machdep.c revision 1.73 1 /* $NetBSD: machdep.c,v 1.73 1997/04/07 06:09:06 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/signalvar.h>
33 #include <sys/kernel.h>
34 #include <sys/map.h>
35 #include <sys/proc.h>
36 #include <sys/buf.h>
37 #include <sys/reboot.h>
38 #include <sys/device.h>
39 #include <sys/file.h>
40 #ifdef REAL_CLISTS
41 #include <sys/clist.h>
42 #endif
43 #include <sys/callout.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/msgbuf.h>
47 #include <sys/ioctl.h>
48 #include <sys/tty.h>
49 #include <sys/user.h>
50 #include <sys/exec.h>
51 #include <sys/exec_ecoff.h>
52 #include <sys/sysctl.h>
53 #include <sys/core.h>
54 #include <sys/kcore.h>
55 #include <machine/kcore.h>
56 #ifdef SYSVMSG
57 #include <sys/msg.h>
58 #endif
59 #ifdef SYSVSEM
60 #include <sys/sem.h>
61 #endif
62 #ifdef SYSVSHM
63 #include <sys/shm.h>
64 #endif
65
66 #include <sys/mount.h>
67 #include <sys/syscallargs.h>
68
69 #include <vm/vm_kern.h>
70
71 #include <dev/cons.h>
72
73 #include <machine/cpu.h>
74 #include <machine/reg.h>
75 #include <machine/rpb.h>
76 #include <machine/prom.h>
77 #include <machine/conf.h>
78
79 #include <net/netisr.h>
80 #include <net/if.h>
81
82 #ifdef INET
83 #include <netinet/in.h>
84 #include <netinet/ip_var.h>
85 #include "arp.h"
86 #if NARP > 0
87 #include <netinet/if_inarp.h>
88 #endif
89 #endif
90 #ifdef NS
91 #include <netns/ns_var.h>
92 #endif
93 #ifdef ISO
94 #include <netiso/iso.h>
95 #include <netiso/clnp.h>
96 #endif
97 #ifdef CCITT
98 #include <netccitt/x25.h>
99 #include <netccitt/pk.h>
100 #include <netccitt/pk_extern.h>
101 #endif
102 #ifdef NATM
103 #include <netnatm/natm.h>
104 #endif
105 #ifdef NETATALK
106 #include <netatalk/at_extern.h>
107 #endif
108 #include "ppp.h"
109 #if NPPP > 0
110 #include <net/ppp_defs.h>
111 #include <net/if_ppp.h>
112 #endif
113
114 #include "le_ioasic.h" /* for le_iomem creation */
115
116 vm_map_t buffer_map;
117
118 /*
119 * Declare these as initialized data so we can patch them.
120 */
121 int nswbuf = 0;
122 #ifdef NBUF
123 int nbuf = NBUF;
124 #else
125 int nbuf = 0;
126 #endif
127 #ifdef BUFPAGES
128 int bufpages = BUFPAGES;
129 #else
130 int bufpages = 0;
131 #endif
132 int msgbufmapped = 0; /* set when safe to use msgbuf */
133 int maxmem; /* max memory per process */
134
135 int totalphysmem; /* total amount of physical memory in system */
136 int physmem; /* physical memory used by NetBSD + some rsvd */
137 int firstusablepage; /* first usable memory page */
138 int lastusablepage; /* last usable memory page */
139 int resvmem; /* amount of memory reserved for PROM */
140 int unusedmem; /* amount of memory for OS that we don't use */
141 int unknownmem; /* amount of memory with an unknown use */
142
143 int cputype; /* system type, from the RPB */
144
145 /*
146 * XXX We need an address to which we can assign things so that they
147 * won't be optimized away because we didn't use the value.
148 */
149 u_int32_t no_optimize;
150
151 /* the following is used externally (sysctl_hw) */
152 char machine[] = "alpha";
153 char cpu_model[128];
154 const struct cpusw *cpu_fn_switch; /* function switch */
155
156 struct user *proc0paddr;
157
158 /* Number of machine cycles per microsecond */
159 u_int64_t cycles_per_usec;
160
161 /* some memory areas for device DMA. "ick." */
162 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
163
164 /* number of cpus in the box. really! */
165 int ncpus;
166
167 char boot_flags[64];
168 char booted_kernel[64];
169
170 /* for cpu_sysctl() */
171 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
172 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
173 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
174
175 int cpu_dump __P((void));
176 int cpu_dumpsize __P((void));
177 void dumpsys __P((void));
178 void identifycpu __P((void));
179 void netintr __P((void));
180 void printregs __P((struct reg *));
181
182 void
183 alpha_init(pfn, ptb)
184 u_long pfn; /* first free PFN number */
185 u_long ptb; /* PFN of current level 1 page table */
186 {
187 extern char _end[];
188 caddr_t start, v;
189 struct mddt *mddtp;
190 int i, mddtweird;
191 char *p;
192
193 /*
194 * Turn off interrupts and floating point.
195 * Make sure the instruction and data streams are consistent.
196 */
197 (void)splhigh();
198 alpha_pal_wrfen(0);
199 ALPHA_TBIA();
200 alpha_pal_imb();
201
202 /*
203 * get address of the restart block, while we the bootstrap
204 * mapping is still around.
205 */
206 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
207 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
208
209 /*
210 * Remember how many cycles there are per microsecond,
211 * so that we can use delay(). Round up, for safety.
212 */
213 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
214
215 /*
216 * Init the PROM interface, so we can use printf
217 * until PROM mappings go away in consinit.
218 */
219 init_prom_interface();
220
221 /*
222 * Point interrupt/exception vectors to our own.
223 */
224 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
225 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
226 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
227 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
228 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
229 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
230
231 /*
232 * Disable System and Processor Correctable Error reporting.
233 * Clear pending machine checks and error reports, etc.
234 */
235 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
236
237 /*
238 * Find out how much memory is available, by looking at
239 * the memory cluster descriptors. This also tries to do
240 * its best to detect things things that have never been seen
241 * before...
242 *
243 * XXX Assumes that the first "system" cluster is the
244 * only one we can use. Is the second (etc.) system cluster
245 * (if one happens to exist) guaranteed to be contiguous? or...?
246 */
247 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
248
249 /*
250 * BEGIN MDDT WEIRDNESS CHECKING
251 */
252 mddtweird = 0;
253
254 #define cnt mddtp->mddt_cluster_cnt
255 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
256 if (cnt != 2 && cnt != 3) {
257 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
258 mddtweird = 1;
259 } else if (usage(0) != MDDT_PALCODE ||
260 usage(1) != MDDT_SYSTEM ||
261 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
262 mddtweird = 1;
263 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
264 }
265
266 for (i = 0; i < cnt; i++) {
267 if ((usage(i) & MDDT_mbz) != 0) {
268 printf("WARNING: mem cluster %d has weird usage %lx\n",
269 i, usage(i));
270 mddtweird = 1;
271 }
272 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
273 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
274 mddtweird = 1;
275 }
276 /* XXX other things to check? */
277 }
278 #undef cnt
279 #undef usage
280
281 if (mddtweird) {
282 printf("\n");
283 printf("complete memory cluster information:\n");
284 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
285 printf("mddt %d:\n", i);
286 printf("\tpfn %lx\n",
287 mddtp->mddt_clusters[i].mddt_pfn);
288 printf("\tcnt %lx\n",
289 mddtp->mddt_clusters[i].mddt_pg_cnt);
290 printf("\ttest %lx\n",
291 mddtp->mddt_clusters[i].mddt_pg_test);
292 printf("\tbva %lx\n",
293 mddtp->mddt_clusters[i].mddt_v_bitaddr);
294 printf("\tbpa %lx\n",
295 mddtp->mddt_clusters[i].mddt_p_bitaddr);
296 printf("\tbcksum %lx\n",
297 mddtp->mddt_clusters[i].mddt_bit_cksum);
298 printf("\tusage %lx\n",
299 mddtp->mddt_clusters[i].mddt_usage);
300 }
301 printf("\n");
302 }
303 /*
304 * END MDDT WEIRDNESS CHECKING
305 */
306
307 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
308 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
309 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
310 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
311 if ((usage(i) & MDDT_mbz) != 0)
312 unknownmem += pgcnt(i);
313 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
314 resvmem += pgcnt(i);
315 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
316 /*
317 * assumes that the system cluster listed is
318 * one we're in...
319 */
320 if (physmem != resvmem) {
321 physmem += pgcnt(i);
322 firstusablepage =
323 mddtp->mddt_clusters[i].mddt_pfn;
324 lastusablepage = firstusablepage + pgcnt(i) - 1;
325 } else
326 unusedmem += pgcnt(i);
327 }
328 #undef usage
329 #undef pgcnt
330 }
331 if (totalphysmem == 0)
332 panic("can't happen: system seems to have no memory!");
333 maxmem = physmem;
334
335 #if 0
336 printf("totalphysmem = %d\n", totalphysmem);
337 printf("physmem = %d\n", physmem);
338 printf("firstusablepage = %d\n", firstusablepage);
339 printf("lastusablepage = %d\n", lastusablepage);
340 printf("resvmem = %d\n", resvmem);
341 printf("unusedmem = %d\n", unusedmem);
342 printf("unknownmem = %d\n", unknownmem);
343 #endif
344
345 /*
346 * find out this CPU's page size
347 */
348 PAGE_SIZE = hwrpb->rpb_page_size;
349 if (PAGE_SIZE != 8192)
350 panic("page size %d != 8192?!", PAGE_SIZE);
351
352 v = (caddr_t)alpha_round_page(_end);
353 /*
354 * Init mapping for u page(s) for proc 0
355 */
356 start = v;
357 curproc->p_addr = proc0paddr = (struct user *)v;
358 v += UPAGES * NBPG;
359
360 /*
361 * Find out what hardware we're on, and remember its type name.
362 */
363 cputype = hwrpb->rpb_type;
364 if (cputype < 0 || cputype > ncpusw) {
365 unknown_cputype:
366 printf("\n");
367 printf("Unknown system type %d.\n", cputype);
368 printf("\n");
369 panic("unknown system type");
370 }
371 cpu_fn_switch = &cpusw[cputype];
372 if (cpu_fn_switch->family == NULL)
373 goto unknown_cputype;
374 if (cpu_fn_switch->option == NULL) {
375 printf("\n");
376 printf("NetBSD does not currently support system type %d\n",
377 cputype);
378 printf("(%s family).\n", cpu_fn_switch->family);
379 printf("\n");
380 panic("unsupported system type");
381 }
382 if (!cpu_fn_switch->present) {
383 printf("\n");
384 printf("Support for system type %d (%s family) is\n", cputype,
385 cpu_fn_switch->family);
386 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
387 cpu_fn_switch->option);
388 printf("to include support for this system type.\n");
389 printf("\n");
390 panic("support for system not present");
391 }
392
393 if ((*cpu_fn_switch->model_name)() != NULL)
394 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
395 sizeof cpu_model - 1);
396 else {
397 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
398 strcat(cpu_model, " family"); /* XXX */
399 }
400 cpu_model[sizeof cpu_model - 1] = '\0';
401
402 /* XXX SANITY CHECKING. SHOULD GO AWAY */
403 /* XXX We should always be running on the the primary. */
404 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
405 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
406 if (cputype != ST_DEC_21000) /*XXX*/
407 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
408
409 #if NLE_IOASIC > 0
410 /*
411 * Grab 128K at the top of physical memory for the lance chip
412 * on machines where it does dma through the I/O ASIC.
413 * It must be physically contiguous and aligned on a 128K boundary.
414 *
415 * Note that since this is conditional on the presence of
416 * IOASIC-attached 'le' units in the kernel config, the
417 * message buffer may move on these systems. This shouldn't
418 * be a problem, because once people have a kernel config that
419 * they use, they're going to stick with it.
420 */
421 if (cputype == ST_DEC_3000_500 ||
422 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
423 lastusablepage -= btoc(128 * 1024);
424 le_iomem =
425 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
426 }
427 #endif /* NLE_IOASIC */
428
429 /*
430 * Initialize error message buffer (at end of core).
431 */
432 lastusablepage -= btoc(sizeof (struct msgbuf));
433 msgbufp =
434 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
435 msgbufmapped = 1;
436
437 /*
438 * Allocate space for system data structures.
439 * The first available kernel virtual address is in "v".
440 * As pages of kernel virtual memory are allocated, "v" is incremented.
441 *
442 * These data structures are allocated here instead of cpu_startup()
443 * because physical memory is directly addressable. We don't have
444 * to map these into virtual address space.
445 */
446 #define valloc(name, type, num) \
447 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
448 #define valloclim(name, type, num, lim) \
449 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
450 #ifdef REAL_CLISTS
451 valloc(cfree, struct cblock, nclist);
452 #endif
453 valloc(callout, struct callout, ncallout);
454 valloc(swapmap, struct map, nswapmap = maxproc * 2);
455 #ifdef SYSVSHM
456 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
457 #endif
458 #ifdef SYSVSEM
459 valloc(sema, struct semid_ds, seminfo.semmni);
460 valloc(sem, struct sem, seminfo.semmns);
461 /* This is pretty disgusting! */
462 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
463 #endif
464 #ifdef SYSVMSG
465 valloc(msgpool, char, msginfo.msgmax);
466 valloc(msgmaps, struct msgmap, msginfo.msgseg);
467 valloc(msghdrs, struct msg, msginfo.msgtql);
468 valloc(msqids, struct msqid_ds, msginfo.msgmni);
469 #endif
470
471 /*
472 * Determine how many buffers to allocate.
473 * We allocate 10% of memory for buffer space. Insure a
474 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
475 * headers as file i/o buffers.
476 */
477 if (bufpages == 0)
478 bufpages = (physmem * 10) / (CLSIZE * 100);
479 if (nbuf == 0) {
480 nbuf = bufpages;
481 if (nbuf < 16)
482 nbuf = 16;
483 }
484 if (nswbuf == 0) {
485 nswbuf = (nbuf / 2) &~ 1; /* force even */
486 if (nswbuf > 256)
487 nswbuf = 256; /* sanity */
488 }
489 valloc(swbuf, struct buf, nswbuf);
490 valloc(buf, struct buf, nbuf);
491
492 /*
493 * Clear allocated memory.
494 */
495 bzero(start, v - start);
496
497 /*
498 * Initialize the virtual memory system, and set the
499 * page table base register in proc 0's PCB.
500 */
501 #ifndef NEW_PMAP
502 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
503 #else
504 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
505 hwrpb->rpb_max_asn);
506 #endif
507
508 /*
509 * Initialize the rest of proc 0's PCB, and cache its physical
510 * address.
511 */
512 proc0.p_md.md_pcbpaddr =
513 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
514
515 /*
516 * Set the kernel sp, reserving space for an (empty) trapframe,
517 * and make proc0's trapframe pointer point to it for sanity.
518 */
519 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
520 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
521 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
522
523 #ifdef NEW_PMAP
524 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
525 #endif
526
527 /*
528 * Look at arguments passed to us and compute boothowto.
529 * Also, get kernel name so it can be used in user-land.
530 */
531 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
532 #if 0
533 printf("boot flags = \"%s\"\n", boot_flags);
534 #endif
535 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
536 sizeof(booted_kernel));
537 #if 0
538 printf("booted kernel = \"%s\"\n", booted_kernel);
539 #endif
540
541 boothowto = RB_SINGLE;
542 #ifdef KADB
543 boothowto |= RB_KDB;
544 #endif
545 for (p = boot_flags; p && *p != '\0'; p++) {
546 /*
547 * Note that we'd really like to differentiate case here,
548 * but the Alpha AXP Architecture Reference Manual
549 * says that we shouldn't.
550 */
551 switch (*p) {
552 case 'a': /* autoboot */
553 case 'A':
554 boothowto &= ~RB_SINGLE;
555 break;
556
557 #ifdef DEBUG
558 case 'c': /* crash dump immediately after autoconfig */
559 case 'C':
560 boothowto |= RB_DUMP;
561 break;
562 #endif
563
564 case 'h': /* always halt, never reboot */
565 case 'H':
566 boothowto |= RB_HALT;
567 break;
568
569 #if 0
570 case 'm': /* mini root present in memory */
571 case 'M':
572 boothowto |= RB_MINIROOT;
573 break;
574 #endif
575
576 case 'n': /* askname */
577 case 'N':
578 boothowto |= RB_ASKNAME;
579 break;
580
581 case 's': /* single-user (default, supported for sanity) */
582 case 'S':
583 boothowto |= RB_SINGLE;
584 break;
585
586 default:
587 printf("Unrecognized boot flag '%c'.\n", *p);
588 break;
589 }
590 }
591
592 /*
593 * Figure out the number of cpus in the box, from RPB fields.
594 * Really. We mean it.
595 */
596 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
597 struct pcs *pcsp;
598
599 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
600 (i * hwrpb->rpb_pcs_size));
601 if ((pcsp->pcs_flags & PCS_PP) != 0)
602 ncpus++;
603 }
604 }
605
606 void
607 consinit()
608 {
609
610 (*cpu_fn_switch->cons_init)();
611 pmap_unmap_prom();
612 }
613
614 void
615 cpu_startup()
616 {
617 register unsigned i;
618 int base, residual;
619 vm_offset_t minaddr, maxaddr;
620 vm_size_t size;
621 #if defined(DEBUG)
622 extern int pmapdebug;
623 int opmapdebug = pmapdebug;
624
625 pmapdebug = 0;
626 #endif
627
628 /*
629 * Good {morning,afternoon,evening,night}.
630 */
631 printf(version);
632 identifycpu();
633 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
634 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
635 if (unusedmem)
636 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
637 if (unknownmem)
638 printf("WARNING: %d bytes of memory with unknown purpose\n",
639 ctob(unknownmem));
640
641 /*
642 * Allocate virtual address space for file I/O buffers.
643 * Note they are different than the array of headers, 'buf',
644 * and usually occupy more virtual memory than physical.
645 */
646 size = MAXBSIZE * nbuf;
647 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
648 &maxaddr, size, TRUE);
649 minaddr = (vm_offset_t)buffers;
650 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
651 &minaddr, size, FALSE) != KERN_SUCCESS)
652 panic("startup: cannot allocate buffers");
653 base = bufpages / nbuf;
654 residual = bufpages % nbuf;
655 for (i = 0; i < nbuf; i++) {
656 vm_size_t curbufsize;
657 vm_offset_t curbuf;
658
659 /*
660 * First <residual> buffers get (base+1) physical pages
661 * allocated for them. The rest get (base) physical pages.
662 *
663 * The rest of each buffer occupies virtual space,
664 * but has no physical memory allocated for it.
665 */
666 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
667 curbufsize = CLBYTES * (i < residual ? base+1 : base);
668 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
669 vm_map_simplify(buffer_map, curbuf);
670 }
671 /*
672 * Allocate a submap for exec arguments. This map effectively
673 * limits the number of processes exec'ing at any time.
674 */
675 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
676 16 * NCARGS, TRUE);
677
678 /*
679 * Allocate a submap for physio
680 */
681 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
682 VM_PHYS_SIZE, TRUE);
683
684 /*
685 * Finally, allocate mbuf cluster submap.
686 */
687 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
688 VM_MBUF_SIZE, FALSE);
689 /*
690 * Initialize callouts
691 */
692 callfree = callout;
693 for (i = 1; i < ncallout; i++)
694 callout[i-1].c_next = &callout[i];
695 callout[i-1].c_next = NULL;
696
697 #if defined(DEBUG)
698 pmapdebug = opmapdebug;
699 #endif
700 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
701 printf("using %ld buffers containing %ld bytes of memory\n",
702 (long)nbuf, (long)(bufpages * CLBYTES));
703
704 /*
705 * Set up buffers, so they can be used to read disk labels.
706 */
707 bufinit();
708
709 /*
710 * Configure the system.
711 */
712 configure();
713
714 /*
715 * Note that bootstrapping is finished, and set the HWRPB up
716 * to do restarts.
717 */
718 hwrpb_restart_setup();
719 }
720
721 void
722 identifycpu()
723 {
724
725 /*
726 * print out CPU identification information.
727 */
728 printf("%s, %ldMHz\n", cpu_model,
729 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
730 printf("%ld byte page size, %d processor%s.\n",
731 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
732 #if 0
733 /* this isn't defined for any systems that we run on? */
734 printf("serial number 0x%lx 0x%lx\n",
735 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
736
737 /* and these aren't particularly useful! */
738 printf("variation: 0x%lx, revision 0x%lx\n",
739 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
740 #endif
741 }
742
743 int waittime = -1;
744 struct pcb dumppcb;
745
746 void
747 cpu_reboot(howto, bootstr)
748 int howto;
749 char *bootstr;
750 {
751 extern int cold;
752
753 /* If system is cold, just halt. */
754 if (cold) {
755 howto |= RB_HALT;
756 goto haltsys;
757 }
758
759 /* If "always halt" was specified as a boot flag, obey. */
760 if ((boothowto & RB_HALT) != 0)
761 howto |= RB_HALT;
762
763 boothowto = howto;
764 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
765 waittime = 0;
766 vfs_shutdown();
767 /*
768 * If we've been adjusting the clock, the todr
769 * will be out of synch; adjust it now.
770 */
771 resettodr();
772 }
773
774 /* Disable interrupts. */
775 splhigh();
776
777 /* If rebooting and a dump is requested do it. */
778 #if 0
779 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
780 #else
781 if (howto & RB_DUMP)
782 #endif
783 dumpsys();
784
785 haltsys:
786
787 /* run any shutdown hooks */
788 doshutdownhooks();
789
790 #ifdef BOOTKEY
791 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
792 cngetc();
793 printf("\n");
794 #endif
795
796 /* Finally, halt/reboot the system. */
797 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
798 prom_halt(howto & RB_HALT);
799 /*NOTREACHED*/
800 }
801
802 /*
803 * These variables are needed by /sbin/savecore
804 */
805 u_long dumpmag = 0x8fca0101; /* magic number */
806 int dumpsize = 0; /* pages */
807 long dumplo = 0; /* blocks */
808
809 /*
810 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
811 */
812 int
813 cpu_dumpsize()
814 {
815 int size;
816
817 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
818 if (roundup(size, dbtob(1)) != dbtob(1))
819 return -1;
820
821 return (1);
822 }
823
824 /*
825 * cpu_dump: dump machine-dependent kernel core dump headers.
826 */
827 int
828 cpu_dump()
829 {
830 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
831 long buf[dbtob(1) / sizeof (long)];
832 kcore_seg_t *segp;
833 cpu_kcore_hdr_t *cpuhdrp;
834
835 dump = bdevsw[major(dumpdev)].d_dump;
836
837 segp = (kcore_seg_t *)buf;
838 cpuhdrp =
839 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
840
841 /*
842 * Generate a segment header.
843 */
844 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
845 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
846
847 /*
848 * Add the machine-dependent header info
849 */
850 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
851 cpuhdrp->page_size = PAGE_SIZE;
852 cpuhdrp->core_seg.start = ctob(firstusablepage);
853 cpuhdrp->core_seg.size = ctob(physmem);
854
855 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
856 }
857
858 /*
859 * This is called by main to set dumplo and dumpsize.
860 * Dumps always skip the first CLBYTES of disk space
861 * in case there might be a disk label stored there.
862 * If there is extra space, put dump at the end to
863 * reduce the chance that swapping trashes it.
864 */
865 void
866 cpu_dumpconf()
867 {
868 int nblks, dumpblks; /* size of dump area */
869 int maj;
870
871 if (dumpdev == NODEV)
872 goto bad;
873 maj = major(dumpdev);
874 if (maj < 0 || maj >= nblkdev)
875 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
876 if (bdevsw[maj].d_psize == NULL)
877 goto bad;
878 nblks = (*bdevsw[maj].d_psize)(dumpdev);
879 if (nblks <= ctod(1))
880 goto bad;
881
882 dumpblks = cpu_dumpsize();
883 if (dumpblks < 0)
884 goto bad;
885 dumpblks += ctod(physmem);
886
887 /* If dump won't fit (incl. room for possible label), punt. */
888 if (dumpblks > (nblks - ctod(1)))
889 goto bad;
890
891 /* Put dump at end of partition */
892 dumplo = nblks - dumpblks;
893
894 /* dumpsize is in page units, and doesn't include headers. */
895 dumpsize = physmem;
896 return;
897
898 bad:
899 dumpsize = 0;
900 return;
901 }
902
903 /*
904 * Dump the kernel's image to the swap partition.
905 */
906 #define BYTES_PER_DUMP NBPG
907
908 void
909 dumpsys()
910 {
911 unsigned bytes, i, n;
912 int maddr, psize;
913 daddr_t blkno;
914 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
915 int error;
916
917 /* Save registers. */
918 savectx(&dumppcb);
919
920 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
921 if (dumpdev == NODEV)
922 return;
923
924 /*
925 * For dumps during autoconfiguration,
926 * if dump device has already configured...
927 */
928 if (dumpsize == 0)
929 cpu_dumpconf();
930 if (dumplo <= 0) {
931 printf("\ndump to dev %x not possible\n", dumpdev);
932 return;
933 }
934 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
935
936 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
937 printf("dump ");
938 if (psize == -1) {
939 printf("area unavailable\n");
940 return;
941 }
942
943 /* XXX should purge all outstanding keystrokes. */
944
945 if ((error = cpu_dump()) != 0)
946 goto err;
947
948 bytes = ctob(physmem);
949 maddr = ctob(firstusablepage);
950 blkno = dumplo + cpu_dumpsize();
951 dump = bdevsw[major(dumpdev)].d_dump;
952 error = 0;
953 for (i = 0; i < bytes; i += n) {
954
955 /* Print out how many MBs we to go. */
956 n = bytes - i;
957 if (n && (n % (1024*1024)) == 0)
958 printf("%d ", n / (1024 * 1024));
959
960 /* Limit size for next transfer. */
961 if (n > BYTES_PER_DUMP)
962 n = BYTES_PER_DUMP;
963
964 error = (*dump)(dumpdev, blkno,
965 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
966 if (error)
967 break;
968 maddr += n;
969 blkno += btodb(n); /* XXX? */
970
971 /* XXX should look for keystrokes, to cancel. */
972 }
973
974 err:
975 switch (error) {
976
977 case ENXIO:
978 printf("device bad\n");
979 break;
980
981 case EFAULT:
982 printf("device not ready\n");
983 break;
984
985 case EINVAL:
986 printf("area improper\n");
987 break;
988
989 case EIO:
990 printf("i/o error\n");
991 break;
992
993 case EINTR:
994 printf("aborted from console\n");
995 break;
996
997 case 0:
998 printf("succeeded\n");
999 break;
1000
1001 default:
1002 printf("error %d\n", error);
1003 break;
1004 }
1005 printf("\n\n");
1006 delay(1000);
1007 }
1008
1009 void
1010 frametoreg(framep, regp)
1011 struct trapframe *framep;
1012 struct reg *regp;
1013 {
1014
1015 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1016 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1017 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1018 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1019 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1020 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1021 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1022 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1023 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1024 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1025 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1026 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1027 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1028 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1029 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1030 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1031 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1032 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1033 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1034 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1035 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1036 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1037 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1038 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1039 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1040 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1041 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1042 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1043 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1044 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1045 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1046 regp->r_regs[R_ZERO] = 0;
1047 }
1048
1049 void
1050 regtoframe(regp, framep)
1051 struct reg *regp;
1052 struct trapframe *framep;
1053 {
1054
1055 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1056 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1057 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1058 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1059 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1060 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1061 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1062 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1063 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1064 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1065 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1066 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1067 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1068 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1069 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1070 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1071 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1072 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1073 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1074 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1075 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1076 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1077 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1078 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1079 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1080 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1081 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1082 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1083 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1084 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1085 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1086 /* ??? = regp->r_regs[R_ZERO]; */
1087 }
1088
1089 void
1090 printregs(regp)
1091 struct reg *regp;
1092 {
1093 int i;
1094
1095 for (i = 0; i < 32; i++)
1096 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1097 i & 1 ? "\n" : "\t");
1098 }
1099
1100 void
1101 regdump(framep)
1102 struct trapframe *framep;
1103 {
1104 struct reg reg;
1105
1106 frametoreg(framep, ®);
1107 reg.r_regs[R_SP] = alpha_pal_rdusp();
1108
1109 printf("REGISTERS:\n");
1110 printregs(®);
1111 }
1112
1113 #ifdef DEBUG
1114 int sigdebug = 0;
1115 int sigpid = 0;
1116 #define SDB_FOLLOW 0x01
1117 #define SDB_KSTACK 0x02
1118 #endif
1119
1120 /*
1121 * Send an interrupt to process.
1122 */
1123 void
1124 sendsig(catcher, sig, mask, code)
1125 sig_t catcher;
1126 int sig, mask;
1127 u_long code;
1128 {
1129 struct proc *p = curproc;
1130 struct sigcontext *scp, ksc;
1131 struct trapframe *frame;
1132 struct sigacts *psp = p->p_sigacts;
1133 int oonstack, fsize, rndfsize;
1134 extern char sigcode[], esigcode[];
1135 extern struct proc *fpcurproc;
1136
1137 frame = p->p_md.md_tf;
1138 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1139 fsize = sizeof ksc;
1140 rndfsize = ((fsize + 15) / 16) * 16;
1141 /*
1142 * Allocate and validate space for the signal handler
1143 * context. Note that if the stack is in P0 space, the
1144 * call to grow() is a nop, and the useracc() check
1145 * will fail if the process has not already allocated
1146 * the space with a `brk'.
1147 */
1148 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1149 (psp->ps_sigonstack & sigmask(sig))) {
1150 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1151 psp->ps_sigstk.ss_size - rndfsize);
1152 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1153 } else
1154 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1155 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1156 (void)grow(p, (u_long)scp);
1157 #ifdef DEBUG
1158 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1159 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1160 sig, &oonstack, scp);
1161 #endif
1162 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1163 #ifdef DEBUG
1164 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1165 printf("sendsig(%d): useracc failed on sig %d\n",
1166 p->p_pid, sig);
1167 #endif
1168 /*
1169 * Process has trashed its stack; give it an illegal
1170 * instruction to halt it in its tracks.
1171 */
1172 SIGACTION(p, SIGILL) = SIG_DFL;
1173 sig = sigmask(SIGILL);
1174 p->p_sigignore &= ~sig;
1175 p->p_sigcatch &= ~sig;
1176 p->p_sigmask &= ~sig;
1177 psignal(p, SIGILL);
1178 return;
1179 }
1180
1181 /*
1182 * Build the signal context to be used by sigreturn.
1183 */
1184 ksc.sc_onstack = oonstack;
1185 ksc.sc_mask = mask;
1186 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1187 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1188
1189 /* copy the registers. */
1190 frametoreg(frame, (struct reg *)ksc.sc_regs);
1191 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1192 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1193
1194 /* save the floating-point state, if necessary, then copy it. */
1195 if (p == fpcurproc) {
1196 alpha_pal_wrfen(1);
1197 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1198 alpha_pal_wrfen(0);
1199 fpcurproc = NULL;
1200 }
1201 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1202 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1203 sizeof(struct fpreg));
1204 ksc.sc_fp_control = 0; /* XXX ? */
1205 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1206 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1207
1208
1209 #ifdef COMPAT_OSF1
1210 /*
1211 * XXX Create an OSF/1-style sigcontext and associated goo.
1212 */
1213 #endif
1214
1215 /*
1216 * copy the frame out to userland.
1217 */
1218 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1219 #ifdef DEBUG
1220 if (sigdebug & SDB_FOLLOW)
1221 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1222 scp, code);
1223 #endif
1224
1225 /*
1226 * Set up the registers to return to sigcode.
1227 */
1228 frame->tf_regs[FRAME_PC] =
1229 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1230 frame->tf_regs[FRAME_A0] = sig;
1231 frame->tf_regs[FRAME_A1] = code;
1232 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1233 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1234 alpha_pal_wrusp((unsigned long)scp);
1235
1236 #ifdef DEBUG
1237 if (sigdebug & SDB_FOLLOW)
1238 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1239 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1240 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1241 printf("sendsig(%d): sig %d returns\n",
1242 p->p_pid, sig);
1243 #endif
1244 }
1245
1246 /*
1247 * System call to cleanup state after a signal
1248 * has been taken. Reset signal mask and
1249 * stack state from context left by sendsig (above).
1250 * Return to previous pc and psl as specified by
1251 * context left by sendsig. Check carefully to
1252 * make sure that the user has not modified the
1253 * psl to gain improper priviledges or to cause
1254 * a machine fault.
1255 */
1256 /* ARGSUSED */
1257 int
1258 sys_sigreturn(p, v, retval)
1259 struct proc *p;
1260 void *v;
1261 register_t *retval;
1262 {
1263 struct sys_sigreturn_args /* {
1264 syscallarg(struct sigcontext *) sigcntxp;
1265 } */ *uap = v;
1266 struct sigcontext *scp, ksc;
1267 extern struct proc *fpcurproc;
1268
1269 scp = SCARG(uap, sigcntxp);
1270 #ifdef DEBUG
1271 if (sigdebug & SDB_FOLLOW)
1272 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1273 #endif
1274
1275 if (ALIGN(scp) != (u_int64_t)scp)
1276 return (EINVAL);
1277
1278 /*
1279 * Test and fetch the context structure.
1280 * We grab it all at once for speed.
1281 */
1282 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1283 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1284 return (EINVAL);
1285
1286 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1287 return (EINVAL);
1288 /*
1289 * Restore the user-supplied information
1290 */
1291 if (ksc.sc_onstack)
1292 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1293 else
1294 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1295 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1296
1297 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1298 p->p_md.md_tf->tf_regs[FRAME_PS] =
1299 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1300
1301 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1302 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1303
1304 /* XXX ksc.sc_ownedfp ? */
1305 if (p == fpcurproc)
1306 fpcurproc = NULL;
1307 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1308 sizeof(struct fpreg));
1309 /* XXX ksc.sc_fp_control ? */
1310
1311 #ifdef DEBUG
1312 if (sigdebug & SDB_FOLLOW)
1313 printf("sigreturn(%d): returns\n", p->p_pid);
1314 #endif
1315 return (EJUSTRETURN);
1316 }
1317
1318 /*
1319 * machine dependent system variables.
1320 */
1321 int
1322 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1323 int *name;
1324 u_int namelen;
1325 void *oldp;
1326 size_t *oldlenp;
1327 void *newp;
1328 size_t newlen;
1329 struct proc *p;
1330 {
1331 dev_t consdev;
1332
1333 /* all sysctl names at this level are terminal */
1334 if (namelen != 1)
1335 return (ENOTDIR); /* overloaded */
1336
1337 switch (name[0]) {
1338 case CPU_CONSDEV:
1339 if (cn_tab != NULL)
1340 consdev = cn_tab->cn_dev;
1341 else
1342 consdev = NODEV;
1343 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1344 sizeof consdev));
1345
1346 case CPU_ROOT_DEVICE:
1347 return (sysctl_rdstring(oldp, oldlenp, newp,
1348 root_device->dv_xname));
1349
1350 case CPU_UNALIGNED_PRINT:
1351 return (sysctl_int(oldp, oldlenp, newp, newlen,
1352 &alpha_unaligned_print));
1353
1354 case CPU_UNALIGNED_FIX:
1355 return (sysctl_int(oldp, oldlenp, newp, newlen,
1356 &alpha_unaligned_fix));
1357
1358 case CPU_UNALIGNED_SIGBUS:
1359 return (sysctl_int(oldp, oldlenp, newp, newlen,
1360 &alpha_unaligned_sigbus));
1361
1362 case CPU_BOOTED_KERNEL:
1363 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1364
1365 default:
1366 return (EOPNOTSUPP);
1367 }
1368 /* NOTREACHED */
1369 }
1370
1371 /*
1372 * Set registers on exec.
1373 */
1374 void
1375 setregs(p, pack, stack, retval)
1376 register struct proc *p;
1377 struct exec_package *pack;
1378 u_long stack;
1379 register_t *retval;
1380 {
1381 struct trapframe *tfp = p->p_md.md_tf;
1382 extern struct proc *fpcurproc;
1383 #ifdef DEBUG
1384 int i;
1385 #endif
1386
1387 #ifdef DEBUG
1388 /*
1389 * Crash and dump, if the user requested it.
1390 */
1391 if (boothowto & RB_DUMP)
1392 panic("crash requested by boot flags");
1393 #endif
1394
1395 #ifdef DEBUG
1396 for (i = 0; i < FRAME_SIZE; i++)
1397 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1398 #else
1399 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1400 #endif
1401 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1402 #define FP_RN 2 /* XXX */
1403 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1404 alpha_pal_wrusp(stack);
1405 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1406 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1407
1408 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1409 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1410 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1411 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1412 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1413
1414 p->p_md.md_flags &= ~MDP_FPUSED;
1415 if (fpcurproc == p)
1416 fpcurproc = NULL;
1417
1418 retval[0] = retval[1] = 0;
1419 }
1420
1421 void
1422 netintr()
1423 {
1424 int n, s;
1425
1426 s = splhigh();
1427 n = netisr;
1428 netisr = 0;
1429 splx(s);
1430
1431 #define DONETISR(bit, fn) \
1432 do { \
1433 if (n & (1 << (bit))) \
1434 fn; \
1435 } while (0)
1436
1437 #ifdef INET
1438 #if NARP > 0
1439 DONETISR(NETISR_ARP, arpintr());
1440 #endif
1441 DONETISR(NETISR_IP, ipintr());
1442 #endif
1443 #ifdef NETATALK
1444 DONETISR(NETISR_ATALK, atintr());
1445 #endif
1446 #ifdef NS
1447 DONETISR(NETISR_NS, nsintr());
1448 #endif
1449 #ifdef ISO
1450 DONETISR(NETISR_ISO, clnlintr());
1451 #endif
1452 #ifdef CCITT
1453 DONETISR(NETISR_CCITT, ccittintr());
1454 #endif
1455 #ifdef NATM
1456 DONETISR(NETISR_NATM, natmintr());
1457 #endif
1458 #if NPPP > 1
1459 DONETISR(NETISR_PPP, pppintr());
1460 #endif
1461
1462 #undef DONETISR
1463 }
1464
1465 void
1466 do_sir()
1467 {
1468 u_int64_t n;
1469
1470 do {
1471 (void)splhigh();
1472 n = ssir;
1473 ssir = 0;
1474 splsoft(); /* don't recurse through spl0() */
1475
1476 #define DO_SIR(bit, fn) \
1477 do { \
1478 if (n & (bit)) { \
1479 cnt.v_soft++; \
1480 fn; \
1481 } \
1482 } while (0)
1483
1484 DO_SIR(SIR_NET, netintr());
1485 DO_SIR(SIR_CLOCK, softclock());
1486
1487 #undef DO_SIR
1488 } while (ssir != 0);
1489 }
1490
1491 int
1492 spl0()
1493 {
1494
1495 if (ssir)
1496 do_sir(); /* it lowers the IPL itself */
1497
1498 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1499 }
1500
1501 /*
1502 * The following primitives manipulate the run queues. _whichqs tells which
1503 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1504 * into queues, Remrunqueue removes them from queues. The running process is
1505 * on no queue, other processes are on a queue related to p->p_priority,
1506 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1507 * available queues.
1508 */
1509 /*
1510 * setrunqueue(p)
1511 * proc *p;
1512 *
1513 * Call should be made at splclock(), and p->p_stat should be SRUN.
1514 */
1515
1516 void
1517 setrunqueue(p)
1518 struct proc *p;
1519 {
1520 int bit;
1521
1522 /* firewall: p->p_back must be NULL */
1523 if (p->p_back != NULL)
1524 panic("setrunqueue");
1525
1526 bit = p->p_priority >> 2;
1527 whichqs |= (1 << bit);
1528 p->p_forw = (struct proc *)&qs[bit];
1529 p->p_back = qs[bit].ph_rlink;
1530 p->p_back->p_forw = p;
1531 qs[bit].ph_rlink = p;
1532 }
1533
1534 /*
1535 * remrunqueue(p)
1536 *
1537 * Call should be made at splclock().
1538 */
1539 void
1540 remrunqueue(p)
1541 struct proc *p;
1542 {
1543 int bit;
1544
1545 bit = p->p_priority >> 2;
1546 if ((whichqs & (1 << bit)) == 0)
1547 panic("remrunqueue");
1548
1549 p->p_back->p_forw = p->p_forw;
1550 p->p_forw->p_back = p->p_back;
1551 p->p_back = NULL; /* for firewall checking. */
1552
1553 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1554 whichqs &= ~(1 << bit);
1555 }
1556
1557 /*
1558 * Return the best possible estimate of the time in the timeval
1559 * to which tvp points. Unfortunately, we can't read the hardware registers.
1560 * We guarantee that the time will be greater than the value obtained by a
1561 * previous call.
1562 */
1563 void
1564 microtime(tvp)
1565 register struct timeval *tvp;
1566 {
1567 int s = splclock();
1568 static struct timeval lasttime;
1569
1570 *tvp = time;
1571 #ifdef notdef
1572 tvp->tv_usec += clkread();
1573 while (tvp->tv_usec > 1000000) {
1574 tvp->tv_sec++;
1575 tvp->tv_usec -= 1000000;
1576 }
1577 #endif
1578 if (tvp->tv_sec == lasttime.tv_sec &&
1579 tvp->tv_usec <= lasttime.tv_usec &&
1580 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1581 tvp->tv_sec++;
1582 tvp->tv_usec -= 1000000;
1583 }
1584 lasttime = *tvp;
1585 splx(s);
1586 }
1587
1588 /*
1589 * Wait "n" microseconds.
1590 */
1591 void
1592 delay(n)
1593 unsigned long n;
1594 {
1595 long N = cycles_per_usec * (n);
1596
1597 while (N > 0) /* XXX */
1598 N -= 3; /* XXX */
1599 }
1600
1601 #if defined(COMPAT_OSF1) || 1 /* XXX */
1602 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1603 u_long, register_t *));
1604
1605 void
1606 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1607 struct proc *p;
1608 struct exec_package *epp;
1609 u_long stack;
1610 register_t *retval;
1611 {
1612 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1613
1614 setregs(p, epp, stack, retval);
1615 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1616 }
1617
1618 /*
1619 * cpu_exec_ecoff_hook():
1620 * cpu-dependent ECOFF format hook for execve().
1621 *
1622 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1623 *
1624 */
1625 int
1626 cpu_exec_ecoff_hook(p, epp)
1627 struct proc *p;
1628 struct exec_package *epp;
1629 {
1630 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1631 extern struct emul emul_netbsd;
1632 #ifdef COMPAT_OSF1
1633 extern struct emul emul_osf1;
1634 #endif
1635
1636 switch (execp->f.f_magic) {
1637 #ifdef COMPAT_OSF1
1638 case ECOFF_MAGIC_ALPHA:
1639 epp->ep_emul = &emul_osf1;
1640 break;
1641 #endif
1642
1643 case ECOFF_MAGIC_NETBSD_ALPHA:
1644 epp->ep_emul = &emul_netbsd;
1645 break;
1646
1647 default:
1648 return ENOEXEC;
1649 }
1650 return 0;
1651 }
1652 #endif
1653
1654 /* XXX XXX BEGIN XXX XXX */
1655 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1656 /* XXX */
1657 vm_offset_t /* XXX */
1658 alpha_XXX_dmamap(v) /* XXX */
1659 vm_offset_t v; /* XXX */
1660 { /* XXX */
1661 /* XXX */
1662 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1663 } /* XXX */
1664 /* XXX XXX END XXX XXX */
1665