /* XXX */
1435 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1436 alpha_pal_wrusp(stack);
1437 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1438 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1439
1440 tfp->tf_regs[FRAME_A0] = stack;
1441 /* a1 and a2 already zeroed */
1442 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1443
1444 p->p_md.md_flags &= ~MDP_FPUSED;
1445 if (fpcurproc == p)
1446 fpcurproc = NULL;
1447
1448 retval[0] = retval[1] = 0;
1449 }
1450
1451 void
1452 netintr()
1453 {
1454 #ifdef INET
1455 #if NETHER > 0
1456 if (netisr & (1 << NETISR_ARP)) {
1457 netisr &= ~(1 << NETISR_ARP);
1458 arpintr();
1459 }
1460 #endif
1461 if (netisr & (1 << NETISR_IP)) {
1462 netisr &= ~(1 << NETISR_IP);
1463 ipintr();
1464 }
1465 #endif
1466 #ifdef NS
1467 if (netisr & (1 << NETISR_NS)) {
1468 netisr &= ~(1 << NETISR_NS);
1469 nsintr();
1470 }
1471 #endif
1472 #ifdef ISO
1473 if (netisr & (1 << NETISR_ISO)) {
1474 netisr &= ~(1 << NETISR_ISO);
1475 clnlintr();
1476 }
1477 #endif
1478 #ifdef CCITT
1479 if (netisr & (1 << NETISR_CCITT)) {
1480 netisr &= ~(1 << NETISR_CCITT);
1481 ccittintr();
1482 }
1483 #endif
1484 #ifdef PPP
1485 if (netisr & (1 << NETISR_PPP)) {
1486 netisr &= ~(1 << NETISR_PPP);
1487 pppintr();
1488 }
1489 #endif
1490 }
1491
1492 void
1493 do_sir()
1494 {
1495
1496 if (ssir & SIR_NET) {
1497 siroff(SIR_NET);
1498 cnt.v_soft++;
1499 netintr();
1500 }
1501 if (ssir & SIR_CLOCK) {
1502 siroff(SIR_CLOCK);
1503 cnt.v_soft++;
1504 softclock();
1505 }
1506 }
1507
1508 int
1509 spl0()
1510 {
1511
1512 if (ssir) {
1513 splsoft();
1514 do_sir();
1515 }
1516
1517 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1518 }
1519
1520 /*
1521 * The following primitives manipulate the run queues. _whichqs tells which
1522 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1523 * into queues, Remrq removes them from queues. The running process is on
1524 * no queue, other processes are on a queue related to p->p_priority, divided
1525 * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1526 * queues.
1527 */
1528 /*
1529 * setrunqueue(p)
1530 * proc *p;
1531 *
1532 * Call should be made at splclock(), and p->p_stat should be SRUN.
1533 */
1534
1535 void
1536 setrunqueue(p)
1537 struct proc *p;
1538 {
1539 int bit;
1540
1541 /* firewall: p->p_back must be NULL */
1542 if (p->p_back != NULL)
1543 panic("setrunqueue");
1544
1545 bit = p->p_priority >> 2;
1546 whichqs |= (1 << bit);
1547 p->p_forw = (struct proc *)&qs[bit];
1548 p->p_back = qs[bit].ph_rlink;
1549 p->p_back->p_forw = p;
1550 qs[bit].ph_rlink = p;
1551 }
1552
1553 /*
1554 * Remrq(p)
1555 *
1556 * Call should be made at splclock().
1557 */
1558 void
1559 remrq(p)
1560 struct proc *p;
1561 {
1562 int bit;
1563
1564 bit = p->p_priority >> 2;
1565 if ((whichqs & (1 << bit)) == 0)
1566 panic("remrq");
1567
1568 p->p_back->p_forw = p->p_forw;
1569 p->p_forw->p_back = p->p_back;
1570 p->p_back = NULL; /* for firewall checking. */
1571
1572 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1573 whichqs &= ~(1 << bit);
1574 }
1575
1576 /*
1577 * Return the best possible estimate of the time in the timeval
1578 * to which tvp points. Unfortunately, we can't read the hardware registers.
1579 * We guarantee that the time will be greater than the value obtained by a
1580 * previous call.
1581 */
1582 void
1583 microtime(tvp)
1584 register struct timeval *tvp;
1585 {
1586 int s = splclock();
1587 static struct timeval lasttime;
1588
1589 *tvp = time;
1590 #ifdef notdef
1591 tvp->tv_usec += clkread();
1592 while (tvp->tv_usec > 1000000) {
1593 tvp->tv_sec++;
1594 tvp->tv_usec -= 1000000;
1595 }
1596 #endif
1597 if (tvp->tv_sec == lasttime.tv_sec &&
1598 tvp->tv_usec <= lasttime.tv_usec &&
1599 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1600 tvp->tv_sec++;
1601 tvp->tv_usec -= 1000000;
1602 }
1603 lasttime = *tvp;
1604 splx(s);
1605 }
1606
1607 /*
1608 * Wait "n" microseconds.
1609 */
1610 void
1611 delay(n)
1612 unsigned long n;
1613 {
1614 long N = cycles_per_usec * (n);
1615
1616 while (N > 0) /* XXX */
1617 N -= 3; /* XXX */
1618 }
1619
1620 #if defined(COMPAT_OSF1) || 1 /* XXX */
1621 void
1622 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1623 struct proc *p;
1624 struct exec_package *epp;
1625 u_long stack;
1626 register_t *retval;
1627 {
1628 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1629
1630 setregs(p, epp, stack, retval);
1631 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1632 }
1633
1634 /*
1635 * cpu_exec_ecoff_hook():
1636 * cpu-dependent ECOFF format hook for execve().
1637 *
1638 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1639 *
1640 */
1641 int
1642 cpu_exec_ecoff_hook(p, epp)
1643 struct proc *p;
1644 struct exec_package *epp;
1645 {
1646 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1647 extern struct emul emul_netbsd;
1648 #ifdef COMPAT_OSF1
1649 extern struct emul emul_osf1;
1650 #endif
1651
1652 switch (execp->f.f_magic) {
1653 #ifdef COMPAT_OSF1
1654 case ECOFF_MAGIC_ALPHA:
1655 epp->ep_emul = &emul_osf1;
1656 break;
1657 #endif
1658
1659 case ECOFF_MAGIC_NETBSD_ALPHA:
1660 epp->ep_emul = &emul_netbsd;
1661 break;
1662
1663 default:
1664 return ENOEXEC;
1665 }
1666 return 0;
1667 }
1668 #endif
1669