machdep.c revision 1.7 1 /* $NetBSD: machdep.c,v 1.7 1995/06/28 02:45:07 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/conf.h>
39 #include <sys/file.h>
40 #ifdef REAL_CLISTS
41 #include <sys/clist.h>
42 #endif
43 #include <sys/callout.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/msgbuf.h>
47 #include <sys/ioctl.h>
48 #include <sys/tty.h>
49 #include <sys/user.h>
50 #include <sys/exec.h>
51 #include <sys/exec_ecoff.h>
52 #include <sys/sysctl.h>
53 #ifdef SYSVMSG
54 #include <sys/msg.h>
55 #endif
56 #ifdef SYSVSEM
57 #include <sys/sem.h>
58 #endif
59 #ifdef SYSVSHM
60 #include <sys/shm.h>
61 #endif
62
63 #include <sys/mount.h>
64 #include <sys/syscallargs.h>
65
66 #include <vm/vm_kern.h>
67
68 #include <dev/cons.h>
69
70 #include <machine/cpu.h>
71 #include <machine/reg.h>
72 #include <machine/rpb.h>
73 #include <machine/prom.h>
74
75 #include <net/netisr.h>
76 #include "ether.h"
77
78 #include "le.h" /* XXX for le_iomem creation */
79 #include "esp.h" /* XXX for esp_iomem creation */
80
81 vm_map_t buffer_map;
82
83 void dumpsys __P((void));
84
85 /*
86 * Declare these as initialized data so we can patch them.
87 */
88 int nswbuf = 0;
89 #ifdef NBUF
90 int nbuf = NBUF;
91 #else
92 int nbuf = 0;
93 #endif
94 #ifdef BUFPAGES
95 int bufpages = BUFPAGES;
96 #else
97 int bufpages = 0;
98 #endif
99 int msgbufmapped = 0; /* set when safe to use msgbuf */
100 int maxmem; /* max memory per process */
101
102 int totalphysmem; /* total amount of physical memory in system */
103 int physmem; /* physical memory used by NetBSD + some rsvd */
104 int firstusablepage; /* first usable memory page */
105 int lastusablepage; /* last usable memory page */
106 int resvmem; /* amount of memory reserved for PROM */
107 int unusedmem; /* amount of memory for OS that we don't use */
108 int unknownmem; /* amount of memory with an unknown use */
109
110 int cputype; /* system type, from the RPB */
111
112 /*
113 * XXX We need an address to which we can assign things so that they
114 * won't be optimized away because we didn't use the value.
115 */
116 u_int32_t no_optimize;
117
118 /* the following is used externally (sysctl_hw) */
119 char machine[] = "alpha";
120 char *cpu_model;
121 char *model_names[] = {
122 "UNKNOWN (0)",
123 "Alpha Demonstration Unit",
124 "DEC 4000 (\"Cobra\")",
125 "DEC 7000 (\"Ruby\")",
126 "DEC 3000/500 (\"Flamingo\") family",
127 "UNKNOWN (5)",
128 "DEC 2000/300 (\"Jensen\")",
129 "DEC 3000/300 (\"Pelican\")",
130 "UNKNOWN (8)",
131 "DEC 2100/A500 (\"Sable\")",
132 "AXPvme 64",
133 "AXPpci 33 (\"NoName\")",
134 "UNKNOWN (12)",
135 "DEC 2100/A50 (\"Avanti\") family",
136 "Mustang",
137 "DEC 1000 (\"Mikasa\")",
138 };
139 int nmodel_names = sizeof model_names/sizeof model_names[0];
140
141 struct user *proc0paddr;
142
143 /* Number of machine cycles per microsecond */
144 u_int64_t cycles_per_usec;
145
146 /* some memory areas for device DMA. "ick." */
147 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
148 caddr_t esp_iomem; /* XXX iomem for SCSI DMA */
149
150 /* Interrupt vectors (in locore) */
151 extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
152
153 /* number of cpus in the box. really! */
154 int ncpus;
155
156 int
157 alpha_init(pfn, ptb, argc, argv, envp)
158 u_long pfn; /* first free PFN number */
159 u_long ptb; /* PFN of current level 1 page table */
160 u_long argc;
161 char *argv[], *envp[];
162 {
163 extern char _end[];
164 caddr_t start, v;
165 struct mddt *mddtp;
166 int i, mddtweird;
167 char *p;
168
169 /*
170 * Turn off interrupts and floating point.
171 * Make sure the instruction and data streams are consistent.
172 */
173 (void)splhigh();
174 pal_wrfen(0);
175 TBIA();
176 IMB();
177
178 /*
179 * get address of the restart block, while we the bootstrap
180 * mapping is still around.
181 */
182 hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
183
184 /*
185 * Remember how many cycles there are per microsecond,
186 * so that we can use delay(). Round up, for safety.
187 */
188 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
189
190 /*
191 * Init the PROM interface, so we can use printf
192 * until PROM mappings go away in consinit.
193 */
194 init_prom_interface();
195
196 /*
197 * Point interrupt/exception vectors to our own.
198 */
199 pal_wrent(XentInt, 0);
200 pal_wrent(XentArith, 1);
201 pal_wrent(XentMM, 2);
202 pal_wrent(XentIF, 3);
203 pal_wrent(XentUna, 4);
204 pal_wrent(XentSys, 5);
205
206 /*
207 * Find out how much memory is available, by looking at
208 * the memory cluster descriptors. This also tries to do
209 * its best to detect things things that have never been seen
210 * before...
211 *
212 * XXX Assumes that the first "system" cluster is the
213 * only one we can use. Is the second (etc.) system cluster
214 * (if one happens to exist) guaranteed to be contiguous? or...?
215 */
216 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
217
218 /*
219 * BEGIN MDDT WEIRDNESS CHECKING
220 */
221 mddtweird = 0;
222
223 #define cnt mddtp->mddt_cluster_cnt
224 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
225 if (cnt != 2 && cnt != 3) {
226 printf("WARNING: weird number (%d) of mem clusters\n", cnt);
227 mddtweird = 1;
228 } else if (usage(0) != MDDT_PALCODE ||
229 usage(1) != MDDT_SYSTEM ||
230 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
231 mddtweird = 1;
232 printf("WARNING: %d mem clusters, but weird config\n", cnt);
233 }
234
235 for (i = 0; i < cnt; i++) {
236 if ((usage(i) & MDDT_mbz) != 0) {
237 printf("WARNING: mem cluster %d has weird usage %lx\n",
238 i, usage(i));
239 mddtweird = 1;
240 }
241 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
242 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
243 mddtweird = 1;
244 }
245 /* XXX other things to check? */
246 }
247 #undef cnt
248 #undef usage
249
250 if (mddtweird) {
251 printf("\n");
252 printf("complete memory cluster information:\n");
253 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
254 printf("mddt %d:\n", i);
255 printf("\tpfn %lx\n",
256 mddtp->mddt_clusters[i].mddt_pfn);
257 printf("\tcnt %lx\n",
258 mddtp->mddt_clusters[i].mddt_pg_cnt);
259 printf("\ttest %lx\n",
260 mddtp->mddt_clusters[i].mddt_pg_test);
261 printf("\tbva %lx\n",
262 mddtp->mddt_clusters[i].mddt_v_bitaddr);
263 printf("\tbpa %lx\n",
264 mddtp->mddt_clusters[i].mddt_p_bitaddr);
265 printf("\tbcksum %lx\n",
266 mddtp->mddt_clusters[i].mddt_bit_cksum);
267 printf("\tusage %lx\n",
268 mddtp->mddt_clusters[i].mddt_usage);
269 }
270 printf("\n");
271 }
272 /*
273 * END MDDT WEIRDNESS CHECKING
274 */
275
276 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
277 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
278 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
279 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
280 if ((usage(i) & MDDT_mbz) != 0)
281 unknownmem += pgcnt(i);
282 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
283 resvmem += pgcnt(i);
284 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
285 /*
286 * assumes that the system cluster listed is
287 * one we're in...
288 */
289 if (physmem != resvmem) {
290 physmem += pgcnt(i);
291 firstusablepage =
292 mddtp->mddt_clusters[i].mddt_pfn;
293 lastusablepage = firstusablepage + pgcnt(i) - 1;
294 } else
295 unusedmem += pgcnt(i);
296 }
297 #undef usage
298 #undef pgcnt
299 }
300 if (totalphysmem == 0)
301 panic("can't happen: system seems to have no memory!");
302 maxmem = physmem;
303
304 #if 0
305 printf("totalphysmem = %d\n", totalphysmem);
306 printf("physmem = %d\n", physmem);
307 printf("firstusablepage = %d\n", firstusablepage);
308 printf("lastusablepage = %d\n", lastusablepage);
309 printf("resvmem = %d\n", resvmem);
310 printf("unusedmem = %d\n", unusedmem);
311 printf("unknownmem = %d\n", unknownmem);
312 #endif
313
314 /*
315 * find out this CPU's page size
316 */
317 PAGE_SIZE = hwrpb->rpb_page_size;
318
319 v = (caddr_t)alpha_round_page(_end);
320 /*
321 * Init mapping for u page(s) for proc 0
322 */
323 start = v;
324 curproc->p_addr = proc0paddr = (struct user *)v;
325 v += UPAGES * NBPG;
326
327 /*
328 * Find out what hardware we're on, and remember its type name.
329 * XXX and start dealing with config?
330 */
331 cputype = hwrpb->rpb_type;
332 switch (cputype) {
333 #ifdef ADU
334 case ST_ADU:
335 THIS SYSTEM NOT SUPPORTED
336 #endif
337
338 #ifdef DEC_4000
339 case ST_DEC_4000:
340 THIS SYSTEM NOT SUPPORTED
341 #endif
342
343 #ifdef DEC_7000
344 case ST_DEC_7000:
345 THIS SYSTEM NOT SUPPORTED
346 #endif
347
348 #ifdef DEC_3000_500 /* and 400, [6-9]00 */
349 case ST_DEC_3000_500:
350 switch (hwrpb->rpb_variation & SV_ST_MASK) {
351 case SV_ST_SANDPIPER:
352 systype_sandpiper:
353 cpu_model = "DEC 3000/400 (\"Sandpiper\")";
354 break;
355
356 case SV_ST_FLAMINGO:
357 systype_flamingo:
358 cpu_model = "DEC 3000/500 (\"Flamingo\")";
359 break;
360
361 case SV_ST_HOTPINK:
362 cpu_model = "DEC 3000/500X (\"Hot Pink\")";
363 break;
364
365 case SV_ST_FLAMINGOPLUS:
366 case SV_ST_ULTRA:
367 cpu_model = "DEC 3000/800 (\"Flamingo+\")";
368 break;
369
370 case SV_ST_SANDPLUS:
371 cpu_model = "DEC 3000/600 (\"Sandpiper+\")";
372 break;
373
374 case SV_ST_SANDPIPER45:
375 cpu_model = "DEC 3000/700 (\"Sandpiper45\")";
376 break;
377
378 case SV_ST_FLAMINGO45:
379 cpu_model = "DEC 3000/900 (\"Flamingo45\")";
380 break;
381
382 case SV_ST_RESERVED: /* this is how things used to be done */
383 if (hwrpb->rpb_variation & SV_GRAPHICS)
384 goto systype_flamingo;
385 else
386 goto systype_sandpiper;
387 /* NOTREACHED */
388
389 default:
390 printf("unknown system variation %lx\n",
391 hwrpb->rpb_variation & SV_ST_MASK);
392 }
393 break;
394 #endif
395
396 #ifdef DEC_2000_300
397 case ST_DEC_2000_300:
398 /* XXX XXX XXX */
399 break;
400 #endif
401
402 #ifdef DEC_3000_300
403 case ST_DEC_3000_300:
404 switch (hwrpb->rpb_variation & SV_ST_MASK) {
405 case SV_ST_PELICAN:
406 cpu_model = "DEC 3000/300 (\"Pelican\")";
407 break;
408
409 case SV_ST_PELICA:
410 cpu_model = "DEC 3000/300L (\"Pelica\")";
411 break;
412
413 case SV_ST_PELICANPLUS:
414 cpu_model = "DEC 3000/300X (\"Pelican+\")";
415 break;
416
417 case SV_ST_PELICAPLUS:
418 cpu_model = "DEC 3000/300LX (\"Pelica+\")";
419 break;
420
421 default:
422 printf("unknown system variation %lx\n",
423 hwrpb->rpb_variation & SV_ST_MASK);
424 }
425 break;
426 #endif
427
428 #ifdef DEC_2100_A500
429 case ST_DEC_2100_A500:
430 THIS SYSTEM NOT SUPPORTED
431 #endif
432
433 #ifdef DEC_AXPVME_64
434 case ST_DEC_AXPVME_64:
435 THIS SYSTEM NOT SUPPORTED
436 #endif
437
438 #ifdef DEC_AXPPCI_33
439 case ST_DEC_AXPPCI_33:
440 THIS SYSTEM NOT SUPPORTED
441 #endif
442
443 #ifdef DEC_2100_A50
444 case ST_DEC_2100_A50:
445 switch (hwrpb->rpb_variation & SV_ST_MASK) {
446 case SV_ST_AVANTI:
447 case SV_ST_AVANTI_XXX: /* XXX apparently the same? */
448 cpu_model = "AlphaStation 400 4/233 (\"Avanti\")";
449 break;
450
451 case SV_ST_MUSTANG2_4_166:
452 cpu_model = "AlphaStation 200 4/166 (\"Mustang II\")";
453 break;
454
455 case SV_ST_MUSTANG2_4_233:
456 cpu_model = "AlphaStation 200 4/233 (\"Mustang II\")";
457 break;
458
459 case SV_ST_MUSTANG2_4_100:
460 cpu_model = "AlphaStation 200 4/100 (\"Mustang II\")";
461 break;
462
463 default:
464 printf("unknown system variation %lx\n",
465 hwrpb->rpb_variation & SV_ST_MASK);
466 }
467 break;
468 #endif
469
470 #ifdef DEC_MUSTANG
471 case ST_DEC_MUSTANG:
472 THIS SYSTEM NOT SUPPORTED
473 #endif
474
475 #ifdef DEC_1000
476 case ST_DEC_1000:
477 THIS SYSTEM NOT SUPPORTED
478 #endif
479
480 default:
481 if (cputype > nmodel_names)
482 panic("Unknown system type %d", cputype);
483 else
484 panic("Support for %s system type not in kernel.",
485 model_names[cputype]);
486 }
487 if (cpu_model == NULL)
488 cpu_model = model_names[cputype];
489
490 #if NLE > 0
491 /*
492 * Grab 128K at the top of physical memory for the lance chip
493 * on machines where it does dma through the I/O ASIC.
494 * It must be physically contiguous and aligned on a 128K boundary.
495 */
496 if (cputype == ST_DEC_3000_500 ||
497 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
498 lastusablepage -= btoc(128 * 1024);
499 le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
500 }
501 #endif /* NLE */
502 #if NESP > 0
503 /*
504 * Ditto for the scsi chip. There is probably a way to make esp.c
505 * do dma without these buffers, but it would require major
506 * re-engineering of the esp driver.
507 * They must be 8K in size and page aligned.
508 */
509 if (cputype == ST_DEC_3000_500 ||
510 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
511 lastusablepage -= btoc(NESP * 8192);
512 esp_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
513 }
514 #endif /* NESP */
515
516 /*
517 * Initialize error message buffer (at end of core).
518 */
519 lastusablepage -= btoc(sizeof (struct msgbuf));
520 msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
521 msgbufmapped = 1;
522
523 /*
524 * Allocate space for system data structures.
525 * The first available kernel virtual address is in "v".
526 * As pages of kernel virtual memory are allocated, "v" is incremented.
527 *
528 * These data structures are allocated here instead of cpu_startup()
529 * because physical memory is directly addressable. We don't have
530 * to map these into virtual address space.
531 */
532 #define valloc(name, type, num) \
533 (name) = (type *)v; v = (caddr_t)((name)+(num))
534 #define valloclim(name, type, num, lim) \
535 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
536 #ifdef REAL_CLISTS
537 valloc(cfree, struct cblock, nclist);
538 #endif
539 valloc(callout, struct callout, ncallout);
540 valloc(swapmap, struct map, nswapmap = maxproc * 2);
541 #ifdef SYSVSHM
542 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
543 #endif
544 #ifdef SYSVSEM
545 valloc(sema, struct semid_ds, seminfo.semmni);
546 valloc(sem, struct sem, seminfo.semmns);
547 /* This is pretty disgusting! */
548 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
549 #endif
550 #ifdef SYSVMSG
551 valloc(msgpool, char, msginfo.msgmax);
552 valloc(msgmaps, struct msgmap, msginfo.msgseg);
553 valloc(msghdrs, struct msg, msginfo.msgtql);
554 valloc(msqids, struct msqid_ds, msginfo.msgmni);
555 #endif
556
557 /*
558 * Determine how many buffers to allocate.
559 * We allocate the BSD standard of 10% of memory for the first
560 * 2 Meg, and 5% of remaining memory for buffer space. Insure a
561 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
562 * headers as file i/o buffers.
563 */
564 if (bufpages == 0)
565 bufpages = (btoc(2 * 1024 * 1024) + physmem) /
566 (20 * CLSIZE);
567 if (nbuf == 0) {
568 nbuf = bufpages;
569 if (nbuf < 16)
570 nbuf = 16;
571 }
572 if (nswbuf == 0) {
573 nswbuf = (nbuf / 2) &~ 1; /* force even */
574 if (nswbuf > 256)
575 nswbuf = 256; /* sanity */
576 }
577 valloc(swbuf, struct buf, nswbuf);
578 valloc(buf, struct buf, nbuf);
579
580 /*
581 * Clear allocated memory.
582 */
583 bzero(start, v - start);
584
585 /*
586 * Initialize the virtual memory system, and set the
587 * page table base register in proc 0's PCB.
588 */
589 pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
590
591 /*
592 * Initialize the rest of proc 0's PCB, and cache its physical
593 * address.
594 */
595 proc0.p_md.md_pcbpaddr =
596 (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
597
598 /*
599 * Set the kernel sp, reserving space for an (empty) trapframe,
600 * and make proc0's trapframe pointer point to it for sanity.
601 */
602 proc0paddr->u_pcb.pcb_ksp =
603 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
604 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
605
606 /*
607 * Look at arguments and compute bootdev.
608 *
609 * XXX
610 * Boot currently doesn't pass any arguments concerning booting
611 * or the root device.
612 */
613 { extern dev_t bootdev;
614 bootdev = MAKEBOOTDEV(8, 0, 0, 0, 0); /* sd0a. XXX */
615 }
616
617 /*
618 * Look at arguments passed to us and compute boothowto.
619 */
620 #ifdef GENERIC
621 boothowto = RB_SINGLE | RB_ASKNAME;
622 #else
623 boothowto = RB_SINGLE;
624 #endif
625 #ifdef KADB
626 boothowto |= RB_KDB;
627 #endif
628
629 #if 0
630 printf("argc = %d\n", argc);
631 printf("argv = %lx\n", argv);
632 for (i = 0; i < argc; i++)
633 printf("argv[%d] = (%lx) \"%s\"\n", i, argv[i], argv[i]);
634 #endif
635
636 if (argc > 1) {
637 /* we have arguments. argv[1] is the flags. */
638 for (p = argv[1]; *p != '\0'; p++) {
639 switch (*p) {
640 case 'a': /* autoboot */
641 case 'A': /* DEC's notion of autoboot */
642 boothowto &= ~RB_SINGLE;
643 break;
644
645 case 'd': /* use compiled in default root */
646 boothowto |= RB_DFLTROOT;
647 break;
648
649 case 'm': /* mini root present in memory */
650 boothowto |= RB_MINIROOT;
651 break;
652
653 case 'n': /* ask for names */
654 boothowto |= RB_ASKNAME;
655 break;
656
657 case 'N': /* don't ask for names */
658 boothowto &= ~RB_ASKNAME;
659 }
660 }
661 }
662
663 /*
664 * Figure out the number of cpus in the box, from RPB fields.
665 * Really. We mean it.
666 */
667 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
668 struct pcs *pcsp;
669
670 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
671 (i * hwrpb->rpb_pcs_size));
672 if ((pcsp->pcs_flags & PCS_PP) != 0)
673 ncpus++;
674 }
675
676 return (0);
677 }
678
679 /* for cons.c */
680 struct consdev constab[] = {
681 { 0 },
682 };
683
684 consinit()
685 {
686 /* XXX SET UP THE CONSOLE TAB TO HAVE REASONABLE ENTRIES */
687 /* XXX */
688
689 /* XXX PICK A NEW CONSOLE DEVICE */
690 /* cninit(); */
691
692 pmap_unmap_prom();
693 }
694
695 cpu_startup()
696 {
697 register unsigned i;
698 register caddr_t v;
699 int base, residual;
700 vm_offset_t minaddr, maxaddr;
701 vm_size_t size;
702 #ifdef DEBUG
703 extern int pmapdebug;
704 int opmapdebug = pmapdebug;
705
706 pmapdebug = 0;
707 #endif
708
709 /*
710 * Good {morning,afternoon,evening,night}.
711 */
712 printf(version);
713 identifycpu();
714 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
715 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
716 if (unusedmem)
717 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
718 if (unknownmem)
719 printf("WARNING: %d bytes of memory with unknown purpose\n",
720 ctob(unknownmem));
721
722 /*
723 * Allocate virtual address space for file I/O buffers.
724 * Note they are different than the array of headers, 'buf',
725 * and usually occupy more virtual memory than physical.
726 */
727 size = MAXBSIZE * nbuf;
728 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
729 &maxaddr, size, TRUE);
730 minaddr = (vm_offset_t)buffers;
731 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
732 &minaddr, size, FALSE) != KERN_SUCCESS)
733 panic("startup: cannot allocate buffers");
734 base = bufpages / nbuf;
735 residual = bufpages % nbuf;
736 for (i = 0; i < nbuf; i++) {
737 vm_size_t curbufsize;
738 vm_offset_t curbuf;
739
740 /*
741 * First <residual> buffers get (base+1) physical pages
742 * allocated for them. The rest get (base) physical pages.
743 *
744 * The rest of each buffer occupies virtual space,
745 * but has no physical memory allocated for it.
746 */
747 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
748 curbufsize = CLBYTES * (i < residual ? base+1 : base);
749 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
750 vm_map_simplify(buffer_map, curbuf);
751 }
752 /*
753 * Allocate a submap for exec arguments. This map effectively
754 * limits the number of processes exec'ing at any time.
755 */
756 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
757 16 * NCARGS, TRUE);
758
759 /*
760 * Allocate a submap for physio
761 */
762 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
763 VM_PHYS_SIZE, TRUE);
764
765 /*
766 * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
767 * we use the more space efficient malloc in place of kmem_alloc.
768 */
769 mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
770 M_MBUF, M_NOWAIT);
771 bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
772 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
773 VM_MBUF_SIZE, FALSE);
774 /*
775 * Initialize callouts
776 */
777 callfree = callout;
778 for (i = 1; i < ncallout; i++)
779 callout[i-1].c_next = &callout[i];
780 callout[i-1].c_next = NULL;
781
782 #ifdef DEBUG
783 pmapdebug = opmapdebug;
784 #endif
785 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
786 printf("using %ld buffers containing %ld bytes of memory\n",
787 (long)nbuf, (long)(bufpages * CLBYTES));
788
789 /*
790 * Set up buffers, so they can be used to read disk labels.
791 */
792 bufinit();
793
794 /*
795 * Configure the system.
796 */
797 configure();
798 }
799
800 identifycpu()
801 {
802
803 /*
804 * print out CPU identification information.
805 */
806 printf("%s, %dMHz\n", cpu_model,
807 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
808 printf("%d byte page size, %d processor%s.\n",
809 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
810 #if 0
811 /* this isn't defined for any systems that we run on? */
812 printf("serial number 0x%lx 0x%lx\n",
813 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
814
815 /* and these aren't particularly useful! */
816 printf("variation: 0x%lx, revision 0x%lx\n",
817 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
818 #endif
819 }
820
821 int waittime = -1;
822 struct pcb dumppcb;
823
824 boot(howto)
825 int howto;
826 {
827 extern int cold;
828
829 /* If system is cold, just halt. */
830 if (cold) {
831 howto |= RB_HALT;
832 goto haltsys;
833 }
834
835 boothowto = howto;
836 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
837 waittime = 0;
838 vfs_shutdown();
839 /*
840 * If we've been adjusting the clock, the todr
841 * will be out of synch; adjust it now.
842 */
843 resettodr();
844 }
845
846 /* Disable interrupts. */
847 splhigh();
848
849 /* If rebooting and a dump is requested do it. */
850 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
851 savectx(&dumppcb, 0);
852 dumpsys();
853 }
854
855 /* run any shutdown hooks */
856 doshutdownhooks();
857
858 haltsys:
859
860 #ifdef BOOTKEY
861 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
862 cngetc();
863 printf("\n");
864 #endif
865
866 /* Finally, halt/reboot the system. */
867 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
868 prom_halt(howto & RB_HALT);
869 /*NOTREACHED*/
870 }
871
872 /*
873 * These variables are needed by /sbin/savecore
874 */
875 u_long dumpmag = 0x8fca0101; /* magic number */
876 int dumpsize = 0; /* pages */
877 long dumplo = 0; /* blocks */
878
879 /*
880 * This is called by configure to set dumplo and dumpsize.
881 * Dumps always skip the first CLBYTES of disk space
882 * in case there might be a disk label stored there.
883 * If there is extra space, put dump at the end to
884 * reduce the chance that swapping trashes it.
885 */
886 void
887 dumpconf()
888 {
889 int nblks; /* size of dump area */
890 int maj;
891
892 if (dumpdev == NODEV)
893 return;
894 maj = major(dumpdev);
895 if (maj < 0 || maj >= nblkdev)
896 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
897 if (bdevsw[maj].d_psize == NULL)
898 return;
899 nblks = (*bdevsw[maj].d_psize)(dumpdev);
900 if (nblks <= ctod(1))
901 return;
902
903 /* XXX XXX XXX STARTING MEMORY LOCATION */
904 dumpsize = physmem;
905
906 /* Always skip the first CLBYTES, in case there is a label there. */
907 if (dumplo < ctod(1))
908 dumplo = ctod(1);
909
910 /* Put dump at end of partition, and make it fit. */
911 if (dumpsize > dtoc(nblks - dumplo))
912 dumpsize = dtoc(nblks - dumplo);
913 if (dumplo < nblks - ctod(dumpsize))
914 dumplo = nblks - ctod(dumpsize);
915 }
916
917 /*
918 * Doadump comes here after turning off memory management and
919 * getting on the dump stack, either when called above, or by
920 * the auto-restart code.
921 */
922 void
923 dumpsys()
924 {
925
926 msgbufmapped = 0;
927 if (dumpdev == NODEV)
928 return;
929 if (dumpsize == 0) {
930 dumpconf();
931 if (dumpsize == 0)
932 return;
933 }
934 printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
935
936 printf("dump ");
937 switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
938
939 case ENXIO:
940 printf("device bad\n");
941 break;
942
943 case EFAULT:
944 printf("device not ready\n");
945 break;
946
947 case EINVAL:
948 printf("area improper\n");
949 break;
950
951 case EIO:
952 printf("i/o error\n");
953 break;
954
955 case EINTR:
956 printf("aborted from console\n");
957 break;
958
959 default:
960 printf("succeeded\n");
961 break;
962 }
963 printf("\n\n");
964 delay(1000);
965 }
966
967 void
968 frametoreg(framep, regp)
969 struct trapframe *framep;
970 struct reg *regp;
971 {
972
973 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
974 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
975 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
976 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
977 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
978 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
979 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
980 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
981 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
982 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
983 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
984 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
985 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
986 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
987 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
988 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
989 regp->r_regs[R_A0] = framep->tf_a0;
990 regp->r_regs[R_A1] = framep->tf_a1;
991 regp->r_regs[R_A2] = framep->tf_a2;
992 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
993 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
994 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
995 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
996 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
997 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
998 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
999 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1000 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1001 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1002 regp->r_regs[R_GP] = framep->tf_gp;
1003 regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
1004 regp->r_regs[R_ZERO] = 0;
1005 }
1006
1007 void
1008 regtoframe(regp, framep)
1009 struct reg *regp;
1010 struct trapframe *framep;
1011 {
1012
1013 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1014 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1015 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1016 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1017 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1018 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1019 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1020 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1021 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1022 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1023 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1024 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1025 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1026 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1027 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1028 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1029 framep->tf_a0 = regp->r_regs[R_A0];
1030 framep->tf_a1 = regp->r_regs[R_A1];
1031 framep->tf_a2 = regp->r_regs[R_A2];
1032 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1033 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1034 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1035 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1036 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1037 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1038 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1039 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1040 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1041 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1042 framep->tf_gp = regp->r_regs[R_GP];
1043 framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
1044 /* ??? = regp->r_regs[R_ZERO]; */
1045 }
1046
1047 void
1048 printregs(regp)
1049 struct reg *regp;
1050 {
1051 int i;
1052
1053 for (i = 0; i < 32; i++)
1054 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1055 i & 1 ? "\n" : "\t");
1056 }
1057
1058 void
1059 regdump(framep)
1060 struct trapframe *framep;
1061 {
1062 struct reg reg;
1063
1064 frametoreg(framep, ®);
1065 printf("REGISTERS:\n");
1066 printregs(®);
1067 }
1068
1069 #ifdef DEBUG
1070 int sigdebug = 0;
1071 int sigpid = 0;
1072 #define SDB_FOLLOW 0x01
1073 #define SDB_KSTACK 0x02
1074 #endif
1075
1076 /*
1077 * Send an interrupt to process.
1078 */
1079 void
1080 sendsig(catcher, sig, mask, code)
1081 sig_t catcher;
1082 int sig, mask;
1083 u_long code;
1084 {
1085 struct proc *p = curproc;
1086 struct sigcontext *scp, ksc;
1087 struct trapframe *frame;
1088 struct sigacts *psp = p->p_sigacts;
1089 int oonstack, fsize, rndfsize;
1090 extern char sigcode[], esigcode[];
1091 extern struct proc *fpcurproc;
1092
1093 frame = p->p_md.md_tf;
1094 oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
1095 fsize = sizeof ksc;
1096 rndfsize = ((fsize + 15) / 16) * 16;
1097 /*
1098 * Allocate and validate space for the signal handler
1099 * context. Note that if the stack is in P0 space, the
1100 * call to grow() is a nop, and the useracc() check
1101 * will fail if the process has not already allocated
1102 * the space with a `brk'.
1103 */
1104 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1105 (psp->ps_sigonstack & sigmask(sig))) {
1106 scp = (struct sigcontext *)(psp->ps_sigstk.ss_base +
1107 psp->ps_sigstk.ss_size - rndfsize);
1108 psp->ps_sigstk.ss_flags |= SA_ONSTACK;
1109 } else
1110 scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1111 rndfsize);
1112 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1113 (void)grow(p, (u_long)scp);
1114 #ifdef DEBUG
1115 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1116 printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1117 sig, &oonstack, scp);
1118 #endif
1119 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1120 #ifdef DEBUG
1121 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1122 printf("sendsig(%d): useracc failed on sig %d\n",
1123 p->p_pid, sig);
1124 #endif
1125 /*
1126 * Process has trashed its stack; give it an illegal
1127 * instruction to halt it in its tracks.
1128 */
1129 SIGACTION(p, SIGILL) = SIG_DFL;
1130 sig = sigmask(SIGILL);
1131 p->p_sigignore &= ~sig;
1132 p->p_sigcatch &= ~sig;
1133 p->p_sigmask &= ~sig;
1134 psignal(p, SIGILL);
1135 return;
1136 }
1137
1138 /*
1139 * Build the signal context to be used by sigreturn.
1140 */
1141 ksc.sc_onstack = oonstack;
1142 ksc.sc_mask = mask;
1143 ksc.sc_pc = frame->tf_pc;
1144 ksc.sc_ps = frame->tf_ps;
1145
1146 /* copy the registers. */
1147 frametoreg(frame, (struct reg *)ksc.sc_regs);
1148 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1149
1150 /* save the floating-point state, if necessary, then copy it. */
1151 if (p == fpcurproc) {
1152 pal_wrfen(1);
1153 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1154 pal_wrfen(0);
1155 fpcurproc = NULL;
1156 }
1157 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1158 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1159 sizeof(struct fpreg));
1160 ksc.sc_fp_control = 0; /* XXX ? */
1161 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1162 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1163
1164
1165 #ifdef COMPAT_OSF1
1166 /*
1167 * XXX Create an OSF/1-style sigcontext and associated goo.
1168 */
1169 #endif
1170
1171 /*
1172 * copy the frame out to userland.
1173 */
1174 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1175 #ifdef DEBUG
1176 if (sigdebug & SDB_FOLLOW)
1177 printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1178 scp, code);
1179 #endif
1180
1181 /*
1182 * Set up the registers to return to sigcode.
1183 */
1184 frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1185 frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1186 frame->tf_a0 = sig;
1187 frame->tf_a1 = code;
1188 frame->tf_a2 = (u_int64_t)scp;
1189 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1190
1191 #ifdef DEBUG
1192 if (sigdebug & SDB_FOLLOW)
1193 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1194 frame->tf_pc, frame->tf_regs[FRAME_A3]);
1195 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1196 printf("sendsig(%d): sig %d returns\n",
1197 p->p_pid, sig);
1198 #endif
1199 }
1200
1201 /*
1202 * System call to cleanup state after a signal
1203 * has been taken. Reset signal mask and
1204 * stack state from context left by sendsig (above).
1205 * Return to previous pc and psl as specified by
1206 * context left by sendsig. Check carefully to
1207 * make sure that the user has not modified the
1208 * psl to gain improper priviledges or to cause
1209 * a machine fault.
1210 */
1211 /* ARGSUSED */
1212 sigreturn(p, uap, retval)
1213 struct proc *p;
1214 struct sigreturn_args /* {
1215 syscallarg(struct sigcontext *) sigcntxp;
1216 } */ *uap;
1217 register_t *retval;
1218 {
1219 struct sigcontext *scp, ksc;
1220 extern struct proc *fpcurproc;
1221
1222 scp = SCARG(uap, sigcntxp);
1223 #ifdef DEBUG
1224 if (sigdebug & SDB_FOLLOW)
1225 printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1226 #endif
1227
1228 if (ALIGN(scp) != (u_int64_t)scp)
1229 return (EINVAL);
1230
1231 /*
1232 * Test and fetch the context structure.
1233 * We grab it all at once for speed.
1234 */
1235 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1236 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1237 return (EINVAL);
1238
1239 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1240 return (EINVAL);
1241 /*
1242 * Restore the user-supplied information
1243 */
1244 if (ksc.sc_onstack)
1245 p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
1246 else
1247 p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
1248 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1249
1250 p->p_md.md_tf->tf_pc = ksc.sc_pc;
1251 p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
1252
1253 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1254
1255 /* XXX ksc.sc_ownedfp ? */
1256 if (p == fpcurproc)
1257 fpcurproc = NULL;
1258 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1259 sizeof(struct fpreg));
1260 /* XXX ksc.sc_fp_control ? */
1261
1262 #ifdef DEBUG
1263 if (sigdebug & SDB_FOLLOW)
1264 printf("sigreturn(%d): returns\n", p->p_pid);
1265 #endif
1266 return (EJUSTRETURN);
1267 }
1268
1269 /*
1270 * machine dependent system variables.
1271 */
1272 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1273 int *name;
1274 u_int namelen;
1275 void *oldp;
1276 size_t *oldlenp;
1277 void *newp;
1278 size_t newlen;
1279 struct proc *p;
1280 {
1281 dev_t consdev;
1282
1283 /* all sysctl names at this level are terminal */
1284 if (namelen != 1)
1285 return (ENOTDIR); /* overloaded */
1286
1287 switch (name[0]) {
1288 case CPU_CONSDEV:
1289 if (cn_tab != NULL)
1290 consdev = cn_tab->cn_dev;
1291 else
1292 consdev = NODEV;
1293 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1294 sizeof consdev));
1295 default:
1296 return (EOPNOTSUPP);
1297 }
1298 /* NOTREACHED */
1299 }
1300
1301 /*
1302 * Set registers on exec.
1303 */
1304 void
1305 setregs(p, pack, stack, retval)
1306 register struct proc *p;
1307 struct exec_package *pack;
1308 u_long stack;
1309 register_t *retval;
1310 {
1311 struct trapframe *tfp = p->p_md.md_tf;
1312 int i;
1313 extern struct proc *fpcurproc;
1314
1315 #ifdef DEBUG
1316 for (i = 0; i < FRAME_NSAVEREGS; i++)
1317 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1318 tfp->tf_gp = 0xbabefacedeadbeef;
1319 tfp->tf_a0 = 0xbabefacedeadbeef;
1320 tfp->tf_a1 = 0xbabefacedeadbeef;
1321 tfp->tf_a2 = 0xbabefacedeadbeef;
1322 #else
1323 bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1324 tfp->tf_gp = 0;
1325 tfp->tf_a0 = 0;
1326 tfp->tf_a1 = 0;
1327 tfp->tf_a2 = 0;
1328 #endif
1329 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1330 #define FP_RN 2 /* XXX */
1331 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1332 tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1333 tfp->tf_ps = PSL_USERSET;
1334 tfp->tf_pc = pack->ep_entry & ~3;
1335
1336 p->p_md.md_flags & ~MDP_FPUSED;
1337 if (fpcurproc == p)
1338 fpcurproc = NULL;
1339
1340 retval[0] = retval[1] = 0;
1341 }
1342
1343 void
1344 netintr()
1345 {
1346 #ifdef INET
1347 #if NETHER > 0
1348 if (netisr & (1 << NETISR_ARP)) {
1349 netisr &= ~(1 << NETISR_ARP);
1350 arpintr();
1351 }
1352 #endif
1353 if (netisr & (1 << NETISR_IP)) {
1354 netisr &= ~(1 << NETISR_IP);
1355 ipintr();
1356 }
1357 #endif
1358 #ifdef NS
1359 if (netisr & (1 << NETISR_NS)) {
1360 netisr &= ~(1 << NETISR_NS);
1361 nsintr();
1362 }
1363 #endif
1364 #ifdef ISO
1365 if (netisr & (1 << NETISR_ISO)) {
1366 netisr &= ~(1 << NETISR_ISO);
1367 clnlintr();
1368 }
1369 #endif
1370 #ifdef CCITT
1371 if (netisr & (1 << NETISR_CCITT)) {
1372 netisr &= ~(1 << NETISR_CCITT);
1373 ccittintr();
1374 }
1375 #endif
1376 }
1377
1378 void
1379 do_sir()
1380 {
1381
1382 if (ssir & SIR_NET) {
1383 siroff(SIR_NET);
1384 cnt.v_soft++;
1385 netintr();
1386 }
1387 if (ssir & SIR_CLOCK) {
1388 siroff(SIR_CLOCK);
1389 cnt.v_soft++;
1390 softclock();
1391 }
1392 }
1393
1394 int
1395 spl0()
1396 {
1397
1398 if (ssir) {
1399 splsoft();
1400 do_sir();
1401 }
1402
1403 return (pal_swpipl(PSL_IPL_0));
1404 }
1405
1406 /*
1407 * The following primitives manipulate the run queues. _whichqs tells which
1408 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1409 * into queues, Remrq removes them from queues. The running process is on
1410 * no queue, other processes are on a queue related to p->p_priority, divided
1411 * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1412 * queues.
1413 */
1414 /*
1415 * setrunqueue(p)
1416 * proc *p;
1417 *
1418 * Call should be made at splclock(), and p->p_stat should be SRUN.
1419 */
1420
1421 void
1422 setrunqueue(p)
1423 struct proc *p;
1424 {
1425 int bit;
1426
1427 /* firewall: p->p_back must be NULL */
1428 if (p->p_back != NULL)
1429 panic("setrunqueue");
1430
1431 bit = p->p_priority >> 2;
1432 whichqs |= (1 << bit);
1433 p->p_forw = (struct proc *)&qs[bit];
1434 p->p_back = qs[bit].ph_rlink;
1435 p->p_back->p_forw = p;
1436 qs[bit].ph_rlink = p;
1437 }
1438
1439 /*
1440 * Remrq(p)
1441 *
1442 * Call should be made at splclock().
1443 */
1444 void
1445 remrq(p)
1446 struct proc *p;
1447 {
1448 int bit;
1449
1450 bit = p->p_priority >> 2;
1451 if ((whichqs & (1 << bit)) == 0)
1452 panic("remrq");
1453
1454 p->p_back->p_forw = p->p_forw;
1455 p->p_forw->p_back = p->p_back;
1456 p->p_back = NULL; /* for firewall checking. */
1457
1458 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1459 whichqs &= ~(1 << bit);
1460 }
1461
1462 /*
1463 * Return the best possible estimate of the time in the timeval
1464 * to which tvp points. Unfortunately, we can't read the hardware registers.
1465 * We guarantee that the time will be greater than the value obtained by a
1466 * previous call.
1467 */
1468 void
1469 microtime(tvp)
1470 register struct timeval *tvp;
1471 {
1472 int s = splclock();
1473 static struct timeval lasttime;
1474
1475 *tvp = time;
1476 #ifdef notdef
1477 tvp->tv_usec += clkread();
1478 while (tvp->tv_usec > 1000000) {
1479 tvp->tv_sec++;
1480 tvp->tv_usec -= 1000000;
1481 }
1482 #endif
1483 if (tvp->tv_sec == lasttime.tv_sec &&
1484 tvp->tv_usec <= lasttime.tv_usec &&
1485 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1486 tvp->tv_sec++;
1487 tvp->tv_usec -= 1000000;
1488 }
1489 lasttime = *tvp;
1490 splx(s);
1491 }
1492
1493 #ifdef COMPAT_OSF1
1494 void
1495 cpu_exec_ecoff_setregs(p, pack, stack, retval)
1496 struct proc *p;
1497 struct exec_package *pack;
1498 u_long stack;
1499 register_t *retval;
1500 {
1501 struct ecoff_aouthdr *eap;
1502
1503 setregs(p, pack, stack, retval);
1504
1505 eap = (struct ecoff_aouthdr *)
1506 ((caddr_t)pack->ep_hdr + sizeof(struct ecoff_filehdr));
1507 p->p_md.md_tf->tf_gp = eap->ea_gp_value;
1508 }
1509
1510 /*
1511 * cpu_exec_ecoff_hook():
1512 * cpu-dependent ECOFF format hook for execve().
1513 *
1514 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1515 *
1516 */
1517 int
1518 cpu_exec_ecoff_hook(p, epp, eap)
1519 struct proc *p;
1520 struct exec_package *epp;
1521 struct ecoff_aouthdr *eap;
1522 {
1523 struct ecoff_filehdr *efp = epp->ep_hdr;
1524 extern struct emul emul_netbsd;
1525 #ifdef COMPAT_OSF1
1526 extern struct emul emul_osf1;
1527 #endif
1528
1529 switch (efp->ef_magic) {
1530 #ifdef COMPAT_OSF1
1531 case ECOFF_MAGIC_ALPHA:
1532 epp->ep_emul = &emul_osf1;
1533 break;
1534 #endif
1535
1536 case ECOFF_MAGIC_NETBSD_ALPHA:
1537 epp->ep_emul = &emul_netbsd;
1538 break;
1539
1540 #ifdef DIAGNOSTIC
1541 default:
1542 panic("cpu_exec_ecoff_hook: can't get here from there.");
1543 #endif
1544 }
1545 return 0;
1546 }
1547 #endif
1548
1549 vm_offset_t
1550 vtophys(vaddr)
1551 vm_offset_t vaddr;
1552 {
1553 vm_offset_t paddr;
1554
1555 if (vaddr < K0SEG_BEGIN) {
1556 printf("vtophys: invalid vaddr 0x%lx", vaddr);
1557 paddr = vaddr;
1558 } else if (vaddr < K0SEG_END)
1559 paddr = k0segtophys(vaddr);
1560 else
1561 paddr = vatopa(vaddr);
1562
1563 #if 0
1564 printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1565 #endif
1566
1567 return (paddr);
1568 }
1569