machdep.c revision 1.64 1 /* $NetBSD: machdep.c,v 1.64 1997/01/31 01:41:37 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/conf.h>
40 #include <sys/file.h>
41 #ifdef REAL_CLISTS
42 #include <sys/clist.h>
43 #endif
44 #include <sys/callout.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/tty.h>
50 #include <sys/user.h>
51 #include <sys/exec.h>
52 #include <sys/exec_ecoff.h>
53 #include <sys/sysctl.h>
54 #include <sys/core.h>
55 #include <sys/kcore.h>
56 #include <machine/kcore.h>
57 #ifdef SYSVMSG
58 #include <sys/msg.h>
59 #endif
60 #ifdef SYSVSEM
61 #include <sys/sem.h>
62 #endif
63 #ifdef SYSVSHM
64 #include <sys/shm.h>
65 #endif
66
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69
70 #include <vm/vm_kern.h>
71
72 #include <dev/cons.h>
73
74 #include <machine/cpu.h>
75 #include <machine/reg.h>
76 #include <machine/rpb.h>
77 #include <machine/prom.h>
78 #include <machine/cpuconf.h>
79
80 #include <net/netisr.h>
81 #include <net/if.h>
82
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #include <netinet/ip_var.h>
87 #endif
88 #ifdef NS
89 #include <netns/ns_var.h>
90 #endif
91 #ifdef ISO
92 #include <netiso/iso.h>
93 #include <netiso/clnp.h>
94 #endif
95 #ifdef CCITT
96 #include <netccitt/x25.h>
97 #include <netccitt/pk.h>
98 #include <netccitt/pk_extern.h>
99 #endif
100 #ifdef NATM
101 #include <netnatm/natm.h>
102 #endif
103 #include "ppp.h"
104 #if NPPP > 0
105 #include <net/ppp_defs.h>
106 #include <net/if_ppp.h>
107 #endif
108
109 #include "le_ioasic.h" /* for le_iomem creation */
110
111 vm_map_t buffer_map;
112
113 /*
114 * Declare these as initialized data so we can patch them.
115 */
116 int nswbuf = 0;
117 #ifdef NBUF
118 int nbuf = NBUF;
119 #else
120 int nbuf = 0;
121 #endif
122 #ifdef BUFPAGES
123 int bufpages = BUFPAGES;
124 #else
125 int bufpages = 0;
126 #endif
127 int msgbufmapped = 0; /* set when safe to use msgbuf */
128 int maxmem; /* max memory per process */
129
130 int totalphysmem; /* total amount of physical memory in system */
131 int physmem; /* physical memory used by NetBSD + some rsvd */
132 int firstusablepage; /* first usable memory page */
133 int lastusablepage; /* last usable memory page */
134 int resvmem; /* amount of memory reserved for PROM */
135 int unusedmem; /* amount of memory for OS that we don't use */
136 int unknownmem; /* amount of memory with an unknown use */
137
138 int cputype; /* system type, from the RPB */
139
140 /*
141 * XXX We need an address to which we can assign things so that they
142 * won't be optimized away because we didn't use the value.
143 */
144 u_int32_t no_optimize;
145
146 /* the following is used externally (sysctl_hw) */
147 char machine[] = "alpha";
148 char cpu_model[128];
149 const struct cpusw *cpu_fn_switch; /* function switch */
150
151 struct user *proc0paddr;
152
153 /* Number of machine cycles per microsecond */
154 u_int64_t cycles_per_usec;
155
156 /* some memory areas for device DMA. "ick." */
157 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
158
159 /* number of cpus in the box. really! */
160 int ncpus;
161
162 char boot_flags[64];
163 char booted_kernel[64];
164
165 /* for cpu_sysctl() */
166 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
167 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
168 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
169
170 int cpu_dump __P((void));
171 int cpu_dumpsize __P((void));
172 void dumpsys __P((void));
173 void identifycpu __P((void));
174 void netintr __P((void));
175 void printregs __P((struct reg *));
176
177 void
178 alpha_init(pfn, ptb)
179 u_long pfn; /* first free PFN number */
180 u_long ptb; /* PFN of current level 1 page table */
181 {
182 extern char _end[];
183 caddr_t start, v;
184 struct mddt *mddtp;
185 int i, mddtweird;
186 char *p;
187
188 /*
189 * Turn off interrupts and floating point.
190 * Make sure the instruction and data streams are consistent.
191 */
192 (void)splhigh();
193 alpha_pal_wrfen(0);
194 ALPHA_TBIA();
195 alpha_pal_imb();
196
197 /*
198 * get address of the restart block, while we the bootstrap
199 * mapping is still around.
200 */
201 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
202 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
203
204 /*
205 * Remember how many cycles there are per microsecond,
206 * so that we can use delay(). Round up, for safety.
207 */
208 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
209
210 /*
211 * Init the PROM interface, so we can use printf
212 * until PROM mappings go away in consinit.
213 */
214 init_prom_interface();
215
216 /*
217 * Point interrupt/exception vectors to our own.
218 */
219 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
220 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
221 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
222 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
223 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
224 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
225
226 /*
227 * Disable System and Processor Correctable Error reporting.
228 * Clear pending machine checks and error reports, etc.
229 */
230 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
231
232 /*
233 * Find out how much memory is available, by looking at
234 * the memory cluster descriptors. This also tries to do
235 * its best to detect things things that have never been seen
236 * before...
237 *
238 * XXX Assumes that the first "system" cluster is the
239 * only one we can use. Is the second (etc.) system cluster
240 * (if one happens to exist) guaranteed to be contiguous? or...?
241 */
242 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
243
244 /*
245 * BEGIN MDDT WEIRDNESS CHECKING
246 */
247 mddtweird = 0;
248
249 #define cnt mddtp->mddt_cluster_cnt
250 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
251 if (cnt != 2 && cnt != 3) {
252 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
253 mddtweird = 1;
254 } else if (usage(0) != MDDT_PALCODE ||
255 usage(1) != MDDT_SYSTEM ||
256 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
257 mddtweird = 1;
258 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
259 }
260
261 for (i = 0; i < cnt; i++) {
262 if ((usage(i) & MDDT_mbz) != 0) {
263 printf("WARNING: mem cluster %d has weird usage %lx\n",
264 i, usage(i));
265 mddtweird = 1;
266 }
267 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
268 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
269 mddtweird = 1;
270 }
271 /* XXX other things to check? */
272 }
273 #undef cnt
274 #undef usage
275
276 if (mddtweird) {
277 printf("\n");
278 printf("complete memory cluster information:\n");
279 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
280 printf("mddt %d:\n", i);
281 printf("\tpfn %lx\n",
282 mddtp->mddt_clusters[i].mddt_pfn);
283 printf("\tcnt %lx\n",
284 mddtp->mddt_clusters[i].mddt_pg_cnt);
285 printf("\ttest %lx\n",
286 mddtp->mddt_clusters[i].mddt_pg_test);
287 printf("\tbva %lx\n",
288 mddtp->mddt_clusters[i].mddt_v_bitaddr);
289 printf("\tbpa %lx\n",
290 mddtp->mddt_clusters[i].mddt_p_bitaddr);
291 printf("\tbcksum %lx\n",
292 mddtp->mddt_clusters[i].mddt_bit_cksum);
293 printf("\tusage %lx\n",
294 mddtp->mddt_clusters[i].mddt_usage);
295 }
296 printf("\n");
297 }
298 /*
299 * END MDDT WEIRDNESS CHECKING
300 */
301
302 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
303 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
304 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
305 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
306 if ((usage(i) & MDDT_mbz) != 0)
307 unknownmem += pgcnt(i);
308 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
309 resvmem += pgcnt(i);
310 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
311 /*
312 * assumes that the system cluster listed is
313 * one we're in...
314 */
315 if (physmem != resvmem) {
316 physmem += pgcnt(i);
317 firstusablepage =
318 mddtp->mddt_clusters[i].mddt_pfn;
319 lastusablepage = firstusablepage + pgcnt(i) - 1;
320 } else
321 unusedmem += pgcnt(i);
322 }
323 #undef usage
324 #undef pgcnt
325 }
326 if (totalphysmem == 0)
327 panic("can't happen: system seems to have no memory!");
328 maxmem = physmem;
329
330 #if 0
331 printf("totalphysmem = %d\n", totalphysmem);
332 printf("physmem = %d\n", physmem);
333 printf("firstusablepage = %d\n", firstusablepage);
334 printf("lastusablepage = %d\n", lastusablepage);
335 printf("resvmem = %d\n", resvmem);
336 printf("unusedmem = %d\n", unusedmem);
337 printf("unknownmem = %d\n", unknownmem);
338 #endif
339
340 /*
341 * find out this CPU's page size
342 */
343 PAGE_SIZE = hwrpb->rpb_page_size;
344 if (PAGE_SIZE != 8192)
345 panic("page size %d != 8192?!", PAGE_SIZE);
346
347 v = (caddr_t)alpha_round_page(_end);
348 /*
349 * Init mapping for u page(s) for proc 0
350 */
351 start = v;
352 curproc->p_addr = proc0paddr = (struct user *)v;
353 v += UPAGES * NBPG;
354
355 /*
356 * Find out what hardware we're on, and remember its type name.
357 */
358 cputype = hwrpb->rpb_type;
359 if (cputype < 0 || cputype > ncpusw) {
360 unknown_cputype:
361 printf("\n");
362 printf("Unknown system type %d.\n", cputype);
363 printf("\n");
364 panic("unknown system type");
365 }
366 cpu_fn_switch = &cpusw[cputype];
367 if (cpu_fn_switch->family == NULL)
368 goto unknown_cputype;
369 if (cpu_fn_switch->option == NULL) {
370 printf("\n");
371 printf("NetBSD does not currently support system type %d\n",
372 cputype);
373 printf("(%s family).\n", cpu_fn_switch->family);
374 printf("\n");
375 panic("unsupported system type");
376 }
377 if (!cpu_fn_switch->present) {
378 printf("\n");
379 printf("Support for system type %d (%s family) is\n", cputype,
380 cpu_fn_switch->family);
381 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
382 cpu_fn_switch->option);
383 printf("to include support for this system type.\n");
384 printf("\n");
385 panic("support for system not present");
386 }
387
388 if ((*cpu_fn_switch->model_name)() != NULL)
389 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
390 sizeof cpu_model - 1);
391 else {
392 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
393 strcat(cpu_model, " family"); /* XXX */
394 }
395 cpu_model[sizeof cpu_model - 1] = '\0';
396
397 #if NLE_IOASIC > 0
398 /*
399 * Grab 128K at the top of physical memory for the lance chip
400 * on machines where it does dma through the I/O ASIC.
401 * It must be physically contiguous and aligned on a 128K boundary.
402 *
403 * Note that since this is conditional on the presence of
404 * IOASIC-attached 'le' units in the kernel config, the
405 * message buffer may move on these systems. This shouldn't
406 * be a problem, because once people have a kernel config that
407 * they use, they're going to stick with it.
408 */
409 if (cputype == ST_DEC_3000_500 ||
410 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
411 lastusablepage -= btoc(128 * 1024);
412 le_iomem =
413 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
414 }
415 #endif /* NLE_IOASIC */
416
417 /*
418 * Initialize error message buffer (at end of core).
419 */
420 lastusablepage -= btoc(sizeof (struct msgbuf));
421 msgbufp =
422 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
423 msgbufmapped = 1;
424
425 /*
426 * Allocate space for system data structures.
427 * The first available kernel virtual address is in "v".
428 * As pages of kernel virtual memory are allocated, "v" is incremented.
429 *
430 * These data structures are allocated here instead of cpu_startup()
431 * because physical memory is directly addressable. We don't have
432 * to map these into virtual address space.
433 */
434 #define valloc(name, type, num) \
435 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
436 #define valloclim(name, type, num, lim) \
437 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
438 #ifdef REAL_CLISTS
439 valloc(cfree, struct cblock, nclist);
440 #endif
441 valloc(callout, struct callout, ncallout);
442 valloc(swapmap, struct map, nswapmap = maxproc * 2);
443 #ifdef SYSVSHM
444 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
445 #endif
446 #ifdef SYSVSEM
447 valloc(sema, struct semid_ds, seminfo.semmni);
448 valloc(sem, struct sem, seminfo.semmns);
449 /* This is pretty disgusting! */
450 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
451 #endif
452 #ifdef SYSVMSG
453 valloc(msgpool, char, msginfo.msgmax);
454 valloc(msgmaps, struct msgmap, msginfo.msgseg);
455 valloc(msghdrs, struct msg, msginfo.msgtql);
456 valloc(msqids, struct msqid_ds, msginfo.msgmni);
457 #endif
458
459 /*
460 * Determine how many buffers to allocate.
461 * We allocate 10% of memory for buffer space. Insure a
462 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
463 * headers as file i/o buffers.
464 */
465 if (bufpages == 0)
466 bufpages = (physmem * 10) / (CLSIZE * 100);
467 if (nbuf == 0) {
468 nbuf = bufpages;
469 if (nbuf < 16)
470 nbuf = 16;
471 }
472 if (nswbuf == 0) {
473 nswbuf = (nbuf / 2) &~ 1; /* force even */
474 if (nswbuf > 256)
475 nswbuf = 256; /* sanity */
476 }
477 valloc(swbuf, struct buf, nswbuf);
478 valloc(buf, struct buf, nbuf);
479
480 /*
481 * Clear allocated memory.
482 */
483 bzero(start, v - start);
484
485 /*
486 * Initialize the virtual memory system, and set the
487 * page table base register in proc 0's PCB.
488 */
489 #ifndef NEW_PMAP
490 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
491 #else
492 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
493 hwrpb->rpb_max_asn);
494 #endif
495
496 /*
497 * Initialize the rest of proc 0's PCB, and cache its physical
498 * address.
499 */
500 proc0.p_md.md_pcbpaddr =
501 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
502
503 /*
504 * Set the kernel sp, reserving space for an (empty) trapframe,
505 * and make proc0's trapframe pointer point to it for sanity.
506 */
507 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
508 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
509 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
510
511 #ifdef NEW_PMAP
512 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
513 #endif
514
515 /*
516 * Look at arguments passed to us and compute boothowto.
517 * Also, get kernel name so it can be used in user-land.
518 */
519 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
520 #if 0
521 printf("boot flags = \"%s\"\n", boot_flags);
522 #endif
523 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
524 sizeof(booted_kernel));
525 #if 0
526 printf("booted kernel = \"%s\"\n", booted_kernel);
527 #endif
528
529 boothowto = RB_SINGLE;
530 #ifdef KADB
531 boothowto |= RB_KDB;
532 #endif
533 for (p = boot_flags; p && *p != '\0'; p++) {
534 /*
535 * Note that we'd really like to differentiate case here,
536 * but the Alpha AXP Architecture Reference Manual
537 * says that we shouldn't.
538 */
539 switch (*p) {
540 case 'a': /* autoboot */
541 case 'A':
542 boothowto &= ~RB_SINGLE;
543 break;
544
545 #ifdef DEBUG
546 case 'c': /* crash dump immediately after autoconfig */
547 case 'C':
548 boothowto |= RB_DUMP;
549 break;
550 #endif
551
552 case 'h': /* always halt, never reboot */
553 case 'H':
554 boothowto |= RB_HALT;
555 break;
556
557 #if 0
558 case 'm': /* mini root present in memory */
559 case 'M':
560 boothowto |= RB_MINIROOT;
561 break;
562 #endif
563
564 case 'n': /* askname */
565 case 'N':
566 boothowto |= RB_ASKNAME;
567 break;
568 }
569 }
570
571 /*
572 * Figure out the number of cpus in the box, from RPB fields.
573 * Really. We mean it.
574 */
575 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
576 struct pcs *pcsp;
577
578 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
579 (i * hwrpb->rpb_pcs_size));
580 if ((pcsp->pcs_flags & PCS_PP) != 0)
581 ncpus++;
582 }
583 }
584
585 void
586 consinit()
587 {
588
589 (*cpu_fn_switch->cons_init)();
590 pmap_unmap_prom();
591 }
592
593 void
594 cpu_startup()
595 {
596 register unsigned i;
597 int base, residual;
598 vm_offset_t minaddr, maxaddr;
599 vm_size_t size;
600 #if defined(DEBUG)
601 extern int pmapdebug;
602 int opmapdebug = pmapdebug;
603
604 pmapdebug = 0;
605 #endif
606
607 /*
608 * Good {morning,afternoon,evening,night}.
609 */
610 printf(version);
611 identifycpu();
612 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
613 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
614 if (unusedmem)
615 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
616 if (unknownmem)
617 printf("WARNING: %d bytes of memory with unknown purpose\n",
618 ctob(unknownmem));
619
620 /*
621 * Allocate virtual address space for file I/O buffers.
622 * Note they are different than the array of headers, 'buf',
623 * and usually occupy more virtual memory than physical.
624 */
625 size = MAXBSIZE * nbuf;
626 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
627 &maxaddr, size, TRUE);
628 minaddr = (vm_offset_t)buffers;
629 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
630 &minaddr, size, FALSE) != KERN_SUCCESS)
631 panic("startup: cannot allocate buffers");
632 base = bufpages / nbuf;
633 residual = bufpages % nbuf;
634 for (i = 0; i < nbuf; i++) {
635 vm_size_t curbufsize;
636 vm_offset_t curbuf;
637
638 /*
639 * First <residual> buffers get (base+1) physical pages
640 * allocated for them. The rest get (base) physical pages.
641 *
642 * The rest of each buffer occupies virtual space,
643 * but has no physical memory allocated for it.
644 */
645 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
646 curbufsize = CLBYTES * (i < residual ? base+1 : base);
647 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
648 vm_map_simplify(buffer_map, curbuf);
649 }
650 /*
651 * Allocate a submap for exec arguments. This map effectively
652 * limits the number of processes exec'ing at any time.
653 */
654 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
655 16 * NCARGS, TRUE);
656
657 /*
658 * Allocate a submap for physio
659 */
660 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
661 VM_PHYS_SIZE, TRUE);
662
663 /*
664 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
665 * we use the more space efficient malloc in place of kmem_alloc.
666 */
667 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
668 M_MBUF, M_NOWAIT);
669 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
670 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
671 VM_MBUF_SIZE, FALSE);
672 /*
673 * Initialize callouts
674 */
675 callfree = callout;
676 for (i = 1; i < ncallout; i++)
677 callout[i-1].c_next = &callout[i];
678 callout[i-1].c_next = NULL;
679
680 #if defined(DEBUG)
681 pmapdebug = opmapdebug;
682 #endif
683 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
684 printf("using %ld buffers containing %ld bytes of memory\n",
685 (long)nbuf, (long)(bufpages * CLBYTES));
686
687 /*
688 * Set up buffers, so they can be used to read disk labels.
689 */
690 bufinit();
691
692 /*
693 * Configure the system.
694 */
695 configure();
696
697 /*
698 * Note that bootstrapping is finished, and set the HWRPB up
699 * to do restarts.
700 */
701 hwrpb_restart_setup();
702 }
703
704 void
705 identifycpu()
706 {
707
708 /*
709 * print out CPU identification information.
710 */
711 printf("%s, %ldMHz\n", cpu_model,
712 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
713 printf("%ld byte page size, %d processor%s.\n",
714 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
715 #if 0
716 /* this isn't defined for any systems that we run on? */
717 printf("serial number 0x%lx 0x%lx\n",
718 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
719
720 /* and these aren't particularly useful! */
721 printf("variation: 0x%lx, revision 0x%lx\n",
722 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
723 #endif
724 }
725
726 int waittime = -1;
727 struct pcb dumppcb;
728
729 void
730 boot(howto, bootstr)
731 int howto;
732 char *bootstr;
733 {
734 extern int cold;
735
736 /* If system is cold, just halt. */
737 if (cold) {
738 howto |= RB_HALT;
739 goto haltsys;
740 }
741
742 /* If "always halt" was specified as a boot flag, obey. */
743 if ((boothowto & RB_HALT) != 0)
744 howto |= RB_HALT;
745
746 boothowto = howto;
747 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
748 waittime = 0;
749 vfs_shutdown();
750 /*
751 * If we've been adjusting the clock, the todr
752 * will be out of synch; adjust it now.
753 */
754 resettodr();
755 }
756
757 /* Disable interrupts. */
758 splhigh();
759
760 /* If rebooting and a dump is requested do it. */
761 #if 0
762 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
763 #else
764 if (howto & RB_DUMP)
765 #endif
766 dumpsys();
767
768 haltsys:
769
770 /* run any shutdown hooks */
771 doshutdownhooks();
772
773 #ifdef BOOTKEY
774 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
775 cngetc();
776 printf("\n");
777 #endif
778
779 /* Finally, halt/reboot the system. */
780 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
781 prom_halt(howto & RB_HALT);
782 /*NOTREACHED*/
783 }
784
785 /*
786 * These variables are needed by /sbin/savecore
787 */
788 u_long dumpmag = 0x8fca0101; /* magic number */
789 int dumpsize = 0; /* pages */
790 long dumplo = 0; /* blocks */
791
792 /*
793 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
794 */
795 int
796 cpu_dumpsize()
797 {
798 int size;
799
800 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
801 if (roundup(size, dbtob(1)) != dbtob(1))
802 return -1;
803
804 return (1);
805 }
806
807 /*
808 * cpu_dump: dump machine-dependent kernel core dump headers.
809 */
810 int
811 cpu_dump()
812 {
813 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
814 long buf[dbtob(1) / sizeof (long)];
815 kcore_seg_t *segp;
816 cpu_kcore_hdr_t *cpuhdrp;
817
818 dump = bdevsw[major(dumpdev)].d_dump;
819
820 segp = (kcore_seg_t *)buf;
821 cpuhdrp =
822 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
823
824 /*
825 * Generate a segment header.
826 */
827 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
828 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
829
830 /*
831 * Add the machine-dependent header info
832 */
833 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
834 cpuhdrp->page_size = PAGE_SIZE;
835 cpuhdrp->core_seg.start = ctob(firstusablepage);
836 cpuhdrp->core_seg.size = ctob(physmem);
837
838 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
839 }
840
841 /*
842 * This is called by configure to set dumplo and dumpsize.
843 * Dumps always skip the first CLBYTES of disk space
844 * in case there might be a disk label stored there.
845 * If there is extra space, put dump at the end to
846 * reduce the chance that swapping trashes it.
847 */
848 void
849 dumpconf()
850 {
851 int nblks, dumpblks; /* size of dump area */
852 int maj;
853
854 if (dumpdev == NODEV)
855 goto bad;
856 maj = major(dumpdev);
857 if (maj < 0 || maj >= nblkdev)
858 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
859 if (bdevsw[maj].d_psize == NULL)
860 goto bad;
861 nblks = (*bdevsw[maj].d_psize)(dumpdev);
862 if (nblks <= ctod(1))
863 goto bad;
864
865 dumpblks = cpu_dumpsize();
866 if (dumpblks < 0)
867 goto bad;
868 dumpblks += ctod(physmem);
869
870 /* If dump won't fit (incl. room for possible label), punt. */
871 if (dumpblks > (nblks - ctod(1)))
872 goto bad;
873
874 /* Put dump at end of partition */
875 dumplo = nblks - dumpblks;
876
877 /* dumpsize is in page units, and doesn't include headers. */
878 dumpsize = physmem;
879 return;
880
881 bad:
882 dumpsize = 0;
883 return;
884 }
885
886 /*
887 * Dump the kernel's image to the swap partition.
888 */
889 #define BYTES_PER_DUMP NBPG
890
891 void
892 dumpsys()
893 {
894 unsigned bytes, i, n;
895 int maddr, psize;
896 daddr_t blkno;
897 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
898 int error;
899
900 /* Save registers. */
901 savectx(&dumppcb);
902
903 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
904 if (dumpdev == NODEV)
905 return;
906
907 /*
908 * For dumps during autoconfiguration,
909 * if dump device has already configured...
910 */
911 if (dumpsize == 0)
912 dumpconf();
913 if (dumplo <= 0) {
914 printf("\ndump to dev %x not possible\n", dumpdev);
915 return;
916 }
917 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
918
919 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
920 printf("dump ");
921 if (psize == -1) {
922 printf("area unavailable\n");
923 return;
924 }
925
926 /* XXX should purge all outstanding keystrokes. */
927
928 if ((error = cpu_dump()) != 0)
929 goto err;
930
931 bytes = ctob(physmem);
932 maddr = ctob(firstusablepage);
933 blkno = dumplo + cpu_dumpsize();
934 dump = bdevsw[major(dumpdev)].d_dump;
935 error = 0;
936 for (i = 0; i < bytes; i += n) {
937
938 /* Print out how many MBs we to go. */
939 n = bytes - i;
940 if (n && (n % (1024*1024)) == 0)
941 printf("%d ", n / (1024 * 1024));
942
943 /* Limit size for next transfer. */
944 if (n > BYTES_PER_DUMP)
945 n = BYTES_PER_DUMP;
946
947 error = (*dump)(dumpdev, blkno,
948 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
949 if (error)
950 break;
951 maddr += n;
952 blkno += btodb(n); /* XXX? */
953
954 /* XXX should look for keystrokes, to cancel. */
955 }
956
957 err:
958 switch (error) {
959
960 case ENXIO:
961 printf("device bad\n");
962 break;
963
964 case EFAULT:
965 printf("device not ready\n");
966 break;
967
968 case EINVAL:
969 printf("area improper\n");
970 break;
971
972 case EIO:
973 printf("i/o error\n");
974 break;
975
976 case EINTR:
977 printf("aborted from console\n");
978 break;
979
980 case 0:
981 printf("succeeded\n");
982 break;
983
984 default:
985 printf("error %d\n", error);
986 break;
987 }
988 printf("\n\n");
989 delay(1000);
990 }
991
992 void
993 frametoreg(framep, regp)
994 struct trapframe *framep;
995 struct reg *regp;
996 {
997
998 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
999 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1000 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1001 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1002 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1003 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1004 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1005 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1006 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1007 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1008 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1009 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1010 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1011 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1012 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1013 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1014 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1015 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1016 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1017 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1018 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1019 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1020 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1021 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1022 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1023 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1024 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1025 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1026 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1027 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1028 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1029 regp->r_regs[R_ZERO] = 0;
1030 }
1031
1032 void
1033 regtoframe(regp, framep)
1034 struct reg *regp;
1035 struct trapframe *framep;
1036 {
1037
1038 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1039 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1040 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1041 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1042 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1043 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1044 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1045 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1046 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1047 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1048 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1049 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1050 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1051 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1052 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1053 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1054 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1055 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1056 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1057 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1058 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1059 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1060 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1061 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1062 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1063 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1064 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1065 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1066 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1067 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1068 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1069 /* ??? = regp->r_regs[R_ZERO]; */
1070 }
1071
1072 void
1073 printregs(regp)
1074 struct reg *regp;
1075 {
1076 int i;
1077
1078 for (i = 0; i < 32; i++)
1079 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1080 i & 1 ? "\n" : "\t");
1081 }
1082
1083 void
1084 regdump(framep)
1085 struct trapframe *framep;
1086 {
1087 struct reg reg;
1088
1089 frametoreg(framep, ®);
1090 reg.r_regs[R_SP] = alpha_pal_rdusp();
1091
1092 printf("REGISTERS:\n");
1093 printregs(®);
1094 }
1095
1096 #ifdef DEBUG
1097 int sigdebug = 0;
1098 int sigpid = 0;
1099 #define SDB_FOLLOW 0x01
1100 #define SDB_KSTACK 0x02
1101 #endif
1102
1103 /*
1104 * Send an interrupt to process.
1105 */
1106 void
1107 sendsig(catcher, sig, mask, code)
1108 sig_t catcher;
1109 int sig, mask;
1110 u_long code;
1111 {
1112 struct proc *p = curproc;
1113 struct sigcontext *scp, ksc;
1114 struct trapframe *frame;
1115 struct sigacts *psp = p->p_sigacts;
1116 int oonstack, fsize, rndfsize;
1117 extern char sigcode[], esigcode[];
1118 extern struct proc *fpcurproc;
1119
1120 frame = p->p_md.md_tf;
1121 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1122 fsize = sizeof ksc;
1123 rndfsize = ((fsize + 15) / 16) * 16;
1124 /*
1125 * Allocate and validate space for the signal handler
1126 * context. Note that if the stack is in P0 space, the
1127 * call to grow() is a nop, and the useracc() check
1128 * will fail if the process has not already allocated
1129 * the space with a `brk'.
1130 */
1131 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1132 (psp->ps_sigonstack & sigmask(sig))) {
1133 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1134 psp->ps_sigstk.ss_size - rndfsize);
1135 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1136 } else
1137 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1138 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1139 (void)grow(p, (u_long)scp);
1140 #ifdef DEBUG
1141 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1142 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1143 sig, &oonstack, scp);
1144 #endif
1145 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1146 #ifdef DEBUG
1147 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1148 printf("sendsig(%d): useracc failed on sig %d\n",
1149 p->p_pid, sig);
1150 #endif
1151 /*
1152 * Process has trashed its stack; give it an illegal
1153 * instruction to halt it in its tracks.
1154 */
1155 SIGACTION(p, SIGILL) = SIG_DFL;
1156 sig = sigmask(SIGILL);
1157 p->p_sigignore &= ~sig;
1158 p->p_sigcatch &= ~sig;
1159 p->p_sigmask &= ~sig;
1160 psignal(p, SIGILL);
1161 return;
1162 }
1163
1164 /*
1165 * Build the signal context to be used by sigreturn.
1166 */
1167 ksc.sc_onstack = oonstack;
1168 ksc.sc_mask = mask;
1169 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1170 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1171
1172 /* copy the registers. */
1173 frametoreg(frame, (struct reg *)ksc.sc_regs);
1174 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1175 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1176
1177 /* save the floating-point state, if necessary, then copy it. */
1178 if (p == fpcurproc) {
1179 alpha_pal_wrfen(1);
1180 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1181 alpha_pal_wrfen(0);
1182 fpcurproc = NULL;
1183 }
1184 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1185 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1186 sizeof(struct fpreg));
1187 ksc.sc_fp_control = 0; /* XXX ? */
1188 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1189 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1190
1191
1192 #ifdef COMPAT_OSF1
1193 /*
1194 * XXX Create an OSF/1-style sigcontext and associated goo.
1195 */
1196 #endif
1197
1198 /*
1199 * copy the frame out to userland.
1200 */
1201 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1202 #ifdef DEBUG
1203 if (sigdebug & SDB_FOLLOW)
1204 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1205 scp, code);
1206 #endif
1207
1208 /*
1209 * Set up the registers to return to sigcode.
1210 */
1211 frame->tf_regs[FRAME_PC] =
1212 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1213 frame->tf_regs[FRAME_A0] = sig;
1214 frame->tf_regs[FRAME_A1] = code;
1215 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1216 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1217 alpha_pal_wrusp((unsigned long)scp);
1218
1219 #ifdef DEBUG
1220 if (sigdebug & SDB_FOLLOW)
1221 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1222 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1223 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1224 printf("sendsig(%d): sig %d returns\n",
1225 p->p_pid, sig);
1226 #endif
1227 }
1228
1229 /*
1230 * System call to cleanup state after a signal
1231 * has been taken. Reset signal mask and
1232 * stack state from context left by sendsig (above).
1233 * Return to previous pc and psl as specified by
1234 * context left by sendsig. Check carefully to
1235 * make sure that the user has not modified the
1236 * psl to gain improper priviledges or to cause
1237 * a machine fault.
1238 */
1239 /* ARGSUSED */
1240 int
1241 sys_sigreturn(p, v, retval)
1242 struct proc *p;
1243 void *v;
1244 register_t *retval;
1245 {
1246 struct sys_sigreturn_args /* {
1247 syscallarg(struct sigcontext *) sigcntxp;
1248 } */ *uap = v;
1249 struct sigcontext *scp, ksc;
1250 extern struct proc *fpcurproc;
1251
1252 scp = SCARG(uap, sigcntxp);
1253 #ifdef DEBUG
1254 if (sigdebug & SDB_FOLLOW)
1255 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1256 #endif
1257
1258 if (ALIGN(scp) != (u_int64_t)scp)
1259 return (EINVAL);
1260
1261 /*
1262 * Test and fetch the context structure.
1263 * We grab it all at once for speed.
1264 */
1265 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1266 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1267 return (EINVAL);
1268
1269 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1270 return (EINVAL);
1271 /*
1272 * Restore the user-supplied information
1273 */
1274 if (ksc.sc_onstack)
1275 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1276 else
1277 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1278 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1279
1280 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1281 p->p_md.md_tf->tf_regs[FRAME_PS] =
1282 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1283
1284 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1285 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1286
1287 /* XXX ksc.sc_ownedfp ? */
1288 if (p == fpcurproc)
1289 fpcurproc = NULL;
1290 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1291 sizeof(struct fpreg));
1292 /* XXX ksc.sc_fp_control ? */
1293
1294 #ifdef DEBUG
1295 if (sigdebug & SDB_FOLLOW)
1296 printf("sigreturn(%d): returns\n", p->p_pid);
1297 #endif
1298 return (EJUSTRETURN);
1299 }
1300
1301 /*
1302 * machine dependent system variables.
1303 */
1304 int
1305 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1306 int *name;
1307 u_int namelen;
1308 void *oldp;
1309 size_t *oldlenp;
1310 void *newp;
1311 size_t newlen;
1312 struct proc *p;
1313 {
1314 dev_t consdev;
1315
1316 /* all sysctl names at this level are terminal */
1317 if (namelen != 1)
1318 return (ENOTDIR); /* overloaded */
1319
1320 switch (name[0]) {
1321 case CPU_CONSDEV:
1322 if (cn_tab != NULL)
1323 consdev = cn_tab->cn_dev;
1324 else
1325 consdev = NODEV;
1326 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1327 sizeof consdev));
1328
1329 case CPU_ROOT_DEVICE:
1330 return (sysctl_rdstring(oldp, oldlenp, newp,
1331 root_device->dv_xname));
1332
1333 case CPU_UNALIGNED_PRINT:
1334 return (sysctl_int(oldp, oldlenp, newp, newlen,
1335 &alpha_unaligned_print));
1336
1337 case CPU_UNALIGNED_FIX:
1338 return (sysctl_int(oldp, oldlenp, newp, newlen,
1339 &alpha_unaligned_fix));
1340
1341 case CPU_UNALIGNED_SIGBUS:
1342 return (sysctl_int(oldp, oldlenp, newp, newlen,
1343 &alpha_unaligned_sigbus));
1344
1345 case CPU_BOOTED_KERNEL:
1346 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1347
1348 default:
1349 return (EOPNOTSUPP);
1350 }
1351 /* NOTREACHED */
1352 }
1353
1354 /*
1355 * Set registers on exec.
1356 */
1357 void
1358 setregs(p, pack, stack, retval)
1359 register struct proc *p;
1360 struct exec_package *pack;
1361 u_long stack;
1362 register_t *retval;
1363 {
1364 struct trapframe *tfp = p->p_md.md_tf;
1365 extern struct proc *fpcurproc;
1366 #ifdef DEBUG
1367 int i;
1368 #endif
1369
1370 #ifdef DEBUG
1371 /*
1372 * Crash and dump, if the user requested it.
1373 */
1374 if (boothowto & RB_DUMP)
1375 panic("crash requested by boot flags");
1376 #endif
1377
1378 #ifdef DEBUG
1379 for (i = 0; i < FRAME_SIZE; i++)
1380 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1381 #else
1382 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1383 #endif
1384 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1385 #define FP_RN 2 /* XXX */
1386 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1387 alpha_pal_wrusp(stack);
1388 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1389 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1390
1391 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1392 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1393 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1394 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1395 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1396
1397 p->p_md.md_flags &= ~MDP_FPUSED;
1398 if (fpcurproc == p)
1399 fpcurproc = NULL;
1400
1401 retval[0] = retval[1] = 0;
1402 }
1403
1404 void
1405 netintr()
1406 {
1407 int n, s;
1408
1409 s = splhigh();
1410 n = netisr;
1411 netisr = 0;
1412 splx(s);
1413
1414 #define DONETISR(bit, fn) \
1415 do { \
1416 if (n & (1 << (bit))) \
1417 fn; \
1418 } while (0)
1419
1420 #ifdef INET
1421 DONETISR(NETISR_ARP, arpintr());
1422 DONETISR(NETISR_IP, ipintr());
1423 #endif
1424 #ifdef NS
1425 DONETISR(NETISR_NS, nsintr());
1426 #endif
1427 #ifdef ISO
1428 DONETISR(NETISR_ISO, clnlintr());
1429 #endif
1430 #ifdef CCITT
1431 DONETISR(NETISR_CCITT, ccittintr());
1432 #endif
1433 #ifdef NATM
1434 DONETISR(NETISR_NATM, natmintr());
1435 #endif
1436 #if NPPP > 1
1437 DONETISR(NETISR_PPP, pppintr());
1438 #endif
1439
1440 #undef DONETISR
1441 }
1442
1443 void
1444 do_sir()
1445 {
1446 u_int64_t n;
1447
1448 do {
1449 (void)splhigh();
1450 n = ssir;
1451 ssir = 0;
1452 splsoft(); /* don't recurse through spl0() */
1453
1454 #define DO_SIR(bit, fn) \
1455 do { \
1456 if (n & (bit)) { \
1457 cnt.v_soft++; \
1458 fn; \
1459 } \
1460 } while (0)
1461
1462 DO_SIR(SIR_NET, netintr());
1463 DO_SIR(SIR_CLOCK, softclock());
1464
1465 #undef DO_SIR
1466 } while (ssir != 0);
1467 }
1468
1469 int
1470 spl0()
1471 {
1472
1473 if (ssir)
1474 do_sir(); /* it lowers the IPL itself */
1475
1476 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1477 }
1478
1479 /*
1480 * The following primitives manipulate the run queues. _whichqs tells which
1481 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1482 * into queues, Remrunqueue removes them from queues. The running process is
1483 * on no queue, other processes are on a queue related to p->p_priority,
1484 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1485 * available queues.
1486 */
1487 /*
1488 * setrunqueue(p)
1489 * proc *p;
1490 *
1491 * Call should be made at splclock(), and p->p_stat should be SRUN.
1492 */
1493
1494 void
1495 setrunqueue(p)
1496 struct proc *p;
1497 {
1498 int bit;
1499
1500 /* firewall: p->p_back must be NULL */
1501 if (p->p_back != NULL)
1502 panic("setrunqueue");
1503
1504 bit = p->p_priority >> 2;
1505 whichqs |= (1 << bit);
1506 p->p_forw = (struct proc *)&qs[bit];
1507 p->p_back = qs[bit].ph_rlink;
1508 p->p_back->p_forw = p;
1509 qs[bit].ph_rlink = p;
1510 }
1511
1512 /*
1513 * remrunqueue(p)
1514 *
1515 * Call should be made at splclock().
1516 */
1517 void
1518 remrunqueue(p)
1519 struct proc *p;
1520 {
1521 int bit;
1522
1523 bit = p->p_priority >> 2;
1524 if ((whichqs & (1 << bit)) == 0)
1525 panic("remrunqueue");
1526
1527 p->p_back->p_forw = p->p_forw;
1528 p->p_forw->p_back = p->p_back;
1529 p->p_back = NULL; /* for firewall checking. */
1530
1531 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1532 whichqs &= ~(1 << bit);
1533 }
1534
1535 /*
1536 * Return the best possible estimate of the time in the timeval
1537 * to which tvp points. Unfortunately, we can't read the hardware registers.
1538 * We guarantee that the time will be greater than the value obtained by a
1539 * previous call.
1540 */
1541 void
1542 microtime(tvp)
1543 register struct timeval *tvp;
1544 {
1545 int s = splclock();
1546 static struct timeval lasttime;
1547
1548 *tvp = time;
1549 #ifdef notdef
1550 tvp->tv_usec += clkread();
1551 while (tvp->tv_usec > 1000000) {
1552 tvp->tv_sec++;
1553 tvp->tv_usec -= 1000000;
1554 }
1555 #endif
1556 if (tvp->tv_sec == lasttime.tv_sec &&
1557 tvp->tv_usec <= lasttime.tv_usec &&
1558 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1559 tvp->tv_sec++;
1560 tvp->tv_usec -= 1000000;
1561 }
1562 lasttime = *tvp;
1563 splx(s);
1564 }
1565
1566 /*
1567 * Wait "n" microseconds.
1568 */
1569 void
1570 delay(n)
1571 unsigned long n;
1572 {
1573 long N = cycles_per_usec * (n);
1574
1575 while (N > 0) /* XXX */
1576 N -= 3; /* XXX */
1577 }
1578
1579 #if defined(COMPAT_OSF1) || 1 /* XXX */
1580 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1581 u_long, register_t *));
1582
1583 void
1584 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1585 struct proc *p;
1586 struct exec_package *epp;
1587 u_long stack;
1588 register_t *retval;
1589 {
1590 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1591
1592 setregs(p, epp, stack, retval);
1593 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1594 }
1595
1596 /*
1597 * cpu_exec_ecoff_hook():
1598 * cpu-dependent ECOFF format hook for execve().
1599 *
1600 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1601 *
1602 */
1603 int
1604 cpu_exec_ecoff_hook(p, epp)
1605 struct proc *p;
1606 struct exec_package *epp;
1607 {
1608 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1609 extern struct emul emul_netbsd;
1610 #ifdef COMPAT_OSF1
1611 extern struct emul emul_osf1;
1612 #endif
1613
1614 switch (execp->f.f_magic) {
1615 #ifdef COMPAT_OSF1
1616 case ECOFF_MAGIC_ALPHA:
1617 epp->ep_emul = &emul_osf1;
1618 break;
1619 #endif
1620
1621 case ECOFF_MAGIC_NETBSD_ALPHA:
1622 epp->ep_emul = &emul_netbsd;
1623 break;
1624
1625 default:
1626 return ENOEXEC;
1627 }
1628 return 0;
1629 }
1630 #endif
1631
1632 /* XXX XXX BEGIN XXX XXX */
1633 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1634 /* XXX */
1635 vm_offset_t /* XXX */
1636 alpha_XXX_dmamap(v) /* XXX */
1637 vm_offset_t v; /* XXX */
1638 { /* XXX */
1639 /* XXX */
1640 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1641 } /* XXX */
1642 /* XXX XXX END XXX XXX */
1643