machdep.c revision 1.48 1 /* $NetBSD: machdep.c,v 1.48 1996/10/15 23:52:51 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/conf.h>
40 #include <sys/file.h>
41 #ifdef REAL_CLISTS
42 #include <sys/clist.h>
43 #endif
44 #include <sys/callout.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/tty.h>
50 #include <sys/user.h>
51 #include <sys/exec.h>
52 #include <sys/exec_ecoff.h>
53 #include <sys/sysctl.h>
54 #include <sys/core.h>
55 #include <sys/kcore.h>
56 #include <machine/kcore.h>
57 #ifdef SYSVMSG
58 #include <sys/msg.h>
59 #endif
60 #ifdef SYSVSEM
61 #include <sys/sem.h>
62 #endif
63 #ifdef SYSVSHM
64 #include <sys/shm.h>
65 #endif
66
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69
70 #include <vm/vm_kern.h>
71
72 #include <dev/cons.h>
73
74 #include <machine/cpu.h>
75 #include <machine/reg.h>
76 #include <machine/rpb.h>
77 #include <machine/prom.h>
78
79 #ifdef DEC_3000_500
80 #include <alpha/alpha/dec_3000_500.h>
81 #endif
82 #ifdef DEC_3000_300
83 #include <alpha/alpha/dec_3000_300.h>
84 #endif
85 #ifdef DEC_2100_A50
86 #include <alpha/alpha/dec_2100_a50.h>
87 #endif
88 #ifdef DEC_KN20AA
89 #include <alpha/alpha/dec_kn20aa.h>
90 #endif
91 #ifdef DEC_AXPPCI_33
92 #include <alpha/alpha/dec_axppci_33.h>
93 #endif
94 #ifdef DEC_21000
95 #include <alpha/alpha/dec_21000.h>
96 #endif
97
98 #include <net/if.h>
99 #include <net/netisr.h>
100 #include <netinet/in.h>
101 #include <netinet/ip_var.h>
102 #include <netinet/if_arp.h>
103 #include "ether.h"
104
105 #include "le_ioasic.h" /* for le_iomem creation */
106
107 vm_map_t buffer_map;
108
109 void dumpsys __P((void));
110
111 /*
112 * Declare these as initialized data so we can patch them.
113 */
114 int nswbuf = 0;
115 #ifdef NBUF
116 int nbuf = NBUF;
117 #else
118 int nbuf = 0;
119 #endif
120 #ifdef BUFPAGES
121 int bufpages = BUFPAGES;
122 #else
123 int bufpages = 0;
124 #endif
125 int msgbufmapped = 0; /* set when safe to use msgbuf */
126 int maxmem; /* max memory per process */
127
128 int totalphysmem; /* total amount of physical memory in system */
129 int physmem; /* physical memory used by NetBSD + some rsvd */
130 int firstusablepage; /* first usable memory page */
131 int lastusablepage; /* last usable memory page */
132 int resvmem; /* amount of memory reserved for PROM */
133 int unusedmem; /* amount of memory for OS that we don't use */
134 int unknownmem; /* amount of memory with an unknown use */
135
136 int cputype; /* system type, from the RPB */
137
138 /*
139 * XXX We need an address to which we can assign things so that they
140 * won't be optimized away because we didn't use the value.
141 */
142 u_int32_t no_optimize;
143
144 /* the following is used externally (sysctl_hw) */
145 char machine[] = "alpha";
146 char cpu_model[128];
147 char *model_names[] = {
148 "UNKNOWN (0)",
149 "Alpha Demonstration Unit",
150 "DEC 4000 (\"Cobra\")",
151 "DEC 7000 (\"Ruby\")",
152 "DEC 3000/500 (\"Flamingo\") family",
153 "UNKNOWN (5)",
154 "DEC 2000/300 (\"Jensen\")",
155 "DEC 3000/300 (\"Pelican\")",
156 "UNKNOWN (8)",
157 "DEC 2100/A500 (\"Sable\")",
158 "AXPvme 64",
159 "AXPpci 33 (\"NoName\")",
160 "DEC 21000 (\"TurboLaser\")",
161 "DEC 2100/A50 (\"Avanti\") family",
162 "Mustang",
163 "DEC KN20AA",
164 "UNKNOWN (16)",
165 "DEC 1000 (\"Mikasa\")",
166 };
167 int nmodel_names = sizeof model_names/sizeof model_names[0];
168
169 struct user *proc0paddr;
170
171 /* Number of machine cycles per microsecond */
172 u_int64_t cycles_per_usec;
173
174 /* some memory areas for device DMA. "ick." */
175 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
176
177 /* Interrupt vectors (in locore) */
178 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
179
180 /* number of cpus in the box. really! */
181 int ncpus;
182
183 /* various CPU-specific functions. */
184 char *(*cpu_modelname) __P((void));
185 void (*cpu_consinit) __P((void));
186 void (*cpu_device_register) __P((struct device *dev, void *aux));
187 char *cpu_iobus;
188
189 char boot_flags[64];
190
191 /* for cpu_sysctl() */
192 char root_device[17];
193 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
194 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
195 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
196
197 void identifycpu();
198
199 int
200 alpha_init(pfn, ptb)
201 u_long pfn; /* first free PFN number */
202 u_long ptb; /* PFN of current level 1 page table */
203 {
204 extern char _end[];
205 caddr_t start, v;
206 struct mddt *mddtp;
207 int i, mddtweird;
208 char *p;
209
210 /*
211 * Turn off interrupts and floating point.
212 * Make sure the instruction and data streams are consistent.
213 */
214 (void)splhigh();
215 alpha_pal_wrfen(0);
216 ALPHA_TBIA();
217 alpha_pal_imb();
218
219 /*
220 * get address of the restart block, while we the bootstrap
221 * mapping is still around.
222 */
223 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
224 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
225
226 /*
227 * Remember how many cycles there are per microsecond,
228 * so that we can use delay(). Round up, for safety.
229 */
230 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
231
232 /*
233 * Init the PROM interface, so we can use printf
234 * until PROM mappings go away in consinit.
235 */
236 init_prom_interface();
237
238 /*
239 * Point interrupt/exception vectors to our own.
240 */
241 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
242 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
243 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
244 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
245 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
246 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
247
248 /*
249 * Disable System and Processor Correctable Error reporting.
250 * Clear pending machine checks and error reports, etc.
251 */
252 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
253
254 /*
255 * Find out how much memory is available, by looking at
256 * the memory cluster descriptors. This also tries to do
257 * its best to detect things things that have never been seen
258 * before...
259 *
260 * XXX Assumes that the first "system" cluster is the
261 * only one we can use. Is the second (etc.) system cluster
262 * (if one happens to exist) guaranteed to be contiguous? or...?
263 */
264 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
265
266 /*
267 * BEGIN MDDT WEIRDNESS CHECKING
268 */
269 mddtweird = 0;
270
271 #define cnt mddtp->mddt_cluster_cnt
272 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
273 if (cnt != 2 && cnt != 3) {
274 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
275 mddtweird = 1;
276 } else if (usage(0) != MDDT_PALCODE ||
277 usage(1) != MDDT_SYSTEM ||
278 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
279 mddtweird = 1;
280 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
281 }
282
283 for (i = 0; i < cnt; i++) {
284 if ((usage(i) & MDDT_mbz) != 0) {
285 printf("WARNING: mem cluster %d has weird usage %lx\n",
286 i, usage(i));
287 mddtweird = 1;
288 }
289 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
290 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
291 mddtweird = 1;
292 }
293 /* XXX other things to check? */
294 }
295 #undef cnt
296 #undef usage
297
298 if (mddtweird) {
299 printf("\n");
300 printf("complete memory cluster information:\n");
301 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
302 printf("mddt %d:\n", i);
303 printf("\tpfn %lx\n",
304 mddtp->mddt_clusters[i].mddt_pfn);
305 printf("\tcnt %lx\n",
306 mddtp->mddt_clusters[i].mddt_pg_cnt);
307 printf("\ttest %lx\n",
308 mddtp->mddt_clusters[i].mddt_pg_test);
309 printf("\tbva %lx\n",
310 mddtp->mddt_clusters[i].mddt_v_bitaddr);
311 printf("\tbpa %lx\n",
312 mddtp->mddt_clusters[i].mddt_p_bitaddr);
313 printf("\tbcksum %lx\n",
314 mddtp->mddt_clusters[i].mddt_bit_cksum);
315 printf("\tusage %lx\n",
316 mddtp->mddt_clusters[i].mddt_usage);
317 }
318 printf("\n");
319 }
320 /*
321 * END MDDT WEIRDNESS CHECKING
322 */
323
324 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
325 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
326 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
327 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
328 if ((usage(i) & MDDT_mbz) != 0)
329 unknownmem += pgcnt(i);
330 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
331 resvmem += pgcnt(i);
332 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
333 /*
334 * assumes that the system cluster listed is
335 * one we're in...
336 */
337 if (physmem != resvmem) {
338 physmem += pgcnt(i);
339 firstusablepage =
340 mddtp->mddt_clusters[i].mddt_pfn;
341 lastusablepage = firstusablepage + pgcnt(i) - 1;
342 } else
343 unusedmem += pgcnt(i);
344 }
345 #undef usage
346 #undef pgcnt
347 }
348 if (totalphysmem == 0)
349 panic("can't happen: system seems to have no memory!");
350 maxmem = physmem;
351
352 #if 0
353 printf("totalphysmem = %d\n", totalphysmem);
354 printf("physmem = %d\n", physmem);
355 printf("firstusablepage = %d\n", firstusablepage);
356 printf("lastusablepage = %d\n", lastusablepage);
357 printf("resvmem = %d\n", resvmem);
358 printf("unusedmem = %d\n", unusedmem);
359 printf("unknownmem = %d\n", unknownmem);
360 #endif
361
362 /*
363 * find out this CPU's page size
364 */
365 PAGE_SIZE = hwrpb->rpb_page_size;
366 if (PAGE_SIZE != 8192)
367 panic("page size %d != 8192?!", PAGE_SIZE);
368
369 v = (caddr_t)alpha_round_page(_end);
370 /*
371 * Init mapping for u page(s) for proc 0
372 */
373 start = v;
374 curproc->p_addr = proc0paddr = (struct user *)v;
375 v += UPAGES * NBPG;
376
377 /*
378 * Find out what hardware we're on, and remember its type name.
379 */
380 cputype = hwrpb->rpb_type;
381 switch (cputype) {
382 #ifdef DEC_3000_500 /* and 400, [6-9]00 */
383 case ST_DEC_3000_500:
384 cpu_modelname = dec_3000_500_modelname;
385 cpu_consinit = dec_3000_500_consinit;
386 cpu_device_register = dec_3000_500_device_register;
387 cpu_iobus = "tcasic";
388 break;
389 #endif
390
391 #ifdef DEC_3000_300
392 case ST_DEC_3000_300:
393 cpu_modelname = dec_3000_300_modelname;
394 cpu_consinit = dec_3000_300_consinit;
395 cpu_device_register = dec_3000_300_device_register;
396 cpu_iobus = "tcasic";
397 break;
398 #endif
399
400 #ifdef DEC_2100_A50
401 case ST_DEC_2100_A50:
402 cpu_modelname = dec_2100_a50_modelname;
403 cpu_consinit = dec_2100_a50_consinit;
404 cpu_device_register = dec_2100_a50_device_register;
405 cpu_iobus = "apecs";
406 break;
407 #endif
408
409 #ifdef DEC_KN20AA
410 case ST_DEC_KN20AA:
411 cpu_modelname = dec_kn20aa_modelname;
412 cpu_consinit = dec_kn20aa_consinit;
413 cpu_device_register = dec_kn20aa_device_register;
414 cpu_iobus = "cia";
415 break;
416 #endif
417
418 #ifdef DEC_AXPPCI_33
419 case ST_DEC_AXPPCI_33:
420 cpu_modelname = dec_axppci_33_modelname;
421 cpu_consinit = dec_axppci_33_consinit;
422 cpu_device_register = dec_axppci_33_device_register;
423 cpu_iobus = "lca";
424 break;
425 #endif
426
427 #ifdef DEC_2000_300
428 case ST_DEC_2000_300:
429 cpu_modelname = dec_2000_300_modelname;
430 cpu_consinit = dec_2000_300_consinit;
431 cpu_device_register = dec_2000_300_device_register;
432 cpu_iobus = "ibus";
433 XXX DEC 2000/300 NOT SUPPORTED
434 break;
435 #endif
436
437 #ifdef DEC_21000
438 case ST_DEC_21000:
439 cpu_modelname = dec_21000_modelname;
440 cpu_consinit = dec_21000_consinit;
441 cpu_device_register = dec_21000_device_register;
442 cpu_iobus = "tlsb";
443 XXX DEC 21000 NOT SUPPORTED
444 break;
445 #endif
446
447 default:
448 if (cputype > nmodel_names)
449 panic("Unknown system type %d", cputype);
450 else
451 panic("Support for %s system type not in kernel.",
452 model_names[cputype]);
453 }
454
455 if ((*cpu_modelname)() != NULL)
456 strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
457 else
458 strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
459 cpu_model[sizeof cpu_model - 1] = '\0';
460
461 #if NLE_IOASIC > 0
462 /*
463 * Grab 128K at the top of physical memory for the lance chip
464 * on machines where it does dma through the I/O ASIC.
465 * It must be physically contiguous and aligned on a 128K boundary.
466 *
467 * Note that since this is conditional on the presence of
468 * IOASIC-attached 'le' units in the kernel config, the
469 * message buffer may move on these systems. This shouldn't
470 * be a problem, because once people have a kernel config that
471 * they use, they're going to stick with it.
472 */
473 if (cputype == ST_DEC_3000_500 ||
474 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
475 lastusablepage -= btoc(128 * 1024);
476 le_iomem =
477 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
478 }
479 #endif /* NLE_IOASIC */
480
481 /*
482 * Initialize error message buffer (at end of core).
483 */
484 lastusablepage -= btoc(sizeof (struct msgbuf));
485 msgbufp =
486 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
487 msgbufmapped = 1;
488
489 /*
490 * Allocate space for system data structures.
491 * The first available kernel virtual address is in "v".
492 * As pages of kernel virtual memory are allocated, "v" is incremented.
493 *
494 * These data structures are allocated here instead of cpu_startup()
495 * because physical memory is directly addressable. We don't have
496 * to map these into virtual address space.
497 */
498 #define valloc(name, type, num) \
499 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
500 #define valloclim(name, type, num, lim) \
501 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
502 #ifdef REAL_CLISTS
503 valloc(cfree, struct cblock, nclist);
504 #endif
505 valloc(callout, struct callout, ncallout);
506 valloc(swapmap, struct map, nswapmap = maxproc * 2);
507 #ifdef SYSVSHM
508 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
509 #endif
510 #ifdef SYSVSEM
511 valloc(sema, struct semid_ds, seminfo.semmni);
512 valloc(sem, struct sem, seminfo.semmns);
513 /* This is pretty disgusting! */
514 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
515 #endif
516 #ifdef SYSVMSG
517 valloc(msgpool, char, msginfo.msgmax);
518 valloc(msgmaps, struct msgmap, msginfo.msgseg);
519 valloc(msghdrs, struct msg, msginfo.msgtql);
520 valloc(msqids, struct msqid_ds, msginfo.msgmni);
521 #endif
522
523 /*
524 * Determine how many buffers to allocate.
525 * We allocate 10% of memory for buffer space. Insure a
526 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
527 * headers as file i/o buffers.
528 */
529 if (bufpages == 0)
530 bufpages = (physmem * 10) / (CLSIZE * 100);
531 if (nbuf == 0) {
532 nbuf = bufpages;
533 if (nbuf < 16)
534 nbuf = 16;
535 }
536 if (nswbuf == 0) {
537 nswbuf = (nbuf / 2) &~ 1; /* force even */
538 if (nswbuf > 256)
539 nswbuf = 256; /* sanity */
540 }
541 valloc(swbuf, struct buf, nswbuf);
542 valloc(buf, struct buf, nbuf);
543
544 /*
545 * Clear allocated memory.
546 */
547 bzero(start, v - start);
548
549 /*
550 * Initialize the virtual memory system, and set the
551 * page table base register in proc 0's PCB.
552 */
553 #ifndef NEW_PMAP
554 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
555 #else
556 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
557 hwrpb->rpb_max_asn);
558 #endif
559
560 /*
561 * Initialize the rest of proc 0's PCB, and cache its physical
562 * address.
563 */
564 proc0.p_md.md_pcbpaddr =
565 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
566
567 /*
568 * Set the kernel sp, reserving space for an (empty) trapframe,
569 * and make proc0's trapframe pointer point to it for sanity.
570 */
571 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
572 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
573 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
574
575 #ifdef NEW_PMAP
576 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
577 #endif
578
579 /*
580 * Look at arguments passed to us and compute boothowto.
581 */
582 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
583 #if 0
584 printf("boot flags = \"%s\"\n", boot_flags);
585 #endif
586
587 boothowto = RB_SINGLE;
588 #ifdef KADB
589 boothowto |= RB_KDB;
590 #endif
591 for (p = boot_flags; p && *p != '\0'; p++) {
592 /*
593 * Note that we'd really like to differentiate case here,
594 * but the Alpha AXP Architecture Reference Manual
595 * says that we shouldn't.
596 */
597 switch (*p) {
598 case 'a': /* autoboot */
599 case 'A':
600 boothowto &= ~RB_SINGLE;
601 break;
602
603 #ifdef DEBUG
604 case 'c': /* crash dump immediately after autoconfig */
605 case 'C':
606 boothowto |= RB_DUMP;
607 break;
608 #endif
609
610 case 'h': /* always halt, never reboot */
611 case 'H':
612 boothowto |= RB_HALT;
613 break;
614
615 #if 0
616 case 'm': /* mini root present in memory */
617 case 'M':
618 boothowto |= RB_MINIROOT;
619 break;
620 #endif
621
622 case 'n': /* askname */
623 case 'N':
624 boothowto |= RB_ASKNAME;
625 break;
626 }
627 }
628
629 /*
630 * Figure out the number of cpus in the box, from RPB fields.
631 * Really. We mean it.
632 */
633 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
634 struct pcs *pcsp;
635
636 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
637 (i * hwrpb->rpb_pcs_size));
638 if ((pcsp->pcs_flags & PCS_PP) != 0)
639 ncpus++;
640 }
641
642 return (0);
643 }
644
645 void
646 consinit()
647 {
648
649 (*cpu_consinit)();
650 pmap_unmap_prom();
651 }
652
653 void
654 cpu_startup()
655 {
656 register unsigned i;
657 int base, residual;
658 vm_offset_t minaddr, maxaddr;
659 vm_size_t size;
660 #if defined(DEBUG)
661 extern int pmapdebug;
662 int opmapdebug = pmapdebug;
663
664 pmapdebug = 0;
665 #endif
666
667 /*
668 * Good {morning,afternoon,evening,night}.
669 */
670 printf(version);
671 identifycpu();
672 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
673 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
674 if (unusedmem)
675 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
676 if (unknownmem)
677 printf("WARNING: %d bytes of memory with unknown purpose\n",
678 ctob(unknownmem));
679
680 /*
681 * Allocate virtual address space for file I/O buffers.
682 * Note they are different than the array of headers, 'buf',
683 * and usually occupy more virtual memory than physical.
684 */
685 size = MAXBSIZE * nbuf;
686 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
687 &maxaddr, size, TRUE);
688 minaddr = (vm_offset_t)buffers;
689 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
690 &minaddr, size, FALSE) != KERN_SUCCESS)
691 panic("startup: cannot allocate buffers");
692 base = bufpages / nbuf;
693 residual = bufpages % nbuf;
694 for (i = 0; i < nbuf; i++) {
695 vm_size_t curbufsize;
696 vm_offset_t curbuf;
697
698 /*
699 * First <residual> buffers get (base+1) physical pages
700 * allocated for them. The rest get (base) physical pages.
701 *
702 * The rest of each buffer occupies virtual space,
703 * but has no physical memory allocated for it.
704 */
705 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
706 curbufsize = CLBYTES * (i < residual ? base+1 : base);
707 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
708 vm_map_simplify(buffer_map, curbuf);
709 }
710 /*
711 * Allocate a submap for exec arguments. This map effectively
712 * limits the number of processes exec'ing at any time.
713 */
714 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
715 16 * NCARGS, TRUE);
716
717 /*
718 * Allocate a submap for physio
719 */
720 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
721 VM_PHYS_SIZE, TRUE);
722
723 /*
724 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
725 * we use the more space efficient malloc in place of kmem_alloc.
726 */
727 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
728 M_MBUF, M_NOWAIT);
729 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
730 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
731 VM_MBUF_SIZE, FALSE);
732 /*
733 * Initialize callouts
734 */
735 callfree = callout;
736 for (i = 1; i < ncallout; i++)
737 callout[i-1].c_next = &callout[i];
738 callout[i-1].c_next = NULL;
739
740 #if defined(DEBUG)
741 pmapdebug = opmapdebug;
742 #endif
743 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
744 printf("using %ld buffers containing %ld bytes of memory\n",
745 (long)nbuf, (long)(bufpages * CLBYTES));
746
747 /*
748 * Set up buffers, so they can be used to read disk labels.
749 */
750 bufinit();
751
752 /*
753 * Configure the system.
754 */
755 configure();
756
757 /*
758 * Note that bootstrapping is finished, and set the HWRPB up
759 * to do restarts.
760 */
761 hwrbp_restart_setup();
762 }
763
764 void
765 identifycpu()
766 {
767
768 /*
769 * print out CPU identification information.
770 */
771 printf("%s, %ldMHz\n", cpu_model,
772 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
773 printf("%ld byte page size, %d processor%s.\n",
774 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
775 #if 0
776 /* this isn't defined for any systems that we run on? */
777 printf("serial number 0x%lx 0x%lx\n",
778 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
779
780 /* and these aren't particularly useful! */
781 printf("variation: 0x%lx, revision 0x%lx\n",
782 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
783 #endif
784 }
785
786 int waittime = -1;
787 struct pcb dumppcb;
788
789 void
790 boot(howto, bootstr)
791 int howto;
792 char *bootstr;
793 {
794 extern int cold;
795
796 /* If system is cold, just halt. */
797 if (cold) {
798 howto |= RB_HALT;
799 goto haltsys;
800 }
801
802 /* If "always halt" was specified as a boot flag, obey. */
803 if ((boothowto & RB_HALT) != 0)
804 howto |= RB_HALT;
805
806 boothowto = howto;
807 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
808 waittime = 0;
809 vfs_shutdown();
810 /*
811 * If we've been adjusting the clock, the todr
812 * will be out of synch; adjust it now.
813 */
814 resettodr();
815 }
816
817 /* Disable interrupts. */
818 splhigh();
819
820 /* If rebooting and a dump is requested do it. */
821 #if 0
822 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
823 #else
824 if (howto & RB_DUMP)
825 #endif
826 dumpsys();
827
828 haltsys:
829
830 /* run any shutdown hooks */
831 doshutdownhooks();
832
833 #ifdef BOOTKEY
834 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
835 cngetc();
836 printf("\n");
837 #endif
838
839 /* Finally, halt/reboot the system. */
840 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
841 prom_halt(howto & RB_HALT);
842 /*NOTREACHED*/
843 }
844
845 /*
846 * These variables are needed by /sbin/savecore
847 */
848 u_long dumpmag = 0x8fca0101; /* magic number */
849 int dumpsize = 0; /* pages */
850 long dumplo = 0; /* blocks */
851
852 /*
853 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
854 */
855 int
856 cpu_dumpsize()
857 {
858 int size;
859
860 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
861 if (roundup(size, dbtob(1)) != dbtob(1))
862 return -1;
863
864 return (1);
865 }
866
867 /*
868 * cpu_dump: dump machine-dependent kernel core dump headers.
869 */
870 int
871 cpu_dump()
872 {
873 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
874 long buf[dbtob(1) / sizeof (long)];
875 kcore_seg_t *segp;
876 cpu_kcore_hdr_t *cpuhdrp;
877
878 dump = bdevsw[major(dumpdev)].d_dump;
879
880 segp = (kcore_seg_t *)buf;
881 cpuhdrp =
882 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
883
884 /*
885 * Generate a segment header.
886 */
887 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
888 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
889
890 /*
891 * Add the machine-dependent header info
892 */
893 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
894 cpuhdrp->page_size = PAGE_SIZE;
895 cpuhdrp->core_seg.start = ctob(firstusablepage);
896 cpuhdrp->core_seg.size = ctob(physmem);
897
898 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
899 }
900
901 /*
902 * This is called by configure to set dumplo and dumpsize.
903 * Dumps always skip the first CLBYTES of disk space
904 * in case there might be a disk label stored there.
905 * If there is extra space, put dump at the end to
906 * reduce the chance that swapping trashes it.
907 */
908 void
909 dumpconf()
910 {
911 int nblks, dumpblks; /* size of dump area */
912 int maj;
913
914 if (dumpdev == NODEV)
915 goto bad;
916 maj = major(dumpdev);
917 if (maj < 0 || maj >= nblkdev)
918 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
919 if (bdevsw[maj].d_psize == NULL)
920 goto bad;
921 nblks = (*bdevsw[maj].d_psize)(dumpdev);
922 if (nblks <= ctod(1))
923 goto bad;
924
925 dumpblks = cpu_dumpsize();
926 if (dumpblks < 0)
927 goto bad;
928 dumpblks += ctod(physmem);
929
930 /* If dump won't fit (incl. room for possible label), punt. */
931 if (dumpblks > (nblks - ctod(1)))
932 goto bad;
933
934 /* Put dump at end of partition */
935 dumplo = nblks - dumpblks;
936
937 /* dumpsize is in page units, and doesn't include headers. */
938 dumpsize = physmem;
939 return;
940
941 bad:
942 dumpsize = 0;
943 return;
944 }
945
946 /*
947 * Dump the kernel's image to the swap partition.
948 */
949 #define BYTES_PER_DUMP NBPG
950
951 void
952 dumpsys()
953 {
954 unsigned bytes, i, n;
955 int maddr, psize;
956 daddr_t blkno;
957 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
958 int error;
959
960 /* Save registers. */
961 savectx(&dumppcb);
962
963 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
964 if (dumpdev == NODEV)
965 return;
966
967 /*
968 * For dumps during autoconfiguration,
969 * if dump device has already configured...
970 */
971 if (dumpsize == 0)
972 dumpconf();
973 if (dumplo <= 0) {
974 printf("\ndump to dev %x not possible\n", dumpdev);
975 return;
976 }
977 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
978
979 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
980 printf("dump ");
981 if (psize == -1) {
982 printf("area unavailable\n");
983 return;
984 }
985
986 /* XXX should purge all outstanding keystrokes. */
987
988 if ((error = cpu_dump()) != 0)
989 goto err;
990
991 bytes = ctob(physmem);
992 maddr = ctob(firstusablepage);
993 blkno = dumplo + cpu_dumpsize();
994 dump = bdevsw[major(dumpdev)].d_dump;
995 error = 0;
996 for (i = 0; i < bytes; i += n) {
997
998 /* Print out how many MBs we to go. */
999 n = bytes - i;
1000 if (n && (n % (1024*1024)) == 0)
1001 printf("%d ", n / (1024 * 1024));
1002
1003 /* Limit size for next transfer. */
1004 if (n > BYTES_PER_DUMP)
1005 n = BYTES_PER_DUMP;
1006
1007 error = (*dump)(dumpdev, blkno,
1008 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1009 if (error)
1010 break;
1011 maddr += n;
1012 blkno += btodb(n); /* XXX? */
1013
1014 /* XXX should look for keystrokes, to cancel. */
1015 }
1016
1017 err:
1018 switch (error) {
1019
1020 case ENXIO:
1021 printf("device bad\n");
1022 break;
1023
1024 case EFAULT:
1025 printf("device not ready\n");
1026 break;
1027
1028 case EINVAL:
1029 printf("area improper\n");
1030 break;
1031
1032 case EIO:
1033 printf("i/o error\n");
1034 break;
1035
1036 case EINTR:
1037 printf("aborted from console\n");
1038 break;
1039
1040 case 0:
1041 printf("succeeded\n");
1042 break;
1043
1044 default:
1045 printf("error %d\n", error);
1046 break;
1047 }
1048 printf("\n\n");
1049 delay(1000);
1050 }
1051
1052 void
1053 frametoreg(framep, regp)
1054 struct trapframe *framep;
1055 struct reg *regp;
1056 {
1057
1058 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1059 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1060 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1061 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1062 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1063 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1064 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1065 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1066 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1067 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1068 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1069 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1070 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1071 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1072 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1073 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1074 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1075 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1076 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1077 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1078 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1079 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1080 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1081 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1082 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1083 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1084 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1085 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1086 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1087 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1088 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1089 regp->r_regs[R_ZERO] = 0;
1090 }
1091
1092 void
1093 regtoframe(regp, framep)
1094 struct reg *regp;
1095 struct trapframe *framep;
1096 {
1097
1098 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1099 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1100 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1101 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1102 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1103 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1104 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1105 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1106 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1107 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1108 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1109 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1110 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1111 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1112 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1113 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1114 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1115 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1116 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1117 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1118 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1119 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1120 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1121 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1122 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1123 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1124 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1125 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1126 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1127 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1128 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1129 /* ??? = regp->r_regs[R_ZERO]; */
1130 }
1131
1132 void
1133 printregs(regp)
1134 struct reg *regp;
1135 {
1136 int i;
1137
1138 for (i = 0; i < 32; i++)
1139 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1140 i & 1 ? "\n" : "\t");
1141 }
1142
1143 void
1144 regdump(framep)
1145 struct trapframe *framep;
1146 {
1147 struct reg reg;
1148
1149 frametoreg(framep, ®);
1150 reg.r_regs[R_SP] = alpha_pal_rdusp();
1151
1152 printf("REGISTERS:\n");
1153 printregs(®);
1154 }
1155
1156 #ifdef DEBUG
1157 int sigdebug = 0;
1158 int sigpid = 0;
1159 #define SDB_FOLLOW 0x01
1160 #define SDB_KSTACK 0x02
1161 #endif
1162
1163 /*
1164 * Send an interrupt to process.
1165 */
1166 void
1167 sendsig(catcher, sig, mask, code)
1168 sig_t catcher;
1169 int sig, mask;
1170 u_long code;
1171 {
1172 struct proc *p = curproc;
1173 struct sigcontext *scp, ksc;
1174 struct trapframe *frame;
1175 struct sigacts *psp = p->p_sigacts;
1176 int oonstack, fsize, rndfsize;
1177 extern char sigcode[], esigcode[];
1178 extern struct proc *fpcurproc;
1179
1180 frame = p->p_md.md_tf;
1181 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1182 fsize = sizeof ksc;
1183 rndfsize = ((fsize + 15) / 16) * 16;
1184 /*
1185 * Allocate and validate space for the signal handler
1186 * context. Note that if the stack is in P0 space, the
1187 * call to grow() is a nop, and the useracc() check
1188 * will fail if the process has not already allocated
1189 * the space with a `brk'.
1190 */
1191 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1192 (psp->ps_sigonstack & sigmask(sig))) {
1193 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1194 psp->ps_sigstk.ss_size - rndfsize);
1195 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1196 } else
1197 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1198 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1199 (void)grow(p, (u_long)scp);
1200 #ifdef DEBUG
1201 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1202 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1203 sig, &oonstack, scp);
1204 #endif
1205 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1206 #ifdef DEBUG
1207 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1208 printf("sendsig(%d): useracc failed on sig %d\n",
1209 p->p_pid, sig);
1210 #endif
1211 /*
1212 * Process has trashed its stack; give it an illegal
1213 * instruction to halt it in its tracks.
1214 */
1215 SIGACTION(p, SIGILL) = SIG_DFL;
1216 sig = sigmask(SIGILL);
1217 p->p_sigignore &= ~sig;
1218 p->p_sigcatch &= ~sig;
1219 p->p_sigmask &= ~sig;
1220 psignal(p, SIGILL);
1221 return;
1222 }
1223
1224 /*
1225 * Build the signal context to be used by sigreturn.
1226 */
1227 ksc.sc_onstack = oonstack;
1228 ksc.sc_mask = mask;
1229 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1230 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1231
1232 /* copy the registers. */
1233 frametoreg(frame, (struct reg *)ksc.sc_regs);
1234 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1235 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1236
1237 /* save the floating-point state, if necessary, then copy it. */
1238 if (p == fpcurproc) {
1239 alpha_pal_wrfen(1);
1240 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1241 alpha_pal_wrfen(0);
1242 fpcurproc = NULL;
1243 }
1244 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1245 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1246 sizeof(struct fpreg));
1247 ksc.sc_fp_control = 0; /* XXX ? */
1248 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1249 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1250
1251
1252 #ifdef COMPAT_OSF1
1253 /*
1254 * XXX Create an OSF/1-style sigcontext and associated goo.
1255 */
1256 #endif
1257
1258 /*
1259 * copy the frame out to userland.
1260 */
1261 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1262 #ifdef DEBUG
1263 if (sigdebug & SDB_FOLLOW)
1264 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1265 scp, code);
1266 #endif
1267
1268 /*
1269 * Set up the registers to return to sigcode.
1270 */
1271 frame->tf_regs[FRAME_PC] =
1272 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1273 frame->tf_regs[FRAME_A0] = sig;
1274 frame->tf_regs[FRAME_A1] = code;
1275 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1276 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1277 alpha_pal_wrusp((unsigned long)scp);
1278
1279 #ifdef DEBUG
1280 if (sigdebug & SDB_FOLLOW)
1281 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1282 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1283 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1284 printf("sendsig(%d): sig %d returns\n",
1285 p->p_pid, sig);
1286 #endif
1287 }
1288
1289 /*
1290 * System call to cleanup state after a signal
1291 * has been taken. Reset signal mask and
1292 * stack state from context left by sendsig (above).
1293 * Return to previous pc and psl as specified by
1294 * context left by sendsig. Check carefully to
1295 * make sure that the user has not modified the
1296 * psl to gain improper priviledges or to cause
1297 * a machine fault.
1298 */
1299 /* ARGSUSED */
1300 int
1301 sys_sigreturn(p, v, retval)
1302 struct proc *p;
1303 void *v;
1304 register_t *retval;
1305 {
1306 struct sys_sigreturn_args /* {
1307 syscallarg(struct sigcontext *) sigcntxp;
1308 } */ *uap = v;
1309 struct sigcontext *scp, ksc;
1310 extern struct proc *fpcurproc;
1311
1312 scp = SCARG(uap, sigcntxp);
1313 #ifdef DEBUG
1314 if (sigdebug & SDB_FOLLOW)
1315 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1316 #endif
1317
1318 if (ALIGN(scp) != (u_int64_t)scp)
1319 return (EINVAL);
1320
1321 /*
1322 * Test and fetch the context structure.
1323 * We grab it all at once for speed.
1324 */
1325 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1326 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1327 return (EINVAL);
1328
1329 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1330 return (EINVAL);
1331 /*
1332 * Restore the user-supplied information
1333 */
1334 if (ksc.sc_onstack)
1335 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1336 else
1337 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1338 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1339
1340 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1341 p->p_md.md_tf->tf_regs[FRAME_PS] =
1342 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1343
1344 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1345 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1346
1347 /* XXX ksc.sc_ownedfp ? */
1348 if (p == fpcurproc)
1349 fpcurproc = NULL;
1350 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1351 sizeof(struct fpreg));
1352 /* XXX ksc.sc_fp_control ? */
1353
1354 #ifdef DEBUG
1355 if (sigdebug & SDB_FOLLOW)
1356 printf("sigreturn(%d): returns\n", p->p_pid);
1357 #endif
1358 return (EJUSTRETURN);
1359 }
1360
1361 /*
1362 * machine dependent system variables.
1363 */
1364 int
1365 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1366 int *name;
1367 u_int namelen;
1368 void *oldp;
1369 size_t *oldlenp;
1370 void *newp;
1371 size_t newlen;
1372 struct proc *p;
1373 {
1374 dev_t consdev;
1375
1376 /* all sysctl names at this level are terminal */
1377 if (namelen != 1)
1378 return (ENOTDIR); /* overloaded */
1379
1380 switch (name[0]) {
1381 case CPU_CONSDEV:
1382 if (cn_tab != NULL)
1383 consdev = cn_tab->cn_dev;
1384 else
1385 consdev = NODEV;
1386 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1387 sizeof consdev));
1388
1389 case CPU_ROOT_DEVICE:
1390 return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1391
1392 case CPU_UNALIGNED_PRINT:
1393 return (sysctl_int(oldp, oldlenp, newp, newlen,
1394 &alpha_unaligned_print));
1395
1396 case CPU_UNALIGNED_FIX:
1397 return (sysctl_int(oldp, oldlenp, newp, newlen,
1398 &alpha_unaligned_fix));
1399
1400 case CPU_UNALIGNED_SIGBUS:
1401 return (sysctl_int(oldp, oldlenp, newp, newlen,
1402 &alpha_unaligned_sigbus));
1403
1404 default:
1405 return (EOPNOTSUPP);
1406 }
1407 /* NOTREACHED */
1408 }
1409
1410 /*
1411 * Set registers on exec.
1412 */
1413 void
1414 setregs(p, pack, stack, retval)
1415 register struct proc *p;
1416 struct exec_package *pack;
1417 u_long stack;
1418 register_t *retval;
1419 {
1420 struct trapframe *tfp = p->p_md.md_tf;
1421 int i;
1422 extern struct proc *fpcurproc;
1423
1424 #ifdef DEBUG
1425 /*
1426 * Crash and dump, if the user requested it.
1427 */
1428 if (boothowto & RB_DUMP)
1429 panic("crash requested by boot flags");
1430 #endif
1431
1432 #ifdef DEBUG
1433 for (i = 0; i < FRAME_SIZE; i++)
1434 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1435 #else
1436 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1437 #endif
1438 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1439 #define FP_RN 2 /* XXX */
1440 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1441 alpha_pal_wrusp(stack);
1442 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1443 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1444
1445 tfp->tf_regs[FRAME_A0] = stack;
1446 /* a1 and a2 already zeroed */
1447 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1448
1449 p->p_md.md_flags &= ~MDP_FPUSED;
1450 if (fpcurproc == p)
1451 fpcurproc = NULL;
1452
1453 retval[0] = retval[1] = 0;
1454 }
1455
1456 void
1457 netintr()
1458 {
1459 #ifdef INET
1460 #if NETHER > 0
1461 if (netisr & (1 << NETISR_ARP)) {
1462 netisr &= ~(1 << NETISR_ARP);
1463 arpintr();
1464 }
1465 #endif
1466 if (netisr & (1 << NETISR_IP)) {
1467 netisr &= ~(1 << NETISR_IP);
1468 ipintr();
1469 }
1470 #endif
1471 #ifdef NS
1472 if (netisr & (1 << NETISR_NS)) {
1473 netisr &= ~(1 << NETISR_NS);
1474 nsintr();
1475 }
1476 #endif
1477 #ifdef ISO
1478 if (netisr & (1 << NETISR_ISO)) {
1479 netisr &= ~(1 << NETISR_ISO);
1480 clnlintr();
1481 }
1482 #endif
1483 #ifdef CCITT
1484 if (netisr & (1 << NETISR_CCITT)) {
1485 netisr &= ~(1 << NETISR_CCITT);
1486 ccittintr();
1487 }
1488 #endif
1489 #ifdef PPP
1490 if (netisr & (1 << NETISR_PPP)) {
1491 netisr &= ~(1 << NETISR_PPP);
1492 pppintr();
1493 }
1494 #endif
1495 }
1496
1497 void
1498 do_sir()
1499 {
1500
1501 if (ssir & SIR_NET) {
1502 siroff(SIR_NET);
1503 cnt.v_soft++;
1504 netintr();
1505 }
1506 if (ssir & SIR_CLOCK) {
1507 siroff(SIR_CLOCK);
1508 cnt.v_soft++;
1509 softclock();
1510 }
1511 }
1512
1513 int
1514 spl0()
1515 {
1516
1517 if (ssir) {
1518 splsoft();
1519 do_sir();
1520 }
1521
1522 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1523 }
1524
1525 /*
1526 * The following primitives manipulate the run queues. _whichqs tells which
1527 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1528 * into queues, Remrq removes them from queues. The running process is on
1529 * no queue, other processes are on a queue related to p->p_priority, divided
1530 * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1531 * queues.
1532 */
1533 /*
1534 * setrunqueue(p)
1535 * proc *p;
1536 *
1537 * Call should be made at splclock(), and p->p_stat should be SRUN.
1538 */
1539
1540 void
1541 setrunqueue(p)
1542 struct proc *p;
1543 {
1544 int bit;
1545
1546 /* firewall: p->p_back must be NULL */
1547 if (p->p_back != NULL)
1548 panic("setrunqueue");
1549
1550 bit = p->p_priority >> 2;
1551 whichqs |= (1 << bit);
1552 p->p_forw = (struct proc *)&qs[bit];
1553 p->p_back = qs[bit].ph_rlink;
1554 p->p_back->p_forw = p;
1555 qs[bit].ph_rlink = p;
1556 }
1557
1558 /*
1559 * Remrq(p)
1560 *
1561 * Call should be made at splclock().
1562 */
1563 void
1564 remrq(p)
1565 struct proc *p;
1566 {
1567 int bit;
1568
1569 bit = p->p_priority >> 2;
1570 if ((whichqs & (1 << bit)) == 0)
1571 panic("remrq");
1572
1573 p->p_back->p_forw = p->p_forw;
1574 p->p_forw->p_back = p->p_back;
1575 p->p_back = NULL; /* for firewall checking. */
1576
1577 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1578 whichqs &= ~(1 << bit);
1579 }
1580
1581 /*
1582 * Return the best possible estimate of the time in the timeval
1583 * to which tvp points. Unfortunately, we can't read the hardware registers.
1584 * We guarantee that the time will be greater than the value obtained by a
1585 * previous call.
1586 */
1587 void
1588 microtime(tvp)
1589 register struct timeval *tvp;
1590 {
1591 int s = splclock();
1592 static struct timeval lasttime;
1593
1594 *tvp = time;
1595 #ifdef notdef
1596 tvp->tv_usec += clkread();
1597 while (tvp->tv_usec > 1000000) {
1598 tvp->tv_sec++;
1599 tvp->tv_usec -= 1000000;
1600 }
1601 #endif
1602 if (tvp->tv_sec == lasttime.tv_sec &&
1603 tvp->tv_usec <= lasttime.tv_usec &&
1604 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1605 tvp->tv_sec++;
1606 tvp->tv_usec -= 1000000;
1607 }
1608 lasttime = *tvp;
1609 splx(s);
1610 }
1611
1612 /*
1613 * Wait "n" microseconds.
1614 */
1615 void
1616 delay(n)
1617 unsigned long n;
1618 {
1619 long N = cycles_per_usec * (n);
1620
1621 while (N > 0) /* XXX */
1622 N -= 3; /* XXX */
1623 }
1624
1625 #if defined(COMPAT_OSF1) || 1 /* XXX */
1626 void
1627 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1628 struct proc *p;
1629 struct exec_package *epp;
1630 u_long stack;
1631 register_t *retval;
1632 {
1633 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1634
1635 setregs(p, epp, stack, retval);
1636 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1637 }
1638
1639 /*
1640 * cpu_exec_ecoff_hook():
1641 * cpu-dependent ECOFF format hook for execve().
1642 *
1643 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1644 *
1645 */
1646 int
1647 cpu_exec_ecoff_hook(p, epp)
1648 struct proc *p;
1649 struct exec_package *epp;
1650 {
1651 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1652 extern struct emul emul_netbsd;
1653 #ifdef COMPAT_OSF1
1654 extern struct emul emul_osf1;
1655 #endif
1656
1657 switch (execp->f.f_magic) {
1658 #ifdef COMPAT_OSF1
1659 case ECOFF_MAGIC_ALPHA:
1660 epp->ep_emul = &emul_osf1;
1661 break;
1662 #endif
1663
1664 case ECOFF_MAGIC_NETBSD_ALPHA:
1665 epp->ep_emul = &emul_netbsd;
1666 break;
1667
1668 default:
1669 return ENOEXEC;
1670 }
1671 return 0;
1672 }
1673 #endif
1674