machdep.c revision 1.56 1 /* $NetBSD: machdep.c,v 1.56 1996/11/16 23:07:40 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/conf.h>
40 #include <sys/file.h>
41 #ifdef REAL_CLISTS
42 #include <sys/clist.h>
43 #endif
44 #include <sys/callout.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/tty.h>
50 #include <sys/user.h>
51 #include <sys/exec.h>
52 #include <sys/exec_ecoff.h>
53 #include <sys/sysctl.h>
54 #include <sys/core.h>
55 #include <sys/kcore.h>
56 #include <machine/kcore.h>
57 #ifdef SYSVMSG
58 #include <sys/msg.h>
59 #endif
60 #ifdef SYSVSEM
61 #include <sys/sem.h>
62 #endif
63 #ifdef SYSVSHM
64 #include <sys/shm.h>
65 #endif
66
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69
70 #include <vm/vm_kern.h>
71
72 #include <dev/cons.h>
73
74 #include <machine/cpu.h>
75 #include <machine/reg.h>
76 #include <machine/rpb.h>
77 #include <machine/prom.h>
78 #include <machine/cpuconf.h>
79
80 #include <net/netisr.h>
81 #include <net/if.h>
82
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #include <netinet/ip_var.h>
87 #endif
88 #ifdef NS
89 #include <netns/ns_var.h>
90 #endif
91 #ifdef ISO
92 #include <netiso/iso.h>
93 #include <netiso/clnp.h>
94 #endif
95 #ifdef CCITT
96 #include <netccitt/x25.h>
97 #include <netccitt/pk.h>
98 #include <netccitt/pk_extern.h>
99 #endif
100 #ifdef NATM
101 #include <netnatm/natm.h>
102 #endif
103 #include "ppp.h"
104 #if NPPP > 0
105 #include <net/ppp_defs.h>
106 #include <net/if_ppp.h>
107 #endif
108
109 #include "le_ioasic.h" /* for le_iomem creation */
110
111 vm_map_t buffer_map;
112
113 /*
114 * Declare these as initialized data so we can patch them.
115 */
116 int nswbuf = 0;
117 #ifdef NBUF
118 int nbuf = NBUF;
119 #else
120 int nbuf = 0;
121 #endif
122 #ifdef BUFPAGES
123 int bufpages = BUFPAGES;
124 #else
125 int bufpages = 0;
126 #endif
127 int msgbufmapped = 0; /* set when safe to use msgbuf */
128 int maxmem; /* max memory per process */
129
130 int totalphysmem; /* total amount of physical memory in system */
131 int physmem; /* physical memory used by NetBSD + some rsvd */
132 int firstusablepage; /* first usable memory page */
133 int lastusablepage; /* last usable memory page */
134 int resvmem; /* amount of memory reserved for PROM */
135 int unusedmem; /* amount of memory for OS that we don't use */
136 int unknownmem; /* amount of memory with an unknown use */
137
138 int cputype; /* system type, from the RPB */
139
140 /*
141 * XXX We need an address to which we can assign things so that they
142 * won't be optimized away because we didn't use the value.
143 */
144 u_int32_t no_optimize;
145
146 /* the following is used externally (sysctl_hw) */
147 char machine[] = "alpha";
148 char cpu_model[128];
149 const struct cpusw *cpu_fn_switch; /* function switch */
150
151 struct user *proc0paddr;
152
153 /* Number of machine cycles per microsecond */
154 u_int64_t cycles_per_usec;
155
156 /* some memory areas for device DMA. "ick." */
157 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
158
159 /* number of cpus in the box. really! */
160 int ncpus;
161
162 char boot_flags[64];
163
164 /* for cpu_sysctl() */
165 char root_device[17];
166 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
167 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
168 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
169
170 int cpu_dump __P((void));
171 int cpu_dumpsize __P((void));
172 void dumpsys __P((void));
173 void identifycpu __P((void));
174 void netintr __P((void));
175 void printregs __P((struct reg *));
176
177 void
178 alpha_init(pfn, ptb)
179 u_long pfn; /* first free PFN number */
180 u_long ptb; /* PFN of current level 1 page table */
181 {
182 extern char _end[];
183 caddr_t start, v;
184 struct mddt *mddtp;
185 int i, mddtweird;
186 char *p;
187
188 /*
189 * Turn off interrupts and floating point.
190 * Make sure the instruction and data streams are consistent.
191 */
192 (void)splhigh();
193 alpha_pal_wrfen(0);
194 ALPHA_TBIA();
195 alpha_pal_imb();
196
197 /*
198 * get address of the restart block, while we the bootstrap
199 * mapping is still around.
200 */
201 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
202 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
203
204 /*
205 * Remember how many cycles there are per microsecond,
206 * so that we can use delay(). Round up, for safety.
207 */
208 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
209
210 /*
211 * Init the PROM interface, so we can use printf
212 * until PROM mappings go away in consinit.
213 */
214 init_prom_interface();
215
216 /*
217 * Point interrupt/exception vectors to our own.
218 */
219 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
220 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
221 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
222 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
223 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
224 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
225
226 /*
227 * Disable System and Processor Correctable Error reporting.
228 * Clear pending machine checks and error reports, etc.
229 */
230 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
231
232 /*
233 * Find out how much memory is available, by looking at
234 * the memory cluster descriptors. This also tries to do
235 * its best to detect things things that have never been seen
236 * before...
237 *
238 * XXX Assumes that the first "system" cluster is the
239 * only one we can use. Is the second (etc.) system cluster
240 * (if one happens to exist) guaranteed to be contiguous? or...?
241 */
242 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
243
244 /*
245 * BEGIN MDDT WEIRDNESS CHECKING
246 */
247 mddtweird = 0;
248
249 #define cnt mddtp->mddt_cluster_cnt
250 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
251 if (cnt != 2 && cnt != 3) {
252 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
253 mddtweird = 1;
254 } else if (usage(0) != MDDT_PALCODE ||
255 usage(1) != MDDT_SYSTEM ||
256 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
257 mddtweird = 1;
258 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
259 }
260
261 for (i = 0; i < cnt; i++) {
262 if ((usage(i) & MDDT_mbz) != 0) {
263 printf("WARNING: mem cluster %d has weird usage %lx\n",
264 i, usage(i));
265 mddtweird = 1;
266 }
267 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
268 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
269 mddtweird = 1;
270 }
271 /* XXX other things to check? */
272 }
273 #undef cnt
274 #undef usage
275
276 if (mddtweird) {
277 printf("\n");
278 printf("complete memory cluster information:\n");
279 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
280 printf("mddt %d:\n", i);
281 printf("\tpfn %lx\n",
282 mddtp->mddt_clusters[i].mddt_pfn);
283 printf("\tcnt %lx\n",
284 mddtp->mddt_clusters[i].mddt_pg_cnt);
285 printf("\ttest %lx\n",
286 mddtp->mddt_clusters[i].mddt_pg_test);
287 printf("\tbva %lx\n",
288 mddtp->mddt_clusters[i].mddt_v_bitaddr);
289 printf("\tbpa %lx\n",
290 mddtp->mddt_clusters[i].mddt_p_bitaddr);
291 printf("\tbcksum %lx\n",
292 mddtp->mddt_clusters[i].mddt_bit_cksum);
293 printf("\tusage %lx\n",
294 mddtp->mddt_clusters[i].mddt_usage);
295 }
296 printf("\n");
297 }
298 /*
299 * END MDDT WEIRDNESS CHECKING
300 */
301
302 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
303 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
304 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
305 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
306 if ((usage(i) & MDDT_mbz) != 0)
307 unknownmem += pgcnt(i);
308 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
309 resvmem += pgcnt(i);
310 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
311 /*
312 * assumes that the system cluster listed is
313 * one we're in...
314 */
315 if (physmem != resvmem) {
316 physmem += pgcnt(i);
317 firstusablepage =
318 mddtp->mddt_clusters[i].mddt_pfn;
319 lastusablepage = firstusablepage + pgcnt(i) - 1;
320 } else
321 unusedmem += pgcnt(i);
322 }
323 #undef usage
324 #undef pgcnt
325 }
326 if (totalphysmem == 0)
327 panic("can't happen: system seems to have no memory!");
328 maxmem = physmem;
329
330 #if 0
331 printf("totalphysmem = %d\n", totalphysmem);
332 printf("physmem = %d\n", physmem);
333 printf("firstusablepage = %d\n", firstusablepage);
334 printf("lastusablepage = %d\n", lastusablepage);
335 printf("resvmem = %d\n", resvmem);
336 printf("unusedmem = %d\n", unusedmem);
337 printf("unknownmem = %d\n", unknownmem);
338 #endif
339
340 /*
341 * find out this CPU's page size
342 */
343 PAGE_SIZE = hwrpb->rpb_page_size;
344 if (PAGE_SIZE != 8192)
345 panic("page size %d != 8192?!", PAGE_SIZE);
346
347 v = (caddr_t)alpha_round_page(_end);
348 /*
349 * Init mapping for u page(s) for proc 0
350 */
351 start = v;
352 curproc->p_addr = proc0paddr = (struct user *)v;
353 v += UPAGES * NBPG;
354
355 /*
356 * Find out what hardware we're on, and remember its type name.
357 */
358 cputype = hwrpb->rpb_type;
359 if (cputype < 0 || cputype > ncpusw) {
360 unknown_cputype:
361 printf("\n");
362 printf("Unknown system type %d.\n", cputype);
363 printf("\n");
364 panic("unknown system type");
365 }
366 cpu_fn_switch = &cpusw[cputype];
367 if (cpu_fn_switch->family == NULL)
368 goto unknown_cputype;
369 if (cpu_fn_switch->option == NULL) {
370 printf("\n");
371 printf("NetBSD does not currently support system type %d\n",
372 cputype);
373 printf("(%s family).\n", cpu_fn_switch->family);
374 printf("\n");
375 panic("unsupported system type");
376 }
377 if (!cpu_fn_switch->present) {
378 printf("\n");
379 printf("Support for system type %d (%s family) is\n", cputype,
380 cpu_fn_switch->family);
381 printf("not present in this kernel. Build a kernel with\n");
382 printf("\"options %s\" to include support for this system\n",
383 cpu_fn_switch->option);
384 printf("type.\n");
385 printf("\n");
386 panic("support for system not present");
387 }
388
389 if ((*cpu_fn_switch->model_name)() != NULL)
390 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
391 sizeof cpu_model - 1);
392 else {
393 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
394 strcat(cpu_model, " family"); /* XXX */
395 }
396 cpu_model[sizeof cpu_model - 1] = '\0';
397
398 #if NLE_IOASIC > 0
399 /*
400 * Grab 128K at the top of physical memory for the lance chip
401 * on machines where it does dma through the I/O ASIC.
402 * It must be physically contiguous and aligned on a 128K boundary.
403 *
404 * Note that since this is conditional on the presence of
405 * IOASIC-attached 'le' units in the kernel config, the
406 * message buffer may move on these systems. This shouldn't
407 * be a problem, because once people have a kernel config that
408 * they use, they're going to stick with it.
409 */
410 if (cputype == ST_DEC_3000_500 ||
411 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
412 lastusablepage -= btoc(128 * 1024);
413 le_iomem =
414 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
415 }
416 #endif /* NLE_IOASIC */
417
418 /*
419 * Initialize error message buffer (at end of core).
420 */
421 lastusablepage -= btoc(sizeof (struct msgbuf));
422 msgbufp =
423 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
424 msgbufmapped = 1;
425
426 /*
427 * Allocate space for system data structures.
428 * The first available kernel virtual address is in "v".
429 * As pages of kernel virtual memory are allocated, "v" is incremented.
430 *
431 * These data structures are allocated here instead of cpu_startup()
432 * because physical memory is directly addressable. We don't have
433 * to map these into virtual address space.
434 */
435 #define valloc(name, type, num) \
436 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
437 #define valloclim(name, type, num, lim) \
438 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
439 #ifdef REAL_CLISTS
440 valloc(cfree, struct cblock, nclist);
441 #endif
442 valloc(callout, struct callout, ncallout);
443 valloc(swapmap, struct map, nswapmap = maxproc * 2);
444 #ifdef SYSVSHM
445 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
446 #endif
447 #ifdef SYSVSEM
448 valloc(sema, struct semid_ds, seminfo.semmni);
449 valloc(sem, struct sem, seminfo.semmns);
450 /* This is pretty disgusting! */
451 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
452 #endif
453 #ifdef SYSVMSG
454 valloc(msgpool, char, msginfo.msgmax);
455 valloc(msgmaps, struct msgmap, msginfo.msgseg);
456 valloc(msghdrs, struct msg, msginfo.msgtql);
457 valloc(msqids, struct msqid_ds, msginfo.msgmni);
458 #endif
459
460 /*
461 * Determine how many buffers to allocate.
462 * We allocate 10% of memory for buffer space. Insure a
463 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
464 * headers as file i/o buffers.
465 */
466 if (bufpages == 0)
467 bufpages = (physmem * 10) / (CLSIZE * 100);
468 if (nbuf == 0) {
469 nbuf = bufpages;
470 if (nbuf < 16)
471 nbuf = 16;
472 }
473 if (nswbuf == 0) {
474 nswbuf = (nbuf / 2) &~ 1; /* force even */
475 if (nswbuf > 256)
476 nswbuf = 256; /* sanity */
477 }
478 valloc(swbuf, struct buf, nswbuf);
479 valloc(buf, struct buf, nbuf);
480
481 /*
482 * Clear allocated memory.
483 */
484 bzero(start, v - start);
485
486 /*
487 * Initialize the virtual memory system, and set the
488 * page table base register in proc 0's PCB.
489 */
490 #ifndef NEW_PMAP
491 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
492 #else
493 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
494 hwrpb->rpb_max_asn);
495 #endif
496
497 /*
498 * Initialize the rest of proc 0's PCB, and cache its physical
499 * address.
500 */
501 proc0.p_md.md_pcbpaddr =
502 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
503
504 /*
505 * Set the kernel sp, reserving space for an (empty) trapframe,
506 * and make proc0's trapframe pointer point to it for sanity.
507 */
508 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
509 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
510 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
511
512 #ifdef NEW_PMAP
513 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
514 #endif
515
516 /*
517 * Look at arguments passed to us and compute boothowto.
518 */
519 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
520 #if 0
521 printf("boot flags = \"%s\"\n", boot_flags);
522 #endif
523
524 boothowto = RB_SINGLE;
525 #ifdef KADB
526 boothowto |= RB_KDB;
527 #endif
528 for (p = boot_flags; p && *p != '\0'; p++) {
529 /*
530 * Note that we'd really like to differentiate case here,
531 * but the Alpha AXP Architecture Reference Manual
532 * says that we shouldn't.
533 */
534 switch (*p) {
535 case 'a': /* autoboot */
536 case 'A':
537 boothowto &= ~RB_SINGLE;
538 break;
539
540 #ifdef DEBUG
541 case 'c': /* crash dump immediately after autoconfig */
542 case 'C':
543 boothowto |= RB_DUMP;
544 break;
545 #endif
546
547 case 'h': /* always halt, never reboot */
548 case 'H':
549 boothowto |= RB_HALT;
550 break;
551
552 #if 0
553 case 'm': /* mini root present in memory */
554 case 'M':
555 boothowto |= RB_MINIROOT;
556 break;
557 #endif
558
559 case 'n': /* askname */
560 case 'N':
561 boothowto |= RB_ASKNAME;
562 break;
563 }
564 }
565
566 /*
567 * Figure out the number of cpus in the box, from RPB fields.
568 * Really. We mean it.
569 */
570 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
571 struct pcs *pcsp;
572
573 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
574 (i * hwrpb->rpb_pcs_size));
575 if ((pcsp->pcs_flags & PCS_PP) != 0)
576 ncpus++;
577 }
578 }
579
580 void
581 consinit()
582 {
583
584 (*cpu_fn_switch->cons_init)();
585 pmap_unmap_prom();
586 }
587
588 void
589 cpu_startup()
590 {
591 register unsigned i;
592 int base, residual;
593 vm_offset_t minaddr, maxaddr;
594 vm_size_t size;
595 #if defined(DEBUG)
596 extern int pmapdebug;
597 int opmapdebug = pmapdebug;
598
599 pmapdebug = 0;
600 #endif
601
602 /*
603 * Good {morning,afternoon,evening,night}.
604 */
605 printf(version);
606 identifycpu();
607 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
608 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
609 if (unusedmem)
610 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
611 if (unknownmem)
612 printf("WARNING: %d bytes of memory with unknown purpose\n",
613 ctob(unknownmem));
614
615 /*
616 * Allocate virtual address space for file I/O buffers.
617 * Note they are different than the array of headers, 'buf',
618 * and usually occupy more virtual memory than physical.
619 */
620 size = MAXBSIZE * nbuf;
621 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
622 &maxaddr, size, TRUE);
623 minaddr = (vm_offset_t)buffers;
624 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
625 &minaddr, size, FALSE) != KERN_SUCCESS)
626 panic("startup: cannot allocate buffers");
627 base = bufpages / nbuf;
628 residual = bufpages % nbuf;
629 for (i = 0; i < nbuf; i++) {
630 vm_size_t curbufsize;
631 vm_offset_t curbuf;
632
633 /*
634 * First <residual> buffers get (base+1) physical pages
635 * allocated for them. The rest get (base) physical pages.
636 *
637 * The rest of each buffer occupies virtual space,
638 * but has no physical memory allocated for it.
639 */
640 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
641 curbufsize = CLBYTES * (i < residual ? base+1 : base);
642 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
643 vm_map_simplify(buffer_map, curbuf);
644 }
645 /*
646 * Allocate a submap for exec arguments. This map effectively
647 * limits the number of processes exec'ing at any time.
648 */
649 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
650 16 * NCARGS, TRUE);
651
652 /*
653 * Allocate a submap for physio
654 */
655 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
656 VM_PHYS_SIZE, TRUE);
657
658 /*
659 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
660 * we use the more space efficient malloc in place of kmem_alloc.
661 */
662 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
663 M_MBUF, M_NOWAIT);
664 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
665 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
666 VM_MBUF_SIZE, FALSE);
667 /*
668 * Initialize callouts
669 */
670 callfree = callout;
671 for (i = 1; i < ncallout; i++)
672 callout[i-1].c_next = &callout[i];
673 callout[i-1].c_next = NULL;
674
675 #if defined(DEBUG)
676 pmapdebug = opmapdebug;
677 #endif
678 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
679 printf("using %ld buffers containing %ld bytes of memory\n",
680 (long)nbuf, (long)(bufpages * CLBYTES));
681
682 /*
683 * Set up buffers, so they can be used to read disk labels.
684 */
685 bufinit();
686
687 /*
688 * Configure the system.
689 */
690 configure();
691
692 /*
693 * Note that bootstrapping is finished, and set the HWRPB up
694 * to do restarts.
695 */
696 hwrpb_restart_setup();
697 }
698
699 void
700 identifycpu()
701 {
702
703 /*
704 * print out CPU identification information.
705 */
706 printf("%s, %ldMHz\n", cpu_model,
707 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
708 printf("%ld byte page size, %d processor%s.\n",
709 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
710 #if 0
711 /* this isn't defined for any systems that we run on? */
712 printf("serial number 0x%lx 0x%lx\n",
713 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
714
715 /* and these aren't particularly useful! */
716 printf("variation: 0x%lx, revision 0x%lx\n",
717 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
718 #endif
719 }
720
721 int waittime = -1;
722 struct pcb dumppcb;
723
724 void
725 boot(howto, bootstr)
726 int howto;
727 char *bootstr;
728 {
729 extern int cold;
730
731 /* If system is cold, just halt. */
732 if (cold) {
733 howto |= RB_HALT;
734 goto haltsys;
735 }
736
737 /* If "always halt" was specified as a boot flag, obey. */
738 if ((boothowto & RB_HALT) != 0)
739 howto |= RB_HALT;
740
741 boothowto = howto;
742 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
743 waittime = 0;
744 vfs_shutdown();
745 /*
746 * If we've been adjusting the clock, the todr
747 * will be out of synch; adjust it now.
748 */
749 resettodr();
750 }
751
752 /* Disable interrupts. */
753 splhigh();
754
755 /* If rebooting and a dump is requested do it. */
756 #if 0
757 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
758 #else
759 if (howto & RB_DUMP)
760 #endif
761 dumpsys();
762
763 haltsys:
764
765 /* run any shutdown hooks */
766 doshutdownhooks();
767
768 #ifdef BOOTKEY
769 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
770 cngetc();
771 printf("\n");
772 #endif
773
774 /* Finally, halt/reboot the system. */
775 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
776 prom_halt(howto & RB_HALT);
777 /*NOTREACHED*/
778 }
779
780 /*
781 * These variables are needed by /sbin/savecore
782 */
783 u_long dumpmag = 0x8fca0101; /* magic number */
784 int dumpsize = 0; /* pages */
785 long dumplo = 0; /* blocks */
786
787 /*
788 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
789 */
790 int
791 cpu_dumpsize()
792 {
793 int size;
794
795 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
796 if (roundup(size, dbtob(1)) != dbtob(1))
797 return -1;
798
799 return (1);
800 }
801
802 /*
803 * cpu_dump: dump machine-dependent kernel core dump headers.
804 */
805 int
806 cpu_dump()
807 {
808 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
809 long buf[dbtob(1) / sizeof (long)];
810 kcore_seg_t *segp;
811 cpu_kcore_hdr_t *cpuhdrp;
812
813 dump = bdevsw[major(dumpdev)].d_dump;
814
815 segp = (kcore_seg_t *)buf;
816 cpuhdrp =
817 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
818
819 /*
820 * Generate a segment header.
821 */
822 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
823 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
824
825 /*
826 * Add the machine-dependent header info
827 */
828 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
829 cpuhdrp->page_size = PAGE_SIZE;
830 cpuhdrp->core_seg.start = ctob(firstusablepage);
831 cpuhdrp->core_seg.size = ctob(physmem);
832
833 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
834 }
835
836 /*
837 * This is called by configure to set dumplo and dumpsize.
838 * Dumps always skip the first CLBYTES of disk space
839 * in case there might be a disk label stored there.
840 * If there is extra space, put dump at the end to
841 * reduce the chance that swapping trashes it.
842 */
843 void
844 dumpconf()
845 {
846 int nblks, dumpblks; /* size of dump area */
847 int maj;
848
849 if (dumpdev == NODEV)
850 goto bad;
851 maj = major(dumpdev);
852 if (maj < 0 || maj >= nblkdev)
853 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
854 if (bdevsw[maj].d_psize == NULL)
855 goto bad;
856 nblks = (*bdevsw[maj].d_psize)(dumpdev);
857 if (nblks <= ctod(1))
858 goto bad;
859
860 dumpblks = cpu_dumpsize();
861 if (dumpblks < 0)
862 goto bad;
863 dumpblks += ctod(physmem);
864
865 /* If dump won't fit (incl. room for possible label), punt. */
866 if (dumpblks > (nblks - ctod(1)))
867 goto bad;
868
869 /* Put dump at end of partition */
870 dumplo = nblks - dumpblks;
871
872 /* dumpsize is in page units, and doesn't include headers. */
873 dumpsize = physmem;
874 return;
875
876 bad:
877 dumpsize = 0;
878 return;
879 }
880
881 /*
882 * Dump the kernel's image to the swap partition.
883 */
884 #define BYTES_PER_DUMP NBPG
885
886 void
887 dumpsys()
888 {
889 unsigned bytes, i, n;
890 int maddr, psize;
891 daddr_t blkno;
892 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
893 int error;
894
895 /* Save registers. */
896 savectx(&dumppcb);
897
898 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
899 if (dumpdev == NODEV)
900 return;
901
902 /*
903 * For dumps during autoconfiguration,
904 * if dump device has already configured...
905 */
906 if (dumpsize == 0)
907 dumpconf();
908 if (dumplo <= 0) {
909 printf("\ndump to dev %x not possible\n", dumpdev);
910 return;
911 }
912 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
913
914 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
915 printf("dump ");
916 if (psize == -1) {
917 printf("area unavailable\n");
918 return;
919 }
920
921 /* XXX should purge all outstanding keystrokes. */
922
923 if ((error = cpu_dump()) != 0)
924 goto err;
925
926 bytes = ctob(physmem);
927 maddr = ctob(firstusablepage);
928 blkno = dumplo + cpu_dumpsize();
929 dump = bdevsw[major(dumpdev)].d_dump;
930 error = 0;
931 for (i = 0; i < bytes; i += n) {
932
933 /* Print out how many MBs we to go. */
934 n = bytes - i;
935 if (n && (n % (1024*1024)) == 0)
936 printf("%d ", n / (1024 * 1024));
937
938 /* Limit size for next transfer. */
939 if (n > BYTES_PER_DUMP)
940 n = BYTES_PER_DUMP;
941
942 error = (*dump)(dumpdev, blkno,
943 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
944 if (error)
945 break;
946 maddr += n;
947 blkno += btodb(n); /* XXX? */
948
949 /* XXX should look for keystrokes, to cancel. */
950 }
951
952 err:
953 switch (error) {
954
955 case ENXIO:
956 printf("device bad\n");
957 break;
958
959 case EFAULT:
960 printf("device not ready\n");
961 break;
962
963 case EINVAL:
964 printf("area improper\n");
965 break;
966
967 case EIO:
968 printf("i/o error\n");
969 break;
970
971 case EINTR:
972 printf("aborted from console\n");
973 break;
974
975 case 0:
976 printf("succeeded\n");
977 break;
978
979 default:
980 printf("error %d\n", error);
981 break;
982 }
983 printf("\n\n");
984 delay(1000);
985 }
986
987 void
988 frametoreg(framep, regp)
989 struct trapframe *framep;
990 struct reg *regp;
991 {
992
993 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
994 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
995 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
996 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
997 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
998 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
999 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1000 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1001 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1002 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1003 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1004 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1005 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1006 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1007 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1008 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1009 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1010 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1011 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1012 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1013 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1014 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1015 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1016 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1017 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1018 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1019 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1020 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1021 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1022 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1023 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1024 regp->r_regs[R_ZERO] = 0;
1025 }
1026
1027 void
1028 regtoframe(regp, framep)
1029 struct reg *regp;
1030 struct trapframe *framep;
1031 {
1032
1033 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1034 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1035 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1036 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1037 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1038 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1039 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1040 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1041 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1042 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1043 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1044 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1045 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1046 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1047 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1048 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1049 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1050 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1051 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1052 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1053 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1054 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1055 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1056 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1057 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1058 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1059 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1060 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1061 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1062 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1063 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1064 /* ??? = regp->r_regs[R_ZERO]; */
1065 }
1066
1067 void
1068 printregs(regp)
1069 struct reg *regp;
1070 {
1071 int i;
1072
1073 for (i = 0; i < 32; i++)
1074 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1075 i & 1 ? "\n" : "\t");
1076 }
1077
1078 void
1079 regdump(framep)
1080 struct trapframe *framep;
1081 {
1082 struct reg reg;
1083
1084 frametoreg(framep, ®);
1085 reg.r_regs[R_SP] = alpha_pal_rdusp();
1086
1087 printf("REGISTERS:\n");
1088 printregs(®);
1089 }
1090
1091 #ifdef DEBUG
1092 int sigdebug = 0;
1093 int sigpid = 0;
1094 #define SDB_FOLLOW 0x01
1095 #define SDB_KSTACK 0x02
1096 #endif
1097
1098 /*
1099 * Send an interrupt to process.
1100 */
1101 void
1102 sendsig(catcher, sig, mask, code)
1103 sig_t catcher;
1104 int sig, mask;
1105 u_long code;
1106 {
1107 struct proc *p = curproc;
1108 struct sigcontext *scp, ksc;
1109 struct trapframe *frame;
1110 struct sigacts *psp = p->p_sigacts;
1111 int oonstack, fsize, rndfsize;
1112 extern char sigcode[], esigcode[];
1113 extern struct proc *fpcurproc;
1114
1115 frame = p->p_md.md_tf;
1116 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1117 fsize = sizeof ksc;
1118 rndfsize = ((fsize + 15) / 16) * 16;
1119 /*
1120 * Allocate and validate space for the signal handler
1121 * context. Note that if the stack is in P0 space, the
1122 * call to grow() is a nop, and the useracc() check
1123 * will fail if the process has not already allocated
1124 * the space with a `brk'.
1125 */
1126 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1127 (psp->ps_sigonstack & sigmask(sig))) {
1128 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1129 psp->ps_sigstk.ss_size - rndfsize);
1130 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1131 } else
1132 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1133 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1134 (void)grow(p, (u_long)scp);
1135 #ifdef DEBUG
1136 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1137 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1138 sig, &oonstack, scp);
1139 #endif
1140 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1141 #ifdef DEBUG
1142 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1143 printf("sendsig(%d): useracc failed on sig %d\n",
1144 p->p_pid, sig);
1145 #endif
1146 /*
1147 * Process has trashed its stack; give it an illegal
1148 * instruction to halt it in its tracks.
1149 */
1150 SIGACTION(p, SIGILL) = SIG_DFL;
1151 sig = sigmask(SIGILL);
1152 p->p_sigignore &= ~sig;
1153 p->p_sigcatch &= ~sig;
1154 p->p_sigmask &= ~sig;
1155 psignal(p, SIGILL);
1156 return;
1157 }
1158
1159 /*
1160 * Build the signal context to be used by sigreturn.
1161 */
1162 ksc.sc_onstack = oonstack;
1163 ksc.sc_mask = mask;
1164 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1165 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1166
1167 /* copy the registers. */
1168 frametoreg(frame, (struct reg *)ksc.sc_regs);
1169 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1170 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1171
1172 /* save the floating-point state, if necessary, then copy it. */
1173 if (p == fpcurproc) {
1174 alpha_pal_wrfen(1);
1175 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1176 alpha_pal_wrfen(0);
1177 fpcurproc = NULL;
1178 }
1179 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1180 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1181 sizeof(struct fpreg));
1182 ksc.sc_fp_control = 0; /* XXX ? */
1183 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1184 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1185
1186
1187 #ifdef COMPAT_OSF1
1188 /*
1189 * XXX Create an OSF/1-style sigcontext and associated goo.
1190 */
1191 #endif
1192
1193 /*
1194 * copy the frame out to userland.
1195 */
1196 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1197 #ifdef DEBUG
1198 if (sigdebug & SDB_FOLLOW)
1199 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1200 scp, code);
1201 #endif
1202
1203 /*
1204 * Set up the registers to return to sigcode.
1205 */
1206 frame->tf_regs[FRAME_PC] =
1207 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1208 frame->tf_regs[FRAME_A0] = sig;
1209 frame->tf_regs[FRAME_A1] = code;
1210 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1211 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1212 alpha_pal_wrusp((unsigned long)scp);
1213
1214 #ifdef DEBUG
1215 if (sigdebug & SDB_FOLLOW)
1216 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1217 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1218 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1219 printf("sendsig(%d): sig %d returns\n",
1220 p->p_pid, sig);
1221 #endif
1222 }
1223
1224 /*
1225 * System call to cleanup state after a signal
1226 * has been taken. Reset signal mask and
1227 * stack state from context left by sendsig (above).
1228 * Return to previous pc and psl as specified by
1229 * context left by sendsig. Check carefully to
1230 * make sure that the user has not modified the
1231 * psl to gain improper priviledges or to cause
1232 * a machine fault.
1233 */
1234 /* ARGSUSED */
1235 int
1236 sys_sigreturn(p, v, retval)
1237 struct proc *p;
1238 void *v;
1239 register_t *retval;
1240 {
1241 struct sys_sigreturn_args /* {
1242 syscallarg(struct sigcontext *) sigcntxp;
1243 } */ *uap = v;
1244 struct sigcontext *scp, ksc;
1245 extern struct proc *fpcurproc;
1246
1247 scp = SCARG(uap, sigcntxp);
1248 #ifdef DEBUG
1249 if (sigdebug & SDB_FOLLOW)
1250 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1251 #endif
1252
1253 if (ALIGN(scp) != (u_int64_t)scp)
1254 return (EINVAL);
1255
1256 /*
1257 * Test and fetch the context structure.
1258 * We grab it all at once for speed.
1259 */
1260 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1261 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1262 return (EINVAL);
1263
1264 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1265 return (EINVAL);
1266 /*
1267 * Restore the user-supplied information
1268 */
1269 if (ksc.sc_onstack)
1270 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1271 else
1272 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1273 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1274
1275 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1276 p->p_md.md_tf->tf_regs[FRAME_PS] =
1277 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1278
1279 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1280 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1281
1282 /* XXX ksc.sc_ownedfp ? */
1283 if (p == fpcurproc)
1284 fpcurproc = NULL;
1285 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1286 sizeof(struct fpreg));
1287 /* XXX ksc.sc_fp_control ? */
1288
1289 #ifdef DEBUG
1290 if (sigdebug & SDB_FOLLOW)
1291 printf("sigreturn(%d): returns\n", p->p_pid);
1292 #endif
1293 return (EJUSTRETURN);
1294 }
1295
1296 /*
1297 * machine dependent system variables.
1298 */
1299 int
1300 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1301 int *name;
1302 u_int namelen;
1303 void *oldp;
1304 size_t *oldlenp;
1305 void *newp;
1306 size_t newlen;
1307 struct proc *p;
1308 {
1309 dev_t consdev;
1310
1311 /* all sysctl names at this level are terminal */
1312 if (namelen != 1)
1313 return (ENOTDIR); /* overloaded */
1314
1315 switch (name[0]) {
1316 case CPU_CONSDEV:
1317 if (cn_tab != NULL)
1318 consdev = cn_tab->cn_dev;
1319 else
1320 consdev = NODEV;
1321 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1322 sizeof consdev));
1323
1324 case CPU_ROOT_DEVICE:
1325 return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1326
1327 case CPU_UNALIGNED_PRINT:
1328 return (sysctl_int(oldp, oldlenp, newp, newlen,
1329 &alpha_unaligned_print));
1330
1331 case CPU_UNALIGNED_FIX:
1332 return (sysctl_int(oldp, oldlenp, newp, newlen,
1333 &alpha_unaligned_fix));
1334
1335 case CPU_UNALIGNED_SIGBUS:
1336 return (sysctl_int(oldp, oldlenp, newp, newlen,
1337 &alpha_unaligned_sigbus));
1338
1339 default:
1340 return (EOPNOTSUPP);
1341 }
1342 /* NOTREACHED */
1343 }
1344
1345 /*
1346 * Set registers on exec.
1347 */
1348 void
1349 setregs(p, pack, stack, retval)
1350 register struct proc *p;
1351 struct exec_package *pack;
1352 u_long stack;
1353 register_t *retval;
1354 {
1355 struct trapframe *tfp = p->p_md.md_tf;
1356 extern struct proc *fpcurproc;
1357 #ifdef DEBUG
1358 int i;
1359 #endif
1360
1361 #ifdef DEBUG
1362 /*
1363 * Crash and dump, if the user requested it.
1364 */
1365 if (boothowto & RB_DUMP)
1366 panic("crash requested by boot flags");
1367 #endif
1368
1369 #ifdef DEBUG
1370 for (i = 0; i < FRAME_SIZE; i++)
1371 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1372 #else
1373 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1374 #endif
1375 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1376 #define FP_RN 2 /* XXX */
1377 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1378 alpha_pal_wrusp(stack);
1379 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1380 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1381
1382 tfp->tf_regs[FRAME_A0] = stack;
1383 /* a1 and a2 already zeroed */
1384 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1385
1386 p->p_md.md_flags &= ~MDP_FPUSED;
1387 if (fpcurproc == p)
1388 fpcurproc = NULL;
1389
1390 retval[0] = retval[1] = 0;
1391 }
1392
1393 void
1394 netintr()
1395 {
1396 int n, s;
1397
1398 s = splhigh();
1399 n = netisr;
1400 netisr = 0;
1401 splx(s);
1402
1403 #define DONETISR(bit, fn) \
1404 do { \
1405 if (n & (1 << (bit))) \
1406 fn; \
1407 } while (0)
1408
1409 #ifdef INET
1410 DONETISR(NETISR_ARP, arpintr());
1411 DONETISR(NETISR_IP, ipintr());
1412 #endif
1413 #ifdef NS
1414 DONETISR(NETISR_NS, nsintr());
1415 #endif
1416 #ifdef ISO
1417 DONETISR(NETISR_ISO, clnlintr());
1418 #endif
1419 #ifdef CCITT
1420 DONETISR(NETISR_CCITT, ccittintr());
1421 #endif
1422 #ifdef NATM
1423 DONETISR(NETISR_NATM, natmintr());
1424 #endif
1425 #if NPPP > 1
1426 DONETISR(NETISR_PPP, pppintr());
1427 #endif
1428
1429 #undef DONETISR
1430 }
1431
1432 void
1433 do_sir()
1434 {
1435
1436 if (ssir & SIR_NET) {
1437 siroff(SIR_NET);
1438 cnt.v_soft++;
1439 netintr();
1440 }
1441 if (ssir & SIR_CLOCK) {
1442 siroff(SIR_CLOCK);
1443 cnt.v_soft++;
1444 softclock();
1445 }
1446 }
1447
1448 int
1449 spl0()
1450 {
1451
1452 if (ssir) {
1453 splsoft();
1454 do_sir();
1455 }
1456
1457 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1458 }
1459
1460 /*
1461 * The following primitives manipulate the run queues. _whichqs tells which
1462 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1463 * into queues, Remrunqueue removes them from queues. The running process is
1464 * on no queue, other processes are on a queue related to p->p_priority,
1465 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1466 * available queues.
1467 */
1468 /*
1469 * setrunqueue(p)
1470 * proc *p;
1471 *
1472 * Call should be made at splclock(), and p->p_stat should be SRUN.
1473 */
1474
1475 void
1476 setrunqueue(p)
1477 struct proc *p;
1478 {
1479 int bit;
1480
1481 /* firewall: p->p_back must be NULL */
1482 if (p->p_back != NULL)
1483 panic("setrunqueue");
1484
1485 bit = p->p_priority >> 2;
1486 whichqs |= (1 << bit);
1487 p->p_forw = (struct proc *)&qs[bit];
1488 p->p_back = qs[bit].ph_rlink;
1489 p->p_back->p_forw = p;
1490 qs[bit].ph_rlink = p;
1491 }
1492
1493 /*
1494 * remrunqueue(p)
1495 *
1496 * Call should be made at splclock().
1497 */
1498 void
1499 remrunqueue(p)
1500 struct proc *p;
1501 {
1502 int bit;
1503
1504 bit = p->p_priority >> 2;
1505 if ((whichqs & (1 << bit)) == 0)
1506 panic("remrunqueue");
1507
1508 p->p_back->p_forw = p->p_forw;
1509 p->p_forw->p_back = p->p_back;
1510 p->p_back = NULL; /* for firewall checking. */
1511
1512 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1513 whichqs &= ~(1 << bit);
1514 }
1515
1516 /*
1517 * Return the best possible estimate of the time in the timeval
1518 * to which tvp points. Unfortunately, we can't read the hardware registers.
1519 * We guarantee that the time will be greater than the value obtained by a
1520 * previous call.
1521 */
1522 void
1523 microtime(tvp)
1524 register struct timeval *tvp;
1525 {
1526 int s = splclock();
1527 static struct timeval lasttime;
1528
1529 *tvp = time;
1530 #ifdef notdef
1531 tvp->tv_usec += clkread();
1532 while (tvp->tv_usec > 1000000) {
1533 tvp->tv_sec++;
1534 tvp->tv_usec -= 1000000;
1535 }
1536 #endif
1537 if (tvp->tv_sec == lasttime.tv_sec &&
1538 tvp->tv_usec <= lasttime.tv_usec &&
1539 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1540 tvp->tv_sec++;
1541 tvp->tv_usec -= 1000000;
1542 }
1543 lasttime = *tvp;
1544 splx(s);
1545 }
1546
1547 /*
1548 * Wait "n" microseconds.
1549 */
1550 void
1551 delay(n)
1552 unsigned long n;
1553 {
1554 long N = cycles_per_usec * (n);
1555
1556 while (N > 0) /* XXX */
1557 N -= 3; /* XXX */
1558 }
1559
1560 #if defined(COMPAT_OSF1) || 1 /* XXX */
1561 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1562 u_long, register_t *));
1563
1564 void
1565 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1566 struct proc *p;
1567 struct exec_package *epp;
1568 u_long stack;
1569 register_t *retval;
1570 {
1571 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1572
1573 setregs(p, epp, stack, retval);
1574 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1575 }
1576
1577 /*
1578 * cpu_exec_ecoff_hook():
1579 * cpu-dependent ECOFF format hook for execve().
1580 *
1581 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1582 *
1583 */
1584 int
1585 cpu_exec_ecoff_hook(p, epp)
1586 struct proc *p;
1587 struct exec_package *epp;
1588 {
1589 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1590 extern struct emul emul_netbsd;
1591 #ifdef COMPAT_OSF1
1592 extern struct emul emul_osf1;
1593 #endif
1594
1595 switch (execp->f.f_magic) {
1596 #ifdef COMPAT_OSF1
1597 case ECOFF_MAGIC_ALPHA:
1598 epp->ep_emul = &emul_osf1;
1599 break;
1600 #endif
1601
1602 case ECOFF_MAGIC_NETBSD_ALPHA:
1603 epp->ep_emul = &emul_netbsd;
1604 break;
1605
1606 default:
1607 return ENOEXEC;
1608 }
1609 return 0;
1610 }
1611 #endif
1612
1613 /* XXX XXX BEGIN XXX XXX */
1614 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1615 /* XXX */
1616 vm_offset_t /* XXX */
1617 alpha_XXX_dmamap(v) /* XXX */
1618 vm_offset_t v; /* XXX */
1619 { /* XXX */
1620 /* XXX */
1621 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1622 } /* XXX */
1623 /* XXX XXX END XXX XXX */
1624