machdep.c revision 1.54 1 /* $NetBSD: machdep.c,v 1.54 1996/11/12 05:14:37 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/conf.h>
40 #include <sys/file.h>
41 #ifdef REAL_CLISTS
42 #include <sys/clist.h>
43 #endif
44 #include <sys/callout.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/tty.h>
50 #include <sys/user.h>
51 #include <sys/exec.h>
52 #include <sys/exec_ecoff.h>
53 #include <sys/sysctl.h>
54 #include <sys/core.h>
55 #include <sys/kcore.h>
56 #include <machine/kcore.h>
57 #ifdef SYSVMSG
58 #include <sys/msg.h>
59 #endif
60 #ifdef SYSVSEM
61 #include <sys/sem.h>
62 #endif
63 #ifdef SYSVSHM
64 #include <sys/shm.h>
65 #endif
66
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69
70 #include <vm/vm_kern.h>
71
72 #include <dev/cons.h>
73
74 #include <machine/cpu.h>
75 #include <machine/reg.h>
76 #include <machine/rpb.h>
77 #include <machine/prom.h>
78 #include <machine/cpuconf.h>
79
80 #include <net/netisr.h>
81 #include <net/if.h>
82
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #include <netinet/ip_var.h>
87 #endif
88 #ifdef NS
89 #include <netns/ns_var.h>
90 #endif
91 #ifdef ISO
92 #include <netiso/iso.h>
93 #include <netiso/clnp.h>
94 #endif
95 #include "ppp.h"
96 #if NPPP > 0
97 #include <net/ppp_defs.h>
98 #include <net/if_ppp.h>
99 #endif
100
101 #include "le_ioasic.h" /* for le_iomem creation */
102
103 vm_map_t buffer_map;
104
105 void dumpsys __P((void));
106
107 /*
108 * Declare these as initialized data so we can patch them.
109 */
110 int nswbuf = 0;
111 #ifdef NBUF
112 int nbuf = NBUF;
113 #else
114 int nbuf = 0;
115 #endif
116 #ifdef BUFPAGES
117 int bufpages = BUFPAGES;
118 #else
119 int bufpages = 0;
120 #endif
121 int msgbufmapped = 0; /* set when safe to use msgbuf */
122 int maxmem; /* max memory per process */
123
124 int totalphysmem; /* total amount of physical memory in system */
125 int physmem; /* physical memory used by NetBSD + some rsvd */
126 int firstusablepage; /* first usable memory page */
127 int lastusablepage; /* last usable memory page */
128 int resvmem; /* amount of memory reserved for PROM */
129 int unusedmem; /* amount of memory for OS that we don't use */
130 int unknownmem; /* amount of memory with an unknown use */
131
132 int cputype; /* system type, from the RPB */
133
134 /*
135 * XXX We need an address to which we can assign things so that they
136 * won't be optimized away because we didn't use the value.
137 */
138 u_int32_t no_optimize;
139
140 /* the following is used externally (sysctl_hw) */
141 char machine[] = "alpha";
142 char cpu_model[128];
143 const struct cpusw *cpu_fn_switch; /* function switch */
144
145 struct user *proc0paddr;
146
147 /* Number of machine cycles per microsecond */
148 u_int64_t cycles_per_usec;
149
150 /* some memory areas for device DMA. "ick." */
151 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
152
153 /* Interrupt vectors (in locore) */
154 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
155
156 /* number of cpus in the box. really! */
157 int ncpus;
158
159 char boot_flags[64];
160
161 /* for cpu_sysctl() */
162 char root_device[17];
163 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
164 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
165 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
166
167 void identifycpu();
168
169 int
170 alpha_init(pfn, ptb)
171 u_long pfn; /* first free PFN number */
172 u_long ptb; /* PFN of current level 1 page table */
173 {
174 extern char _end[];
175 caddr_t start, v;
176 struct mddt *mddtp;
177 int i, mddtweird;
178 char *p;
179
180 /*
181 * Turn off interrupts and floating point.
182 * Make sure the instruction and data streams are consistent.
183 */
184 (void)splhigh();
185 alpha_pal_wrfen(0);
186 ALPHA_TBIA();
187 alpha_pal_imb();
188
189 /*
190 * get address of the restart block, while we the bootstrap
191 * mapping is still around.
192 */
193 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
194 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
195
196 /*
197 * Remember how many cycles there are per microsecond,
198 * so that we can use delay(). Round up, for safety.
199 */
200 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
201
202 /*
203 * Init the PROM interface, so we can use printf
204 * until PROM mappings go away in consinit.
205 */
206 init_prom_interface();
207
208 /*
209 * Point interrupt/exception vectors to our own.
210 */
211 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
212 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
213 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
214 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
215 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
216 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
217
218 /*
219 * Disable System and Processor Correctable Error reporting.
220 * Clear pending machine checks and error reports, etc.
221 */
222 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
223
224 /*
225 * Find out how much memory is available, by looking at
226 * the memory cluster descriptors. This also tries to do
227 * its best to detect things things that have never been seen
228 * before...
229 *
230 * XXX Assumes that the first "system" cluster is the
231 * only one we can use. Is the second (etc.) system cluster
232 * (if one happens to exist) guaranteed to be contiguous? or...?
233 */
234 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
235
236 /*
237 * BEGIN MDDT WEIRDNESS CHECKING
238 */
239 mddtweird = 0;
240
241 #define cnt mddtp->mddt_cluster_cnt
242 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
243 if (cnt != 2 && cnt != 3) {
244 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
245 mddtweird = 1;
246 } else if (usage(0) != MDDT_PALCODE ||
247 usage(1) != MDDT_SYSTEM ||
248 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
249 mddtweird = 1;
250 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
251 }
252
253 for (i = 0; i < cnt; i++) {
254 if ((usage(i) & MDDT_mbz) != 0) {
255 printf("WARNING: mem cluster %d has weird usage %lx\n",
256 i, usage(i));
257 mddtweird = 1;
258 }
259 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
260 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
261 mddtweird = 1;
262 }
263 /* XXX other things to check? */
264 }
265 #undef cnt
266 #undef usage
267
268 if (mddtweird) {
269 printf("\n");
270 printf("complete memory cluster information:\n");
271 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
272 printf("mddt %d:\n", i);
273 printf("\tpfn %lx\n",
274 mddtp->mddt_clusters[i].mddt_pfn);
275 printf("\tcnt %lx\n",
276 mddtp->mddt_clusters[i].mddt_pg_cnt);
277 printf("\ttest %lx\n",
278 mddtp->mddt_clusters[i].mddt_pg_test);
279 printf("\tbva %lx\n",
280 mddtp->mddt_clusters[i].mddt_v_bitaddr);
281 printf("\tbpa %lx\n",
282 mddtp->mddt_clusters[i].mddt_p_bitaddr);
283 printf("\tbcksum %lx\n",
284 mddtp->mddt_clusters[i].mddt_bit_cksum);
285 printf("\tusage %lx\n",
286 mddtp->mddt_clusters[i].mddt_usage);
287 }
288 printf("\n");
289 }
290 /*
291 * END MDDT WEIRDNESS CHECKING
292 */
293
294 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
295 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
296 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
297 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
298 if ((usage(i) & MDDT_mbz) != 0)
299 unknownmem += pgcnt(i);
300 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
301 resvmem += pgcnt(i);
302 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
303 /*
304 * assumes that the system cluster listed is
305 * one we're in...
306 */
307 if (physmem != resvmem) {
308 physmem += pgcnt(i);
309 firstusablepage =
310 mddtp->mddt_clusters[i].mddt_pfn;
311 lastusablepage = firstusablepage + pgcnt(i) - 1;
312 } else
313 unusedmem += pgcnt(i);
314 }
315 #undef usage
316 #undef pgcnt
317 }
318 if (totalphysmem == 0)
319 panic("can't happen: system seems to have no memory!");
320 maxmem = physmem;
321
322 #if 0
323 printf("totalphysmem = %d\n", totalphysmem);
324 printf("physmem = %d\n", physmem);
325 printf("firstusablepage = %d\n", firstusablepage);
326 printf("lastusablepage = %d\n", lastusablepage);
327 printf("resvmem = %d\n", resvmem);
328 printf("unusedmem = %d\n", unusedmem);
329 printf("unknownmem = %d\n", unknownmem);
330 #endif
331
332 /*
333 * find out this CPU's page size
334 */
335 PAGE_SIZE = hwrpb->rpb_page_size;
336 if (PAGE_SIZE != 8192)
337 panic("page size %d != 8192?!", PAGE_SIZE);
338
339 v = (caddr_t)alpha_round_page(_end);
340 /*
341 * Init mapping for u page(s) for proc 0
342 */
343 start = v;
344 curproc->p_addr = proc0paddr = (struct user *)v;
345 v += UPAGES * NBPG;
346
347 /*
348 * Find out what hardware we're on, and remember its type name.
349 */
350 cputype = hwrpb->rpb_type;
351 if (cputype < 0 || cputype > ncpusw) {
352 unknown_cputype:
353 printf("\n");
354 printf("Unknown system type %d.\n", cputype);
355 printf("\n");
356 panic("unknown system type");
357 }
358 cpu_fn_switch = &cpusw[cputype];
359 if (cpu_fn_switch->family == NULL)
360 goto unknown_cputype;
361 if (cpu_fn_switch->option == NULL) {
362 printf("\n");
363 printf("NetBSD does not currently support system type %d\n",
364 cputype);
365 printf("(%s family).\n", cpu_fn_switch->family);
366 printf("\n");
367 panic("unsupported system type");
368 }
369 if (!cpu_fn_switch->present) {
370 printf("\n");
371 printf("Support for system type %d (%s family) is\n", cputype,
372 cpu_fn_switch->family);
373 printf("not present in this kernel. Build a kernel with\n");
374 printf("\"options %s\" to include support for this system\n",
375 cpu_fn_switch->option);
376 printf("type.\n");
377 printf("\n");
378 panic("support for system not present");
379 }
380
381 if ((*cpu_fn_switch->model_name)() != NULL)
382 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
383 sizeof cpu_model - 1);
384 else {
385 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
386 strcat(cpu_model, " family"); /* XXX */
387 }
388 cpu_model[sizeof cpu_model - 1] = '\0';
389
390 #if NLE_IOASIC > 0
391 /*
392 * Grab 128K at the top of physical memory for the lance chip
393 * on machines where it does dma through the I/O ASIC.
394 * It must be physically contiguous and aligned on a 128K boundary.
395 *
396 * Note that since this is conditional on the presence of
397 * IOASIC-attached 'le' units in the kernel config, the
398 * message buffer may move on these systems. This shouldn't
399 * be a problem, because once people have a kernel config that
400 * they use, they're going to stick with it.
401 */
402 if (cputype == ST_DEC_3000_500 ||
403 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
404 lastusablepage -= btoc(128 * 1024);
405 le_iomem =
406 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
407 }
408 #endif /* NLE_IOASIC */
409
410 /*
411 * Initialize error message buffer (at end of core).
412 */
413 lastusablepage -= btoc(sizeof (struct msgbuf));
414 msgbufp =
415 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
416 msgbufmapped = 1;
417
418 /*
419 * Allocate space for system data structures.
420 * The first available kernel virtual address is in "v".
421 * As pages of kernel virtual memory are allocated, "v" is incremented.
422 *
423 * These data structures are allocated here instead of cpu_startup()
424 * because physical memory is directly addressable. We don't have
425 * to map these into virtual address space.
426 */
427 #define valloc(name, type, num) \
428 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
429 #define valloclim(name, type, num, lim) \
430 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
431 #ifdef REAL_CLISTS
432 valloc(cfree, struct cblock, nclist);
433 #endif
434 valloc(callout, struct callout, ncallout);
435 valloc(swapmap, struct map, nswapmap = maxproc * 2);
436 #ifdef SYSVSHM
437 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
438 #endif
439 #ifdef SYSVSEM
440 valloc(sema, struct semid_ds, seminfo.semmni);
441 valloc(sem, struct sem, seminfo.semmns);
442 /* This is pretty disgusting! */
443 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
444 #endif
445 #ifdef SYSVMSG
446 valloc(msgpool, char, msginfo.msgmax);
447 valloc(msgmaps, struct msgmap, msginfo.msgseg);
448 valloc(msghdrs, struct msg, msginfo.msgtql);
449 valloc(msqids, struct msqid_ds, msginfo.msgmni);
450 #endif
451
452 /*
453 * Determine how many buffers to allocate.
454 * We allocate 10% of memory for buffer space. Insure a
455 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
456 * headers as file i/o buffers.
457 */
458 if (bufpages == 0)
459 bufpages = (physmem * 10) / (CLSIZE * 100);
460 if (nbuf == 0) {
461 nbuf = bufpages;
462 if (nbuf < 16)
463 nbuf = 16;
464 }
465 if (nswbuf == 0) {
466 nswbuf = (nbuf / 2) &~ 1; /* force even */
467 if (nswbuf > 256)
468 nswbuf = 256; /* sanity */
469 }
470 valloc(swbuf, struct buf, nswbuf);
471 valloc(buf, struct buf, nbuf);
472
473 /*
474 * Clear allocated memory.
475 */
476 bzero(start, v - start);
477
478 /*
479 * Initialize the virtual memory system, and set the
480 * page table base register in proc 0's PCB.
481 */
482 #ifndef NEW_PMAP
483 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
484 #else
485 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
486 hwrpb->rpb_max_asn);
487 #endif
488
489 /*
490 * Initialize the rest of proc 0's PCB, and cache its physical
491 * address.
492 */
493 proc0.p_md.md_pcbpaddr =
494 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
495
496 /*
497 * Set the kernel sp, reserving space for an (empty) trapframe,
498 * and make proc0's trapframe pointer point to it for sanity.
499 */
500 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
501 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
502 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
503
504 #ifdef NEW_PMAP
505 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
506 #endif
507
508 /*
509 * Look at arguments passed to us and compute boothowto.
510 */
511 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
512 #if 0
513 printf("boot flags = \"%s\"\n", boot_flags);
514 #endif
515
516 boothowto = RB_SINGLE;
517 #ifdef KADB
518 boothowto |= RB_KDB;
519 #endif
520 for (p = boot_flags; p && *p != '\0'; p++) {
521 /*
522 * Note that we'd really like to differentiate case here,
523 * but the Alpha AXP Architecture Reference Manual
524 * says that we shouldn't.
525 */
526 switch (*p) {
527 case 'a': /* autoboot */
528 case 'A':
529 boothowto &= ~RB_SINGLE;
530 break;
531
532 #ifdef DEBUG
533 case 'c': /* crash dump immediately after autoconfig */
534 case 'C':
535 boothowto |= RB_DUMP;
536 break;
537 #endif
538
539 case 'h': /* always halt, never reboot */
540 case 'H':
541 boothowto |= RB_HALT;
542 break;
543
544 #if 0
545 case 'm': /* mini root present in memory */
546 case 'M':
547 boothowto |= RB_MINIROOT;
548 break;
549 #endif
550
551 case 'n': /* askname */
552 case 'N':
553 boothowto |= RB_ASKNAME;
554 break;
555 }
556 }
557
558 /*
559 * Figure out the number of cpus in the box, from RPB fields.
560 * Really. We mean it.
561 */
562 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
563 struct pcs *pcsp;
564
565 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
566 (i * hwrpb->rpb_pcs_size));
567 if ((pcsp->pcs_flags & PCS_PP) != 0)
568 ncpus++;
569 }
570
571 return (0);
572 }
573
574 void
575 consinit()
576 {
577
578 (*cpu_fn_switch->cons_init)();
579 pmap_unmap_prom();
580 }
581
582 void
583 cpu_startup()
584 {
585 register unsigned i;
586 int base, residual;
587 vm_offset_t minaddr, maxaddr;
588 vm_size_t size;
589 #if defined(DEBUG)
590 extern int pmapdebug;
591 int opmapdebug = pmapdebug;
592
593 pmapdebug = 0;
594 #endif
595
596 /*
597 * Good {morning,afternoon,evening,night}.
598 */
599 printf(version);
600 identifycpu();
601 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
602 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
603 if (unusedmem)
604 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
605 if (unknownmem)
606 printf("WARNING: %d bytes of memory with unknown purpose\n",
607 ctob(unknownmem));
608
609 /*
610 * Allocate virtual address space for file I/O buffers.
611 * Note they are different than the array of headers, 'buf',
612 * and usually occupy more virtual memory than physical.
613 */
614 size = MAXBSIZE * nbuf;
615 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
616 &maxaddr, size, TRUE);
617 minaddr = (vm_offset_t)buffers;
618 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
619 &minaddr, size, FALSE) != KERN_SUCCESS)
620 panic("startup: cannot allocate buffers");
621 base = bufpages / nbuf;
622 residual = bufpages % nbuf;
623 for (i = 0; i < nbuf; i++) {
624 vm_size_t curbufsize;
625 vm_offset_t curbuf;
626
627 /*
628 * First <residual> buffers get (base+1) physical pages
629 * allocated for them. The rest get (base) physical pages.
630 *
631 * The rest of each buffer occupies virtual space,
632 * but has no physical memory allocated for it.
633 */
634 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
635 curbufsize = CLBYTES * (i < residual ? base+1 : base);
636 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
637 vm_map_simplify(buffer_map, curbuf);
638 }
639 /*
640 * Allocate a submap for exec arguments. This map effectively
641 * limits the number of processes exec'ing at any time.
642 */
643 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
644 16 * NCARGS, TRUE);
645
646 /*
647 * Allocate a submap for physio
648 */
649 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
650 VM_PHYS_SIZE, TRUE);
651
652 /*
653 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
654 * we use the more space efficient malloc in place of kmem_alloc.
655 */
656 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
657 M_MBUF, M_NOWAIT);
658 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
659 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
660 VM_MBUF_SIZE, FALSE);
661 /*
662 * Initialize callouts
663 */
664 callfree = callout;
665 for (i = 1; i < ncallout; i++)
666 callout[i-1].c_next = &callout[i];
667 callout[i-1].c_next = NULL;
668
669 #if defined(DEBUG)
670 pmapdebug = opmapdebug;
671 #endif
672 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
673 printf("using %ld buffers containing %ld bytes of memory\n",
674 (long)nbuf, (long)(bufpages * CLBYTES));
675
676 /*
677 * Set up buffers, so they can be used to read disk labels.
678 */
679 bufinit();
680
681 /*
682 * Configure the system.
683 */
684 configure();
685
686 /*
687 * Note that bootstrapping is finished, and set the HWRPB up
688 * to do restarts.
689 */
690 hwrbp_restart_setup();
691 }
692
693 void
694 identifycpu()
695 {
696
697 /*
698 * print out CPU identification information.
699 */
700 printf("%s, %ldMHz\n", cpu_model,
701 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
702 printf("%ld byte page size, %d processor%s.\n",
703 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
704 #if 0
705 /* this isn't defined for any systems that we run on? */
706 printf("serial number 0x%lx 0x%lx\n",
707 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
708
709 /* and these aren't particularly useful! */
710 printf("variation: 0x%lx, revision 0x%lx\n",
711 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
712 #endif
713 }
714
715 int waittime = -1;
716 struct pcb dumppcb;
717
718 void
719 boot(howto, bootstr)
720 int howto;
721 char *bootstr;
722 {
723 extern int cold;
724
725 /* If system is cold, just halt. */
726 if (cold) {
727 howto |= RB_HALT;
728 goto haltsys;
729 }
730
731 /* If "always halt" was specified as a boot flag, obey. */
732 if ((boothowto & RB_HALT) != 0)
733 howto |= RB_HALT;
734
735 boothowto = howto;
736 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
737 waittime = 0;
738 vfs_shutdown();
739 /*
740 * If we've been adjusting the clock, the todr
741 * will be out of synch; adjust it now.
742 */
743 resettodr();
744 }
745
746 /* Disable interrupts. */
747 splhigh();
748
749 /* If rebooting and a dump is requested do it. */
750 #if 0
751 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
752 #else
753 if (howto & RB_DUMP)
754 #endif
755 dumpsys();
756
757 haltsys:
758
759 /* run any shutdown hooks */
760 doshutdownhooks();
761
762 #ifdef BOOTKEY
763 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
764 cngetc();
765 printf("\n");
766 #endif
767
768 /* Finally, halt/reboot the system. */
769 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
770 prom_halt(howto & RB_HALT);
771 /*NOTREACHED*/
772 }
773
774 /*
775 * These variables are needed by /sbin/savecore
776 */
777 u_long dumpmag = 0x8fca0101; /* magic number */
778 int dumpsize = 0; /* pages */
779 long dumplo = 0; /* blocks */
780
781 /*
782 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
783 */
784 int
785 cpu_dumpsize()
786 {
787 int size;
788
789 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
790 if (roundup(size, dbtob(1)) != dbtob(1))
791 return -1;
792
793 return (1);
794 }
795
796 /*
797 * cpu_dump: dump machine-dependent kernel core dump headers.
798 */
799 int
800 cpu_dump()
801 {
802 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
803 long buf[dbtob(1) / sizeof (long)];
804 kcore_seg_t *segp;
805 cpu_kcore_hdr_t *cpuhdrp;
806
807 dump = bdevsw[major(dumpdev)].d_dump;
808
809 segp = (kcore_seg_t *)buf;
810 cpuhdrp =
811 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
812
813 /*
814 * Generate a segment header.
815 */
816 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
817 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
818
819 /*
820 * Add the machine-dependent header info
821 */
822 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
823 cpuhdrp->page_size = PAGE_SIZE;
824 cpuhdrp->core_seg.start = ctob(firstusablepage);
825 cpuhdrp->core_seg.size = ctob(physmem);
826
827 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
828 }
829
830 /*
831 * This is called by configure to set dumplo and dumpsize.
832 * Dumps always skip the first CLBYTES of disk space
833 * in case there might be a disk label stored there.
834 * If there is extra space, put dump at the end to
835 * reduce the chance that swapping trashes it.
836 */
837 void
838 dumpconf()
839 {
840 int nblks, dumpblks; /* size of dump area */
841 int maj;
842
843 if (dumpdev == NODEV)
844 goto bad;
845 maj = major(dumpdev);
846 if (maj < 0 || maj >= nblkdev)
847 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
848 if (bdevsw[maj].d_psize == NULL)
849 goto bad;
850 nblks = (*bdevsw[maj].d_psize)(dumpdev);
851 if (nblks <= ctod(1))
852 goto bad;
853
854 dumpblks = cpu_dumpsize();
855 if (dumpblks < 0)
856 goto bad;
857 dumpblks += ctod(physmem);
858
859 /* If dump won't fit (incl. room for possible label), punt. */
860 if (dumpblks > (nblks - ctod(1)))
861 goto bad;
862
863 /* Put dump at end of partition */
864 dumplo = nblks - dumpblks;
865
866 /* dumpsize is in page units, and doesn't include headers. */
867 dumpsize = physmem;
868 return;
869
870 bad:
871 dumpsize = 0;
872 return;
873 }
874
875 /*
876 * Dump the kernel's image to the swap partition.
877 */
878 #define BYTES_PER_DUMP NBPG
879
880 void
881 dumpsys()
882 {
883 unsigned bytes, i, n;
884 int maddr, psize;
885 daddr_t blkno;
886 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
887 int error;
888
889 /* Save registers. */
890 savectx(&dumppcb);
891
892 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
893 if (dumpdev == NODEV)
894 return;
895
896 /*
897 * For dumps during autoconfiguration,
898 * if dump device has already configured...
899 */
900 if (dumpsize == 0)
901 dumpconf();
902 if (dumplo <= 0) {
903 printf("\ndump to dev %x not possible\n", dumpdev);
904 return;
905 }
906 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
907
908 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
909 printf("dump ");
910 if (psize == -1) {
911 printf("area unavailable\n");
912 return;
913 }
914
915 /* XXX should purge all outstanding keystrokes. */
916
917 if ((error = cpu_dump()) != 0)
918 goto err;
919
920 bytes = ctob(physmem);
921 maddr = ctob(firstusablepage);
922 blkno = dumplo + cpu_dumpsize();
923 dump = bdevsw[major(dumpdev)].d_dump;
924 error = 0;
925 for (i = 0; i < bytes; i += n) {
926
927 /* Print out how many MBs we to go. */
928 n = bytes - i;
929 if (n && (n % (1024*1024)) == 0)
930 printf("%d ", n / (1024 * 1024));
931
932 /* Limit size for next transfer. */
933 if (n > BYTES_PER_DUMP)
934 n = BYTES_PER_DUMP;
935
936 error = (*dump)(dumpdev, blkno,
937 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
938 if (error)
939 break;
940 maddr += n;
941 blkno += btodb(n); /* XXX? */
942
943 /* XXX should look for keystrokes, to cancel. */
944 }
945
946 err:
947 switch (error) {
948
949 case ENXIO:
950 printf("device bad\n");
951 break;
952
953 case EFAULT:
954 printf("device not ready\n");
955 break;
956
957 case EINVAL:
958 printf("area improper\n");
959 break;
960
961 case EIO:
962 printf("i/o error\n");
963 break;
964
965 case EINTR:
966 printf("aborted from console\n");
967 break;
968
969 case 0:
970 printf("succeeded\n");
971 break;
972
973 default:
974 printf("error %d\n", error);
975 break;
976 }
977 printf("\n\n");
978 delay(1000);
979 }
980
981 void
982 frametoreg(framep, regp)
983 struct trapframe *framep;
984 struct reg *regp;
985 {
986
987 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
988 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
989 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
990 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
991 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
992 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
993 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
994 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
995 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
996 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
997 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
998 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
999 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1000 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1001 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1002 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1003 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1004 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1005 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1006 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1007 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1008 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1009 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1010 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1011 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1012 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1013 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1014 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1015 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1016 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1017 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1018 regp->r_regs[R_ZERO] = 0;
1019 }
1020
1021 void
1022 regtoframe(regp, framep)
1023 struct reg *regp;
1024 struct trapframe *framep;
1025 {
1026
1027 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1028 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1029 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1030 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1031 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1032 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1033 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1034 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1035 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1036 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1037 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1038 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1039 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1040 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1041 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1042 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1043 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1044 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1045 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1046 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1047 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1048 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1049 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1050 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1051 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1052 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1053 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1054 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1055 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1056 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1057 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1058 /* ??? = regp->r_regs[R_ZERO]; */
1059 }
1060
1061 void
1062 printregs(regp)
1063 struct reg *regp;
1064 {
1065 int i;
1066
1067 for (i = 0; i < 32; i++)
1068 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1069 i & 1 ? "\n" : "\t");
1070 }
1071
1072 void
1073 regdump(framep)
1074 struct trapframe *framep;
1075 {
1076 struct reg reg;
1077
1078 frametoreg(framep, ®);
1079 reg.r_regs[R_SP] = alpha_pal_rdusp();
1080
1081 printf("REGISTERS:\n");
1082 printregs(®);
1083 }
1084
1085 #ifdef DEBUG
1086 int sigdebug = 0;
1087 int sigpid = 0;
1088 #define SDB_FOLLOW 0x01
1089 #define SDB_KSTACK 0x02
1090 #endif
1091
1092 /*
1093 * Send an interrupt to process.
1094 */
1095 void
1096 sendsig(catcher, sig, mask, code)
1097 sig_t catcher;
1098 int sig, mask;
1099 u_long code;
1100 {
1101 struct proc *p = curproc;
1102 struct sigcontext *scp, ksc;
1103 struct trapframe *frame;
1104 struct sigacts *psp = p->p_sigacts;
1105 int oonstack, fsize, rndfsize;
1106 extern char sigcode[], esigcode[];
1107 extern struct proc *fpcurproc;
1108
1109 frame = p->p_md.md_tf;
1110 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1111 fsize = sizeof ksc;
1112 rndfsize = ((fsize + 15) / 16) * 16;
1113 /*
1114 * Allocate and validate space for the signal handler
1115 * context. Note that if the stack is in P0 space, the
1116 * call to grow() is a nop, and the useracc() check
1117 * will fail if the process has not already allocated
1118 * the space with a `brk'.
1119 */
1120 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1121 (psp->ps_sigonstack & sigmask(sig))) {
1122 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1123 psp->ps_sigstk.ss_size - rndfsize);
1124 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1125 } else
1126 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1127 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1128 (void)grow(p, (u_long)scp);
1129 #ifdef DEBUG
1130 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1131 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1132 sig, &oonstack, scp);
1133 #endif
1134 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1135 #ifdef DEBUG
1136 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1137 printf("sendsig(%d): useracc failed on sig %d\n",
1138 p->p_pid, sig);
1139 #endif
1140 /*
1141 * Process has trashed its stack; give it an illegal
1142 * instruction to halt it in its tracks.
1143 */
1144 SIGACTION(p, SIGILL) = SIG_DFL;
1145 sig = sigmask(SIGILL);
1146 p->p_sigignore &= ~sig;
1147 p->p_sigcatch &= ~sig;
1148 p->p_sigmask &= ~sig;
1149 psignal(p, SIGILL);
1150 return;
1151 }
1152
1153 /*
1154 * Build the signal context to be used by sigreturn.
1155 */
1156 ksc.sc_onstack = oonstack;
1157 ksc.sc_mask = mask;
1158 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1159 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1160
1161 /* copy the registers. */
1162 frametoreg(frame, (struct reg *)ksc.sc_regs);
1163 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1164 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1165
1166 /* save the floating-point state, if necessary, then copy it. */
1167 if (p == fpcurproc) {
1168 alpha_pal_wrfen(1);
1169 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1170 alpha_pal_wrfen(0);
1171 fpcurproc = NULL;
1172 }
1173 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1174 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1175 sizeof(struct fpreg));
1176 ksc.sc_fp_control = 0; /* XXX ? */
1177 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1178 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1179
1180
1181 #ifdef COMPAT_OSF1
1182 /*
1183 * XXX Create an OSF/1-style sigcontext and associated goo.
1184 */
1185 #endif
1186
1187 /*
1188 * copy the frame out to userland.
1189 */
1190 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1191 #ifdef DEBUG
1192 if (sigdebug & SDB_FOLLOW)
1193 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1194 scp, code);
1195 #endif
1196
1197 /*
1198 * Set up the registers to return to sigcode.
1199 */
1200 frame->tf_regs[FRAME_PC] =
1201 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1202 frame->tf_regs[FRAME_A0] = sig;
1203 frame->tf_regs[FRAME_A1] = code;
1204 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1205 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1206 alpha_pal_wrusp((unsigned long)scp);
1207
1208 #ifdef DEBUG
1209 if (sigdebug & SDB_FOLLOW)
1210 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1211 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1212 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1213 printf("sendsig(%d): sig %d returns\n",
1214 p->p_pid, sig);
1215 #endif
1216 }
1217
1218 /*
1219 * System call to cleanup state after a signal
1220 * has been taken. Reset signal mask and
1221 * stack state from context left by sendsig (above).
1222 * Return to previous pc and psl as specified by
1223 * context left by sendsig. Check carefully to
1224 * make sure that the user has not modified the
1225 * psl to gain improper priviledges or to cause
1226 * a machine fault.
1227 */
1228 /* ARGSUSED */
1229 int
1230 sys_sigreturn(p, v, retval)
1231 struct proc *p;
1232 void *v;
1233 register_t *retval;
1234 {
1235 struct sys_sigreturn_args /* {
1236 syscallarg(struct sigcontext *) sigcntxp;
1237 } */ *uap = v;
1238 struct sigcontext *scp, ksc;
1239 extern struct proc *fpcurproc;
1240
1241 scp = SCARG(uap, sigcntxp);
1242 #ifdef DEBUG
1243 if (sigdebug & SDB_FOLLOW)
1244 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1245 #endif
1246
1247 if (ALIGN(scp) != (u_int64_t)scp)
1248 return (EINVAL);
1249
1250 /*
1251 * Test and fetch the context structure.
1252 * We grab it all at once for speed.
1253 */
1254 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1255 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1256 return (EINVAL);
1257
1258 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1259 return (EINVAL);
1260 /*
1261 * Restore the user-supplied information
1262 */
1263 if (ksc.sc_onstack)
1264 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1265 else
1266 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1267 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1268
1269 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1270 p->p_md.md_tf->tf_regs[FRAME_PS] =
1271 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1272
1273 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1274 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1275
1276 /* XXX ksc.sc_ownedfp ? */
1277 if (p == fpcurproc)
1278 fpcurproc = NULL;
1279 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1280 sizeof(struct fpreg));
1281 /* XXX ksc.sc_fp_control ? */
1282
1283 #ifdef DEBUG
1284 if (sigdebug & SDB_FOLLOW)
1285 printf("sigreturn(%d): returns\n", p->p_pid);
1286 #endif
1287 return (EJUSTRETURN);
1288 }
1289
1290 /*
1291 * machine dependent system variables.
1292 */
1293 int
1294 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1295 int *name;
1296 u_int namelen;
1297 void *oldp;
1298 size_t *oldlenp;
1299 void *newp;
1300 size_t newlen;
1301 struct proc *p;
1302 {
1303 dev_t consdev;
1304
1305 /* all sysctl names at this level are terminal */
1306 if (namelen != 1)
1307 return (ENOTDIR); /* overloaded */
1308
1309 switch (name[0]) {
1310 case CPU_CONSDEV:
1311 if (cn_tab != NULL)
1312 consdev = cn_tab->cn_dev;
1313 else
1314 consdev = NODEV;
1315 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1316 sizeof consdev));
1317
1318 case CPU_ROOT_DEVICE:
1319 return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1320
1321 case CPU_UNALIGNED_PRINT:
1322 return (sysctl_int(oldp, oldlenp, newp, newlen,
1323 &alpha_unaligned_print));
1324
1325 case CPU_UNALIGNED_FIX:
1326 return (sysctl_int(oldp, oldlenp, newp, newlen,
1327 &alpha_unaligned_fix));
1328
1329 case CPU_UNALIGNED_SIGBUS:
1330 return (sysctl_int(oldp, oldlenp, newp, newlen,
1331 &alpha_unaligned_sigbus));
1332
1333 default:
1334 return (EOPNOTSUPP);
1335 }
1336 /* NOTREACHED */
1337 }
1338
1339 /*
1340 * Set registers on exec.
1341 */
1342 void
1343 setregs(p, pack, stack, retval)
1344 register struct proc *p;
1345 struct exec_package *pack;
1346 u_long stack;
1347 register_t *retval;
1348 {
1349 struct trapframe *tfp = p->p_md.md_tf;
1350 int i;
1351 extern struct proc *fpcurproc;
1352
1353 #ifdef DEBUG
1354 /*
1355 * Crash and dump, if the user requested it.
1356 */
1357 if (boothowto & RB_DUMP)
1358 panic("crash requested by boot flags");
1359 #endif
1360
1361 #ifdef DEBUG
1362 for (i = 0; i < FRAME_SIZE; i++)
1363 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1364 #else
1365 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1366 #endif
1367 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1368 #define FP_RN 2 /* XXX */
1369 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1370 alpha_pal_wrusp(stack);
1371 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1372 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1373
1374 tfp->tf_regs[FRAME_A0] = stack;
1375 /* a1 and a2 already zeroed */
1376 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1377
1378 p->p_md.md_flags &= ~MDP_FPUSED;
1379 if (fpcurproc == p)
1380 fpcurproc = NULL;
1381
1382 retval[0] = retval[1] = 0;
1383 }
1384
1385 void
1386 netintr()
1387 {
1388 int n, s;
1389
1390 s = splhigh();
1391 n = netisr;
1392 netisr = 0;
1393 splx(s);
1394
1395 #define DONETISR(bit, fn) \
1396 do { \
1397 if (n & (1 << (bit))) \
1398 fn; \
1399 } while (0)
1400
1401 #ifdef INET
1402 DONETISR(NETISR_ARP, arpintr());
1403 DONETISR(NETISR_IP, ipintr());
1404 #endif
1405 #ifdef NS
1406 DONETISR(NETISR_NS, nsintr());
1407 #endif
1408 #ifdef ISO
1409 DONETISR(NETISR_ISO, clnlintr());
1410 #endif
1411 #ifdef CCITT
1412 DONETISR(NETISR_CCITT, ccittintr());
1413 #endif
1414 #ifdef NATM
1415 DONETISR(NETISR_NATM, natmintr());
1416 #endif
1417 #if NPPP > 1
1418 DONETISR(NETISR_PPP, pppintr());
1419 #endif
1420
1421 #undef DONETISR
1422 }
1423
1424 void
1425 do_sir()
1426 {
1427
1428 if (ssir & SIR_NET) {
1429 siroff(SIR_NET);
1430 cnt.v_soft++;
1431 netintr();
1432 }
1433 if (ssir & SIR_CLOCK) {
1434 siroff(SIR_CLOCK);
1435 cnt.v_soft++;
1436 softclock();
1437 }
1438 }
1439
1440 int
1441 spl0()
1442 {
1443
1444 if (ssir) {
1445 splsoft();
1446 do_sir();
1447 }
1448
1449 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1450 }
1451
1452 /*
1453 * The following primitives manipulate the run queues. _whichqs tells which
1454 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1455 * into queues, Remrunqueue removes them from queues. The running process is
1456 * on no queue, other processes are on a queue related to p->p_priority,
1457 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1458 * available queues.
1459 */
1460 /*
1461 * setrunqueue(p)
1462 * proc *p;
1463 *
1464 * Call should be made at splclock(), and p->p_stat should be SRUN.
1465 */
1466
1467 void
1468 setrunqueue(p)
1469 struct proc *p;
1470 {
1471 int bit;
1472
1473 /* firewall: p->p_back must be NULL */
1474 if (p->p_back != NULL)
1475 panic("setrunqueue");
1476
1477 bit = p->p_priority >> 2;
1478 whichqs |= (1 << bit);
1479 p->p_forw = (struct proc *)&qs[bit];
1480 p->p_back = qs[bit].ph_rlink;
1481 p->p_back->p_forw = p;
1482 qs[bit].ph_rlink = p;
1483 }
1484
1485 /*
1486 * remrunqueue(p)
1487 *
1488 * Call should be made at splclock().
1489 */
1490 void
1491 remrunqueue(p)
1492 struct proc *p;
1493 {
1494 int bit;
1495
1496 bit = p->p_priority >> 2;
1497 if ((whichqs & (1 << bit)) == 0)
1498 panic("remrunqueue");
1499
1500 p->p_back->p_forw = p->p_forw;
1501 p->p_forw->p_back = p->p_back;
1502 p->p_back = NULL; /* for firewall checking. */
1503
1504 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1505 whichqs &= ~(1 << bit);
1506 }
1507
1508 /*
1509 * Return the best possible estimate of the time in the timeval
1510 * to which tvp points. Unfortunately, we can't read the hardware registers.
1511 * We guarantee that the time will be greater than the value obtained by a
1512 * previous call.
1513 */
1514 void
1515 microtime(tvp)
1516 register struct timeval *tvp;
1517 {
1518 int s = splclock();
1519 static struct timeval lasttime;
1520
1521 *tvp = time;
1522 #ifdef notdef
1523 tvp->tv_usec += clkread();
1524 while (tvp->tv_usec > 1000000) {
1525 tvp->tv_sec++;
1526 tvp->tv_usec -= 1000000;
1527 }
1528 #endif
1529 if (tvp->tv_sec == lasttime.tv_sec &&
1530 tvp->tv_usec <= lasttime.tv_usec &&
1531 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1532 tvp->tv_sec++;
1533 tvp->tv_usec -= 1000000;
1534 }
1535 lasttime = *tvp;
1536 splx(s);
1537 }
1538
1539 /*
1540 * Wait "n" microseconds.
1541 */
1542 void
1543 delay(n)
1544 unsigned long n;
1545 {
1546 long N = cycles_per_usec * (n);
1547
1548 while (N > 0) /* XXX */
1549 N -= 3; /* XXX */
1550 }
1551
1552 #if defined(COMPAT_OSF1) || 1 /* XXX */
1553 void
1554 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1555 struct proc *p;
1556 struct exec_package *epp;
1557 u_long stack;
1558 register_t *retval;
1559 {
1560 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1561
1562 setregs(p, epp, stack, retval);
1563 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1564 }
1565
1566 /*
1567 * cpu_exec_ecoff_hook():
1568 * cpu-dependent ECOFF format hook for execve().
1569 *
1570 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1571 *
1572 */
1573 int
1574 cpu_exec_ecoff_hook(p, epp)
1575 struct proc *p;
1576 struct exec_package *epp;
1577 {
1578 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1579 extern struct emul emul_netbsd;
1580 #ifdef COMPAT_OSF1
1581 extern struct emul emul_osf1;
1582 #endif
1583
1584 switch (execp->f.f_magic) {
1585 #ifdef COMPAT_OSF1
1586 case ECOFF_MAGIC_ALPHA:
1587 epp->ep_emul = &emul_osf1;
1588 break;
1589 #endif
1590
1591 case ECOFF_MAGIC_NETBSD_ALPHA:
1592 epp->ep_emul = &emul_netbsd;
1593 break;
1594
1595 default:
1596 return ENOEXEC;
1597 }
1598 return 0;
1599 }
1600 #endif
1601
1602 /* XXX XXX BEGIN XXX XXX */
1603 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1604 /* XXX */
1605 vm_offset_t /* XXX */
1606 alpha_XXX_dmamap(v) /* XXX */
1607 vm_offset_t v; /* XXX */
1608 { /* XXX */
1609 /* XXX */
1610 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1611 } /* XXX */
1612 /* XXX XXX END XXX XXX */
1613