Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.72
      1 /* $NetBSD: machdep.c,v 1.72 1997/04/07 05:40:45 cgd Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5  * All rights reserved.
      6  *
      7  * Author: Chris G. Demetriou
      8  *
      9  * Permission to use, copy, modify and distribute this software and
     10  * its documentation is hereby granted, provided that both the copyright
     11  * notice and this permission notice appear in all copies of the
     12  * software, derivative works or modified versions, and any portions
     13  * thereof, and that both notices appear in supporting documentation.
     14  *
     15  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18  *
     19  * Carnegie Mellon requests users of this software to return to
     20  *
     21  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22  *  School of Computer Science
     23  *  Carnegie Mellon University
     24  *  Pittsburgh PA 15213-3890
     25  *
     26  * any improvements or extensions that they make and grant Carnegie the
     27  * rights to redistribute these changes.
     28  */
     29 
     30 #include <sys/param.h>
     31 #include <sys/systm.h>
     32 #include <sys/signalvar.h>
     33 #include <sys/kernel.h>
     34 #include <sys/map.h>
     35 #include <sys/proc.h>
     36 #include <sys/buf.h>
     37 #include <sys/reboot.h>
     38 #include <sys/device.h>
     39 #include <sys/conf.h>
     40 #include <sys/file.h>
     41 #ifdef REAL_CLISTS
     42 #include <sys/clist.h>
     43 #endif
     44 #include <sys/callout.h>
     45 #include <sys/malloc.h>
     46 #include <sys/mbuf.h>
     47 #include <sys/msgbuf.h>
     48 #include <sys/ioctl.h>
     49 #include <sys/tty.h>
     50 #include <sys/user.h>
     51 #include <sys/exec.h>
     52 #include <sys/exec_ecoff.h>
     53 #include <sys/sysctl.h>
     54 #include <sys/core.h>
     55 #include <sys/kcore.h>
     56 #include <machine/kcore.h>
     57 #ifdef SYSVMSG
     58 #include <sys/msg.h>
     59 #endif
     60 #ifdef SYSVSEM
     61 #include <sys/sem.h>
     62 #endif
     63 #ifdef SYSVSHM
     64 #include <sys/shm.h>
     65 #endif
     66 
     67 #include <sys/mount.h>
     68 #include <sys/syscallargs.h>
     69 
     70 #include <vm/vm_kern.h>
     71 
     72 #include <dev/cons.h>
     73 
     74 #include <machine/cpu.h>
     75 #include <machine/reg.h>
     76 #include <machine/rpb.h>
     77 #include <machine/prom.h>
     78 #include <machine/cpuconf.h>
     79 
     80 #include <net/netisr.h>
     81 #include <net/if.h>
     82 
     83 #ifdef INET
     84 #include <netinet/in.h>
     85 #include <netinet/ip_var.h>
     86 #include "arp.h"
     87 #if NARP > 0
     88 #include <netinet/if_inarp.h>
     89 #endif
     90 #endif
     91 #ifdef NS
     92 #include <netns/ns_var.h>
     93 #endif
     94 #ifdef ISO
     95 #include <netiso/iso.h>
     96 #include <netiso/clnp.h>
     97 #endif
     98 #ifdef CCITT
     99 #include <netccitt/x25.h>
    100 #include <netccitt/pk.h>
    101 #include <netccitt/pk_extern.h>
    102 #endif
    103 #ifdef NATM
    104 #include <netnatm/natm.h>
    105 #endif
    106 #ifdef NETATALK
    107 #include <netatalk/at_extern.h>
    108 #endif
    109 #include "ppp.h"
    110 #if NPPP > 0
    111 #include <net/ppp_defs.h>
    112 #include <net/if_ppp.h>
    113 #endif
    114 
    115 #include "le_ioasic.h"			/* for le_iomem creation */
    116 
    117 vm_map_t buffer_map;
    118 
    119 /*
    120  * Declare these as initialized data so we can patch them.
    121  */
    122 int	nswbuf = 0;
    123 #ifdef	NBUF
    124 int	nbuf = NBUF;
    125 #else
    126 int	nbuf = 0;
    127 #endif
    128 #ifdef	BUFPAGES
    129 int	bufpages = BUFPAGES;
    130 #else
    131 int	bufpages = 0;
    132 #endif
    133 int	msgbufmapped = 0;	/* set when safe to use msgbuf */
    134 int	maxmem;			/* max memory per process */
    135 
    136 int	totalphysmem;		/* total amount of physical memory in system */
    137 int	physmem;		/* physical memory used by NetBSD + some rsvd */
    138 int	firstusablepage;	/* first usable memory page */
    139 int	lastusablepage;		/* last usable memory page */
    140 int	resvmem;		/* amount of memory reserved for PROM */
    141 int	unusedmem;		/* amount of memory for OS that we don't use */
    142 int	unknownmem;		/* amount of memory with an unknown use */
    143 
    144 int	cputype;		/* system type, from the RPB */
    145 
    146 /*
    147  * XXX We need an address to which we can assign things so that they
    148  * won't be optimized away because we didn't use the value.
    149  */
    150 u_int32_t no_optimize;
    151 
    152 /* the following is used externally (sysctl_hw) */
    153 char	machine[] = "alpha";
    154 char	cpu_model[128];
    155 const struct cpusw *cpu_fn_switch;		/* function switch */
    156 
    157 struct	user *proc0paddr;
    158 
    159 /* Number of machine cycles per microsecond */
    160 u_int64_t	cycles_per_usec;
    161 
    162 /* some memory areas for device DMA.  "ick." */
    163 caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    164 
    165 /* number of cpus in the box.  really! */
    166 int		ncpus;
    167 
    168 char boot_flags[64];
    169 char booted_kernel[64];
    170 
    171 /* for cpu_sysctl() */
    172 int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    173 int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    174 int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    175 
    176 int	cpu_dump __P((void));
    177 int	cpu_dumpsize __P((void));
    178 void	dumpsys __P((void));
    179 void	identifycpu __P((void));
    180 void	netintr __P((void));
    181 void	printregs __P((struct reg *));
    182 
    183 void
    184 alpha_init(pfn, ptb)
    185 	u_long pfn;		/* first free PFN number */
    186 	u_long ptb;		/* PFN of current level 1 page table */
    187 {
    188 	extern char _end[];
    189 	caddr_t start, v;
    190 	struct mddt *mddtp;
    191 	int i, mddtweird;
    192 	char *p;
    193 
    194 	/*
    195 	 * Turn off interrupts and floating point.
    196 	 * Make sure the instruction and data streams are consistent.
    197 	 */
    198 	(void)splhigh();
    199 	alpha_pal_wrfen(0);
    200 	ALPHA_TBIA();
    201 	alpha_pal_imb();
    202 
    203 	/*
    204 	 * get address of the restart block, while we the bootstrap
    205 	 * mapping is still around.
    206 	 */
    207 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
    208 	    (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
    209 
    210 	/*
    211 	 * Remember how many cycles there are per microsecond,
    212 	 * so that we can use delay().  Round up, for safety.
    213 	 */
    214 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    215 
    216 	/*
    217 	 * Init the PROM interface, so we can use printf
    218 	 * until PROM mappings go away in consinit.
    219 	 */
    220 	init_prom_interface();
    221 
    222 	/*
    223 	 * Point interrupt/exception vectors to our own.
    224 	 */
    225 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    226 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    227 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    228 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    229 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    230 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    231 
    232 	/*
    233 	 * Disable System and Processor Correctable Error reporting.
    234 	 * Clear pending machine checks and error reports, etc.
    235 	 */
    236 	alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
    237 
    238 	/*
    239 	 * Find out how much memory is available, by looking at
    240 	 * the memory cluster descriptors.  This also tries to do
    241 	 * its best to detect things things that have never been seen
    242 	 * before...
    243 	 *
    244 	 * XXX Assumes that the first "system" cluster is the
    245 	 * only one we can use. Is the second (etc.) system cluster
    246 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    247 	 */
    248 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    249 
    250 	/*
    251 	 * BEGIN MDDT WEIRDNESS CHECKING
    252 	 */
    253 	mddtweird = 0;
    254 
    255 #define cnt	 mddtp->mddt_cluster_cnt
    256 #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    257 	if (cnt != 2 && cnt != 3) {
    258 		printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
    259 		mddtweird = 1;
    260 	} else if (usage(0) != MDDT_PALCODE ||
    261 		   usage(1) != MDDT_SYSTEM ||
    262 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    263 		mddtweird = 1;
    264 		printf("WARNING: %ld mem clusters, but weird config\n", cnt);
    265 	}
    266 
    267 	for (i = 0; i < cnt; i++) {
    268 		if ((usage(i) & MDDT_mbz) != 0) {
    269 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    270 			    i, usage(i));
    271 			mddtweird = 1;
    272 		}
    273 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    274 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    275 			mddtweird = 1;
    276 		}
    277 		/* XXX other things to check? */
    278 	}
    279 #undef cnt
    280 #undef usage
    281 
    282 	if (mddtweird) {
    283 		printf("\n");
    284 		printf("complete memory cluster information:\n");
    285 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    286 			printf("mddt %d:\n", i);
    287 			printf("\tpfn %lx\n",
    288 			    mddtp->mddt_clusters[i].mddt_pfn);
    289 			printf("\tcnt %lx\n",
    290 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    291 			printf("\ttest %lx\n",
    292 			    mddtp->mddt_clusters[i].mddt_pg_test);
    293 			printf("\tbva %lx\n",
    294 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    295 			printf("\tbpa %lx\n",
    296 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    297 			printf("\tbcksum %lx\n",
    298 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    299 			printf("\tusage %lx\n",
    300 			    mddtp->mddt_clusters[i].mddt_usage);
    301 		}
    302 		printf("\n");
    303 	}
    304 	/*
    305 	 * END MDDT WEIRDNESS CHECKING
    306 	 */
    307 
    308 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    309 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    310 #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    311 #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    312 		if ((usage(i) & MDDT_mbz) != 0)
    313 			unknownmem += pgcnt(i);
    314 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    315 			resvmem += pgcnt(i);
    316 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    317 			/*
    318 			 * assumes that the system cluster listed is
    319 			 * one we're in...
    320 			 */
    321 			if (physmem != resvmem) {
    322 				physmem += pgcnt(i);
    323 				firstusablepage =
    324 				    mddtp->mddt_clusters[i].mddt_pfn;
    325 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    326 			} else
    327 				unusedmem += pgcnt(i);
    328 		}
    329 #undef usage
    330 #undef pgcnt
    331 	}
    332 	if (totalphysmem == 0)
    333 		panic("can't happen: system seems to have no memory!");
    334 	maxmem = physmem;
    335 
    336 #if 0
    337 	printf("totalphysmem = %d\n", totalphysmem);
    338 	printf("physmem = %d\n", physmem);
    339 	printf("firstusablepage = %d\n", firstusablepage);
    340 	printf("lastusablepage = %d\n", lastusablepage);
    341 	printf("resvmem = %d\n", resvmem);
    342 	printf("unusedmem = %d\n", unusedmem);
    343 	printf("unknownmem = %d\n", unknownmem);
    344 #endif
    345 
    346 	/*
    347 	 * find out this CPU's page size
    348 	 */
    349 	PAGE_SIZE = hwrpb->rpb_page_size;
    350 	if (PAGE_SIZE != 8192)
    351 		panic("page size %d != 8192?!", PAGE_SIZE);
    352 
    353 	v = (caddr_t)alpha_round_page(_end);
    354 	/*
    355 	 * Init mapping for u page(s) for proc 0
    356 	 */
    357 	start = v;
    358 	curproc->p_addr = proc0paddr = (struct user *)v;
    359 	v += UPAGES * NBPG;
    360 
    361 	/*
    362 	 * Find out what hardware we're on, and remember its type name.
    363 	 */
    364 	cputype = hwrpb->rpb_type;
    365 	if (cputype < 0 || cputype > ncpusw) {
    366 unknown_cputype:
    367 		printf("\n");
    368 		printf("Unknown system type %d.\n", cputype);
    369 		printf("\n");
    370 		panic("unknown system type");
    371 	}
    372 	cpu_fn_switch = &cpusw[cputype];
    373 	if (cpu_fn_switch->family == NULL)
    374 		goto unknown_cputype;
    375 	if (cpu_fn_switch->option == NULL) {
    376 		printf("\n");
    377 		printf("NetBSD does not currently support system type %d\n",
    378 		    cputype);
    379 		printf("(%s family).\n", cpu_fn_switch->family);
    380 		printf("\n");
    381 		panic("unsupported system type");
    382 	}
    383 	if (!cpu_fn_switch->present) {
    384 		printf("\n");
    385 		printf("Support for system type %d (%s family) is\n", cputype,
    386 		    cpu_fn_switch->family);
    387 		printf("not present in this kernel.  Build a kernel with \"options %s\"\n",
    388 		    cpu_fn_switch->option);
    389 		printf("to include support for this system type.\n");
    390 		printf("\n");
    391 		panic("support for system not present");
    392 	}
    393 
    394 	if ((*cpu_fn_switch->model_name)() != NULL)
    395 		strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
    396 		    sizeof cpu_model - 1);
    397 	else {
    398 		strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
    399 		strcat(cpu_model, " family");		/* XXX */
    400 	}
    401 	cpu_model[sizeof cpu_model - 1] = '\0';
    402 
    403 	/* XXX SANITY CHECKING.  SHOULD GO AWAY */
    404 	/* XXX We should always be running on the the primary. */
    405 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());		/*XXX*/
    406 	/* XXX On single-CPU boxes, the primary should always be CPU 0. */
    407 	if (cputype != ST_DEC_21000)					/*XXX*/
    408 		assert(hwrpb->rpb_primary_cpu_id == 0);			/*XXX*/
    409 
    410 #if NLE_IOASIC > 0
    411 	/*
    412 	 * Grab 128K at the top of physical memory for the lance chip
    413 	 * on machines where it does dma through the I/O ASIC.
    414 	 * It must be physically contiguous and aligned on a 128K boundary.
    415 	 *
    416 	 * Note that since this is conditional on the presence of
    417 	 * IOASIC-attached 'le' units in the kernel config, the
    418 	 * message buffer may move on these systems.  This shouldn't
    419 	 * be a problem, because once people have a kernel config that
    420 	 * they use, they're going to stick with it.
    421 	 */
    422 	if (cputype == ST_DEC_3000_500 ||
    423 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    424 		lastusablepage -= btoc(128 * 1024);
    425 		le_iomem =
    426 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    427 	}
    428 #endif /* NLE_IOASIC */
    429 
    430 	/*
    431 	 * Initialize error message buffer (at end of core).
    432 	 */
    433 	lastusablepage -= btoc(sizeof (struct msgbuf));
    434 	msgbufp =
    435 	    (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    436 	msgbufmapped = 1;
    437 
    438 	/*
    439 	 * Allocate space for system data structures.
    440 	 * The first available kernel virtual address is in "v".
    441 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    442 	 *
    443 	 * These data structures are allocated here instead of cpu_startup()
    444 	 * because physical memory is directly addressable. We don't have
    445 	 * to map these into virtual address space.
    446 	 */
    447 #define valloc(name, type, num) \
    448 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    449 #define valloclim(name, type, num, lim) \
    450 	    (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
    451 #ifdef REAL_CLISTS
    452 	valloc(cfree, struct cblock, nclist);
    453 #endif
    454 	valloc(callout, struct callout, ncallout);
    455 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    456 #ifdef SYSVSHM
    457 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    458 #endif
    459 #ifdef SYSVSEM
    460 	valloc(sema, struct semid_ds, seminfo.semmni);
    461 	valloc(sem, struct sem, seminfo.semmns);
    462 	/* This is pretty disgusting! */
    463 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    464 #endif
    465 #ifdef SYSVMSG
    466 	valloc(msgpool, char, msginfo.msgmax);
    467 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    468 	valloc(msghdrs, struct msg, msginfo.msgtql);
    469 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    470 #endif
    471 
    472 	/*
    473 	 * Determine how many buffers to allocate.
    474 	 * We allocate 10% of memory for buffer space.  Insure a
    475 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    476 	 * headers as file i/o buffers.
    477 	 */
    478 	if (bufpages == 0)
    479 		bufpages = (physmem * 10) / (CLSIZE * 100);
    480 	if (nbuf == 0) {
    481 		nbuf = bufpages;
    482 		if (nbuf < 16)
    483 			nbuf = 16;
    484 	}
    485 	if (nswbuf == 0) {
    486 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    487 		if (nswbuf > 256)
    488 			nswbuf = 256;		/* sanity */
    489 	}
    490 	valloc(swbuf, struct buf, nswbuf);
    491 	valloc(buf, struct buf, nbuf);
    492 
    493 	/*
    494 	 * Clear allocated memory.
    495 	 */
    496 	bzero(start, v - start);
    497 
    498 	/*
    499 	 * Initialize the virtual memory system, and set the
    500 	 * page table base register in proc 0's PCB.
    501 	 */
    502 #ifndef NEW_PMAP
    503 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    504 #else
    505 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    506 	    hwrpb->rpb_max_asn);
    507 #endif
    508 
    509 	/*
    510 	 * Initialize the rest of proc 0's PCB, and cache its physical
    511 	 * address.
    512 	 */
    513 	proc0.p_md.md_pcbpaddr =
    514 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    515 
    516 	/*
    517 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    518 	 * and make proc0's trapframe pointer point to it for sanity.
    519 	 */
    520 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    521 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    522 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    523 
    524 #ifdef NEW_PMAP
    525 	pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    526 #endif
    527 
    528 	/*
    529 	 * Look at arguments passed to us and compute boothowto.
    530 	 * Also, get kernel name so it can be used in user-land.
    531 	 */
    532 	prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
    533 #if 0
    534 	printf("boot flags = \"%s\"\n", boot_flags);
    535 #endif
    536 	prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
    537 	    sizeof(booted_kernel));
    538 #if 0
    539 	printf("booted kernel = \"%s\"\n", booted_kernel);
    540 #endif
    541 
    542 	boothowto = RB_SINGLE;
    543 #ifdef KADB
    544 	boothowto |= RB_KDB;
    545 #endif
    546 	for (p = boot_flags; p && *p != '\0'; p++) {
    547 		/*
    548 		 * Note that we'd really like to differentiate case here,
    549 		 * but the Alpha AXP Architecture Reference Manual
    550 		 * says that we shouldn't.
    551 		 */
    552 		switch (*p) {
    553 		case 'a': /* autoboot */
    554 		case 'A':
    555 			boothowto &= ~RB_SINGLE;
    556 			break;
    557 
    558 #ifdef DEBUG
    559 		case 'c': /* crash dump immediately after autoconfig */
    560 		case 'C':
    561 			boothowto |= RB_DUMP;
    562 			break;
    563 #endif
    564 
    565 		case 'h': /* always halt, never reboot */
    566 		case 'H':
    567 			boothowto |= RB_HALT;
    568 			break;
    569 
    570 #if 0
    571 		case 'm': /* mini root present in memory */
    572 		case 'M':
    573 			boothowto |= RB_MINIROOT;
    574 			break;
    575 #endif
    576 
    577 		case 'n': /* askname */
    578 		case 'N':
    579 			boothowto |= RB_ASKNAME;
    580 			break;
    581 
    582 		case 's': /* single-user (default, supported for sanity) */
    583 		case 'S':
    584 			boothowto |= RB_SINGLE;
    585 			break;
    586 
    587 		default:
    588 			printf("Unrecognized boot flag '%c'.\n", *p);
    589 			break;
    590 		}
    591 	}
    592 
    593 	/*
    594 	 * Figure out the number of cpus in the box, from RPB fields.
    595 	 * Really.  We mean it.
    596 	 */
    597 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    598 		struct pcs *pcsp;
    599 
    600 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    601 		    (i * hwrpb->rpb_pcs_size));
    602 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    603 			ncpus++;
    604 	}
    605 }
    606 
    607 void
    608 consinit()
    609 {
    610 
    611 	(*cpu_fn_switch->cons_init)();
    612 	pmap_unmap_prom();
    613 }
    614 
    615 void
    616 cpu_startup()
    617 {
    618 	register unsigned i;
    619 	int base, residual;
    620 	vm_offset_t minaddr, maxaddr;
    621 	vm_size_t size;
    622 #if defined(DEBUG)
    623 	extern int pmapdebug;
    624 	int opmapdebug = pmapdebug;
    625 
    626 	pmapdebug = 0;
    627 #endif
    628 
    629 	/*
    630 	 * Good {morning,afternoon,evening,night}.
    631 	 */
    632 	printf(version);
    633 	identifycpu();
    634 	printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
    635 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    636 	if (unusedmem)
    637 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    638 	if (unknownmem)
    639 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    640 		    ctob(unknownmem));
    641 
    642 	/*
    643 	 * Allocate virtual address space for file I/O buffers.
    644 	 * Note they are different than the array of headers, 'buf',
    645 	 * and usually occupy more virtual memory than physical.
    646 	 */
    647 	size = MAXBSIZE * nbuf;
    648 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    649 	    &maxaddr, size, TRUE);
    650 	minaddr = (vm_offset_t)buffers;
    651 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    652 			&minaddr, size, FALSE) != KERN_SUCCESS)
    653 		panic("startup: cannot allocate buffers");
    654 	base = bufpages / nbuf;
    655 	residual = bufpages % nbuf;
    656 	for (i = 0; i < nbuf; i++) {
    657 		vm_size_t curbufsize;
    658 		vm_offset_t curbuf;
    659 
    660 		/*
    661 		 * First <residual> buffers get (base+1) physical pages
    662 		 * allocated for them.  The rest get (base) physical pages.
    663 		 *
    664 		 * The rest of each buffer occupies virtual space,
    665 		 * but has no physical memory allocated for it.
    666 		 */
    667 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    668 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    669 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    670 		vm_map_simplify(buffer_map, curbuf);
    671 	}
    672 	/*
    673 	 * Allocate a submap for exec arguments.  This map effectively
    674 	 * limits the number of processes exec'ing at any time.
    675 	 */
    676 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    677 				 16 * NCARGS, TRUE);
    678 
    679 	/*
    680 	 * Allocate a submap for physio
    681 	 */
    682 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    683 				 VM_PHYS_SIZE, TRUE);
    684 
    685 	/*
    686 	 * Finally, allocate mbuf cluster submap.
    687 	 */
    688 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    689 	    VM_MBUF_SIZE, FALSE);
    690 	/*
    691 	 * Initialize callouts
    692 	 */
    693 	callfree = callout;
    694 	for (i = 1; i < ncallout; i++)
    695 		callout[i-1].c_next = &callout[i];
    696 	callout[i-1].c_next = NULL;
    697 
    698 #if defined(DEBUG)
    699 	pmapdebug = opmapdebug;
    700 #endif
    701 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    702 	printf("using %ld buffers containing %ld bytes of memory\n",
    703 		(long)nbuf, (long)(bufpages * CLBYTES));
    704 
    705 	/*
    706 	 * Set up buffers, so they can be used to read disk labels.
    707 	 */
    708 	bufinit();
    709 
    710 	/*
    711 	 * Configure the system.
    712 	 */
    713 	configure();
    714 
    715 	/*
    716 	 * Note that bootstrapping is finished, and set the HWRPB up
    717 	 * to do restarts.
    718 	 */
    719 	hwrpb_restart_setup();
    720 }
    721 
    722 void
    723 identifycpu()
    724 {
    725 
    726 	/*
    727 	 * print out CPU identification information.
    728 	 */
    729 	printf("%s, %ldMHz\n", cpu_model,
    730 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    731 	printf("%ld byte page size, %d processor%s.\n",
    732 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    733 #if 0
    734 	/* this isn't defined for any systems that we run on? */
    735 	printf("serial number 0x%lx 0x%lx\n",
    736 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    737 
    738 	/* and these aren't particularly useful! */
    739 	printf("variation: 0x%lx, revision 0x%lx\n",
    740 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    741 #endif
    742 }
    743 
    744 int	waittime = -1;
    745 struct pcb dumppcb;
    746 
    747 void
    748 cpu_reboot(howto, bootstr)
    749 	int howto;
    750 	char *bootstr;
    751 {
    752 	extern int cold;
    753 
    754 	/* If system is cold, just halt. */
    755 	if (cold) {
    756 		howto |= RB_HALT;
    757 		goto haltsys;
    758 	}
    759 
    760 	/* If "always halt" was specified as a boot flag, obey. */
    761 	if ((boothowto & RB_HALT) != 0)
    762 		howto |= RB_HALT;
    763 
    764 	boothowto = howto;
    765 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    766 		waittime = 0;
    767 		vfs_shutdown();
    768 		/*
    769 		 * If we've been adjusting the clock, the todr
    770 		 * will be out of synch; adjust it now.
    771 		 */
    772 		resettodr();
    773 	}
    774 
    775 	/* Disable interrupts. */
    776 	splhigh();
    777 
    778 	/* If rebooting and a dump is requested do it. */
    779 #if 0
    780 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    781 #else
    782 	if (howto & RB_DUMP)
    783 #endif
    784 		dumpsys();
    785 
    786 haltsys:
    787 
    788 	/* run any shutdown hooks */
    789 	doshutdownhooks();
    790 
    791 #ifdef BOOTKEY
    792 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    793 	cngetc();
    794 	printf("\n");
    795 #endif
    796 
    797 	/* Finally, halt/reboot the system. */
    798 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    799 	prom_halt(howto & RB_HALT);
    800 	/*NOTREACHED*/
    801 }
    802 
    803 /*
    804  * These variables are needed by /sbin/savecore
    805  */
    806 u_long	dumpmag = 0x8fca0101;	/* magic number */
    807 int 	dumpsize = 0;		/* pages */
    808 long	dumplo = 0; 		/* blocks */
    809 
    810 /*
    811  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
    812  */
    813 int
    814 cpu_dumpsize()
    815 {
    816 	int size;
    817 
    818 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
    819 	if (roundup(size, dbtob(1)) != dbtob(1))
    820 		return -1;
    821 
    822 	return (1);
    823 }
    824 
    825 /*
    826  * cpu_dump: dump machine-dependent kernel core dump headers.
    827  */
    828 int
    829 cpu_dump()
    830 {
    831 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
    832 	long buf[dbtob(1) / sizeof (long)];
    833 	kcore_seg_t	*segp;
    834 	cpu_kcore_hdr_t	*cpuhdrp;
    835 
    836         dump = bdevsw[major(dumpdev)].d_dump;
    837 
    838 	segp = (kcore_seg_t *)buf;
    839 	cpuhdrp =
    840 	    (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
    841 
    842 	/*
    843 	 * Generate a segment header.
    844 	 */
    845 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
    846 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
    847 
    848 	/*
    849 	 * Add the machine-dependent header info
    850 	 */
    851 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
    852 	cpuhdrp->page_size = PAGE_SIZE;
    853 	cpuhdrp->core_seg.start = ctob(firstusablepage);
    854 	cpuhdrp->core_seg.size = ctob(physmem);
    855 
    856 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
    857 }
    858 
    859 /*
    860  * This is called by main to set dumplo and dumpsize.
    861  * Dumps always skip the first CLBYTES of disk space
    862  * in case there might be a disk label stored there.
    863  * If there is extra space, put dump at the end to
    864  * reduce the chance that swapping trashes it.
    865  */
    866 void
    867 cpu_dumpconf()
    868 {
    869 	int nblks, dumpblks;	/* size of dump area */
    870 	int maj;
    871 
    872 	if (dumpdev == NODEV)
    873 		goto bad;
    874 	maj = major(dumpdev);
    875 	if (maj < 0 || maj >= nblkdev)
    876 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    877 	if (bdevsw[maj].d_psize == NULL)
    878 		goto bad;
    879 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    880 	if (nblks <= ctod(1))
    881 		goto bad;
    882 
    883 	dumpblks = cpu_dumpsize();
    884 	if (dumpblks < 0)
    885 		goto bad;
    886 	dumpblks += ctod(physmem);
    887 
    888 	/* If dump won't fit (incl. room for possible label), punt. */
    889 	if (dumpblks > (nblks - ctod(1)))
    890 		goto bad;
    891 
    892 	/* Put dump at end of partition */
    893 	dumplo = nblks - dumpblks;
    894 
    895 	/* dumpsize is in page units, and doesn't include headers. */
    896 	dumpsize = physmem;
    897 	return;
    898 
    899 bad:
    900 	dumpsize = 0;
    901 	return;
    902 }
    903 
    904 /*
    905  * Dump the kernel's image to the swap partition.
    906  */
    907 #define	BYTES_PER_DUMP	NBPG
    908 
    909 void
    910 dumpsys()
    911 {
    912 	unsigned bytes, i, n;
    913 	int maddr, psize;
    914 	daddr_t blkno;
    915 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
    916 	int error;
    917 
    918 	/* Save registers. */
    919 	savectx(&dumppcb);
    920 
    921 	msgbufmapped = 0;	/* don't record dump msgs in msgbuf */
    922 	if (dumpdev == NODEV)
    923 		return;
    924 
    925 	/*
    926 	 * For dumps during autoconfiguration,
    927 	 * if dump device has already configured...
    928 	 */
    929 	if (dumpsize == 0)
    930 		cpu_dumpconf();
    931 	if (dumplo <= 0) {
    932 		printf("\ndump to dev %x not possible\n", dumpdev);
    933 		return;
    934 	}
    935 	printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
    936 
    937 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
    938 	printf("dump ");
    939 	if (psize == -1) {
    940 		printf("area unavailable\n");
    941 		return;
    942 	}
    943 
    944 	/* XXX should purge all outstanding keystrokes. */
    945 
    946 	if ((error = cpu_dump()) != 0)
    947 		goto err;
    948 
    949 	bytes = ctob(physmem);
    950 	maddr = ctob(firstusablepage);
    951 	blkno = dumplo + cpu_dumpsize();
    952 	dump = bdevsw[major(dumpdev)].d_dump;
    953 	error = 0;
    954 	for (i = 0; i < bytes; i += n) {
    955 
    956 		/* Print out how many MBs we to go. */
    957 		n = bytes - i;
    958 		if (n && (n % (1024*1024)) == 0)
    959 			printf("%d ", n / (1024 * 1024));
    960 
    961 		/* Limit size for next transfer. */
    962 		if (n > BYTES_PER_DUMP)
    963 			n =  BYTES_PER_DUMP;
    964 
    965 		error = (*dump)(dumpdev, blkno,
    966 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
    967 		if (error)
    968 			break;
    969 		maddr += n;
    970 		blkno += btodb(n);			/* XXX? */
    971 
    972 		/* XXX should look for keystrokes, to cancel. */
    973 	}
    974 
    975 err:
    976 	switch (error) {
    977 
    978 	case ENXIO:
    979 		printf("device bad\n");
    980 		break;
    981 
    982 	case EFAULT:
    983 		printf("device not ready\n");
    984 		break;
    985 
    986 	case EINVAL:
    987 		printf("area improper\n");
    988 		break;
    989 
    990 	case EIO:
    991 		printf("i/o error\n");
    992 		break;
    993 
    994 	case EINTR:
    995 		printf("aborted from console\n");
    996 		break;
    997 
    998 	case 0:
    999 		printf("succeeded\n");
   1000 		break;
   1001 
   1002 	default:
   1003 		printf("error %d\n", error);
   1004 		break;
   1005 	}
   1006 	printf("\n\n");
   1007 	delay(1000);
   1008 }
   1009 
   1010 void
   1011 frametoreg(framep, regp)
   1012 	struct trapframe *framep;
   1013 	struct reg *regp;
   1014 {
   1015 
   1016 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1017 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1018 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1019 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1020 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1021 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1022 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1023 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1024 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1025 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1026 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1027 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1028 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1029 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1030 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1031 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1032 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1033 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1034 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1035 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1036 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1037 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1038 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1039 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1040 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1041 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1042 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1043 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1044 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1045 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1046 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1047 	regp->r_regs[R_ZERO] = 0;
   1048 }
   1049 
   1050 void
   1051 regtoframe(regp, framep)
   1052 	struct reg *regp;
   1053 	struct trapframe *framep;
   1054 {
   1055 
   1056 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1057 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1058 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1059 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1060 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1061 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1062 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1063 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1064 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1065 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1066 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1067 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1068 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1069 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1070 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1071 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1072 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1073 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1074 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1075 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1076 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1077 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1078 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1079 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1080 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1081 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1082 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1083 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1084 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1085 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1086 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1087 	/* ??? = regp->r_regs[R_ZERO]; */
   1088 }
   1089 
   1090 void
   1091 printregs(regp)
   1092 	struct reg *regp;
   1093 {
   1094 	int i;
   1095 
   1096 	for (i = 0; i < 32; i++)
   1097 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1098 		   i & 1 ? "\n" : "\t");
   1099 }
   1100 
   1101 void
   1102 regdump(framep)
   1103 	struct trapframe *framep;
   1104 {
   1105 	struct reg reg;
   1106 
   1107 	frametoreg(framep, &reg);
   1108 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1109 
   1110 	printf("REGISTERS:\n");
   1111 	printregs(&reg);
   1112 }
   1113 
   1114 #ifdef DEBUG
   1115 int sigdebug = 0;
   1116 int sigpid = 0;
   1117 #define	SDB_FOLLOW	0x01
   1118 #define	SDB_KSTACK	0x02
   1119 #endif
   1120 
   1121 /*
   1122  * Send an interrupt to process.
   1123  */
   1124 void
   1125 sendsig(catcher, sig, mask, code)
   1126 	sig_t catcher;
   1127 	int sig, mask;
   1128 	u_long code;
   1129 {
   1130 	struct proc *p = curproc;
   1131 	struct sigcontext *scp, ksc;
   1132 	struct trapframe *frame;
   1133 	struct sigacts *psp = p->p_sigacts;
   1134 	int oonstack, fsize, rndfsize;
   1135 	extern char sigcode[], esigcode[];
   1136 	extern struct proc *fpcurproc;
   1137 
   1138 	frame = p->p_md.md_tf;
   1139 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1140 	fsize = sizeof ksc;
   1141 	rndfsize = ((fsize + 15) / 16) * 16;
   1142 	/*
   1143 	 * Allocate and validate space for the signal handler
   1144 	 * context. Note that if the stack is in P0 space, the
   1145 	 * call to grow() is a nop, and the useracc() check
   1146 	 * will fail if the process has not already allocated
   1147 	 * the space with a `brk'.
   1148 	 */
   1149 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1150 	    (psp->ps_sigonstack & sigmask(sig))) {
   1151 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1152 		    psp->ps_sigstk.ss_size - rndfsize);
   1153 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1154 	} else
   1155 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1156 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1157 		(void)grow(p, (u_long)scp);
   1158 #ifdef DEBUG
   1159 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1160 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1161 		    sig, &oonstack, scp);
   1162 #endif
   1163 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1164 #ifdef DEBUG
   1165 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1166 			printf("sendsig(%d): useracc failed on sig %d\n",
   1167 			    p->p_pid, sig);
   1168 #endif
   1169 		/*
   1170 		 * Process has trashed its stack; give it an illegal
   1171 		 * instruction to halt it in its tracks.
   1172 		 */
   1173 		SIGACTION(p, SIGILL) = SIG_DFL;
   1174 		sig = sigmask(SIGILL);
   1175 		p->p_sigignore &= ~sig;
   1176 		p->p_sigcatch &= ~sig;
   1177 		p->p_sigmask &= ~sig;
   1178 		psignal(p, SIGILL);
   1179 		return;
   1180 	}
   1181 
   1182 	/*
   1183 	 * Build the signal context to be used by sigreturn.
   1184 	 */
   1185 	ksc.sc_onstack = oonstack;
   1186 	ksc.sc_mask = mask;
   1187 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1188 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1189 
   1190 	/* copy the registers. */
   1191 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1192 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1193 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1194 
   1195 	/* save the floating-point state, if necessary, then copy it. */
   1196 	if (p == fpcurproc) {
   1197 		alpha_pal_wrfen(1);
   1198 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1199 		alpha_pal_wrfen(0);
   1200 		fpcurproc = NULL;
   1201 	}
   1202 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1203 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1204 	    sizeof(struct fpreg));
   1205 	ksc.sc_fp_control = 0;					/* XXX ? */
   1206 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1207 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1208 
   1209 
   1210 #ifdef COMPAT_OSF1
   1211 	/*
   1212 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1213 	 */
   1214 #endif
   1215 
   1216 	/*
   1217 	 * copy the frame out to userland.
   1218 	 */
   1219 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1220 #ifdef DEBUG
   1221 	if (sigdebug & SDB_FOLLOW)
   1222 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1223 		    scp, code);
   1224 #endif
   1225 
   1226 	/*
   1227 	 * Set up the registers to return to sigcode.
   1228 	 */
   1229 	frame->tf_regs[FRAME_PC] =
   1230 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1231 	frame->tf_regs[FRAME_A0] = sig;
   1232 	frame->tf_regs[FRAME_A1] = code;
   1233 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1234 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1235 	alpha_pal_wrusp((unsigned long)scp);
   1236 
   1237 #ifdef DEBUG
   1238 	if (sigdebug & SDB_FOLLOW)
   1239 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1240 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1241 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1242 		printf("sendsig(%d): sig %d returns\n",
   1243 		    p->p_pid, sig);
   1244 #endif
   1245 }
   1246 
   1247 /*
   1248  * System call to cleanup state after a signal
   1249  * has been taken.  Reset signal mask and
   1250  * stack state from context left by sendsig (above).
   1251  * Return to previous pc and psl as specified by
   1252  * context left by sendsig. Check carefully to
   1253  * make sure that the user has not modified the
   1254  * psl to gain improper priviledges or to cause
   1255  * a machine fault.
   1256  */
   1257 /* ARGSUSED */
   1258 int
   1259 sys_sigreturn(p, v, retval)
   1260 	struct proc *p;
   1261 	void *v;
   1262 	register_t *retval;
   1263 {
   1264 	struct sys_sigreturn_args /* {
   1265 		syscallarg(struct sigcontext *) sigcntxp;
   1266 	} */ *uap = v;
   1267 	struct sigcontext *scp, ksc;
   1268 	extern struct proc *fpcurproc;
   1269 
   1270 	scp = SCARG(uap, sigcntxp);
   1271 #ifdef DEBUG
   1272 	if (sigdebug & SDB_FOLLOW)
   1273 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1274 #endif
   1275 
   1276 	if (ALIGN(scp) != (u_int64_t)scp)
   1277 		return (EINVAL);
   1278 
   1279 	/*
   1280 	 * Test and fetch the context structure.
   1281 	 * We grab it all at once for speed.
   1282 	 */
   1283 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1284 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1285 		return (EINVAL);
   1286 
   1287 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1288 		return (EINVAL);
   1289 	/*
   1290 	 * Restore the user-supplied information
   1291 	 */
   1292 	if (ksc.sc_onstack)
   1293 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1294 	else
   1295 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1296 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1297 
   1298 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1299 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1300 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1301 
   1302 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1303 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1304 
   1305 	/* XXX ksc.sc_ownedfp ? */
   1306 	if (p == fpcurproc)
   1307 		fpcurproc = NULL;
   1308 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1309 	    sizeof(struct fpreg));
   1310 	/* XXX ksc.sc_fp_control ? */
   1311 
   1312 #ifdef DEBUG
   1313 	if (sigdebug & SDB_FOLLOW)
   1314 		printf("sigreturn(%d): returns\n", p->p_pid);
   1315 #endif
   1316 	return (EJUSTRETURN);
   1317 }
   1318 
   1319 /*
   1320  * machine dependent system variables.
   1321  */
   1322 int
   1323 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1324 	int *name;
   1325 	u_int namelen;
   1326 	void *oldp;
   1327 	size_t *oldlenp;
   1328 	void *newp;
   1329 	size_t newlen;
   1330 	struct proc *p;
   1331 {
   1332 	dev_t consdev;
   1333 
   1334 	/* all sysctl names at this level are terminal */
   1335 	if (namelen != 1)
   1336 		return (ENOTDIR);		/* overloaded */
   1337 
   1338 	switch (name[0]) {
   1339 	case CPU_CONSDEV:
   1340 		if (cn_tab != NULL)
   1341 			consdev = cn_tab->cn_dev;
   1342 		else
   1343 			consdev = NODEV;
   1344 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1345 			sizeof consdev));
   1346 
   1347 	case CPU_ROOT_DEVICE:
   1348 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1349 		    root_device->dv_xname));
   1350 
   1351 	case CPU_UNALIGNED_PRINT:
   1352 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1353 		    &alpha_unaligned_print));
   1354 
   1355 	case CPU_UNALIGNED_FIX:
   1356 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1357 		    &alpha_unaligned_fix));
   1358 
   1359 	case CPU_UNALIGNED_SIGBUS:
   1360 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1361 		    &alpha_unaligned_sigbus));
   1362 
   1363 	case CPU_BOOTED_KERNEL:
   1364 		return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
   1365 
   1366 	default:
   1367 		return (EOPNOTSUPP);
   1368 	}
   1369 	/* NOTREACHED */
   1370 }
   1371 
   1372 /*
   1373  * Set registers on exec.
   1374  */
   1375 void
   1376 setregs(p, pack, stack, retval)
   1377 	register struct proc *p;
   1378 	struct exec_package *pack;
   1379 	u_long stack;
   1380 	register_t *retval;
   1381 {
   1382 	struct trapframe *tfp = p->p_md.md_tf;
   1383 	extern struct proc *fpcurproc;
   1384 #ifdef DEBUG
   1385 	int i;
   1386 #endif
   1387 
   1388 #ifdef DEBUG
   1389 	/*
   1390 	 * Crash and dump, if the user requested it.
   1391 	 */
   1392 	if (boothowto & RB_DUMP)
   1393 		panic("crash requested by boot flags");
   1394 #endif
   1395 
   1396 #ifdef DEBUG
   1397 	for (i = 0; i < FRAME_SIZE; i++)
   1398 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1399 #else
   1400 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1401 #endif
   1402 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1403 #define FP_RN 2 /* XXX */
   1404 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1405 	alpha_pal_wrusp(stack);
   1406 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1407 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1408 
   1409 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1410 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1411 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1412 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1413 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1414 
   1415 	p->p_md.md_flags &= ~MDP_FPUSED;
   1416 	if (fpcurproc == p)
   1417 		fpcurproc = NULL;
   1418 
   1419 	retval[0] = retval[1] = 0;
   1420 }
   1421 
   1422 void
   1423 netintr()
   1424 {
   1425 	int n, s;
   1426 
   1427 	s = splhigh();
   1428 	n = netisr;
   1429 	netisr = 0;
   1430 	splx(s);
   1431 
   1432 #define	DONETISR(bit, fn)						\
   1433 	do {								\
   1434 		if (n & (1 << (bit)))					\
   1435 			fn;						\
   1436 	} while (0)
   1437 
   1438 #ifdef INET
   1439 #if NARP > 0
   1440 	DONETISR(NETISR_ARP, arpintr());
   1441 #endif
   1442 	DONETISR(NETISR_IP, ipintr());
   1443 #endif
   1444 #ifdef NETATALK
   1445 	DONETISR(NETISR_ATALK, atintr());
   1446 #endif
   1447 #ifdef NS
   1448 	DONETISR(NETISR_NS, nsintr());
   1449 #endif
   1450 #ifdef ISO
   1451 	DONETISR(NETISR_ISO, clnlintr());
   1452 #endif
   1453 #ifdef CCITT
   1454 	DONETISR(NETISR_CCITT, ccittintr());
   1455 #endif
   1456 #ifdef NATM
   1457 	DONETISR(NETISR_NATM, natmintr());
   1458 #endif
   1459 #if NPPP > 1
   1460 	DONETISR(NETISR_PPP, pppintr());
   1461 #endif
   1462 
   1463 #undef DONETISR
   1464 }
   1465 
   1466 void
   1467 do_sir()
   1468 {
   1469 	u_int64_t n;
   1470 
   1471 	do {
   1472 		(void)splhigh();
   1473 		n = ssir;
   1474 		ssir = 0;
   1475 		splsoft();		/* don't recurse through spl0() */
   1476 
   1477 #define	DO_SIR(bit, fn)							\
   1478 		do {							\
   1479 			if (n & (bit)) {				\
   1480 				cnt.v_soft++;				\
   1481 				fn;					\
   1482 			}						\
   1483 		} while (0)
   1484 
   1485 		DO_SIR(SIR_NET, netintr());
   1486 		DO_SIR(SIR_CLOCK, softclock());
   1487 
   1488 #undef DO_SIR
   1489 	} while (ssir != 0);
   1490 }
   1491 
   1492 int
   1493 spl0()
   1494 {
   1495 
   1496 	if (ssir)
   1497 		do_sir();		/* it lowers the IPL itself */
   1498 
   1499 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1500 }
   1501 
   1502 /*
   1503  * The following primitives manipulate the run queues.  _whichqs tells which
   1504  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1505  * into queues, Remrunqueue removes them from queues.  The running process is
   1506  * on no queue, other processes are on a queue related to p->p_priority,
   1507  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1508  * available queues.
   1509  */
   1510 /*
   1511  * setrunqueue(p)
   1512  *	proc *p;
   1513  *
   1514  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1515  */
   1516 
   1517 void
   1518 setrunqueue(p)
   1519 	struct proc *p;
   1520 {
   1521 	int bit;
   1522 
   1523 	/* firewall: p->p_back must be NULL */
   1524 	if (p->p_back != NULL)
   1525 		panic("setrunqueue");
   1526 
   1527 	bit = p->p_priority >> 2;
   1528 	whichqs |= (1 << bit);
   1529 	p->p_forw = (struct proc *)&qs[bit];
   1530 	p->p_back = qs[bit].ph_rlink;
   1531 	p->p_back->p_forw = p;
   1532 	qs[bit].ph_rlink = p;
   1533 }
   1534 
   1535 /*
   1536  * remrunqueue(p)
   1537  *
   1538  * Call should be made at splclock().
   1539  */
   1540 void
   1541 remrunqueue(p)
   1542 	struct proc *p;
   1543 {
   1544 	int bit;
   1545 
   1546 	bit = p->p_priority >> 2;
   1547 	if ((whichqs & (1 << bit)) == 0)
   1548 		panic("remrunqueue");
   1549 
   1550 	p->p_back->p_forw = p->p_forw;
   1551 	p->p_forw->p_back = p->p_back;
   1552 	p->p_back = NULL;	/* for firewall checking. */
   1553 
   1554 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1555 		whichqs &= ~(1 << bit);
   1556 }
   1557 
   1558 /*
   1559  * Return the best possible estimate of the time in the timeval
   1560  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1561  * We guarantee that the time will be greater than the value obtained by a
   1562  * previous call.
   1563  */
   1564 void
   1565 microtime(tvp)
   1566 	register struct timeval *tvp;
   1567 {
   1568 	int s = splclock();
   1569 	static struct timeval lasttime;
   1570 
   1571 	*tvp = time;
   1572 #ifdef notdef
   1573 	tvp->tv_usec += clkread();
   1574 	while (tvp->tv_usec > 1000000) {
   1575 		tvp->tv_sec++;
   1576 		tvp->tv_usec -= 1000000;
   1577 	}
   1578 #endif
   1579 	if (tvp->tv_sec == lasttime.tv_sec &&
   1580 	    tvp->tv_usec <= lasttime.tv_usec &&
   1581 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1582 		tvp->tv_sec++;
   1583 		tvp->tv_usec -= 1000000;
   1584 	}
   1585 	lasttime = *tvp;
   1586 	splx(s);
   1587 }
   1588 
   1589 /*
   1590  * Wait "n" microseconds.
   1591  */
   1592 void
   1593 delay(n)
   1594 	unsigned long n;
   1595 {
   1596 	long N = cycles_per_usec * (n);
   1597 
   1598 	while (N > 0)				/* XXX */
   1599 		N -= 3;				/* XXX */
   1600 }
   1601 
   1602 #if defined(COMPAT_OSF1) || 1		/* XXX */
   1603 void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   1604 	    u_long, register_t *));
   1605 
   1606 void
   1607 cpu_exec_ecoff_setregs(p, epp, stack, retval)
   1608 	struct proc *p;
   1609 	struct exec_package *epp;
   1610 	u_long stack;
   1611 	register_t *retval;
   1612 {
   1613 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1614 
   1615 	setregs(p, epp, stack, retval);
   1616 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1617 }
   1618 
   1619 /*
   1620  * cpu_exec_ecoff_hook():
   1621  *	cpu-dependent ECOFF format hook for execve().
   1622  *
   1623  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1624  *
   1625  */
   1626 int
   1627 cpu_exec_ecoff_hook(p, epp)
   1628 	struct proc *p;
   1629 	struct exec_package *epp;
   1630 {
   1631 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1632 	extern struct emul emul_netbsd;
   1633 #ifdef COMPAT_OSF1
   1634 	extern struct emul emul_osf1;
   1635 #endif
   1636 
   1637 	switch (execp->f.f_magic) {
   1638 #ifdef COMPAT_OSF1
   1639 	case ECOFF_MAGIC_ALPHA:
   1640 		epp->ep_emul = &emul_osf1;
   1641 		break;
   1642 #endif
   1643 
   1644 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1645 		epp->ep_emul = &emul_netbsd;
   1646 		break;
   1647 
   1648 	default:
   1649 		return ENOEXEC;
   1650 	}
   1651 	return 0;
   1652 }
   1653 #endif
   1654 
   1655 /* XXX XXX BEGIN XXX XXX */
   1656 vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   1657 								/* XXX */
   1658 vm_offset_t							/* XXX */
   1659 alpha_XXX_dmamap(v)						/* XXX */
   1660 	vm_offset_t v;						/* XXX */
   1661 {								/* XXX */
   1662 								/* XXX */
   1663 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1664 }								/* XXX */
   1665 /* XXX XXX END XXX XXX */
   1666