machdep.c revision 1.74 1 /* $NetBSD: machdep.c,v 1.74 1997/04/07 06:36:30 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <machine/options.h> /* Pull in config options headers */
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/signalvar.h>
35 #include <sys/kernel.h>
36 #include <sys/map.h>
37 #include <sys/proc.h>
38 #include <sys/buf.h>
39 #include <sys/reboot.h>
40 #include <sys/device.h>
41 #include <sys/file.h>
42 #ifdef REAL_CLISTS
43 #include <sys/clist.h>
44 #endif
45 #include <sys/callout.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/msgbuf.h>
49 #include <sys/ioctl.h>
50 #include <sys/tty.h>
51 #include <sys/user.h>
52 #include <sys/exec.h>
53 #include <sys/exec_ecoff.h>
54 #include <sys/sysctl.h>
55 #include <sys/core.h>
56 #include <sys/kcore.h>
57 #include <machine/kcore.h>
58 #ifdef SYSVMSG
59 #include <sys/msg.h>
60 #endif
61 #ifdef SYSVSEM
62 #include <sys/sem.h>
63 #endif
64 #ifdef SYSVSHM
65 #include <sys/shm.h>
66 #endif
67
68 #include <sys/mount.h>
69 #include <sys/syscallargs.h>
70
71 #include <vm/vm_kern.h>
72
73 #include <dev/cons.h>
74
75 #include <machine/cpu.h>
76 #include <machine/reg.h>
77 #include <machine/rpb.h>
78 #include <machine/prom.h>
79 #include <machine/conf.h>
80
81 #include <net/netisr.h>
82 #include <net/if.h>
83
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/ip_var.h>
87 #include "arp.h"
88 #if NARP > 0
89 #include <netinet/if_inarp.h>
90 #endif
91 #endif
92 #ifdef NS
93 #include <netns/ns_var.h>
94 #endif
95 #ifdef ISO
96 #include <netiso/iso.h>
97 #include <netiso/clnp.h>
98 #endif
99 #ifdef CCITT
100 #include <netccitt/x25.h>
101 #include <netccitt/pk.h>
102 #include <netccitt/pk_extern.h>
103 #endif
104 #ifdef NATM
105 #include <netnatm/natm.h>
106 #endif
107 #ifdef NETATALK
108 #include <netatalk/at_extern.h>
109 #endif
110 #include "ppp.h"
111 #if NPPP > 0
112 #include <net/ppp_defs.h>
113 #include <net/if_ppp.h>
114 #endif
115
116 #include "le_ioasic.h" /* for le_iomem creation */
117
118 vm_map_t buffer_map;
119
120 /*
121 * Declare these as initialized data so we can patch them.
122 */
123 int nswbuf = 0;
124 #ifdef NBUF
125 int nbuf = NBUF;
126 #else
127 int nbuf = 0;
128 #endif
129 #ifdef BUFPAGES
130 int bufpages = BUFPAGES;
131 #else
132 int bufpages = 0;
133 #endif
134 int msgbufmapped = 0; /* set when safe to use msgbuf */
135 int maxmem; /* max memory per process */
136
137 int totalphysmem; /* total amount of physical memory in system */
138 int physmem; /* physical memory used by NetBSD + some rsvd */
139 int firstusablepage; /* first usable memory page */
140 int lastusablepage; /* last usable memory page */
141 int resvmem; /* amount of memory reserved for PROM */
142 int unusedmem; /* amount of memory for OS that we don't use */
143 int unknownmem; /* amount of memory with an unknown use */
144
145 int cputype; /* system type, from the RPB */
146
147 /*
148 * XXX We need an address to which we can assign things so that they
149 * won't be optimized away because we didn't use the value.
150 */
151 u_int32_t no_optimize;
152
153 /* the following is used externally (sysctl_hw) */
154 char machine[] = "alpha";
155 char cpu_model[128];
156 const struct cpusw *cpu_fn_switch; /* function switch */
157
158 struct user *proc0paddr;
159
160 /* Number of machine cycles per microsecond */
161 u_int64_t cycles_per_usec;
162
163 /* some memory areas for device DMA. "ick." */
164 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
165
166 /* number of cpus in the box. really! */
167 int ncpus;
168
169 char boot_flags[64];
170 char booted_kernel[64];
171
172 /* for cpu_sysctl() */
173 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
174 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
175 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
176
177 int cpu_dump __P((void));
178 int cpu_dumpsize __P((void));
179 void dumpsys __P((void));
180 void identifycpu __P((void));
181 void netintr __P((void));
182 void printregs __P((struct reg *));
183
184 void
185 alpha_init(pfn, ptb)
186 u_long pfn; /* first free PFN number */
187 u_long ptb; /* PFN of current level 1 page table */
188 {
189 extern char _end[];
190 caddr_t start, v;
191 struct mddt *mddtp;
192 int i, mddtweird;
193 char *p;
194
195 /*
196 * Turn off interrupts and floating point.
197 * Make sure the instruction and data streams are consistent.
198 */
199 (void)splhigh();
200 alpha_pal_wrfen(0);
201 ALPHA_TBIA();
202 alpha_pal_imb();
203
204 /*
205 * get address of the restart block, while we the bootstrap
206 * mapping is still around.
207 */
208 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
209 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
210
211 /*
212 * Remember how many cycles there are per microsecond,
213 * so that we can use delay(). Round up, for safety.
214 */
215 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
216
217 /*
218 * Init the PROM interface, so we can use printf
219 * until PROM mappings go away in consinit.
220 */
221 init_prom_interface();
222
223 /*
224 * Point interrupt/exception vectors to our own.
225 */
226 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
227 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
228 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
229 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
230 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
231 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
232
233 /*
234 * Disable System and Processor Correctable Error reporting.
235 * Clear pending machine checks and error reports, etc.
236 */
237 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
238
239 /*
240 * Find out how much memory is available, by looking at
241 * the memory cluster descriptors. This also tries to do
242 * its best to detect things things that have never been seen
243 * before...
244 *
245 * XXX Assumes that the first "system" cluster is the
246 * only one we can use. Is the second (etc.) system cluster
247 * (if one happens to exist) guaranteed to be contiguous? or...?
248 */
249 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
250
251 /*
252 * BEGIN MDDT WEIRDNESS CHECKING
253 */
254 mddtweird = 0;
255
256 #define cnt mddtp->mddt_cluster_cnt
257 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
258 if (cnt != 2 && cnt != 3) {
259 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
260 mddtweird = 1;
261 } else if (usage(0) != MDDT_PALCODE ||
262 usage(1) != MDDT_SYSTEM ||
263 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
264 mddtweird = 1;
265 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
266 }
267
268 for (i = 0; i < cnt; i++) {
269 if ((usage(i) & MDDT_mbz) != 0) {
270 printf("WARNING: mem cluster %d has weird usage %lx\n",
271 i, usage(i));
272 mddtweird = 1;
273 }
274 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
275 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
276 mddtweird = 1;
277 }
278 /* XXX other things to check? */
279 }
280 #undef cnt
281 #undef usage
282
283 if (mddtweird) {
284 printf("\n");
285 printf("complete memory cluster information:\n");
286 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
287 printf("mddt %d:\n", i);
288 printf("\tpfn %lx\n",
289 mddtp->mddt_clusters[i].mddt_pfn);
290 printf("\tcnt %lx\n",
291 mddtp->mddt_clusters[i].mddt_pg_cnt);
292 printf("\ttest %lx\n",
293 mddtp->mddt_clusters[i].mddt_pg_test);
294 printf("\tbva %lx\n",
295 mddtp->mddt_clusters[i].mddt_v_bitaddr);
296 printf("\tbpa %lx\n",
297 mddtp->mddt_clusters[i].mddt_p_bitaddr);
298 printf("\tbcksum %lx\n",
299 mddtp->mddt_clusters[i].mddt_bit_cksum);
300 printf("\tusage %lx\n",
301 mddtp->mddt_clusters[i].mddt_usage);
302 }
303 printf("\n");
304 }
305 /*
306 * END MDDT WEIRDNESS CHECKING
307 */
308
309 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
310 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
311 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
312 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
313 if ((usage(i) & MDDT_mbz) != 0)
314 unknownmem += pgcnt(i);
315 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
316 resvmem += pgcnt(i);
317 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
318 /*
319 * assumes that the system cluster listed is
320 * one we're in...
321 */
322 if (physmem != resvmem) {
323 physmem += pgcnt(i);
324 firstusablepage =
325 mddtp->mddt_clusters[i].mddt_pfn;
326 lastusablepage = firstusablepage + pgcnt(i) - 1;
327 } else
328 unusedmem += pgcnt(i);
329 }
330 #undef usage
331 #undef pgcnt
332 }
333 if (totalphysmem == 0)
334 panic("can't happen: system seems to have no memory!");
335 maxmem = physmem;
336
337 #if 0
338 printf("totalphysmem = %d\n", totalphysmem);
339 printf("physmem = %d\n", physmem);
340 printf("firstusablepage = %d\n", firstusablepage);
341 printf("lastusablepage = %d\n", lastusablepage);
342 printf("resvmem = %d\n", resvmem);
343 printf("unusedmem = %d\n", unusedmem);
344 printf("unknownmem = %d\n", unknownmem);
345 #endif
346
347 /*
348 * find out this CPU's page size
349 */
350 PAGE_SIZE = hwrpb->rpb_page_size;
351 if (PAGE_SIZE != 8192)
352 panic("page size %d != 8192?!", PAGE_SIZE);
353
354 v = (caddr_t)alpha_round_page(_end);
355 /*
356 * Init mapping for u page(s) for proc 0
357 */
358 start = v;
359 curproc->p_addr = proc0paddr = (struct user *)v;
360 v += UPAGES * NBPG;
361
362 /*
363 * Find out what hardware we're on, and remember its type name.
364 */
365 cputype = hwrpb->rpb_type;
366 if (cputype < 0 || cputype > ncpusw) {
367 unknown_cputype:
368 printf("\n");
369 printf("Unknown system type %d.\n", cputype);
370 printf("\n");
371 panic("unknown system type");
372 }
373 cpu_fn_switch = &cpusw[cputype];
374 if (cpu_fn_switch->family == NULL)
375 goto unknown_cputype;
376 if (cpu_fn_switch->option == NULL) {
377 printf("\n");
378 printf("NetBSD does not currently support system type %d\n",
379 cputype);
380 printf("(%s family).\n", cpu_fn_switch->family);
381 printf("\n");
382 panic("unsupported system type");
383 }
384 if (!cpu_fn_switch->present) {
385 printf("\n");
386 printf("Support for system type %d (%s family) is\n", cputype,
387 cpu_fn_switch->family);
388 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
389 cpu_fn_switch->option);
390 printf("to include support for this system type.\n");
391 printf("\n");
392 panic("support for system not present");
393 }
394
395 if ((*cpu_fn_switch->model_name)() != NULL)
396 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
397 sizeof cpu_model - 1);
398 else {
399 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
400 strcat(cpu_model, " family"); /* XXX */
401 }
402 cpu_model[sizeof cpu_model - 1] = '\0';
403
404 /* XXX SANITY CHECKING. SHOULD GO AWAY */
405 /* XXX We should always be running on the the primary. */
406 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
407 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
408 if (cputype != ST_DEC_21000) /*XXX*/
409 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
410
411 #if NLE_IOASIC > 0
412 /*
413 * Grab 128K at the top of physical memory for the lance chip
414 * on machines where it does dma through the I/O ASIC.
415 * It must be physically contiguous and aligned on a 128K boundary.
416 *
417 * Note that since this is conditional on the presence of
418 * IOASIC-attached 'le' units in the kernel config, the
419 * message buffer may move on these systems. This shouldn't
420 * be a problem, because once people have a kernel config that
421 * they use, they're going to stick with it.
422 */
423 if (cputype == ST_DEC_3000_500 ||
424 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
425 lastusablepage -= btoc(128 * 1024);
426 le_iomem =
427 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
428 }
429 #endif /* NLE_IOASIC */
430
431 /*
432 * Initialize error message buffer (at end of core).
433 */
434 lastusablepage -= btoc(sizeof (struct msgbuf));
435 msgbufp =
436 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
437 msgbufmapped = 1;
438
439 /*
440 * Allocate space for system data structures.
441 * The first available kernel virtual address is in "v".
442 * As pages of kernel virtual memory are allocated, "v" is incremented.
443 *
444 * These data structures are allocated here instead of cpu_startup()
445 * because physical memory is directly addressable. We don't have
446 * to map these into virtual address space.
447 */
448 #define valloc(name, type, num) \
449 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
450 #define valloclim(name, type, num, lim) \
451 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
452 #ifdef REAL_CLISTS
453 valloc(cfree, struct cblock, nclist);
454 #endif
455 valloc(callout, struct callout, ncallout);
456 valloc(swapmap, struct map, nswapmap = maxproc * 2);
457 #ifdef SYSVSHM
458 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
459 #endif
460 #ifdef SYSVSEM
461 valloc(sema, struct semid_ds, seminfo.semmni);
462 valloc(sem, struct sem, seminfo.semmns);
463 /* This is pretty disgusting! */
464 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
465 #endif
466 #ifdef SYSVMSG
467 valloc(msgpool, char, msginfo.msgmax);
468 valloc(msgmaps, struct msgmap, msginfo.msgseg);
469 valloc(msghdrs, struct msg, msginfo.msgtql);
470 valloc(msqids, struct msqid_ds, msginfo.msgmni);
471 #endif
472
473 /*
474 * Determine how many buffers to allocate.
475 * We allocate 10% of memory for buffer space. Insure a
476 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
477 * headers as file i/o buffers.
478 */
479 if (bufpages == 0)
480 bufpages = (physmem * 10) / (CLSIZE * 100);
481 if (nbuf == 0) {
482 nbuf = bufpages;
483 if (nbuf < 16)
484 nbuf = 16;
485 }
486 if (nswbuf == 0) {
487 nswbuf = (nbuf / 2) &~ 1; /* force even */
488 if (nswbuf > 256)
489 nswbuf = 256; /* sanity */
490 }
491 valloc(swbuf, struct buf, nswbuf);
492 valloc(buf, struct buf, nbuf);
493
494 /*
495 * Clear allocated memory.
496 */
497 bzero(start, v - start);
498
499 /*
500 * Initialize the virtual memory system, and set the
501 * page table base register in proc 0's PCB.
502 */
503 #ifndef NEW_PMAP
504 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
505 #else
506 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
507 hwrpb->rpb_max_asn);
508 #endif
509
510 /*
511 * Initialize the rest of proc 0's PCB, and cache its physical
512 * address.
513 */
514 proc0.p_md.md_pcbpaddr =
515 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
516
517 /*
518 * Set the kernel sp, reserving space for an (empty) trapframe,
519 * and make proc0's trapframe pointer point to it for sanity.
520 */
521 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
522 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
523 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
524
525 #ifdef NEW_PMAP
526 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
527 #endif
528
529 /*
530 * Look at arguments passed to us and compute boothowto.
531 * Also, get kernel name so it can be used in user-land.
532 */
533 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
534 #if 0
535 printf("boot flags = \"%s\"\n", boot_flags);
536 #endif
537 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
538 sizeof(booted_kernel));
539 #if 0
540 printf("booted kernel = \"%s\"\n", booted_kernel);
541 #endif
542
543 boothowto = RB_SINGLE;
544 #ifdef KADB
545 boothowto |= RB_KDB;
546 #endif
547 for (p = boot_flags; p && *p != '\0'; p++) {
548 /*
549 * Note that we'd really like to differentiate case here,
550 * but the Alpha AXP Architecture Reference Manual
551 * says that we shouldn't.
552 */
553 switch (*p) {
554 case 'a': /* autoboot */
555 case 'A':
556 boothowto &= ~RB_SINGLE;
557 break;
558
559 #ifdef DEBUG
560 case 'c': /* crash dump immediately after autoconfig */
561 case 'C':
562 boothowto |= RB_DUMP;
563 break;
564 #endif
565
566 case 'h': /* always halt, never reboot */
567 case 'H':
568 boothowto |= RB_HALT;
569 break;
570
571 #if 0
572 case 'm': /* mini root present in memory */
573 case 'M':
574 boothowto |= RB_MINIROOT;
575 break;
576 #endif
577
578 case 'n': /* askname */
579 case 'N':
580 boothowto |= RB_ASKNAME;
581 break;
582
583 case 's': /* single-user (default, supported for sanity) */
584 case 'S':
585 boothowto |= RB_SINGLE;
586 break;
587
588 default:
589 printf("Unrecognized boot flag '%c'.\n", *p);
590 break;
591 }
592 }
593
594 /*
595 * Figure out the number of cpus in the box, from RPB fields.
596 * Really. We mean it.
597 */
598 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
599 struct pcs *pcsp;
600
601 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
602 (i * hwrpb->rpb_pcs_size));
603 if ((pcsp->pcs_flags & PCS_PP) != 0)
604 ncpus++;
605 }
606 }
607
608 void
609 consinit()
610 {
611
612 (*cpu_fn_switch->cons_init)();
613 pmap_unmap_prom();
614 }
615
616 void
617 cpu_startup()
618 {
619 register unsigned i;
620 int base, residual;
621 vm_offset_t minaddr, maxaddr;
622 vm_size_t size;
623 #if defined(DEBUG)
624 extern int pmapdebug;
625 int opmapdebug = pmapdebug;
626
627 pmapdebug = 0;
628 #endif
629
630 /*
631 * Good {morning,afternoon,evening,night}.
632 */
633 printf(version);
634 identifycpu();
635 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
636 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
637 if (unusedmem)
638 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
639 if (unknownmem)
640 printf("WARNING: %d bytes of memory with unknown purpose\n",
641 ctob(unknownmem));
642
643 /*
644 * Allocate virtual address space for file I/O buffers.
645 * Note they are different than the array of headers, 'buf',
646 * and usually occupy more virtual memory than physical.
647 */
648 size = MAXBSIZE * nbuf;
649 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
650 &maxaddr, size, TRUE);
651 minaddr = (vm_offset_t)buffers;
652 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
653 &minaddr, size, FALSE) != KERN_SUCCESS)
654 panic("startup: cannot allocate buffers");
655 base = bufpages / nbuf;
656 residual = bufpages % nbuf;
657 for (i = 0; i < nbuf; i++) {
658 vm_size_t curbufsize;
659 vm_offset_t curbuf;
660
661 /*
662 * First <residual> buffers get (base+1) physical pages
663 * allocated for them. The rest get (base) physical pages.
664 *
665 * The rest of each buffer occupies virtual space,
666 * but has no physical memory allocated for it.
667 */
668 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
669 curbufsize = CLBYTES * (i < residual ? base+1 : base);
670 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
671 vm_map_simplify(buffer_map, curbuf);
672 }
673 /*
674 * Allocate a submap for exec arguments. This map effectively
675 * limits the number of processes exec'ing at any time.
676 */
677 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
678 16 * NCARGS, TRUE);
679
680 /*
681 * Allocate a submap for physio
682 */
683 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
684 VM_PHYS_SIZE, TRUE);
685
686 /*
687 * Finally, allocate mbuf cluster submap.
688 */
689 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
690 VM_MBUF_SIZE, FALSE);
691 /*
692 * Initialize callouts
693 */
694 callfree = callout;
695 for (i = 1; i < ncallout; i++)
696 callout[i-1].c_next = &callout[i];
697 callout[i-1].c_next = NULL;
698
699 #if defined(DEBUG)
700 pmapdebug = opmapdebug;
701 #endif
702 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
703 printf("using %ld buffers containing %ld bytes of memory\n",
704 (long)nbuf, (long)(bufpages * CLBYTES));
705
706 /*
707 * Set up buffers, so they can be used to read disk labels.
708 */
709 bufinit();
710
711 /*
712 * Configure the system.
713 */
714 configure();
715
716 /*
717 * Note that bootstrapping is finished, and set the HWRPB up
718 * to do restarts.
719 */
720 hwrpb_restart_setup();
721 }
722
723 void
724 identifycpu()
725 {
726
727 /*
728 * print out CPU identification information.
729 */
730 printf("%s, %ldMHz\n", cpu_model,
731 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
732 printf("%ld byte page size, %d processor%s.\n",
733 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
734 #if 0
735 /* this isn't defined for any systems that we run on? */
736 printf("serial number 0x%lx 0x%lx\n",
737 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
738
739 /* and these aren't particularly useful! */
740 printf("variation: 0x%lx, revision 0x%lx\n",
741 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
742 #endif
743 }
744
745 int waittime = -1;
746 struct pcb dumppcb;
747
748 void
749 cpu_reboot(howto, bootstr)
750 int howto;
751 char *bootstr;
752 {
753 extern int cold;
754
755 /* If system is cold, just halt. */
756 if (cold) {
757 howto |= RB_HALT;
758 goto haltsys;
759 }
760
761 /* If "always halt" was specified as a boot flag, obey. */
762 if ((boothowto & RB_HALT) != 0)
763 howto |= RB_HALT;
764
765 boothowto = howto;
766 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
767 waittime = 0;
768 vfs_shutdown();
769 /*
770 * If we've been adjusting the clock, the todr
771 * will be out of synch; adjust it now.
772 */
773 resettodr();
774 }
775
776 /* Disable interrupts. */
777 splhigh();
778
779 /* If rebooting and a dump is requested do it. */
780 #if 0
781 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
782 #else
783 if (howto & RB_DUMP)
784 #endif
785 dumpsys();
786
787 haltsys:
788
789 /* run any shutdown hooks */
790 doshutdownhooks();
791
792 #ifdef BOOTKEY
793 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
794 cngetc();
795 printf("\n");
796 #endif
797
798 /* Finally, halt/reboot the system. */
799 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
800 prom_halt(howto & RB_HALT);
801 /*NOTREACHED*/
802 }
803
804 /*
805 * These variables are needed by /sbin/savecore
806 */
807 u_long dumpmag = 0x8fca0101; /* magic number */
808 int dumpsize = 0; /* pages */
809 long dumplo = 0; /* blocks */
810
811 /*
812 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
813 */
814 int
815 cpu_dumpsize()
816 {
817 int size;
818
819 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
820 if (roundup(size, dbtob(1)) != dbtob(1))
821 return -1;
822
823 return (1);
824 }
825
826 /*
827 * cpu_dump: dump machine-dependent kernel core dump headers.
828 */
829 int
830 cpu_dump()
831 {
832 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
833 long buf[dbtob(1) / sizeof (long)];
834 kcore_seg_t *segp;
835 cpu_kcore_hdr_t *cpuhdrp;
836
837 dump = bdevsw[major(dumpdev)].d_dump;
838
839 segp = (kcore_seg_t *)buf;
840 cpuhdrp =
841 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
842
843 /*
844 * Generate a segment header.
845 */
846 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
847 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
848
849 /*
850 * Add the machine-dependent header info
851 */
852 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
853 cpuhdrp->page_size = PAGE_SIZE;
854 cpuhdrp->core_seg.start = ctob(firstusablepage);
855 cpuhdrp->core_seg.size = ctob(physmem);
856
857 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
858 }
859
860 /*
861 * This is called by main to set dumplo and dumpsize.
862 * Dumps always skip the first CLBYTES of disk space
863 * in case there might be a disk label stored there.
864 * If there is extra space, put dump at the end to
865 * reduce the chance that swapping trashes it.
866 */
867 void
868 cpu_dumpconf()
869 {
870 int nblks, dumpblks; /* size of dump area */
871 int maj;
872
873 if (dumpdev == NODEV)
874 goto bad;
875 maj = major(dumpdev);
876 if (maj < 0 || maj >= nblkdev)
877 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
878 if (bdevsw[maj].d_psize == NULL)
879 goto bad;
880 nblks = (*bdevsw[maj].d_psize)(dumpdev);
881 if (nblks <= ctod(1))
882 goto bad;
883
884 dumpblks = cpu_dumpsize();
885 if (dumpblks < 0)
886 goto bad;
887 dumpblks += ctod(physmem);
888
889 /* If dump won't fit (incl. room for possible label), punt. */
890 if (dumpblks > (nblks - ctod(1)))
891 goto bad;
892
893 /* Put dump at end of partition */
894 dumplo = nblks - dumpblks;
895
896 /* dumpsize is in page units, and doesn't include headers. */
897 dumpsize = physmem;
898 return;
899
900 bad:
901 dumpsize = 0;
902 return;
903 }
904
905 /*
906 * Dump the kernel's image to the swap partition.
907 */
908 #define BYTES_PER_DUMP NBPG
909
910 void
911 dumpsys()
912 {
913 unsigned bytes, i, n;
914 int maddr, psize;
915 daddr_t blkno;
916 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
917 int error;
918
919 /* Save registers. */
920 savectx(&dumppcb);
921
922 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
923 if (dumpdev == NODEV)
924 return;
925
926 /*
927 * For dumps during autoconfiguration,
928 * if dump device has already configured...
929 */
930 if (dumpsize == 0)
931 cpu_dumpconf();
932 if (dumplo <= 0) {
933 printf("\ndump to dev %x not possible\n", dumpdev);
934 return;
935 }
936 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
937
938 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
939 printf("dump ");
940 if (psize == -1) {
941 printf("area unavailable\n");
942 return;
943 }
944
945 /* XXX should purge all outstanding keystrokes. */
946
947 if ((error = cpu_dump()) != 0)
948 goto err;
949
950 bytes = ctob(physmem);
951 maddr = ctob(firstusablepage);
952 blkno = dumplo + cpu_dumpsize();
953 dump = bdevsw[major(dumpdev)].d_dump;
954 error = 0;
955 for (i = 0; i < bytes; i += n) {
956
957 /* Print out how many MBs we to go. */
958 n = bytes - i;
959 if (n && (n % (1024*1024)) == 0)
960 printf("%d ", n / (1024 * 1024));
961
962 /* Limit size for next transfer. */
963 if (n > BYTES_PER_DUMP)
964 n = BYTES_PER_DUMP;
965
966 error = (*dump)(dumpdev, blkno,
967 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
968 if (error)
969 break;
970 maddr += n;
971 blkno += btodb(n); /* XXX? */
972
973 /* XXX should look for keystrokes, to cancel. */
974 }
975
976 err:
977 switch (error) {
978
979 case ENXIO:
980 printf("device bad\n");
981 break;
982
983 case EFAULT:
984 printf("device not ready\n");
985 break;
986
987 case EINVAL:
988 printf("area improper\n");
989 break;
990
991 case EIO:
992 printf("i/o error\n");
993 break;
994
995 case EINTR:
996 printf("aborted from console\n");
997 break;
998
999 case 0:
1000 printf("succeeded\n");
1001 break;
1002
1003 default:
1004 printf("error %d\n", error);
1005 break;
1006 }
1007 printf("\n\n");
1008 delay(1000);
1009 }
1010
1011 void
1012 frametoreg(framep, regp)
1013 struct trapframe *framep;
1014 struct reg *regp;
1015 {
1016
1017 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1018 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1019 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1020 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1021 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1022 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1023 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1024 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1025 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1026 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1027 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1028 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1029 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1030 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1031 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1032 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1033 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1034 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1035 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1036 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1037 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1038 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1039 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1040 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1041 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1042 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1043 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1044 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1045 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1046 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1047 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1048 regp->r_regs[R_ZERO] = 0;
1049 }
1050
1051 void
1052 regtoframe(regp, framep)
1053 struct reg *regp;
1054 struct trapframe *framep;
1055 {
1056
1057 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1058 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1059 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1060 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1061 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1062 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1063 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1064 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1065 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1066 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1067 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1068 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1069 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1070 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1071 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1072 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1073 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1074 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1075 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1076 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1077 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1078 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1079 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1080 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1081 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1082 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1083 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1084 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1085 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1086 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1087 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1088 /* ??? = regp->r_regs[R_ZERO]; */
1089 }
1090
1091 void
1092 printregs(regp)
1093 struct reg *regp;
1094 {
1095 int i;
1096
1097 for (i = 0; i < 32; i++)
1098 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1099 i & 1 ? "\n" : "\t");
1100 }
1101
1102 void
1103 regdump(framep)
1104 struct trapframe *framep;
1105 {
1106 struct reg reg;
1107
1108 frametoreg(framep, ®);
1109 reg.r_regs[R_SP] = alpha_pal_rdusp();
1110
1111 printf("REGISTERS:\n");
1112 printregs(®);
1113 }
1114
1115 #ifdef DEBUG
1116 int sigdebug = 0;
1117 int sigpid = 0;
1118 #define SDB_FOLLOW 0x01
1119 #define SDB_KSTACK 0x02
1120 #endif
1121
1122 /*
1123 * Send an interrupt to process.
1124 */
1125 void
1126 sendsig(catcher, sig, mask, code)
1127 sig_t catcher;
1128 int sig, mask;
1129 u_long code;
1130 {
1131 struct proc *p = curproc;
1132 struct sigcontext *scp, ksc;
1133 struct trapframe *frame;
1134 struct sigacts *psp = p->p_sigacts;
1135 int oonstack, fsize, rndfsize;
1136 extern char sigcode[], esigcode[];
1137 extern struct proc *fpcurproc;
1138
1139 frame = p->p_md.md_tf;
1140 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1141 fsize = sizeof ksc;
1142 rndfsize = ((fsize + 15) / 16) * 16;
1143 /*
1144 * Allocate and validate space for the signal handler
1145 * context. Note that if the stack is in P0 space, the
1146 * call to grow() is a nop, and the useracc() check
1147 * will fail if the process has not already allocated
1148 * the space with a `brk'.
1149 */
1150 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1151 (psp->ps_sigonstack & sigmask(sig))) {
1152 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1153 psp->ps_sigstk.ss_size - rndfsize);
1154 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1155 } else
1156 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1157 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1158 (void)grow(p, (u_long)scp);
1159 #ifdef DEBUG
1160 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1161 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1162 sig, &oonstack, scp);
1163 #endif
1164 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1165 #ifdef DEBUG
1166 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1167 printf("sendsig(%d): useracc failed on sig %d\n",
1168 p->p_pid, sig);
1169 #endif
1170 /*
1171 * Process has trashed its stack; give it an illegal
1172 * instruction to halt it in its tracks.
1173 */
1174 SIGACTION(p, SIGILL) = SIG_DFL;
1175 sig = sigmask(SIGILL);
1176 p->p_sigignore &= ~sig;
1177 p->p_sigcatch &= ~sig;
1178 p->p_sigmask &= ~sig;
1179 psignal(p, SIGILL);
1180 return;
1181 }
1182
1183 /*
1184 * Build the signal context to be used by sigreturn.
1185 */
1186 ksc.sc_onstack = oonstack;
1187 ksc.sc_mask = mask;
1188 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1189 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1190
1191 /* copy the registers. */
1192 frametoreg(frame, (struct reg *)ksc.sc_regs);
1193 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1194 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1195
1196 /* save the floating-point state, if necessary, then copy it. */
1197 if (p == fpcurproc) {
1198 alpha_pal_wrfen(1);
1199 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1200 alpha_pal_wrfen(0);
1201 fpcurproc = NULL;
1202 }
1203 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1204 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1205 sizeof(struct fpreg));
1206 ksc.sc_fp_control = 0; /* XXX ? */
1207 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1208 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1209
1210
1211 #ifdef COMPAT_OSF1
1212 /*
1213 * XXX Create an OSF/1-style sigcontext and associated goo.
1214 */
1215 #endif
1216
1217 /*
1218 * copy the frame out to userland.
1219 */
1220 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1221 #ifdef DEBUG
1222 if (sigdebug & SDB_FOLLOW)
1223 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1224 scp, code);
1225 #endif
1226
1227 /*
1228 * Set up the registers to return to sigcode.
1229 */
1230 frame->tf_regs[FRAME_PC] =
1231 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1232 frame->tf_regs[FRAME_A0] = sig;
1233 frame->tf_regs[FRAME_A1] = code;
1234 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1235 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1236 alpha_pal_wrusp((unsigned long)scp);
1237
1238 #ifdef DEBUG
1239 if (sigdebug & SDB_FOLLOW)
1240 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1241 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1242 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1243 printf("sendsig(%d): sig %d returns\n",
1244 p->p_pid, sig);
1245 #endif
1246 }
1247
1248 /*
1249 * System call to cleanup state after a signal
1250 * has been taken. Reset signal mask and
1251 * stack state from context left by sendsig (above).
1252 * Return to previous pc and psl as specified by
1253 * context left by sendsig. Check carefully to
1254 * make sure that the user has not modified the
1255 * psl to gain improper priviledges or to cause
1256 * a machine fault.
1257 */
1258 /* ARGSUSED */
1259 int
1260 sys_sigreturn(p, v, retval)
1261 struct proc *p;
1262 void *v;
1263 register_t *retval;
1264 {
1265 struct sys_sigreturn_args /* {
1266 syscallarg(struct sigcontext *) sigcntxp;
1267 } */ *uap = v;
1268 struct sigcontext *scp, ksc;
1269 extern struct proc *fpcurproc;
1270
1271 scp = SCARG(uap, sigcntxp);
1272 #ifdef DEBUG
1273 if (sigdebug & SDB_FOLLOW)
1274 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1275 #endif
1276
1277 if (ALIGN(scp) != (u_int64_t)scp)
1278 return (EINVAL);
1279
1280 /*
1281 * Test and fetch the context structure.
1282 * We grab it all at once for speed.
1283 */
1284 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1285 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1286 return (EINVAL);
1287
1288 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1289 return (EINVAL);
1290 /*
1291 * Restore the user-supplied information
1292 */
1293 if (ksc.sc_onstack)
1294 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1295 else
1296 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1297 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1298
1299 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1300 p->p_md.md_tf->tf_regs[FRAME_PS] =
1301 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1302
1303 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1304 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1305
1306 /* XXX ksc.sc_ownedfp ? */
1307 if (p == fpcurproc)
1308 fpcurproc = NULL;
1309 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1310 sizeof(struct fpreg));
1311 /* XXX ksc.sc_fp_control ? */
1312
1313 #ifdef DEBUG
1314 if (sigdebug & SDB_FOLLOW)
1315 printf("sigreturn(%d): returns\n", p->p_pid);
1316 #endif
1317 return (EJUSTRETURN);
1318 }
1319
1320 /*
1321 * machine dependent system variables.
1322 */
1323 int
1324 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1325 int *name;
1326 u_int namelen;
1327 void *oldp;
1328 size_t *oldlenp;
1329 void *newp;
1330 size_t newlen;
1331 struct proc *p;
1332 {
1333 dev_t consdev;
1334
1335 /* all sysctl names at this level are terminal */
1336 if (namelen != 1)
1337 return (ENOTDIR); /* overloaded */
1338
1339 switch (name[0]) {
1340 case CPU_CONSDEV:
1341 if (cn_tab != NULL)
1342 consdev = cn_tab->cn_dev;
1343 else
1344 consdev = NODEV;
1345 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1346 sizeof consdev));
1347
1348 case CPU_ROOT_DEVICE:
1349 return (sysctl_rdstring(oldp, oldlenp, newp,
1350 root_device->dv_xname));
1351
1352 case CPU_UNALIGNED_PRINT:
1353 return (sysctl_int(oldp, oldlenp, newp, newlen,
1354 &alpha_unaligned_print));
1355
1356 case CPU_UNALIGNED_FIX:
1357 return (sysctl_int(oldp, oldlenp, newp, newlen,
1358 &alpha_unaligned_fix));
1359
1360 case CPU_UNALIGNED_SIGBUS:
1361 return (sysctl_int(oldp, oldlenp, newp, newlen,
1362 &alpha_unaligned_sigbus));
1363
1364 case CPU_BOOTED_KERNEL:
1365 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1366
1367 default:
1368 return (EOPNOTSUPP);
1369 }
1370 /* NOTREACHED */
1371 }
1372
1373 /*
1374 * Set registers on exec.
1375 */
1376 void
1377 setregs(p, pack, stack, retval)
1378 register struct proc *p;
1379 struct exec_package *pack;
1380 u_long stack;
1381 register_t *retval;
1382 {
1383 struct trapframe *tfp = p->p_md.md_tf;
1384 extern struct proc *fpcurproc;
1385 #ifdef DEBUG
1386 int i;
1387 #endif
1388
1389 #ifdef DEBUG
1390 /*
1391 * Crash and dump, if the user requested it.
1392 */
1393 if (boothowto & RB_DUMP)
1394 panic("crash requested by boot flags");
1395 #endif
1396
1397 #ifdef DEBUG
1398 for (i = 0; i < FRAME_SIZE; i++)
1399 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1400 #else
1401 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1402 #endif
1403 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1404 #define FP_RN 2 /* XXX */
1405 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1406 alpha_pal_wrusp(stack);
1407 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1408 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1409
1410 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1411 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1412 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1413 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1414 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1415
1416 p->p_md.md_flags &= ~MDP_FPUSED;
1417 if (fpcurproc == p)
1418 fpcurproc = NULL;
1419
1420 retval[0] = retval[1] = 0;
1421 }
1422
1423 void
1424 netintr()
1425 {
1426 int n, s;
1427
1428 s = splhigh();
1429 n = netisr;
1430 netisr = 0;
1431 splx(s);
1432
1433 #define DONETISR(bit, fn) \
1434 do { \
1435 if (n & (1 << (bit))) \
1436 fn; \
1437 } while (0)
1438
1439 #ifdef INET
1440 #if NARP > 0
1441 DONETISR(NETISR_ARP, arpintr());
1442 #endif
1443 DONETISR(NETISR_IP, ipintr());
1444 #endif
1445 #ifdef NETATALK
1446 DONETISR(NETISR_ATALK, atintr());
1447 #endif
1448 #ifdef NS
1449 DONETISR(NETISR_NS, nsintr());
1450 #endif
1451 #ifdef ISO
1452 DONETISR(NETISR_ISO, clnlintr());
1453 #endif
1454 #ifdef CCITT
1455 DONETISR(NETISR_CCITT, ccittintr());
1456 #endif
1457 #ifdef NATM
1458 DONETISR(NETISR_NATM, natmintr());
1459 #endif
1460 #if NPPP > 1
1461 DONETISR(NETISR_PPP, pppintr());
1462 #endif
1463
1464 #undef DONETISR
1465 }
1466
1467 void
1468 do_sir()
1469 {
1470 u_int64_t n;
1471
1472 do {
1473 (void)splhigh();
1474 n = ssir;
1475 ssir = 0;
1476 splsoft(); /* don't recurse through spl0() */
1477
1478 #define DO_SIR(bit, fn) \
1479 do { \
1480 if (n & (bit)) { \
1481 cnt.v_soft++; \
1482 fn; \
1483 } \
1484 } while (0)
1485
1486 DO_SIR(SIR_NET, netintr());
1487 DO_SIR(SIR_CLOCK, softclock());
1488
1489 #undef DO_SIR
1490 } while (ssir != 0);
1491 }
1492
1493 int
1494 spl0()
1495 {
1496
1497 if (ssir)
1498 do_sir(); /* it lowers the IPL itself */
1499
1500 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1501 }
1502
1503 /*
1504 * The following primitives manipulate the run queues. _whichqs tells which
1505 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1506 * into queues, Remrunqueue removes them from queues. The running process is
1507 * on no queue, other processes are on a queue related to p->p_priority,
1508 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1509 * available queues.
1510 */
1511 /*
1512 * setrunqueue(p)
1513 * proc *p;
1514 *
1515 * Call should be made at splclock(), and p->p_stat should be SRUN.
1516 */
1517
1518 void
1519 setrunqueue(p)
1520 struct proc *p;
1521 {
1522 int bit;
1523
1524 /* firewall: p->p_back must be NULL */
1525 if (p->p_back != NULL)
1526 panic("setrunqueue");
1527
1528 bit = p->p_priority >> 2;
1529 whichqs |= (1 << bit);
1530 p->p_forw = (struct proc *)&qs[bit];
1531 p->p_back = qs[bit].ph_rlink;
1532 p->p_back->p_forw = p;
1533 qs[bit].ph_rlink = p;
1534 }
1535
1536 /*
1537 * remrunqueue(p)
1538 *
1539 * Call should be made at splclock().
1540 */
1541 void
1542 remrunqueue(p)
1543 struct proc *p;
1544 {
1545 int bit;
1546
1547 bit = p->p_priority >> 2;
1548 if ((whichqs & (1 << bit)) == 0)
1549 panic("remrunqueue");
1550
1551 p->p_back->p_forw = p->p_forw;
1552 p->p_forw->p_back = p->p_back;
1553 p->p_back = NULL; /* for firewall checking. */
1554
1555 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1556 whichqs &= ~(1 << bit);
1557 }
1558
1559 /*
1560 * Return the best possible estimate of the time in the timeval
1561 * to which tvp points. Unfortunately, we can't read the hardware registers.
1562 * We guarantee that the time will be greater than the value obtained by a
1563 * previous call.
1564 */
1565 void
1566 microtime(tvp)
1567 register struct timeval *tvp;
1568 {
1569 int s = splclock();
1570 static struct timeval lasttime;
1571
1572 *tvp = time;
1573 #ifdef notdef
1574 tvp->tv_usec += clkread();
1575 while (tvp->tv_usec > 1000000) {
1576 tvp->tv_sec++;
1577 tvp->tv_usec -= 1000000;
1578 }
1579 #endif
1580 if (tvp->tv_sec == lasttime.tv_sec &&
1581 tvp->tv_usec <= lasttime.tv_usec &&
1582 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1583 tvp->tv_sec++;
1584 tvp->tv_usec -= 1000000;
1585 }
1586 lasttime = *tvp;
1587 splx(s);
1588 }
1589
1590 /*
1591 * Wait "n" microseconds.
1592 */
1593 void
1594 delay(n)
1595 unsigned long n;
1596 {
1597 long N = cycles_per_usec * (n);
1598
1599 while (N > 0) /* XXX */
1600 N -= 3; /* XXX */
1601 }
1602
1603 #if defined(COMPAT_OSF1) || 1 /* XXX */
1604 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1605 u_long, register_t *));
1606
1607 void
1608 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1609 struct proc *p;
1610 struct exec_package *epp;
1611 u_long stack;
1612 register_t *retval;
1613 {
1614 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1615
1616 setregs(p, epp, stack, retval);
1617 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1618 }
1619
1620 /*
1621 * cpu_exec_ecoff_hook():
1622 * cpu-dependent ECOFF format hook for execve().
1623 *
1624 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1625 *
1626 */
1627 int
1628 cpu_exec_ecoff_hook(p, epp)
1629 struct proc *p;
1630 struct exec_package *epp;
1631 {
1632 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1633 extern struct emul emul_netbsd;
1634 #ifdef COMPAT_OSF1
1635 extern struct emul emul_osf1;
1636 #endif
1637
1638 switch (execp->f.f_magic) {
1639 #ifdef COMPAT_OSF1
1640 case ECOFF_MAGIC_ALPHA:
1641 epp->ep_emul = &emul_osf1;
1642 break;
1643 #endif
1644
1645 case ECOFF_MAGIC_NETBSD_ALPHA:
1646 epp->ep_emul = &emul_netbsd;
1647 break;
1648
1649 default:
1650 return ENOEXEC;
1651 }
1652 return 0;
1653 }
1654 #endif
1655
1656 /* XXX XXX BEGIN XXX XXX */
1657 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1658 /* XXX */
1659 vm_offset_t /* XXX */
1660 alpha_XXX_dmamap(v) /* XXX */
1661 vm_offset_t v; /* XXX */
1662 { /* XXX */
1663 /* XXX */
1664 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1665 } /* XXX */
1666 /* XXX XXX END XXX XXX */
1667