machdep.c revision 1.70 1 /* $NetBSD: machdep.c,v 1.70 1997/04/02 21:48:55 christos Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/conf.h>
40 #include <sys/file.h>
41 #ifdef REAL_CLISTS
42 #include <sys/clist.h>
43 #endif
44 #include <sys/callout.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/tty.h>
50 #include <sys/user.h>
51 #include <sys/exec.h>
52 #include <sys/exec_ecoff.h>
53 #include <sys/sysctl.h>
54 #include <sys/core.h>
55 #include <sys/kcore.h>
56 #include <machine/kcore.h>
57 #ifdef SYSVMSG
58 #include <sys/msg.h>
59 #endif
60 #ifdef SYSVSEM
61 #include <sys/sem.h>
62 #endif
63 #ifdef SYSVSHM
64 #include <sys/shm.h>
65 #endif
66
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69
70 #include <vm/vm_kern.h>
71
72 #include <dev/cons.h>
73
74 #include <machine/cpu.h>
75 #include <machine/reg.h>
76 #include <machine/rpb.h>
77 #include <machine/prom.h>
78 #include <machine/cpuconf.h>
79
80 #include <net/netisr.h>
81 #include <net/if.h>
82
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_inarp.h>
86 #include <netinet/ip_var.h>
87 #endif
88 #ifdef NS
89 #include <netns/ns_var.h>
90 #endif
91 #ifdef ISO
92 #include <netiso/iso.h>
93 #include <netiso/clnp.h>
94 #endif
95 #ifdef CCITT
96 #include <netccitt/x25.h>
97 #include <netccitt/pk.h>
98 #include <netccitt/pk_extern.h>
99 #endif
100 #ifdef NATM
101 #include <netnatm/natm.h>
102 #endif
103 #ifdef NETATALK
104 #include <netatalk/at_extern.h>
105 #endif
106 #include "ppp.h"
107 #if NPPP > 0
108 #include <net/ppp_defs.h>
109 #include <net/if_ppp.h>
110 #endif
111
112 #include "le_ioasic.h" /* for le_iomem creation */
113
114 vm_map_t buffer_map;
115
116 /*
117 * Declare these as initialized data so we can patch them.
118 */
119 int nswbuf = 0;
120 #ifdef NBUF
121 int nbuf = NBUF;
122 #else
123 int nbuf = 0;
124 #endif
125 #ifdef BUFPAGES
126 int bufpages = BUFPAGES;
127 #else
128 int bufpages = 0;
129 #endif
130 int msgbufmapped = 0; /* set when safe to use msgbuf */
131 int maxmem; /* max memory per process */
132
133 int totalphysmem; /* total amount of physical memory in system */
134 int physmem; /* physical memory used by NetBSD + some rsvd */
135 int firstusablepage; /* first usable memory page */
136 int lastusablepage; /* last usable memory page */
137 int resvmem; /* amount of memory reserved for PROM */
138 int unusedmem; /* amount of memory for OS that we don't use */
139 int unknownmem; /* amount of memory with an unknown use */
140
141 int cputype; /* system type, from the RPB */
142
143 /*
144 * XXX We need an address to which we can assign things so that they
145 * won't be optimized away because we didn't use the value.
146 */
147 u_int32_t no_optimize;
148
149 /* the following is used externally (sysctl_hw) */
150 char machine[] = "alpha";
151 char cpu_model[128];
152 const struct cpusw *cpu_fn_switch; /* function switch */
153
154 struct user *proc0paddr;
155
156 /* Number of machine cycles per microsecond */
157 u_int64_t cycles_per_usec;
158
159 /* some memory areas for device DMA. "ick." */
160 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
161
162 /* number of cpus in the box. really! */
163 int ncpus;
164
165 char boot_flags[64];
166 char booted_kernel[64];
167
168 /* for cpu_sysctl() */
169 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
170 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
171 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
172
173 int cpu_dump __P((void));
174 int cpu_dumpsize __P((void));
175 void dumpsys __P((void));
176 void identifycpu __P((void));
177 void netintr __P((void));
178 void printregs __P((struct reg *));
179
180 void
181 alpha_init(pfn, ptb)
182 u_long pfn; /* first free PFN number */
183 u_long ptb; /* PFN of current level 1 page table */
184 {
185 extern char _end[];
186 caddr_t start, v;
187 struct mddt *mddtp;
188 int i, mddtweird;
189 char *p;
190
191 /*
192 * Turn off interrupts and floating point.
193 * Make sure the instruction and data streams are consistent.
194 */
195 (void)splhigh();
196 alpha_pal_wrfen(0);
197 ALPHA_TBIA();
198 alpha_pal_imb();
199
200 /*
201 * get address of the restart block, while we the bootstrap
202 * mapping is still around.
203 */
204 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
205 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
206
207 /*
208 * Remember how many cycles there are per microsecond,
209 * so that we can use delay(). Round up, for safety.
210 */
211 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
212
213 /*
214 * Init the PROM interface, so we can use printf
215 * until PROM mappings go away in consinit.
216 */
217 init_prom_interface();
218
219 /*
220 * Point interrupt/exception vectors to our own.
221 */
222 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
223 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
224 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
225 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
226 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
227 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
228
229 /*
230 * Disable System and Processor Correctable Error reporting.
231 * Clear pending machine checks and error reports, etc.
232 */
233 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
234
235 /*
236 * Find out how much memory is available, by looking at
237 * the memory cluster descriptors. This also tries to do
238 * its best to detect things things that have never been seen
239 * before...
240 *
241 * XXX Assumes that the first "system" cluster is the
242 * only one we can use. Is the second (etc.) system cluster
243 * (if one happens to exist) guaranteed to be contiguous? or...?
244 */
245 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
246
247 /*
248 * BEGIN MDDT WEIRDNESS CHECKING
249 */
250 mddtweird = 0;
251
252 #define cnt mddtp->mddt_cluster_cnt
253 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
254 if (cnt != 2 && cnt != 3) {
255 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
256 mddtweird = 1;
257 } else if (usage(0) != MDDT_PALCODE ||
258 usage(1) != MDDT_SYSTEM ||
259 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
260 mddtweird = 1;
261 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
262 }
263
264 for (i = 0; i < cnt; i++) {
265 if ((usage(i) & MDDT_mbz) != 0) {
266 printf("WARNING: mem cluster %d has weird usage %lx\n",
267 i, usage(i));
268 mddtweird = 1;
269 }
270 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
271 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
272 mddtweird = 1;
273 }
274 /* XXX other things to check? */
275 }
276 #undef cnt
277 #undef usage
278
279 if (mddtweird) {
280 printf("\n");
281 printf("complete memory cluster information:\n");
282 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
283 printf("mddt %d:\n", i);
284 printf("\tpfn %lx\n",
285 mddtp->mddt_clusters[i].mddt_pfn);
286 printf("\tcnt %lx\n",
287 mddtp->mddt_clusters[i].mddt_pg_cnt);
288 printf("\ttest %lx\n",
289 mddtp->mddt_clusters[i].mddt_pg_test);
290 printf("\tbva %lx\n",
291 mddtp->mddt_clusters[i].mddt_v_bitaddr);
292 printf("\tbpa %lx\n",
293 mddtp->mddt_clusters[i].mddt_p_bitaddr);
294 printf("\tbcksum %lx\n",
295 mddtp->mddt_clusters[i].mddt_bit_cksum);
296 printf("\tusage %lx\n",
297 mddtp->mddt_clusters[i].mddt_usage);
298 }
299 printf("\n");
300 }
301 /*
302 * END MDDT WEIRDNESS CHECKING
303 */
304
305 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
306 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
307 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
308 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
309 if ((usage(i) & MDDT_mbz) != 0)
310 unknownmem += pgcnt(i);
311 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
312 resvmem += pgcnt(i);
313 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
314 /*
315 * assumes that the system cluster listed is
316 * one we're in...
317 */
318 if (physmem != resvmem) {
319 physmem += pgcnt(i);
320 firstusablepage =
321 mddtp->mddt_clusters[i].mddt_pfn;
322 lastusablepage = firstusablepage + pgcnt(i) - 1;
323 } else
324 unusedmem += pgcnt(i);
325 }
326 #undef usage
327 #undef pgcnt
328 }
329 if (totalphysmem == 0)
330 panic("can't happen: system seems to have no memory!");
331 maxmem = physmem;
332
333 #if 0
334 printf("totalphysmem = %d\n", totalphysmem);
335 printf("physmem = %d\n", physmem);
336 printf("firstusablepage = %d\n", firstusablepage);
337 printf("lastusablepage = %d\n", lastusablepage);
338 printf("resvmem = %d\n", resvmem);
339 printf("unusedmem = %d\n", unusedmem);
340 printf("unknownmem = %d\n", unknownmem);
341 #endif
342
343 /*
344 * find out this CPU's page size
345 */
346 PAGE_SIZE = hwrpb->rpb_page_size;
347 if (PAGE_SIZE != 8192)
348 panic("page size %d != 8192?!", PAGE_SIZE);
349
350 v = (caddr_t)alpha_round_page(_end);
351 /*
352 * Init mapping for u page(s) for proc 0
353 */
354 start = v;
355 curproc->p_addr = proc0paddr = (struct user *)v;
356 v += UPAGES * NBPG;
357
358 /*
359 * Find out what hardware we're on, and remember its type name.
360 */
361 cputype = hwrpb->rpb_type;
362 if (cputype < 0 || cputype > ncpusw) {
363 unknown_cputype:
364 printf("\n");
365 printf("Unknown system type %d.\n", cputype);
366 printf("\n");
367 panic("unknown system type");
368 }
369 cpu_fn_switch = &cpusw[cputype];
370 if (cpu_fn_switch->family == NULL)
371 goto unknown_cputype;
372 if (cpu_fn_switch->option == NULL) {
373 printf("\n");
374 printf("NetBSD does not currently support system type %d\n",
375 cputype);
376 printf("(%s family).\n", cpu_fn_switch->family);
377 printf("\n");
378 panic("unsupported system type");
379 }
380 if (!cpu_fn_switch->present) {
381 printf("\n");
382 printf("Support for system type %d (%s family) is\n", cputype,
383 cpu_fn_switch->family);
384 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
385 cpu_fn_switch->option);
386 printf("to include support for this system type.\n");
387 printf("\n");
388 panic("support for system not present");
389 }
390
391 if ((*cpu_fn_switch->model_name)() != NULL)
392 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
393 sizeof cpu_model - 1);
394 else {
395 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
396 strcat(cpu_model, " family"); /* XXX */
397 }
398 cpu_model[sizeof cpu_model - 1] = '\0';
399
400 /* XXX SANITY CHECKING. SHOULD GO AWAY */
401 /* XXX We should always be running on the the primary. */
402 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
403 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
404 if (cputype != ST_DEC_21000) /*XXX*/
405 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
406
407 #if NLE_IOASIC > 0
408 /*
409 * Grab 128K at the top of physical memory for the lance chip
410 * on machines where it does dma through the I/O ASIC.
411 * It must be physically contiguous and aligned on a 128K boundary.
412 *
413 * Note that since this is conditional on the presence of
414 * IOASIC-attached 'le' units in the kernel config, the
415 * message buffer may move on these systems. This shouldn't
416 * be a problem, because once people have a kernel config that
417 * they use, they're going to stick with it.
418 */
419 if (cputype == ST_DEC_3000_500 ||
420 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
421 lastusablepage -= btoc(128 * 1024);
422 le_iomem =
423 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
424 }
425 #endif /* NLE_IOASIC */
426
427 /*
428 * Initialize error message buffer (at end of core).
429 */
430 lastusablepage -= btoc(sizeof (struct msgbuf));
431 msgbufp =
432 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
433 msgbufmapped = 1;
434
435 /*
436 * Allocate space for system data structures.
437 * The first available kernel virtual address is in "v".
438 * As pages of kernel virtual memory are allocated, "v" is incremented.
439 *
440 * These data structures are allocated here instead of cpu_startup()
441 * because physical memory is directly addressable. We don't have
442 * to map these into virtual address space.
443 */
444 #define valloc(name, type, num) \
445 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
446 #define valloclim(name, type, num, lim) \
447 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
448 #ifdef REAL_CLISTS
449 valloc(cfree, struct cblock, nclist);
450 #endif
451 valloc(callout, struct callout, ncallout);
452 valloc(swapmap, struct map, nswapmap = maxproc * 2);
453 #ifdef SYSVSHM
454 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
455 #endif
456 #ifdef SYSVSEM
457 valloc(sema, struct semid_ds, seminfo.semmni);
458 valloc(sem, struct sem, seminfo.semmns);
459 /* This is pretty disgusting! */
460 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
461 #endif
462 #ifdef SYSVMSG
463 valloc(msgpool, char, msginfo.msgmax);
464 valloc(msgmaps, struct msgmap, msginfo.msgseg);
465 valloc(msghdrs, struct msg, msginfo.msgtql);
466 valloc(msqids, struct msqid_ds, msginfo.msgmni);
467 #endif
468
469 /*
470 * Determine how many buffers to allocate.
471 * We allocate 10% of memory for buffer space. Insure a
472 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
473 * headers as file i/o buffers.
474 */
475 if (bufpages == 0)
476 bufpages = (physmem * 10) / (CLSIZE * 100);
477 if (nbuf == 0) {
478 nbuf = bufpages;
479 if (nbuf < 16)
480 nbuf = 16;
481 }
482 if (nswbuf == 0) {
483 nswbuf = (nbuf / 2) &~ 1; /* force even */
484 if (nswbuf > 256)
485 nswbuf = 256; /* sanity */
486 }
487 valloc(swbuf, struct buf, nswbuf);
488 valloc(buf, struct buf, nbuf);
489
490 /*
491 * Clear allocated memory.
492 */
493 bzero(start, v - start);
494
495 /*
496 * Initialize the virtual memory system, and set the
497 * page table base register in proc 0's PCB.
498 */
499 #ifndef NEW_PMAP
500 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
501 #else
502 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
503 hwrpb->rpb_max_asn);
504 #endif
505
506 /*
507 * Initialize the rest of proc 0's PCB, and cache its physical
508 * address.
509 */
510 proc0.p_md.md_pcbpaddr =
511 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
512
513 /*
514 * Set the kernel sp, reserving space for an (empty) trapframe,
515 * and make proc0's trapframe pointer point to it for sanity.
516 */
517 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
518 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
519 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
520
521 #ifdef NEW_PMAP
522 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
523 #endif
524
525 /*
526 * Look at arguments passed to us and compute boothowto.
527 * Also, get kernel name so it can be used in user-land.
528 */
529 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
530 #if 0
531 printf("boot flags = \"%s\"\n", boot_flags);
532 #endif
533 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
534 sizeof(booted_kernel));
535 #if 0
536 printf("booted kernel = \"%s\"\n", booted_kernel);
537 #endif
538
539 boothowto = RB_SINGLE;
540 #ifdef KADB
541 boothowto |= RB_KDB;
542 #endif
543 for (p = boot_flags; p && *p != '\0'; p++) {
544 /*
545 * Note that we'd really like to differentiate case here,
546 * but the Alpha AXP Architecture Reference Manual
547 * says that we shouldn't.
548 */
549 switch (*p) {
550 case 'a': /* autoboot */
551 case 'A':
552 boothowto &= ~RB_SINGLE;
553 break;
554
555 #ifdef DEBUG
556 case 'c': /* crash dump immediately after autoconfig */
557 case 'C':
558 boothowto |= RB_DUMP;
559 break;
560 #endif
561
562 case 'h': /* always halt, never reboot */
563 case 'H':
564 boothowto |= RB_HALT;
565 break;
566
567 #if 0
568 case 'm': /* mini root present in memory */
569 case 'M':
570 boothowto |= RB_MINIROOT;
571 break;
572 #endif
573
574 case 'n': /* askname */
575 case 'N':
576 boothowto |= RB_ASKNAME;
577 break;
578
579 case 's': /* single-user (default, supported for sanity) */
580 case 'S':
581 boothowto |= RB_SINGLE;
582 break;
583
584 default:
585 printf("Unrecognized boot flag '%c'.\n", *p);
586 break;
587 }
588 }
589
590 /*
591 * Figure out the number of cpus in the box, from RPB fields.
592 * Really. We mean it.
593 */
594 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
595 struct pcs *pcsp;
596
597 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
598 (i * hwrpb->rpb_pcs_size));
599 if ((pcsp->pcs_flags & PCS_PP) != 0)
600 ncpus++;
601 }
602 }
603
604 void
605 consinit()
606 {
607
608 (*cpu_fn_switch->cons_init)();
609 pmap_unmap_prom();
610 }
611
612 void
613 cpu_startup()
614 {
615 register unsigned i;
616 int base, residual;
617 vm_offset_t minaddr, maxaddr;
618 vm_size_t size;
619 #if defined(DEBUG)
620 extern int pmapdebug;
621 int opmapdebug = pmapdebug;
622
623 pmapdebug = 0;
624 #endif
625
626 /*
627 * Good {morning,afternoon,evening,night}.
628 */
629 printf(version);
630 identifycpu();
631 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
632 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
633 if (unusedmem)
634 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
635 if (unknownmem)
636 printf("WARNING: %d bytes of memory with unknown purpose\n",
637 ctob(unknownmem));
638
639 /*
640 * Allocate virtual address space for file I/O buffers.
641 * Note they are different than the array of headers, 'buf',
642 * and usually occupy more virtual memory than physical.
643 */
644 size = MAXBSIZE * nbuf;
645 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
646 &maxaddr, size, TRUE);
647 minaddr = (vm_offset_t)buffers;
648 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
649 &minaddr, size, FALSE) != KERN_SUCCESS)
650 panic("startup: cannot allocate buffers");
651 base = bufpages / nbuf;
652 residual = bufpages % nbuf;
653 for (i = 0; i < nbuf; i++) {
654 vm_size_t curbufsize;
655 vm_offset_t curbuf;
656
657 /*
658 * First <residual> buffers get (base+1) physical pages
659 * allocated for them. The rest get (base) physical pages.
660 *
661 * The rest of each buffer occupies virtual space,
662 * but has no physical memory allocated for it.
663 */
664 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
665 curbufsize = CLBYTES * (i < residual ? base+1 : base);
666 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
667 vm_map_simplify(buffer_map, curbuf);
668 }
669 /*
670 * Allocate a submap for exec arguments. This map effectively
671 * limits the number of processes exec'ing at any time.
672 */
673 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
674 16 * NCARGS, TRUE);
675
676 /*
677 * Allocate a submap for physio
678 */
679 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
680 VM_PHYS_SIZE, TRUE);
681
682 /*
683 * Finally, allocate mbuf cluster submap.
684 */
685 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
686 VM_MBUF_SIZE, FALSE);
687 /*
688 * Initialize callouts
689 */
690 callfree = callout;
691 for (i = 1; i < ncallout; i++)
692 callout[i-1].c_next = &callout[i];
693 callout[i-1].c_next = NULL;
694
695 #if defined(DEBUG)
696 pmapdebug = opmapdebug;
697 #endif
698 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
699 printf("using %ld buffers containing %ld bytes of memory\n",
700 (long)nbuf, (long)(bufpages * CLBYTES));
701
702 /*
703 * Set up buffers, so they can be used to read disk labels.
704 */
705 bufinit();
706
707 /*
708 * Configure the system.
709 */
710 configure();
711
712 /*
713 * Note that bootstrapping is finished, and set the HWRPB up
714 * to do restarts.
715 */
716 hwrpb_restart_setup();
717 }
718
719 void
720 identifycpu()
721 {
722
723 /*
724 * print out CPU identification information.
725 */
726 printf("%s, %ldMHz\n", cpu_model,
727 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
728 printf("%ld byte page size, %d processor%s.\n",
729 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
730 #if 0
731 /* this isn't defined for any systems that we run on? */
732 printf("serial number 0x%lx 0x%lx\n",
733 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
734
735 /* and these aren't particularly useful! */
736 printf("variation: 0x%lx, revision 0x%lx\n",
737 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
738 #endif
739 }
740
741 int waittime = -1;
742 struct pcb dumppcb;
743
744 void
745 cpu_reboot(howto, bootstr)
746 int howto;
747 char *bootstr;
748 {
749 extern int cold;
750
751 /* If system is cold, just halt. */
752 if (cold) {
753 howto |= RB_HALT;
754 goto haltsys;
755 }
756
757 /* If "always halt" was specified as a boot flag, obey. */
758 if ((boothowto & RB_HALT) != 0)
759 howto |= RB_HALT;
760
761 boothowto = howto;
762 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
763 waittime = 0;
764 vfs_shutdown();
765 /*
766 * If we've been adjusting the clock, the todr
767 * will be out of synch; adjust it now.
768 */
769 resettodr();
770 }
771
772 /* Disable interrupts. */
773 splhigh();
774
775 /* If rebooting and a dump is requested do it. */
776 #if 0
777 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
778 #else
779 if (howto & RB_DUMP)
780 #endif
781 dumpsys();
782
783 haltsys:
784
785 /* run any shutdown hooks */
786 doshutdownhooks();
787
788 #ifdef BOOTKEY
789 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
790 cngetc();
791 printf("\n");
792 #endif
793
794 /* Finally, halt/reboot the system. */
795 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
796 prom_halt(howto & RB_HALT);
797 /*NOTREACHED*/
798 }
799
800 /*
801 * These variables are needed by /sbin/savecore
802 */
803 u_long dumpmag = 0x8fca0101; /* magic number */
804 int dumpsize = 0; /* pages */
805 long dumplo = 0; /* blocks */
806
807 /*
808 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
809 */
810 int
811 cpu_dumpsize()
812 {
813 int size;
814
815 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
816 if (roundup(size, dbtob(1)) != dbtob(1))
817 return -1;
818
819 return (1);
820 }
821
822 /*
823 * cpu_dump: dump machine-dependent kernel core dump headers.
824 */
825 int
826 cpu_dump()
827 {
828 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
829 long buf[dbtob(1) / sizeof (long)];
830 kcore_seg_t *segp;
831 cpu_kcore_hdr_t *cpuhdrp;
832
833 dump = bdevsw[major(dumpdev)].d_dump;
834
835 segp = (kcore_seg_t *)buf;
836 cpuhdrp =
837 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
838
839 /*
840 * Generate a segment header.
841 */
842 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
843 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
844
845 /*
846 * Add the machine-dependent header info
847 */
848 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
849 cpuhdrp->page_size = PAGE_SIZE;
850 cpuhdrp->core_seg.start = ctob(firstusablepage);
851 cpuhdrp->core_seg.size = ctob(physmem);
852
853 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
854 }
855
856 /*
857 * This is called by main to set dumplo and dumpsize.
858 * Dumps always skip the first CLBYTES of disk space
859 * in case there might be a disk label stored there.
860 * If there is extra space, put dump at the end to
861 * reduce the chance that swapping trashes it.
862 */
863 void
864 cpu_dumpconf()
865 {
866 int nblks, dumpblks; /* size of dump area */
867 int maj;
868
869 if (dumpdev == NODEV)
870 goto bad;
871 maj = major(dumpdev);
872 if (maj < 0 || maj >= nblkdev)
873 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
874 if (bdevsw[maj].d_psize == NULL)
875 goto bad;
876 nblks = (*bdevsw[maj].d_psize)(dumpdev);
877 if (nblks <= ctod(1))
878 goto bad;
879
880 dumpblks = cpu_dumpsize();
881 if (dumpblks < 0)
882 goto bad;
883 dumpblks += ctod(physmem);
884
885 /* If dump won't fit (incl. room for possible label), punt. */
886 if (dumpblks > (nblks - ctod(1)))
887 goto bad;
888
889 /* Put dump at end of partition */
890 dumplo = nblks - dumpblks;
891
892 /* dumpsize is in page units, and doesn't include headers. */
893 dumpsize = physmem;
894 return;
895
896 bad:
897 dumpsize = 0;
898 return;
899 }
900
901 /*
902 * Dump the kernel's image to the swap partition.
903 */
904 #define BYTES_PER_DUMP NBPG
905
906 void
907 dumpsys()
908 {
909 unsigned bytes, i, n;
910 int maddr, psize;
911 daddr_t blkno;
912 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
913 int error;
914
915 /* Save registers. */
916 savectx(&dumppcb);
917
918 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
919 if (dumpdev == NODEV)
920 return;
921
922 /*
923 * For dumps during autoconfiguration,
924 * if dump device has already configured...
925 */
926 if (dumpsize == 0)
927 cpu_dumpconf();
928 if (dumplo <= 0) {
929 printf("\ndump to dev %x not possible\n", dumpdev);
930 return;
931 }
932 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
933
934 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
935 printf("dump ");
936 if (psize == -1) {
937 printf("area unavailable\n");
938 return;
939 }
940
941 /* XXX should purge all outstanding keystrokes. */
942
943 if ((error = cpu_dump()) != 0)
944 goto err;
945
946 bytes = ctob(physmem);
947 maddr = ctob(firstusablepage);
948 blkno = dumplo + cpu_dumpsize();
949 dump = bdevsw[major(dumpdev)].d_dump;
950 error = 0;
951 for (i = 0; i < bytes; i += n) {
952
953 /* Print out how many MBs we to go. */
954 n = bytes - i;
955 if (n && (n % (1024*1024)) == 0)
956 printf("%d ", n / (1024 * 1024));
957
958 /* Limit size for next transfer. */
959 if (n > BYTES_PER_DUMP)
960 n = BYTES_PER_DUMP;
961
962 error = (*dump)(dumpdev, blkno,
963 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
964 if (error)
965 break;
966 maddr += n;
967 blkno += btodb(n); /* XXX? */
968
969 /* XXX should look for keystrokes, to cancel. */
970 }
971
972 err:
973 switch (error) {
974
975 case ENXIO:
976 printf("device bad\n");
977 break;
978
979 case EFAULT:
980 printf("device not ready\n");
981 break;
982
983 case EINVAL:
984 printf("area improper\n");
985 break;
986
987 case EIO:
988 printf("i/o error\n");
989 break;
990
991 case EINTR:
992 printf("aborted from console\n");
993 break;
994
995 case 0:
996 printf("succeeded\n");
997 break;
998
999 default:
1000 printf("error %d\n", error);
1001 break;
1002 }
1003 printf("\n\n");
1004 delay(1000);
1005 }
1006
1007 void
1008 frametoreg(framep, regp)
1009 struct trapframe *framep;
1010 struct reg *regp;
1011 {
1012
1013 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1014 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1015 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1016 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1017 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1018 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1019 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1020 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1021 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1022 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1023 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1024 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1025 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1026 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1027 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1028 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1029 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1030 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1031 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1032 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1033 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1034 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1035 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1036 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1037 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1038 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1039 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1040 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1041 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1042 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1043 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1044 regp->r_regs[R_ZERO] = 0;
1045 }
1046
1047 void
1048 regtoframe(regp, framep)
1049 struct reg *regp;
1050 struct trapframe *framep;
1051 {
1052
1053 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1054 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1055 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1056 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1057 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1058 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1059 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1060 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1061 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1062 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1063 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1064 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1065 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1066 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1067 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1068 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1069 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1070 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1071 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1072 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1073 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1074 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1075 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1076 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1077 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1078 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1079 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1080 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1081 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1082 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1083 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1084 /* ??? = regp->r_regs[R_ZERO]; */
1085 }
1086
1087 void
1088 printregs(regp)
1089 struct reg *regp;
1090 {
1091 int i;
1092
1093 for (i = 0; i < 32; i++)
1094 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1095 i & 1 ? "\n" : "\t");
1096 }
1097
1098 void
1099 regdump(framep)
1100 struct trapframe *framep;
1101 {
1102 struct reg reg;
1103
1104 frametoreg(framep, ®);
1105 reg.r_regs[R_SP] = alpha_pal_rdusp();
1106
1107 printf("REGISTERS:\n");
1108 printregs(®);
1109 }
1110
1111 #ifdef DEBUG
1112 int sigdebug = 0;
1113 int sigpid = 0;
1114 #define SDB_FOLLOW 0x01
1115 #define SDB_KSTACK 0x02
1116 #endif
1117
1118 /*
1119 * Send an interrupt to process.
1120 */
1121 void
1122 sendsig(catcher, sig, mask, code)
1123 sig_t catcher;
1124 int sig, mask;
1125 u_long code;
1126 {
1127 struct proc *p = curproc;
1128 struct sigcontext *scp, ksc;
1129 struct trapframe *frame;
1130 struct sigacts *psp = p->p_sigacts;
1131 int oonstack, fsize, rndfsize;
1132 extern char sigcode[], esigcode[];
1133 extern struct proc *fpcurproc;
1134
1135 frame = p->p_md.md_tf;
1136 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1137 fsize = sizeof ksc;
1138 rndfsize = ((fsize + 15) / 16) * 16;
1139 /*
1140 * Allocate and validate space for the signal handler
1141 * context. Note that if the stack is in P0 space, the
1142 * call to grow() is a nop, and the useracc() check
1143 * will fail if the process has not already allocated
1144 * the space with a `brk'.
1145 */
1146 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1147 (psp->ps_sigonstack & sigmask(sig))) {
1148 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1149 psp->ps_sigstk.ss_size - rndfsize);
1150 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1151 } else
1152 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1153 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1154 (void)grow(p, (u_long)scp);
1155 #ifdef DEBUG
1156 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1157 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1158 sig, &oonstack, scp);
1159 #endif
1160 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1161 #ifdef DEBUG
1162 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1163 printf("sendsig(%d): useracc failed on sig %d\n",
1164 p->p_pid, sig);
1165 #endif
1166 /*
1167 * Process has trashed its stack; give it an illegal
1168 * instruction to halt it in its tracks.
1169 */
1170 SIGACTION(p, SIGILL) = SIG_DFL;
1171 sig = sigmask(SIGILL);
1172 p->p_sigignore &= ~sig;
1173 p->p_sigcatch &= ~sig;
1174 p->p_sigmask &= ~sig;
1175 psignal(p, SIGILL);
1176 return;
1177 }
1178
1179 /*
1180 * Build the signal context to be used by sigreturn.
1181 */
1182 ksc.sc_onstack = oonstack;
1183 ksc.sc_mask = mask;
1184 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1185 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1186
1187 /* copy the registers. */
1188 frametoreg(frame, (struct reg *)ksc.sc_regs);
1189 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1190 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1191
1192 /* save the floating-point state, if necessary, then copy it. */
1193 if (p == fpcurproc) {
1194 alpha_pal_wrfen(1);
1195 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1196 alpha_pal_wrfen(0);
1197 fpcurproc = NULL;
1198 }
1199 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1200 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1201 sizeof(struct fpreg));
1202 ksc.sc_fp_control = 0; /* XXX ? */
1203 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1204 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1205
1206
1207 #ifdef COMPAT_OSF1
1208 /*
1209 * XXX Create an OSF/1-style sigcontext and associated goo.
1210 */
1211 #endif
1212
1213 /*
1214 * copy the frame out to userland.
1215 */
1216 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1217 #ifdef DEBUG
1218 if (sigdebug & SDB_FOLLOW)
1219 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1220 scp, code);
1221 #endif
1222
1223 /*
1224 * Set up the registers to return to sigcode.
1225 */
1226 frame->tf_regs[FRAME_PC] =
1227 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1228 frame->tf_regs[FRAME_A0] = sig;
1229 frame->tf_regs[FRAME_A1] = code;
1230 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1231 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1232 alpha_pal_wrusp((unsigned long)scp);
1233
1234 #ifdef DEBUG
1235 if (sigdebug & SDB_FOLLOW)
1236 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1237 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1238 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1239 printf("sendsig(%d): sig %d returns\n",
1240 p->p_pid, sig);
1241 #endif
1242 }
1243
1244 /*
1245 * System call to cleanup state after a signal
1246 * has been taken. Reset signal mask and
1247 * stack state from context left by sendsig (above).
1248 * Return to previous pc and psl as specified by
1249 * context left by sendsig. Check carefully to
1250 * make sure that the user has not modified the
1251 * psl to gain improper priviledges or to cause
1252 * a machine fault.
1253 */
1254 /* ARGSUSED */
1255 int
1256 sys_sigreturn(p, v, retval)
1257 struct proc *p;
1258 void *v;
1259 register_t *retval;
1260 {
1261 struct sys_sigreturn_args /* {
1262 syscallarg(struct sigcontext *) sigcntxp;
1263 } */ *uap = v;
1264 struct sigcontext *scp, ksc;
1265 extern struct proc *fpcurproc;
1266
1267 scp = SCARG(uap, sigcntxp);
1268 #ifdef DEBUG
1269 if (sigdebug & SDB_FOLLOW)
1270 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1271 #endif
1272
1273 if (ALIGN(scp) != (u_int64_t)scp)
1274 return (EINVAL);
1275
1276 /*
1277 * Test and fetch the context structure.
1278 * We grab it all at once for speed.
1279 */
1280 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1281 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1282 return (EINVAL);
1283
1284 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1285 return (EINVAL);
1286 /*
1287 * Restore the user-supplied information
1288 */
1289 if (ksc.sc_onstack)
1290 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1291 else
1292 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1293 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1294
1295 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1296 p->p_md.md_tf->tf_regs[FRAME_PS] =
1297 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1298
1299 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1300 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1301
1302 /* XXX ksc.sc_ownedfp ? */
1303 if (p == fpcurproc)
1304 fpcurproc = NULL;
1305 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1306 sizeof(struct fpreg));
1307 /* XXX ksc.sc_fp_control ? */
1308
1309 #ifdef DEBUG
1310 if (sigdebug & SDB_FOLLOW)
1311 printf("sigreturn(%d): returns\n", p->p_pid);
1312 #endif
1313 return (EJUSTRETURN);
1314 }
1315
1316 /*
1317 * machine dependent system variables.
1318 */
1319 int
1320 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1321 int *name;
1322 u_int namelen;
1323 void *oldp;
1324 size_t *oldlenp;
1325 void *newp;
1326 size_t newlen;
1327 struct proc *p;
1328 {
1329 dev_t consdev;
1330
1331 /* all sysctl names at this level are terminal */
1332 if (namelen != 1)
1333 return (ENOTDIR); /* overloaded */
1334
1335 switch (name[0]) {
1336 case CPU_CONSDEV:
1337 if (cn_tab != NULL)
1338 consdev = cn_tab->cn_dev;
1339 else
1340 consdev = NODEV;
1341 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1342 sizeof consdev));
1343
1344 case CPU_ROOT_DEVICE:
1345 return (sysctl_rdstring(oldp, oldlenp, newp,
1346 root_device->dv_xname));
1347
1348 case CPU_UNALIGNED_PRINT:
1349 return (sysctl_int(oldp, oldlenp, newp, newlen,
1350 &alpha_unaligned_print));
1351
1352 case CPU_UNALIGNED_FIX:
1353 return (sysctl_int(oldp, oldlenp, newp, newlen,
1354 &alpha_unaligned_fix));
1355
1356 case CPU_UNALIGNED_SIGBUS:
1357 return (sysctl_int(oldp, oldlenp, newp, newlen,
1358 &alpha_unaligned_sigbus));
1359
1360 case CPU_BOOTED_KERNEL:
1361 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1362
1363 default:
1364 return (EOPNOTSUPP);
1365 }
1366 /* NOTREACHED */
1367 }
1368
1369 /*
1370 * Set registers on exec.
1371 */
1372 void
1373 setregs(p, pack, stack, retval)
1374 register struct proc *p;
1375 struct exec_package *pack;
1376 u_long stack;
1377 register_t *retval;
1378 {
1379 struct trapframe *tfp = p->p_md.md_tf;
1380 extern struct proc *fpcurproc;
1381 #ifdef DEBUG
1382 int i;
1383 #endif
1384
1385 #ifdef DEBUG
1386 /*
1387 * Crash and dump, if the user requested it.
1388 */
1389 if (boothowto & RB_DUMP)
1390 panic("crash requested by boot flags");
1391 #endif
1392
1393 #ifdef DEBUG
1394 for (i = 0; i < FRAME_SIZE; i++)
1395 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1396 #else
1397 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1398 #endif
1399 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1400 #define FP_RN 2 /* XXX */
1401 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1402 alpha_pal_wrusp(stack);
1403 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1404 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1405
1406 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1407 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1408 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1409 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1410 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1411
1412 p->p_md.md_flags &= ~MDP_FPUSED;
1413 if (fpcurproc == p)
1414 fpcurproc = NULL;
1415
1416 retval[0] = retval[1] = 0;
1417 }
1418
1419 void
1420 netintr()
1421 {
1422 int n, s;
1423
1424 s = splhigh();
1425 n = netisr;
1426 netisr = 0;
1427 splx(s);
1428
1429 #define DONETISR(bit, fn) \
1430 do { \
1431 if (n & (1 << (bit))) \
1432 fn; \
1433 } while (0)
1434
1435 #ifdef INET
1436 DONETISR(NETISR_ARP, arpintr());
1437 DONETISR(NETISR_IP, ipintr());
1438 #endif
1439 #ifdef NETATALK
1440 DONETISR(NETISR_ATALK, atintr());
1441 #endif
1442 #ifdef NS
1443 DONETISR(NETISR_NS, nsintr());
1444 #endif
1445 #ifdef ISO
1446 DONETISR(NETISR_ISO, clnlintr());
1447 #endif
1448 #ifdef CCITT
1449 DONETISR(NETISR_CCITT, ccittintr());
1450 #endif
1451 #ifdef NATM
1452 DONETISR(NETISR_NATM, natmintr());
1453 #endif
1454 #if NPPP > 1
1455 DONETISR(NETISR_PPP, pppintr());
1456 #endif
1457
1458 #undef DONETISR
1459 }
1460
1461 void
1462 do_sir()
1463 {
1464 u_int64_t n;
1465
1466 do {
1467 (void)splhigh();
1468 n = ssir;
1469 ssir = 0;
1470 splsoft(); /* don't recurse through spl0() */
1471
1472 #define DO_SIR(bit, fn) \
1473 do { \
1474 if (n & (bit)) { \
1475 cnt.v_soft++; \
1476 fn; \
1477 } \
1478 } while (0)
1479
1480 DO_SIR(SIR_NET, netintr());
1481 DO_SIR(SIR_CLOCK, softclock());
1482
1483 #undef DO_SIR
1484 } while (ssir != 0);
1485 }
1486
1487 int
1488 spl0()
1489 {
1490
1491 if (ssir)
1492 do_sir(); /* it lowers the IPL itself */
1493
1494 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1495 }
1496
1497 /*
1498 * The following primitives manipulate the run queues. _whichqs tells which
1499 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1500 * into queues, Remrunqueue removes them from queues. The running process is
1501 * on no queue, other processes are on a queue related to p->p_priority,
1502 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1503 * available queues.
1504 */
1505 /*
1506 * setrunqueue(p)
1507 * proc *p;
1508 *
1509 * Call should be made at splclock(), and p->p_stat should be SRUN.
1510 */
1511
1512 void
1513 setrunqueue(p)
1514 struct proc *p;
1515 {
1516 int bit;
1517
1518 /* firewall: p->p_back must be NULL */
1519 if (p->p_back != NULL)
1520 panic("setrunqueue");
1521
1522 bit = p->p_priority >> 2;
1523 whichqs |= (1 << bit);
1524 p->p_forw = (struct proc *)&qs[bit];
1525 p->p_back = qs[bit].ph_rlink;
1526 p->p_back->p_forw = p;
1527 qs[bit].ph_rlink = p;
1528 }
1529
1530 /*
1531 * remrunqueue(p)
1532 *
1533 * Call should be made at splclock().
1534 */
1535 void
1536 remrunqueue(p)
1537 struct proc *p;
1538 {
1539 int bit;
1540
1541 bit = p->p_priority >> 2;
1542 if ((whichqs & (1 << bit)) == 0)
1543 panic("remrunqueue");
1544
1545 p->p_back->p_forw = p->p_forw;
1546 p->p_forw->p_back = p->p_back;
1547 p->p_back = NULL; /* for firewall checking. */
1548
1549 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1550 whichqs &= ~(1 << bit);
1551 }
1552
1553 /*
1554 * Return the best possible estimate of the time in the timeval
1555 * to which tvp points. Unfortunately, we can't read the hardware registers.
1556 * We guarantee that the time will be greater than the value obtained by a
1557 * previous call.
1558 */
1559 void
1560 microtime(tvp)
1561 register struct timeval *tvp;
1562 {
1563 int s = splclock();
1564 static struct timeval lasttime;
1565
1566 *tvp = time;
1567 #ifdef notdef
1568 tvp->tv_usec += clkread();
1569 while (tvp->tv_usec > 1000000) {
1570 tvp->tv_sec++;
1571 tvp->tv_usec -= 1000000;
1572 }
1573 #endif
1574 if (tvp->tv_sec == lasttime.tv_sec &&
1575 tvp->tv_usec <= lasttime.tv_usec &&
1576 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1577 tvp->tv_sec++;
1578 tvp->tv_usec -= 1000000;
1579 }
1580 lasttime = *tvp;
1581 splx(s);
1582 }
1583
1584 /*
1585 * Wait "n" microseconds.
1586 */
1587 void
1588 delay(n)
1589 unsigned long n;
1590 {
1591 long N = cycles_per_usec * (n);
1592
1593 while (N > 0) /* XXX */
1594 N -= 3; /* XXX */
1595 }
1596
1597 #if defined(COMPAT_OSF1) || 1 /* XXX */
1598 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1599 u_long, register_t *));
1600
1601 void
1602 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1603 struct proc *p;
1604 struct exec_package *epp;
1605 u_long stack;
1606 register_t *retval;
1607 {
1608 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1609
1610 setregs(p, epp, stack, retval);
1611 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1612 }
1613
1614 /*
1615 * cpu_exec_ecoff_hook():
1616 * cpu-dependent ECOFF format hook for execve().
1617 *
1618 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1619 *
1620 */
1621 int
1622 cpu_exec_ecoff_hook(p, epp)
1623 struct proc *p;
1624 struct exec_package *epp;
1625 {
1626 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1627 extern struct emul emul_netbsd;
1628 #ifdef COMPAT_OSF1
1629 extern struct emul emul_osf1;
1630 #endif
1631
1632 switch (execp->f.f_magic) {
1633 #ifdef COMPAT_OSF1
1634 case ECOFF_MAGIC_ALPHA:
1635 epp->ep_emul = &emul_osf1;
1636 break;
1637 #endif
1638
1639 case ECOFF_MAGIC_NETBSD_ALPHA:
1640 epp->ep_emul = &emul_netbsd;
1641 break;
1642
1643 default:
1644 return ENOEXEC;
1645 }
1646 return 0;
1647 }
1648 #endif
1649
1650 /* XXX XXX BEGIN XXX XXX */
1651 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1652 /* XXX */
1653 vm_offset_t /* XXX */
1654 alpha_XXX_dmamap(v) /* XXX */
1655 vm_offset_t v; /* XXX */
1656 { /* XXX */
1657 /* XXX */
1658 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1659 } /* XXX */
1660 /* XXX XXX END XXX XXX */
1661