machdep.c revision 1.60 1 /* $NetBSD: machdep.c,v 1.60 1996/12/03 19:52:58 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/conf.h>
40 #include <sys/file.h>
41 #ifdef REAL_CLISTS
42 #include <sys/clist.h>
43 #endif
44 #include <sys/callout.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/tty.h>
50 #include <sys/user.h>
51 #include <sys/exec.h>
52 #include <sys/exec_ecoff.h>
53 #include <sys/sysctl.h>
54 #include <sys/core.h>
55 #include <sys/kcore.h>
56 #include <machine/kcore.h>
57 #ifdef SYSVMSG
58 #include <sys/msg.h>
59 #endif
60 #ifdef SYSVSEM
61 #include <sys/sem.h>
62 #endif
63 #ifdef SYSVSHM
64 #include <sys/shm.h>
65 #endif
66
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69
70 #include <vm/vm_kern.h>
71
72 #include <dev/cons.h>
73
74 #include <machine/cpu.h>
75 #include <machine/reg.h>
76 #include <machine/rpb.h>
77 #include <machine/prom.h>
78 #include <machine/cpuconf.h>
79
80 #include <net/netisr.h>
81 #include <net/if.h>
82
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #include <netinet/ip_var.h>
87 #endif
88 #ifdef NS
89 #include <netns/ns_var.h>
90 #endif
91 #ifdef ISO
92 #include <netiso/iso.h>
93 #include <netiso/clnp.h>
94 #endif
95 #ifdef CCITT
96 #include <netccitt/x25.h>
97 #include <netccitt/pk.h>
98 #include <netccitt/pk_extern.h>
99 #endif
100 #ifdef NATM
101 #include <netnatm/natm.h>
102 #endif
103 #include "ppp.h"
104 #if NPPP > 0
105 #include <net/ppp_defs.h>
106 #include <net/if_ppp.h>
107 #endif
108
109 #include "le_ioasic.h" /* for le_iomem creation */
110
111 vm_map_t buffer_map;
112
113 /*
114 * Declare these as initialized data so we can patch them.
115 */
116 int nswbuf = 0;
117 #ifdef NBUF
118 int nbuf = NBUF;
119 #else
120 int nbuf = 0;
121 #endif
122 #ifdef BUFPAGES
123 int bufpages = BUFPAGES;
124 #else
125 int bufpages = 0;
126 #endif
127 int msgbufmapped = 0; /* set when safe to use msgbuf */
128 int maxmem; /* max memory per process */
129
130 int totalphysmem; /* total amount of physical memory in system */
131 int physmem; /* physical memory used by NetBSD + some rsvd */
132 int firstusablepage; /* first usable memory page */
133 int lastusablepage; /* last usable memory page */
134 int resvmem; /* amount of memory reserved for PROM */
135 int unusedmem; /* amount of memory for OS that we don't use */
136 int unknownmem; /* amount of memory with an unknown use */
137
138 int cputype; /* system type, from the RPB */
139
140 /*
141 * XXX We need an address to which we can assign things so that they
142 * won't be optimized away because we didn't use the value.
143 */
144 u_int32_t no_optimize;
145
146 /* the following is used externally (sysctl_hw) */
147 char machine[] = "alpha";
148 char cpu_model[128];
149 const struct cpusw *cpu_fn_switch; /* function switch */
150
151 struct user *proc0paddr;
152
153 /* Number of machine cycles per microsecond */
154 u_int64_t cycles_per_usec;
155
156 /* some memory areas for device DMA. "ick." */
157 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
158
159 /* number of cpus in the box. really! */
160 int ncpus;
161
162 char boot_flags[64];
163
164 /* for cpu_sysctl() */
165 char root_device[17];
166 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
167 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
168 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
169
170 int cpu_dump __P((void));
171 int cpu_dumpsize __P((void));
172 void dumpsys __P((void));
173 void identifycpu __P((void));
174 void netintr __P((void));
175 void printregs __P((struct reg *));
176
177 void
178 alpha_init(pfn, ptb)
179 u_long pfn; /* first free PFN number */
180 u_long ptb; /* PFN of current level 1 page table */
181 {
182 extern char _end[];
183 caddr_t start, v;
184 struct mddt *mddtp;
185 int i, mddtweird;
186 char *p;
187
188 /*
189 * Turn off interrupts and floating point.
190 * Make sure the instruction and data streams are consistent.
191 */
192 (void)splhigh();
193 alpha_pal_wrfen(0);
194 ALPHA_TBIA();
195 alpha_pal_imb();
196
197 /*
198 * get address of the restart block, while we the bootstrap
199 * mapping is still around.
200 */
201 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
202 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
203
204 /*
205 * Remember how many cycles there are per microsecond,
206 * so that we can use delay(). Round up, for safety.
207 */
208 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
209
210 /*
211 * Init the PROM interface, so we can use printf
212 * until PROM mappings go away in consinit.
213 */
214 init_prom_interface();
215
216 /*
217 * Point interrupt/exception vectors to our own.
218 */
219 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
220 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
221 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
222 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
223 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
224 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
225
226 /*
227 * Disable System and Processor Correctable Error reporting.
228 * Clear pending machine checks and error reports, etc.
229 */
230 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
231
232 /*
233 * Find out how much memory is available, by looking at
234 * the memory cluster descriptors. This also tries to do
235 * its best to detect things things that have never been seen
236 * before...
237 *
238 * XXX Assumes that the first "system" cluster is the
239 * only one we can use. Is the second (etc.) system cluster
240 * (if one happens to exist) guaranteed to be contiguous? or...?
241 */
242 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
243
244 /*
245 * BEGIN MDDT WEIRDNESS CHECKING
246 */
247 mddtweird = 0;
248
249 #define cnt mddtp->mddt_cluster_cnt
250 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
251 if (cnt != 2 && cnt != 3) {
252 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
253 mddtweird = 1;
254 } else if (usage(0) != MDDT_PALCODE ||
255 usage(1) != MDDT_SYSTEM ||
256 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
257 mddtweird = 1;
258 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
259 }
260
261 for (i = 0; i < cnt; i++) {
262 if ((usage(i) & MDDT_mbz) != 0) {
263 printf("WARNING: mem cluster %d has weird usage %lx\n",
264 i, usage(i));
265 mddtweird = 1;
266 }
267 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
268 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
269 mddtweird = 1;
270 }
271 /* XXX other things to check? */
272 }
273 #undef cnt
274 #undef usage
275
276 if (mddtweird) {
277 printf("\n");
278 printf("complete memory cluster information:\n");
279 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
280 printf("mddt %d:\n", i);
281 printf("\tpfn %lx\n",
282 mddtp->mddt_clusters[i].mddt_pfn);
283 printf("\tcnt %lx\n",
284 mddtp->mddt_clusters[i].mddt_pg_cnt);
285 printf("\ttest %lx\n",
286 mddtp->mddt_clusters[i].mddt_pg_test);
287 printf("\tbva %lx\n",
288 mddtp->mddt_clusters[i].mddt_v_bitaddr);
289 printf("\tbpa %lx\n",
290 mddtp->mddt_clusters[i].mddt_p_bitaddr);
291 printf("\tbcksum %lx\n",
292 mddtp->mddt_clusters[i].mddt_bit_cksum);
293 printf("\tusage %lx\n",
294 mddtp->mddt_clusters[i].mddt_usage);
295 }
296 printf("\n");
297 }
298 /*
299 * END MDDT WEIRDNESS CHECKING
300 */
301
302 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
303 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
304 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
305 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
306 if ((usage(i) & MDDT_mbz) != 0)
307 unknownmem += pgcnt(i);
308 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
309 resvmem += pgcnt(i);
310 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
311 /*
312 * assumes that the system cluster listed is
313 * one we're in...
314 */
315 if (physmem != resvmem) {
316 physmem += pgcnt(i);
317 firstusablepage =
318 mddtp->mddt_clusters[i].mddt_pfn;
319 lastusablepage = firstusablepage + pgcnt(i) - 1;
320 } else
321 unusedmem += pgcnt(i);
322 }
323 #undef usage
324 #undef pgcnt
325 }
326 if (totalphysmem == 0)
327 panic("can't happen: system seems to have no memory!");
328 maxmem = physmem;
329
330 #if 0
331 printf("totalphysmem = %d\n", totalphysmem);
332 printf("physmem = %d\n", physmem);
333 printf("firstusablepage = %d\n", firstusablepage);
334 printf("lastusablepage = %d\n", lastusablepage);
335 printf("resvmem = %d\n", resvmem);
336 printf("unusedmem = %d\n", unusedmem);
337 printf("unknownmem = %d\n", unknownmem);
338 #endif
339
340 /*
341 * find out this CPU's page size
342 */
343 PAGE_SIZE = hwrpb->rpb_page_size;
344 if (PAGE_SIZE != 8192)
345 panic("page size %d != 8192?!", PAGE_SIZE);
346
347 v = (caddr_t)alpha_round_page(_end);
348 /*
349 * Init mapping for u page(s) for proc 0
350 */
351 start = v;
352 curproc->p_addr = proc0paddr = (struct user *)v;
353 v += UPAGES * NBPG;
354
355 /*
356 * Find out what hardware we're on, and remember its type name.
357 */
358 cputype = hwrpb->rpb_type;
359 if (cputype < 0 || cputype > ncpusw) {
360 unknown_cputype:
361 printf("\n");
362 printf("Unknown system type %d.\n", cputype);
363 printf("\n");
364 panic("unknown system type");
365 }
366 cpu_fn_switch = &cpusw[cputype];
367 if (cpu_fn_switch->family == NULL)
368 goto unknown_cputype;
369 if (cpu_fn_switch->option == NULL) {
370 printf("\n");
371 printf("NetBSD does not currently support system type %d\n",
372 cputype);
373 printf("(%s family).\n", cpu_fn_switch->family);
374 printf("\n");
375 panic("unsupported system type");
376 }
377 if (!cpu_fn_switch->present) {
378 printf("\n");
379 printf("Support for system type %d (%s family) is\n", cputype,
380 cpu_fn_switch->family);
381 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
382 cpu_fn_switch->option);
383 printf("to include support for this system type.\n");
384 printf("\n");
385 panic("support for system not present");
386 }
387
388 if ((*cpu_fn_switch->model_name)() != NULL)
389 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
390 sizeof cpu_model - 1);
391 else {
392 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
393 strcat(cpu_model, " family"); /* XXX */
394 }
395 cpu_model[sizeof cpu_model - 1] = '\0';
396
397 #if NLE_IOASIC > 0
398 /*
399 * Grab 128K at the top of physical memory for the lance chip
400 * on machines where it does dma through the I/O ASIC.
401 * It must be physically contiguous and aligned on a 128K boundary.
402 *
403 * Note that since this is conditional on the presence of
404 * IOASIC-attached 'le' units in the kernel config, the
405 * message buffer may move on these systems. This shouldn't
406 * be a problem, because once people have a kernel config that
407 * they use, they're going to stick with it.
408 */
409 if (cputype == ST_DEC_3000_500 ||
410 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
411 lastusablepage -= btoc(128 * 1024);
412 le_iomem =
413 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
414 }
415 #endif /* NLE_IOASIC */
416
417 /*
418 * Initialize error message buffer (at end of core).
419 */
420 lastusablepage -= btoc(sizeof (struct msgbuf));
421 msgbufp =
422 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
423 msgbufmapped = 1;
424
425 /*
426 * Allocate space for system data structures.
427 * The first available kernel virtual address is in "v".
428 * As pages of kernel virtual memory are allocated, "v" is incremented.
429 *
430 * These data structures are allocated here instead of cpu_startup()
431 * because physical memory is directly addressable. We don't have
432 * to map these into virtual address space.
433 */
434 #define valloc(name, type, num) \
435 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
436 #define valloclim(name, type, num, lim) \
437 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
438 #ifdef REAL_CLISTS
439 valloc(cfree, struct cblock, nclist);
440 #endif
441 valloc(callout, struct callout, ncallout);
442 valloc(swapmap, struct map, nswapmap = maxproc * 2);
443 #ifdef SYSVSHM
444 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
445 #endif
446 #ifdef SYSVSEM
447 valloc(sema, struct semid_ds, seminfo.semmni);
448 valloc(sem, struct sem, seminfo.semmns);
449 /* This is pretty disgusting! */
450 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
451 #endif
452 #ifdef SYSVMSG
453 valloc(msgpool, char, msginfo.msgmax);
454 valloc(msgmaps, struct msgmap, msginfo.msgseg);
455 valloc(msghdrs, struct msg, msginfo.msgtql);
456 valloc(msqids, struct msqid_ds, msginfo.msgmni);
457 #endif
458
459 /*
460 * Determine how many buffers to allocate.
461 * We allocate 10% of memory for buffer space. Insure a
462 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
463 * headers as file i/o buffers.
464 */
465 if (bufpages == 0)
466 bufpages = (physmem * 10) / (CLSIZE * 100);
467 if (nbuf == 0) {
468 nbuf = bufpages;
469 if (nbuf < 16)
470 nbuf = 16;
471 }
472 if (nswbuf == 0) {
473 nswbuf = (nbuf / 2) &~ 1; /* force even */
474 if (nswbuf > 256)
475 nswbuf = 256; /* sanity */
476 }
477 valloc(swbuf, struct buf, nswbuf);
478 valloc(buf, struct buf, nbuf);
479
480 /*
481 * Clear allocated memory.
482 */
483 bzero(start, v - start);
484
485 /*
486 * Initialize the virtual memory system, and set the
487 * page table base register in proc 0's PCB.
488 */
489 #ifndef NEW_PMAP
490 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
491 #else
492 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
493 hwrpb->rpb_max_asn);
494 #endif
495
496 /*
497 * Initialize the rest of proc 0's PCB, and cache its physical
498 * address.
499 */
500 proc0.p_md.md_pcbpaddr =
501 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
502
503 /*
504 * Set the kernel sp, reserving space for an (empty) trapframe,
505 * and make proc0's trapframe pointer point to it for sanity.
506 */
507 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
508 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
509 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
510
511 #ifdef NEW_PMAP
512 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
513 #endif
514
515 /*
516 * Look at arguments passed to us and compute boothowto.
517 */
518 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
519 #if 0
520 printf("boot flags = \"%s\"\n", boot_flags);
521 #endif
522
523 boothowto = RB_SINGLE;
524 #ifdef KADB
525 boothowto |= RB_KDB;
526 #endif
527 for (p = boot_flags; p && *p != '\0'; p++) {
528 /*
529 * Note that we'd really like to differentiate case here,
530 * but the Alpha AXP Architecture Reference Manual
531 * says that we shouldn't.
532 */
533 switch (*p) {
534 case 'a': /* autoboot */
535 case 'A':
536 boothowto &= ~RB_SINGLE;
537 break;
538
539 #ifdef DEBUG
540 case 'c': /* crash dump immediately after autoconfig */
541 case 'C':
542 boothowto |= RB_DUMP;
543 break;
544 #endif
545
546 case 'h': /* always halt, never reboot */
547 case 'H':
548 boothowto |= RB_HALT;
549 break;
550
551 #if 0
552 case 'm': /* mini root present in memory */
553 case 'M':
554 boothowto |= RB_MINIROOT;
555 break;
556 #endif
557
558 case 'n': /* askname */
559 case 'N':
560 boothowto |= RB_ASKNAME;
561 break;
562 }
563 }
564
565 /*
566 * Figure out the number of cpus in the box, from RPB fields.
567 * Really. We mean it.
568 */
569 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
570 struct pcs *pcsp;
571
572 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
573 (i * hwrpb->rpb_pcs_size));
574 if ((pcsp->pcs_flags & PCS_PP) != 0)
575 ncpus++;
576 }
577 }
578
579 void
580 consinit()
581 {
582
583 (*cpu_fn_switch->cons_init)();
584 pmap_unmap_prom();
585 }
586
587 void
588 cpu_startup()
589 {
590 register unsigned i;
591 int base, residual;
592 vm_offset_t minaddr, maxaddr;
593 vm_size_t size;
594 #if defined(DEBUG)
595 extern int pmapdebug;
596 int opmapdebug = pmapdebug;
597
598 pmapdebug = 0;
599 #endif
600
601 /*
602 * Good {morning,afternoon,evening,night}.
603 */
604 printf(version);
605 identifycpu();
606 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
607 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
608 if (unusedmem)
609 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
610 if (unknownmem)
611 printf("WARNING: %d bytes of memory with unknown purpose\n",
612 ctob(unknownmem));
613
614 /*
615 * Allocate virtual address space for file I/O buffers.
616 * Note they are different than the array of headers, 'buf',
617 * and usually occupy more virtual memory than physical.
618 */
619 size = MAXBSIZE * nbuf;
620 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
621 &maxaddr, size, TRUE);
622 minaddr = (vm_offset_t)buffers;
623 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
624 &minaddr, size, FALSE) != KERN_SUCCESS)
625 panic("startup: cannot allocate buffers");
626 base = bufpages / nbuf;
627 residual = bufpages % nbuf;
628 for (i = 0; i < nbuf; i++) {
629 vm_size_t curbufsize;
630 vm_offset_t curbuf;
631
632 /*
633 * First <residual> buffers get (base+1) physical pages
634 * allocated for them. The rest get (base) physical pages.
635 *
636 * The rest of each buffer occupies virtual space,
637 * but has no physical memory allocated for it.
638 */
639 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
640 curbufsize = CLBYTES * (i < residual ? base+1 : base);
641 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
642 vm_map_simplify(buffer_map, curbuf);
643 }
644 /*
645 * Allocate a submap for exec arguments. This map effectively
646 * limits the number of processes exec'ing at any time.
647 */
648 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
649 16 * NCARGS, TRUE);
650
651 /*
652 * Allocate a submap for physio
653 */
654 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
655 VM_PHYS_SIZE, TRUE);
656
657 /*
658 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
659 * we use the more space efficient malloc in place of kmem_alloc.
660 */
661 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
662 M_MBUF, M_NOWAIT);
663 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
664 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
665 VM_MBUF_SIZE, FALSE);
666 /*
667 * Initialize callouts
668 */
669 callfree = callout;
670 for (i = 1; i < ncallout; i++)
671 callout[i-1].c_next = &callout[i];
672 callout[i-1].c_next = NULL;
673
674 #if defined(DEBUG)
675 pmapdebug = opmapdebug;
676 #endif
677 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
678 printf("using %ld buffers containing %ld bytes of memory\n",
679 (long)nbuf, (long)(bufpages * CLBYTES));
680
681 /*
682 * Set up buffers, so they can be used to read disk labels.
683 */
684 bufinit();
685
686 /*
687 * Configure the system.
688 */
689 configure();
690
691 /*
692 * Note that bootstrapping is finished, and set the HWRPB up
693 * to do restarts.
694 */
695 hwrpb_restart_setup();
696 }
697
698 void
699 identifycpu()
700 {
701
702 /*
703 * print out CPU identification information.
704 */
705 printf("%s, %ldMHz\n", cpu_model,
706 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
707 printf("%ld byte page size, %d processor%s.\n",
708 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
709 #if 0
710 /* this isn't defined for any systems that we run on? */
711 printf("serial number 0x%lx 0x%lx\n",
712 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
713
714 /* and these aren't particularly useful! */
715 printf("variation: 0x%lx, revision 0x%lx\n",
716 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
717 #endif
718 }
719
720 int waittime = -1;
721 struct pcb dumppcb;
722
723 void
724 boot(howto, bootstr)
725 int howto;
726 char *bootstr;
727 {
728 extern int cold;
729
730 /* If system is cold, just halt. */
731 if (cold) {
732 howto |= RB_HALT;
733 goto haltsys;
734 }
735
736 /* If "always halt" was specified as a boot flag, obey. */
737 if ((boothowto & RB_HALT) != 0)
738 howto |= RB_HALT;
739
740 boothowto = howto;
741 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
742 waittime = 0;
743 vfs_shutdown();
744 /*
745 * If we've been adjusting the clock, the todr
746 * will be out of synch; adjust it now.
747 */
748 resettodr();
749 }
750
751 /* Disable interrupts. */
752 splhigh();
753
754 /* If rebooting and a dump is requested do it. */
755 #if 0
756 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
757 #else
758 if (howto & RB_DUMP)
759 #endif
760 dumpsys();
761
762 haltsys:
763
764 /* run any shutdown hooks */
765 doshutdownhooks();
766
767 #ifdef BOOTKEY
768 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
769 cngetc();
770 printf("\n");
771 #endif
772
773 /* Finally, halt/reboot the system. */
774 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
775 prom_halt(howto & RB_HALT);
776 /*NOTREACHED*/
777 }
778
779 /*
780 * These variables are needed by /sbin/savecore
781 */
782 u_long dumpmag = 0x8fca0101; /* magic number */
783 int dumpsize = 0; /* pages */
784 long dumplo = 0; /* blocks */
785
786 /*
787 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
788 */
789 int
790 cpu_dumpsize()
791 {
792 int size;
793
794 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
795 if (roundup(size, dbtob(1)) != dbtob(1))
796 return -1;
797
798 return (1);
799 }
800
801 /*
802 * cpu_dump: dump machine-dependent kernel core dump headers.
803 */
804 int
805 cpu_dump()
806 {
807 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
808 long buf[dbtob(1) / sizeof (long)];
809 kcore_seg_t *segp;
810 cpu_kcore_hdr_t *cpuhdrp;
811
812 dump = bdevsw[major(dumpdev)].d_dump;
813
814 segp = (kcore_seg_t *)buf;
815 cpuhdrp =
816 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
817
818 /*
819 * Generate a segment header.
820 */
821 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
822 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
823
824 /*
825 * Add the machine-dependent header info
826 */
827 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
828 cpuhdrp->page_size = PAGE_SIZE;
829 cpuhdrp->core_seg.start = ctob(firstusablepage);
830 cpuhdrp->core_seg.size = ctob(physmem);
831
832 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
833 }
834
835 /*
836 * This is called by configure to set dumplo and dumpsize.
837 * Dumps always skip the first CLBYTES of disk space
838 * in case there might be a disk label stored there.
839 * If there is extra space, put dump at the end to
840 * reduce the chance that swapping trashes it.
841 */
842 void
843 dumpconf()
844 {
845 int nblks, dumpblks; /* size of dump area */
846 int maj;
847
848 if (dumpdev == NODEV)
849 goto bad;
850 maj = major(dumpdev);
851 if (maj < 0 || maj >= nblkdev)
852 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
853 if (bdevsw[maj].d_psize == NULL)
854 goto bad;
855 nblks = (*bdevsw[maj].d_psize)(dumpdev);
856 if (nblks <= ctod(1))
857 goto bad;
858
859 dumpblks = cpu_dumpsize();
860 if (dumpblks < 0)
861 goto bad;
862 dumpblks += ctod(physmem);
863
864 /* If dump won't fit (incl. room for possible label), punt. */
865 if (dumpblks > (nblks - ctod(1)))
866 goto bad;
867
868 /* Put dump at end of partition */
869 dumplo = nblks - dumpblks;
870
871 /* dumpsize is in page units, and doesn't include headers. */
872 dumpsize = physmem;
873 return;
874
875 bad:
876 dumpsize = 0;
877 return;
878 }
879
880 /*
881 * Dump the kernel's image to the swap partition.
882 */
883 #define BYTES_PER_DUMP NBPG
884
885 void
886 dumpsys()
887 {
888 unsigned bytes, i, n;
889 int maddr, psize;
890 daddr_t blkno;
891 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
892 int error;
893
894 /* Save registers. */
895 savectx(&dumppcb);
896
897 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
898 if (dumpdev == NODEV)
899 return;
900
901 /*
902 * For dumps during autoconfiguration,
903 * if dump device has already configured...
904 */
905 if (dumpsize == 0)
906 dumpconf();
907 if (dumplo <= 0) {
908 printf("\ndump to dev %x not possible\n", dumpdev);
909 return;
910 }
911 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
912
913 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
914 printf("dump ");
915 if (psize == -1) {
916 printf("area unavailable\n");
917 return;
918 }
919
920 /* XXX should purge all outstanding keystrokes. */
921
922 if ((error = cpu_dump()) != 0)
923 goto err;
924
925 bytes = ctob(physmem);
926 maddr = ctob(firstusablepage);
927 blkno = dumplo + cpu_dumpsize();
928 dump = bdevsw[major(dumpdev)].d_dump;
929 error = 0;
930 for (i = 0; i < bytes; i += n) {
931
932 /* Print out how many MBs we to go. */
933 n = bytes - i;
934 if (n && (n % (1024*1024)) == 0)
935 printf("%d ", n / (1024 * 1024));
936
937 /* Limit size for next transfer. */
938 if (n > BYTES_PER_DUMP)
939 n = BYTES_PER_DUMP;
940
941 error = (*dump)(dumpdev, blkno,
942 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
943 if (error)
944 break;
945 maddr += n;
946 blkno += btodb(n); /* XXX? */
947
948 /* XXX should look for keystrokes, to cancel. */
949 }
950
951 err:
952 switch (error) {
953
954 case ENXIO:
955 printf("device bad\n");
956 break;
957
958 case EFAULT:
959 printf("device not ready\n");
960 break;
961
962 case EINVAL:
963 printf("area improper\n");
964 break;
965
966 case EIO:
967 printf("i/o error\n");
968 break;
969
970 case EINTR:
971 printf("aborted from console\n");
972 break;
973
974 case 0:
975 printf("succeeded\n");
976 break;
977
978 default:
979 printf("error %d\n", error);
980 break;
981 }
982 printf("\n\n");
983 delay(1000);
984 }
985
986 void
987 frametoreg(framep, regp)
988 struct trapframe *framep;
989 struct reg *regp;
990 {
991
992 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
993 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
994 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
995 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
996 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
997 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
998 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
999 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1000 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1001 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1002 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1003 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1004 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1005 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1006 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1007 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1008 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1009 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1010 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1011 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1012 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1013 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1014 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1015 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1016 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1017 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1018 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1019 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1020 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1021 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1022 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1023 regp->r_regs[R_ZERO] = 0;
1024 }
1025
1026 void
1027 regtoframe(regp, framep)
1028 struct reg *regp;
1029 struct trapframe *framep;
1030 {
1031
1032 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1033 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1034 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1035 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1036 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1037 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1038 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1039 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1040 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1041 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1042 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1043 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1044 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1045 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1046 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1047 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1048 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1049 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1050 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1051 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1052 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1053 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1054 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1055 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1056 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1057 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1058 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1059 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1060 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1061 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1062 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1063 /* ??? = regp->r_regs[R_ZERO]; */
1064 }
1065
1066 void
1067 printregs(regp)
1068 struct reg *regp;
1069 {
1070 int i;
1071
1072 for (i = 0; i < 32; i++)
1073 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1074 i & 1 ? "\n" : "\t");
1075 }
1076
1077 void
1078 regdump(framep)
1079 struct trapframe *framep;
1080 {
1081 struct reg reg;
1082
1083 frametoreg(framep, ®);
1084 reg.r_regs[R_SP] = alpha_pal_rdusp();
1085
1086 printf("REGISTERS:\n");
1087 printregs(®);
1088 }
1089
1090 #ifdef DEBUG
1091 int sigdebug = 0;
1092 int sigpid = 0;
1093 #define SDB_FOLLOW 0x01
1094 #define SDB_KSTACK 0x02
1095 #endif
1096
1097 /*
1098 * Send an interrupt to process.
1099 */
1100 void
1101 sendsig(catcher, sig, mask, code)
1102 sig_t catcher;
1103 int sig, mask;
1104 u_long code;
1105 {
1106 struct proc *p = curproc;
1107 struct sigcontext *scp, ksc;
1108 struct trapframe *frame;
1109 struct sigacts *psp = p->p_sigacts;
1110 int oonstack, fsize, rndfsize;
1111 extern char sigcode[], esigcode[];
1112 extern struct proc *fpcurproc;
1113
1114 frame = p->p_md.md_tf;
1115 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1116 fsize = sizeof ksc;
1117 rndfsize = ((fsize + 15) / 16) * 16;
1118 /*
1119 * Allocate and validate space for the signal handler
1120 * context. Note that if the stack is in P0 space, the
1121 * call to grow() is a nop, and the useracc() check
1122 * will fail if the process has not already allocated
1123 * the space with a `brk'.
1124 */
1125 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1126 (psp->ps_sigonstack & sigmask(sig))) {
1127 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1128 psp->ps_sigstk.ss_size - rndfsize);
1129 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1130 } else
1131 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1132 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1133 (void)grow(p, (u_long)scp);
1134 #ifdef DEBUG
1135 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1136 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1137 sig, &oonstack, scp);
1138 #endif
1139 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1140 #ifdef DEBUG
1141 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1142 printf("sendsig(%d): useracc failed on sig %d\n",
1143 p->p_pid, sig);
1144 #endif
1145 /*
1146 * Process has trashed its stack; give it an illegal
1147 * instruction to halt it in its tracks.
1148 */
1149 SIGACTION(p, SIGILL) = SIG_DFL;
1150 sig = sigmask(SIGILL);
1151 p->p_sigignore &= ~sig;
1152 p->p_sigcatch &= ~sig;
1153 p->p_sigmask &= ~sig;
1154 psignal(p, SIGILL);
1155 return;
1156 }
1157
1158 /*
1159 * Build the signal context to be used by sigreturn.
1160 */
1161 ksc.sc_onstack = oonstack;
1162 ksc.sc_mask = mask;
1163 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1164 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1165
1166 /* copy the registers. */
1167 frametoreg(frame, (struct reg *)ksc.sc_regs);
1168 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1169 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1170
1171 /* save the floating-point state, if necessary, then copy it. */
1172 if (p == fpcurproc) {
1173 alpha_pal_wrfen(1);
1174 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1175 alpha_pal_wrfen(0);
1176 fpcurproc = NULL;
1177 }
1178 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1179 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1180 sizeof(struct fpreg));
1181 ksc.sc_fp_control = 0; /* XXX ? */
1182 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1183 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1184
1185
1186 #ifdef COMPAT_OSF1
1187 /*
1188 * XXX Create an OSF/1-style sigcontext and associated goo.
1189 */
1190 #endif
1191
1192 /*
1193 * copy the frame out to userland.
1194 */
1195 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1196 #ifdef DEBUG
1197 if (sigdebug & SDB_FOLLOW)
1198 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1199 scp, code);
1200 #endif
1201
1202 /*
1203 * Set up the registers to return to sigcode.
1204 */
1205 frame->tf_regs[FRAME_PC] =
1206 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1207 frame->tf_regs[FRAME_A0] = sig;
1208 frame->tf_regs[FRAME_A1] = code;
1209 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1210 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1211 alpha_pal_wrusp((unsigned long)scp);
1212
1213 #ifdef DEBUG
1214 if (sigdebug & SDB_FOLLOW)
1215 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1216 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1217 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1218 printf("sendsig(%d): sig %d returns\n",
1219 p->p_pid, sig);
1220 #endif
1221 }
1222
1223 /*
1224 * System call to cleanup state after a signal
1225 * has been taken. Reset signal mask and
1226 * stack state from context left by sendsig (above).
1227 * Return to previous pc and psl as specified by
1228 * context left by sendsig. Check carefully to
1229 * make sure that the user has not modified the
1230 * psl to gain improper priviledges or to cause
1231 * a machine fault.
1232 */
1233 /* ARGSUSED */
1234 int
1235 sys_sigreturn(p, v, retval)
1236 struct proc *p;
1237 void *v;
1238 register_t *retval;
1239 {
1240 struct sys_sigreturn_args /* {
1241 syscallarg(struct sigcontext *) sigcntxp;
1242 } */ *uap = v;
1243 struct sigcontext *scp, ksc;
1244 extern struct proc *fpcurproc;
1245
1246 scp = SCARG(uap, sigcntxp);
1247 #ifdef DEBUG
1248 if (sigdebug & SDB_FOLLOW)
1249 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1250 #endif
1251
1252 if (ALIGN(scp) != (u_int64_t)scp)
1253 return (EINVAL);
1254
1255 /*
1256 * Test and fetch the context structure.
1257 * We grab it all at once for speed.
1258 */
1259 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1260 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1261 return (EINVAL);
1262
1263 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1264 return (EINVAL);
1265 /*
1266 * Restore the user-supplied information
1267 */
1268 if (ksc.sc_onstack)
1269 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1270 else
1271 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1272 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1273
1274 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1275 p->p_md.md_tf->tf_regs[FRAME_PS] =
1276 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1277
1278 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1279 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1280
1281 /* XXX ksc.sc_ownedfp ? */
1282 if (p == fpcurproc)
1283 fpcurproc = NULL;
1284 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1285 sizeof(struct fpreg));
1286 /* XXX ksc.sc_fp_control ? */
1287
1288 #ifdef DEBUG
1289 if (sigdebug & SDB_FOLLOW)
1290 printf("sigreturn(%d): returns\n", p->p_pid);
1291 #endif
1292 return (EJUSTRETURN);
1293 }
1294
1295 /*
1296 * machine dependent system variables.
1297 */
1298 int
1299 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1300 int *name;
1301 u_int namelen;
1302 void *oldp;
1303 size_t *oldlenp;
1304 void *newp;
1305 size_t newlen;
1306 struct proc *p;
1307 {
1308 dev_t consdev;
1309
1310 /* all sysctl names at this level are terminal */
1311 if (namelen != 1)
1312 return (ENOTDIR); /* overloaded */
1313
1314 switch (name[0]) {
1315 case CPU_CONSDEV:
1316 if (cn_tab != NULL)
1317 consdev = cn_tab->cn_dev;
1318 else
1319 consdev = NODEV;
1320 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1321 sizeof consdev));
1322
1323 case CPU_ROOT_DEVICE:
1324 return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1325
1326 case CPU_UNALIGNED_PRINT:
1327 return (sysctl_int(oldp, oldlenp, newp, newlen,
1328 &alpha_unaligned_print));
1329
1330 case CPU_UNALIGNED_FIX:
1331 return (sysctl_int(oldp, oldlenp, newp, newlen,
1332 &alpha_unaligned_fix));
1333
1334 case CPU_UNALIGNED_SIGBUS:
1335 return (sysctl_int(oldp, oldlenp, newp, newlen,
1336 &alpha_unaligned_sigbus));
1337
1338 default:
1339 return (EOPNOTSUPP);
1340 }
1341 /* NOTREACHED */
1342 }
1343
1344 /*
1345 * Set registers on exec.
1346 */
1347 void
1348 setregs(p, pack, stack, retval)
1349 register struct proc *p;
1350 struct exec_package *pack;
1351 u_long stack;
1352 register_t *retval;
1353 {
1354 struct trapframe *tfp = p->p_md.md_tf;
1355 extern struct proc *fpcurproc;
1356 #ifdef DEBUG
1357 int i;
1358 #endif
1359
1360 #ifdef DEBUG
1361 /*
1362 * Crash and dump, if the user requested it.
1363 */
1364 if (boothowto & RB_DUMP)
1365 panic("crash requested by boot flags");
1366 #endif
1367
1368 #ifdef DEBUG
1369 for (i = 0; i < FRAME_SIZE; i++)
1370 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1371 #else
1372 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1373 #endif
1374 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1375 #define FP_RN 2 /* XXX */
1376 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1377 alpha_pal_wrusp(stack);
1378 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1379 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1380
1381 tfp->tf_regs[FRAME_A0] = stack;
1382 /* a1 and a2 already zeroed */
1383 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1384
1385 p->p_md.md_flags &= ~MDP_FPUSED;
1386 if (fpcurproc == p)
1387 fpcurproc = NULL;
1388
1389 retval[0] = retval[1] = 0;
1390 }
1391
1392 void
1393 netintr()
1394 {
1395 int n, s;
1396
1397 s = splhigh();
1398 n = netisr;
1399 netisr = 0;
1400 splx(s);
1401
1402 #define DONETISR(bit, fn) \
1403 do { \
1404 if (n & (1 << (bit))) \
1405 fn; \
1406 } while (0)
1407
1408 #ifdef INET
1409 DONETISR(NETISR_ARP, arpintr());
1410 DONETISR(NETISR_IP, ipintr());
1411 #endif
1412 #ifdef NS
1413 DONETISR(NETISR_NS, nsintr());
1414 #endif
1415 #ifdef ISO
1416 DONETISR(NETISR_ISO, clnlintr());
1417 #endif
1418 #ifdef CCITT
1419 DONETISR(NETISR_CCITT, ccittintr());
1420 #endif
1421 #ifdef NATM
1422 DONETISR(NETISR_NATM, natmintr());
1423 #endif
1424 #if NPPP > 1
1425 DONETISR(NETISR_PPP, pppintr());
1426 #endif
1427
1428 #undef DONETISR
1429 }
1430
1431 void
1432 do_sir()
1433 {
1434 u_int64_t n;
1435
1436 do {
1437 (void)splhigh();
1438 n = ssir;
1439 ssir = 0;
1440 splsoft(); /* don't recurse through spl0() */
1441
1442 #define DO_SIR(bit, fn) \
1443 do { \
1444 if (n & (bit)) { \
1445 cnt.v_soft++; \
1446 fn; \
1447 } \
1448 } while (0)
1449
1450 DO_SIR(SIR_NET, netintr());
1451 DO_SIR(SIR_CLOCK, softclock());
1452
1453 #undef DO_SIR
1454 } while (ssir != 0);
1455 }
1456
1457 int
1458 spl0()
1459 {
1460
1461 if (ssir)
1462 do_sir(); /* it lowers the IPL itself */
1463
1464 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1465 }
1466
1467 /*
1468 * The following primitives manipulate the run queues. _whichqs tells which
1469 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1470 * into queues, Remrunqueue removes them from queues. The running process is
1471 * on no queue, other processes are on a queue related to p->p_priority,
1472 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1473 * available queues.
1474 */
1475 /*
1476 * setrunqueue(p)
1477 * proc *p;
1478 *
1479 * Call should be made at splclock(), and p->p_stat should be SRUN.
1480 */
1481
1482 void
1483 setrunqueue(p)
1484 struct proc *p;
1485 {
1486 int bit;
1487
1488 /* firewall: p->p_back must be NULL */
1489 if (p->p_back != NULL)
1490 panic("setrunqueue");
1491
1492 bit = p->p_priority >> 2;
1493 whichqs |= (1 << bit);
1494 p->p_forw = (struct proc *)&qs[bit];
1495 p->p_back = qs[bit].ph_rlink;
1496 p->p_back->p_forw = p;
1497 qs[bit].ph_rlink = p;
1498 }
1499
1500 /*
1501 * remrunqueue(p)
1502 *
1503 * Call should be made at splclock().
1504 */
1505 void
1506 remrunqueue(p)
1507 struct proc *p;
1508 {
1509 int bit;
1510
1511 bit = p->p_priority >> 2;
1512 if ((whichqs & (1 << bit)) == 0)
1513 panic("remrunqueue");
1514
1515 p->p_back->p_forw = p->p_forw;
1516 p->p_forw->p_back = p->p_back;
1517 p->p_back = NULL; /* for firewall checking. */
1518
1519 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1520 whichqs &= ~(1 << bit);
1521 }
1522
1523 /*
1524 * Return the best possible estimate of the time in the timeval
1525 * to which tvp points. Unfortunately, we can't read the hardware registers.
1526 * We guarantee that the time will be greater than the value obtained by a
1527 * previous call.
1528 */
1529 void
1530 microtime(tvp)
1531 register struct timeval *tvp;
1532 {
1533 int s = splclock();
1534 static struct timeval lasttime;
1535
1536 *tvp = time;
1537 #ifdef notdef
1538 tvp->tv_usec += clkread();
1539 while (tvp->tv_usec > 1000000) {
1540 tvp->tv_sec++;
1541 tvp->tv_usec -= 1000000;
1542 }
1543 #endif
1544 if (tvp->tv_sec == lasttime.tv_sec &&
1545 tvp->tv_usec <= lasttime.tv_usec &&
1546 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1547 tvp->tv_sec++;
1548 tvp->tv_usec -= 1000000;
1549 }
1550 lasttime = *tvp;
1551 splx(s);
1552 }
1553
1554 /*
1555 * Wait "n" microseconds.
1556 */
1557 void
1558 delay(n)
1559 unsigned long n;
1560 {
1561 long N = cycles_per_usec * (n);
1562
1563 while (N > 0) /* XXX */
1564 N -= 3; /* XXX */
1565 }
1566
1567 #if defined(COMPAT_OSF1) || 1 /* XXX */
1568 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1569 u_long, register_t *));
1570
1571 void
1572 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1573 struct proc *p;
1574 struct exec_package *epp;
1575 u_long stack;
1576 register_t *retval;
1577 {
1578 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1579
1580 setregs(p, epp, stack, retval);
1581 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1582 }
1583
1584 /*
1585 * cpu_exec_ecoff_hook():
1586 * cpu-dependent ECOFF format hook for execve().
1587 *
1588 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1589 *
1590 */
1591 int
1592 cpu_exec_ecoff_hook(p, epp)
1593 struct proc *p;
1594 struct exec_package *epp;
1595 {
1596 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1597 extern struct emul emul_netbsd;
1598 #ifdef COMPAT_OSF1
1599 extern struct emul emul_osf1;
1600 #endif
1601
1602 switch (execp->f.f_magic) {
1603 #ifdef COMPAT_OSF1
1604 case ECOFF_MAGIC_ALPHA:
1605 epp->ep_emul = &emul_osf1;
1606 break;
1607 #endif
1608
1609 case ECOFF_MAGIC_NETBSD_ALPHA:
1610 epp->ep_emul = &emul_netbsd;
1611 break;
1612
1613 default:
1614 return ENOEXEC;
1615 }
1616 return 0;
1617 }
1618 #endif
1619
1620 /* XXX XXX BEGIN XXX XXX */
1621 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1622 /* XXX */
1623 vm_offset_t /* XXX */
1624 alpha_XXX_dmamap(v) /* XXX */
1625 vm_offset_t v; /* XXX */
1626 { /* XXX */
1627 /* XXX */
1628 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1629 } /* XXX */
1630 /* XXX XXX END XXX XXX */
1631