machdep.c revision 1.75 1 /* $NetBSD: machdep.c,v 1.75 1997/04/07 23:39:55 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <machine/options.h> /* Config options headers */
31 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
32
33 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.75 1997/04/07 23:39:55 cgd Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/signalvar.h>
38 #include <sys/kernel.h>
39 #include <sys/map.h>
40 #include <sys/proc.h>
41 #include <sys/buf.h>
42 #include <sys/reboot.h>
43 #include <sys/device.h>
44 #include <sys/file.h>
45 #ifdef REAL_CLISTS
46 #include <sys/clist.h>
47 #endif
48 #include <sys/callout.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/msgbuf.h>
52 #include <sys/ioctl.h>
53 #include <sys/tty.h>
54 #include <sys/user.h>
55 #include <sys/exec.h>
56 #include <sys/exec_ecoff.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/cpu.h>
79 #include <machine/reg.h>
80 #include <machine/rpb.h>
81 #include <machine/prom.h>
82 #include <machine/conf.h>
83
84 #include <net/netisr.h>
85 #include <net/if.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/ip_var.h>
90 #include "arp.h"
91 #if NARP > 0
92 #include <netinet/if_inarp.h>
93 #endif
94 #endif
95 #ifdef NS
96 #include <netns/ns_var.h>
97 #endif
98 #ifdef ISO
99 #include <netiso/iso.h>
100 #include <netiso/clnp.h>
101 #endif
102 #ifdef CCITT
103 #include <netccitt/x25.h>
104 #include <netccitt/pk.h>
105 #include <netccitt/pk_extern.h>
106 #endif
107 #ifdef NATM
108 #include <netnatm/natm.h>
109 #endif
110 #ifdef NETATALK
111 #include <netatalk/at_extern.h>
112 #endif
113 #include "ppp.h"
114 #if NPPP > 0
115 #include <net/ppp_defs.h>
116 #include <net/if_ppp.h>
117 #endif
118
119 #include "le_ioasic.h" /* for le_iomem creation */
120
121 vm_map_t buffer_map;
122
123 /*
124 * Declare these as initialized data so we can patch them.
125 */
126 int nswbuf = 0;
127 #ifdef NBUF
128 int nbuf = NBUF;
129 #else
130 int nbuf = 0;
131 #endif
132 #ifdef BUFPAGES
133 int bufpages = BUFPAGES;
134 #else
135 int bufpages = 0;
136 #endif
137 int msgbufmapped = 0; /* set when safe to use msgbuf */
138 int maxmem; /* max memory per process */
139
140 int totalphysmem; /* total amount of physical memory in system */
141 int physmem; /* physical memory used by NetBSD + some rsvd */
142 int firstusablepage; /* first usable memory page */
143 int lastusablepage; /* last usable memory page */
144 int resvmem; /* amount of memory reserved for PROM */
145 int unusedmem; /* amount of memory for OS that we don't use */
146 int unknownmem; /* amount of memory with an unknown use */
147
148 int cputype; /* system type, from the RPB */
149
150 /*
151 * XXX We need an address to which we can assign things so that they
152 * won't be optimized away because we didn't use the value.
153 */
154 u_int32_t no_optimize;
155
156 /* the following is used externally (sysctl_hw) */
157 char machine[] = "alpha";
158 char cpu_model[128];
159 const struct cpusw *cpu_fn_switch; /* function switch */
160
161 struct user *proc0paddr;
162
163 /* Number of machine cycles per microsecond */
164 u_int64_t cycles_per_usec;
165
166 /* some memory areas for device DMA. "ick." */
167 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
168
169 /* number of cpus in the box. really! */
170 int ncpus;
171
172 char boot_flags[64];
173 char booted_kernel[64];
174
175 /* for cpu_sysctl() */
176 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
177 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
178 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
179
180 int cpu_dump __P((void));
181 int cpu_dumpsize __P((void));
182 void dumpsys __P((void));
183 void identifycpu __P((void));
184 void netintr __P((void));
185 void printregs __P((struct reg *));
186
187 void
188 alpha_init(pfn, ptb)
189 u_long pfn; /* first free PFN number */
190 u_long ptb; /* PFN of current level 1 page table */
191 {
192 extern char _end[];
193 caddr_t start, v;
194 struct mddt *mddtp;
195 int i, mddtweird;
196 char *p;
197
198 /*
199 * Turn off interrupts and floating point.
200 * Make sure the instruction and data streams are consistent.
201 */
202 (void)splhigh();
203 alpha_pal_wrfen(0);
204 ALPHA_TBIA();
205 alpha_pal_imb();
206
207 /*
208 * get address of the restart block, while we the bootstrap
209 * mapping is still around.
210 */
211 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
212 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
213
214 /*
215 * Remember how many cycles there are per microsecond,
216 * so that we can use delay(). Round up, for safety.
217 */
218 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
219
220 /*
221 * Init the PROM interface, so we can use printf
222 * until PROM mappings go away in consinit.
223 */
224 init_prom_interface();
225
226 /*
227 * Point interrupt/exception vectors to our own.
228 */
229 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
230 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
231 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
232 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
233 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
234 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
235
236 /*
237 * Disable System and Processor Correctable Error reporting.
238 * Clear pending machine checks and error reports, etc.
239 */
240 alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_DSC | ALPHA_MCES_DPC);
241
242 /*
243 * Find out how much memory is available, by looking at
244 * the memory cluster descriptors. This also tries to do
245 * its best to detect things things that have never been seen
246 * before...
247 *
248 * XXX Assumes that the first "system" cluster is the
249 * only one we can use. Is the second (etc.) system cluster
250 * (if one happens to exist) guaranteed to be contiguous? or...?
251 */
252 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
253
254 /*
255 * BEGIN MDDT WEIRDNESS CHECKING
256 */
257 mddtweird = 0;
258
259 #define cnt mddtp->mddt_cluster_cnt
260 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
261 if (cnt != 2 && cnt != 3) {
262 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
263 mddtweird = 1;
264 } else if (usage(0) != MDDT_PALCODE ||
265 usage(1) != MDDT_SYSTEM ||
266 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
267 mddtweird = 1;
268 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
269 }
270
271 for (i = 0; i < cnt; i++) {
272 if ((usage(i) & MDDT_mbz) != 0) {
273 printf("WARNING: mem cluster %d has weird usage %lx\n",
274 i, usage(i));
275 mddtweird = 1;
276 }
277 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
278 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
279 mddtweird = 1;
280 }
281 /* XXX other things to check? */
282 }
283 #undef cnt
284 #undef usage
285
286 if (mddtweird) {
287 printf("\n");
288 printf("complete memory cluster information:\n");
289 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
290 printf("mddt %d:\n", i);
291 printf("\tpfn %lx\n",
292 mddtp->mddt_clusters[i].mddt_pfn);
293 printf("\tcnt %lx\n",
294 mddtp->mddt_clusters[i].mddt_pg_cnt);
295 printf("\ttest %lx\n",
296 mddtp->mddt_clusters[i].mddt_pg_test);
297 printf("\tbva %lx\n",
298 mddtp->mddt_clusters[i].mddt_v_bitaddr);
299 printf("\tbpa %lx\n",
300 mddtp->mddt_clusters[i].mddt_p_bitaddr);
301 printf("\tbcksum %lx\n",
302 mddtp->mddt_clusters[i].mddt_bit_cksum);
303 printf("\tusage %lx\n",
304 mddtp->mddt_clusters[i].mddt_usage);
305 }
306 printf("\n");
307 }
308 /*
309 * END MDDT WEIRDNESS CHECKING
310 */
311
312 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
313 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
314 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
315 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
316 if ((usage(i) & MDDT_mbz) != 0)
317 unknownmem += pgcnt(i);
318 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
319 resvmem += pgcnt(i);
320 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
321 /*
322 * assumes that the system cluster listed is
323 * one we're in...
324 */
325 if (physmem != resvmem) {
326 physmem += pgcnt(i);
327 firstusablepage =
328 mddtp->mddt_clusters[i].mddt_pfn;
329 lastusablepage = firstusablepage + pgcnt(i) - 1;
330 } else
331 unusedmem += pgcnt(i);
332 }
333 #undef usage
334 #undef pgcnt
335 }
336 if (totalphysmem == 0)
337 panic("can't happen: system seems to have no memory!");
338 maxmem = physmem;
339
340 #if 0
341 printf("totalphysmem = %d\n", totalphysmem);
342 printf("physmem = %d\n", physmem);
343 printf("firstusablepage = %d\n", firstusablepage);
344 printf("lastusablepage = %d\n", lastusablepage);
345 printf("resvmem = %d\n", resvmem);
346 printf("unusedmem = %d\n", unusedmem);
347 printf("unknownmem = %d\n", unknownmem);
348 #endif
349
350 /*
351 * find out this CPU's page size
352 */
353 PAGE_SIZE = hwrpb->rpb_page_size;
354 if (PAGE_SIZE != 8192)
355 panic("page size %d != 8192?!", PAGE_SIZE);
356
357 v = (caddr_t)alpha_round_page(_end);
358 /*
359 * Init mapping for u page(s) for proc 0
360 */
361 start = v;
362 curproc->p_addr = proc0paddr = (struct user *)v;
363 v += UPAGES * NBPG;
364
365 /*
366 * Find out what hardware we're on, and remember its type name.
367 */
368 cputype = hwrpb->rpb_type;
369 if (cputype < 0 || cputype > ncpusw) {
370 unknown_cputype:
371 printf("\n");
372 printf("Unknown system type %d.\n", cputype);
373 printf("\n");
374 panic("unknown system type");
375 }
376 cpu_fn_switch = &cpusw[cputype];
377 if (cpu_fn_switch->family == NULL)
378 goto unknown_cputype;
379 if (cpu_fn_switch->option == NULL) {
380 printf("\n");
381 printf("NetBSD does not currently support system type %d\n",
382 cputype);
383 printf("(%s family).\n", cpu_fn_switch->family);
384 printf("\n");
385 panic("unsupported system type");
386 }
387 if (!cpu_fn_switch->present) {
388 printf("\n");
389 printf("Support for system type %d (%s family) is\n", cputype,
390 cpu_fn_switch->family);
391 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
392 cpu_fn_switch->option);
393 printf("to include support for this system type.\n");
394 printf("\n");
395 panic("support for system not present");
396 }
397
398 if ((*cpu_fn_switch->model_name)() != NULL)
399 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
400 sizeof cpu_model - 1);
401 else {
402 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
403 strcat(cpu_model, " family"); /* XXX */
404 }
405 cpu_model[sizeof cpu_model - 1] = '\0';
406
407 /* XXX SANITY CHECKING. SHOULD GO AWAY */
408 /* XXX We should always be running on the the primary. */
409 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
410 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
411 if (cputype != ST_DEC_21000) /*XXX*/
412 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
413
414 #if NLE_IOASIC > 0
415 /*
416 * Grab 128K at the top of physical memory for the lance chip
417 * on machines where it does dma through the I/O ASIC.
418 * It must be physically contiguous and aligned on a 128K boundary.
419 *
420 * Note that since this is conditional on the presence of
421 * IOASIC-attached 'le' units in the kernel config, the
422 * message buffer may move on these systems. This shouldn't
423 * be a problem, because once people have a kernel config that
424 * they use, they're going to stick with it.
425 */
426 if (cputype == ST_DEC_3000_500 ||
427 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
428 lastusablepage -= btoc(128 * 1024);
429 le_iomem =
430 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
431 }
432 #endif /* NLE_IOASIC */
433
434 /*
435 * Initialize error message buffer (at end of core).
436 */
437 lastusablepage -= btoc(sizeof (struct msgbuf));
438 msgbufp =
439 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
440 msgbufmapped = 1;
441
442 /*
443 * Allocate space for system data structures.
444 * The first available kernel virtual address is in "v".
445 * As pages of kernel virtual memory are allocated, "v" is incremented.
446 *
447 * These data structures are allocated here instead of cpu_startup()
448 * because physical memory is directly addressable. We don't have
449 * to map these into virtual address space.
450 */
451 #define valloc(name, type, num) \
452 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
453 #define valloclim(name, type, num, lim) \
454 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
455 #ifdef REAL_CLISTS
456 valloc(cfree, struct cblock, nclist);
457 #endif
458 valloc(callout, struct callout, ncallout);
459 valloc(swapmap, struct map, nswapmap = maxproc * 2);
460 #ifdef SYSVSHM
461 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
462 #endif
463 #ifdef SYSVSEM
464 valloc(sema, struct semid_ds, seminfo.semmni);
465 valloc(sem, struct sem, seminfo.semmns);
466 /* This is pretty disgusting! */
467 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
468 #endif
469 #ifdef SYSVMSG
470 valloc(msgpool, char, msginfo.msgmax);
471 valloc(msgmaps, struct msgmap, msginfo.msgseg);
472 valloc(msghdrs, struct msg, msginfo.msgtql);
473 valloc(msqids, struct msqid_ds, msginfo.msgmni);
474 #endif
475
476 /*
477 * Determine how many buffers to allocate.
478 * We allocate 10% of memory for buffer space. Insure a
479 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
480 * headers as file i/o buffers.
481 */
482 if (bufpages == 0)
483 bufpages = (physmem * 10) / (CLSIZE * 100);
484 if (nbuf == 0) {
485 nbuf = bufpages;
486 if (nbuf < 16)
487 nbuf = 16;
488 }
489 if (nswbuf == 0) {
490 nswbuf = (nbuf / 2) &~ 1; /* force even */
491 if (nswbuf > 256)
492 nswbuf = 256; /* sanity */
493 }
494 valloc(swbuf, struct buf, nswbuf);
495 valloc(buf, struct buf, nbuf);
496
497 /*
498 * Clear allocated memory.
499 */
500 bzero(start, v - start);
501
502 /*
503 * Initialize the virtual memory system, and set the
504 * page table base register in proc 0's PCB.
505 */
506 #ifndef NEW_PMAP
507 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
508 #else
509 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
510 hwrpb->rpb_max_asn);
511 #endif
512
513 /*
514 * Initialize the rest of proc 0's PCB, and cache its physical
515 * address.
516 */
517 proc0.p_md.md_pcbpaddr =
518 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
519
520 /*
521 * Set the kernel sp, reserving space for an (empty) trapframe,
522 * and make proc0's trapframe pointer point to it for sanity.
523 */
524 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
525 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
526 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
527
528 #ifdef NEW_PMAP
529 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
530 #endif
531
532 /*
533 * Look at arguments passed to us and compute boothowto.
534 * Also, get kernel name so it can be used in user-land.
535 */
536 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
537 #if 0
538 printf("boot flags = \"%s\"\n", boot_flags);
539 #endif
540 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
541 sizeof(booted_kernel));
542 #if 0
543 printf("booted kernel = \"%s\"\n", booted_kernel);
544 #endif
545
546 boothowto = RB_SINGLE;
547 #ifdef KADB
548 boothowto |= RB_KDB;
549 #endif
550 for (p = boot_flags; p && *p != '\0'; p++) {
551 /*
552 * Note that we'd really like to differentiate case here,
553 * but the Alpha AXP Architecture Reference Manual
554 * says that we shouldn't.
555 */
556 switch (*p) {
557 case 'a': /* autoboot */
558 case 'A':
559 boothowto &= ~RB_SINGLE;
560 break;
561
562 #ifdef DEBUG
563 case 'c': /* crash dump immediately after autoconfig */
564 case 'C':
565 boothowto |= RB_DUMP;
566 break;
567 #endif
568
569 case 'h': /* always halt, never reboot */
570 case 'H':
571 boothowto |= RB_HALT;
572 break;
573
574 #if 0
575 case 'm': /* mini root present in memory */
576 case 'M':
577 boothowto |= RB_MINIROOT;
578 break;
579 #endif
580
581 case 'n': /* askname */
582 case 'N':
583 boothowto |= RB_ASKNAME;
584 break;
585
586 case 's': /* single-user (default, supported for sanity) */
587 case 'S':
588 boothowto |= RB_SINGLE;
589 break;
590
591 default:
592 printf("Unrecognized boot flag '%c'.\n", *p);
593 break;
594 }
595 }
596
597 /*
598 * Figure out the number of cpus in the box, from RPB fields.
599 * Really. We mean it.
600 */
601 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
602 struct pcs *pcsp;
603
604 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
605 (i * hwrpb->rpb_pcs_size));
606 if ((pcsp->pcs_flags & PCS_PP) != 0)
607 ncpus++;
608 }
609 }
610
611 void
612 consinit()
613 {
614
615 (*cpu_fn_switch->cons_init)();
616 pmap_unmap_prom();
617 }
618
619 void
620 cpu_startup()
621 {
622 register unsigned i;
623 int base, residual;
624 vm_offset_t minaddr, maxaddr;
625 vm_size_t size;
626 #if defined(DEBUG)
627 extern int pmapdebug;
628 int opmapdebug = pmapdebug;
629
630 pmapdebug = 0;
631 #endif
632
633 /*
634 * Good {morning,afternoon,evening,night}.
635 */
636 printf(version);
637 identifycpu();
638 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
639 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
640 if (unusedmem)
641 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
642 if (unknownmem)
643 printf("WARNING: %d bytes of memory with unknown purpose\n",
644 ctob(unknownmem));
645
646 /*
647 * Allocate virtual address space for file I/O buffers.
648 * Note they are different than the array of headers, 'buf',
649 * and usually occupy more virtual memory than physical.
650 */
651 size = MAXBSIZE * nbuf;
652 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
653 &maxaddr, size, TRUE);
654 minaddr = (vm_offset_t)buffers;
655 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
656 &minaddr, size, FALSE) != KERN_SUCCESS)
657 panic("startup: cannot allocate buffers");
658 base = bufpages / nbuf;
659 residual = bufpages % nbuf;
660 for (i = 0; i < nbuf; i++) {
661 vm_size_t curbufsize;
662 vm_offset_t curbuf;
663
664 /*
665 * First <residual> buffers get (base+1) physical pages
666 * allocated for them. The rest get (base) physical pages.
667 *
668 * The rest of each buffer occupies virtual space,
669 * but has no physical memory allocated for it.
670 */
671 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
672 curbufsize = CLBYTES * (i < residual ? base+1 : base);
673 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
674 vm_map_simplify(buffer_map, curbuf);
675 }
676 /*
677 * Allocate a submap for exec arguments. This map effectively
678 * limits the number of processes exec'ing at any time.
679 */
680 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
681 16 * NCARGS, TRUE);
682
683 /*
684 * Allocate a submap for physio
685 */
686 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
687 VM_PHYS_SIZE, TRUE);
688
689 /*
690 * Finally, allocate mbuf cluster submap.
691 */
692 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
693 VM_MBUF_SIZE, FALSE);
694 /*
695 * Initialize callouts
696 */
697 callfree = callout;
698 for (i = 1; i < ncallout; i++)
699 callout[i-1].c_next = &callout[i];
700 callout[i-1].c_next = NULL;
701
702 #if defined(DEBUG)
703 pmapdebug = opmapdebug;
704 #endif
705 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
706 printf("using %ld buffers containing %ld bytes of memory\n",
707 (long)nbuf, (long)(bufpages * CLBYTES));
708
709 /*
710 * Set up buffers, so they can be used to read disk labels.
711 */
712 bufinit();
713
714 /*
715 * Configure the system.
716 */
717 configure();
718
719 /*
720 * Note that bootstrapping is finished, and set the HWRPB up
721 * to do restarts.
722 */
723 hwrpb_restart_setup();
724 }
725
726 void
727 identifycpu()
728 {
729
730 /*
731 * print out CPU identification information.
732 */
733 printf("%s, %ldMHz\n", cpu_model,
734 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
735 printf("%ld byte page size, %d processor%s.\n",
736 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
737 #if 0
738 /* this isn't defined for any systems that we run on? */
739 printf("serial number 0x%lx 0x%lx\n",
740 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
741
742 /* and these aren't particularly useful! */
743 printf("variation: 0x%lx, revision 0x%lx\n",
744 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
745 #endif
746 }
747
748 int waittime = -1;
749 struct pcb dumppcb;
750
751 void
752 cpu_reboot(howto, bootstr)
753 int howto;
754 char *bootstr;
755 {
756 extern int cold;
757
758 /* If system is cold, just halt. */
759 if (cold) {
760 howto |= RB_HALT;
761 goto haltsys;
762 }
763
764 /* If "always halt" was specified as a boot flag, obey. */
765 if ((boothowto & RB_HALT) != 0)
766 howto |= RB_HALT;
767
768 boothowto = howto;
769 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
770 waittime = 0;
771 vfs_shutdown();
772 /*
773 * If we've been adjusting the clock, the todr
774 * will be out of synch; adjust it now.
775 */
776 resettodr();
777 }
778
779 /* Disable interrupts. */
780 splhigh();
781
782 /* If rebooting and a dump is requested do it. */
783 #if 0
784 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
785 #else
786 if (howto & RB_DUMP)
787 #endif
788 dumpsys();
789
790 haltsys:
791
792 /* run any shutdown hooks */
793 doshutdownhooks();
794
795 #ifdef BOOTKEY
796 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
797 cngetc();
798 printf("\n");
799 #endif
800
801 /* Finally, halt/reboot the system. */
802 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
803 prom_halt(howto & RB_HALT);
804 /*NOTREACHED*/
805 }
806
807 /*
808 * These variables are needed by /sbin/savecore
809 */
810 u_long dumpmag = 0x8fca0101; /* magic number */
811 int dumpsize = 0; /* pages */
812 long dumplo = 0; /* blocks */
813
814 /*
815 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
816 */
817 int
818 cpu_dumpsize()
819 {
820 int size;
821
822 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
823 if (roundup(size, dbtob(1)) != dbtob(1))
824 return -1;
825
826 return (1);
827 }
828
829 /*
830 * cpu_dump: dump machine-dependent kernel core dump headers.
831 */
832 int
833 cpu_dump()
834 {
835 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
836 long buf[dbtob(1) / sizeof (long)];
837 kcore_seg_t *segp;
838 cpu_kcore_hdr_t *cpuhdrp;
839
840 dump = bdevsw[major(dumpdev)].d_dump;
841
842 segp = (kcore_seg_t *)buf;
843 cpuhdrp =
844 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
845
846 /*
847 * Generate a segment header.
848 */
849 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
850 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
851
852 /*
853 * Add the machine-dependent header info
854 */
855 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
856 cpuhdrp->page_size = PAGE_SIZE;
857 cpuhdrp->core_seg.start = ctob(firstusablepage);
858 cpuhdrp->core_seg.size = ctob(physmem);
859
860 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
861 }
862
863 /*
864 * This is called by main to set dumplo and dumpsize.
865 * Dumps always skip the first CLBYTES of disk space
866 * in case there might be a disk label stored there.
867 * If there is extra space, put dump at the end to
868 * reduce the chance that swapping trashes it.
869 */
870 void
871 cpu_dumpconf()
872 {
873 int nblks, dumpblks; /* size of dump area */
874 int maj;
875
876 if (dumpdev == NODEV)
877 goto bad;
878 maj = major(dumpdev);
879 if (maj < 0 || maj >= nblkdev)
880 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
881 if (bdevsw[maj].d_psize == NULL)
882 goto bad;
883 nblks = (*bdevsw[maj].d_psize)(dumpdev);
884 if (nblks <= ctod(1))
885 goto bad;
886
887 dumpblks = cpu_dumpsize();
888 if (dumpblks < 0)
889 goto bad;
890 dumpblks += ctod(physmem);
891
892 /* If dump won't fit (incl. room for possible label), punt. */
893 if (dumpblks > (nblks - ctod(1)))
894 goto bad;
895
896 /* Put dump at end of partition */
897 dumplo = nblks - dumpblks;
898
899 /* dumpsize is in page units, and doesn't include headers. */
900 dumpsize = physmem;
901 return;
902
903 bad:
904 dumpsize = 0;
905 return;
906 }
907
908 /*
909 * Dump the kernel's image to the swap partition.
910 */
911 #define BYTES_PER_DUMP NBPG
912
913 void
914 dumpsys()
915 {
916 unsigned bytes, i, n;
917 int maddr, psize;
918 daddr_t blkno;
919 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
920 int error;
921
922 /* Save registers. */
923 savectx(&dumppcb);
924
925 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
926 if (dumpdev == NODEV)
927 return;
928
929 /*
930 * For dumps during autoconfiguration,
931 * if dump device has already configured...
932 */
933 if (dumpsize == 0)
934 cpu_dumpconf();
935 if (dumplo <= 0) {
936 printf("\ndump to dev %x not possible\n", dumpdev);
937 return;
938 }
939 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
940
941 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
942 printf("dump ");
943 if (psize == -1) {
944 printf("area unavailable\n");
945 return;
946 }
947
948 /* XXX should purge all outstanding keystrokes. */
949
950 if ((error = cpu_dump()) != 0)
951 goto err;
952
953 bytes = ctob(physmem);
954 maddr = ctob(firstusablepage);
955 blkno = dumplo + cpu_dumpsize();
956 dump = bdevsw[major(dumpdev)].d_dump;
957 error = 0;
958 for (i = 0; i < bytes; i += n) {
959
960 /* Print out how many MBs we to go. */
961 n = bytes - i;
962 if (n && (n % (1024*1024)) == 0)
963 printf("%d ", n / (1024 * 1024));
964
965 /* Limit size for next transfer. */
966 if (n > BYTES_PER_DUMP)
967 n = BYTES_PER_DUMP;
968
969 error = (*dump)(dumpdev, blkno,
970 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
971 if (error)
972 break;
973 maddr += n;
974 blkno += btodb(n); /* XXX? */
975
976 /* XXX should look for keystrokes, to cancel. */
977 }
978
979 err:
980 switch (error) {
981
982 case ENXIO:
983 printf("device bad\n");
984 break;
985
986 case EFAULT:
987 printf("device not ready\n");
988 break;
989
990 case EINVAL:
991 printf("area improper\n");
992 break;
993
994 case EIO:
995 printf("i/o error\n");
996 break;
997
998 case EINTR:
999 printf("aborted from console\n");
1000 break;
1001
1002 case 0:
1003 printf("succeeded\n");
1004 break;
1005
1006 default:
1007 printf("error %d\n", error);
1008 break;
1009 }
1010 printf("\n\n");
1011 delay(1000);
1012 }
1013
1014 void
1015 frametoreg(framep, regp)
1016 struct trapframe *framep;
1017 struct reg *regp;
1018 {
1019
1020 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1021 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1022 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1023 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1024 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1025 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1026 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1027 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1028 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1029 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1030 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1031 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1032 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1033 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1034 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1035 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1036 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1037 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1038 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1039 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1040 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1041 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1042 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1043 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1044 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1045 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1046 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1047 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1048 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1049 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1050 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1051 regp->r_regs[R_ZERO] = 0;
1052 }
1053
1054 void
1055 regtoframe(regp, framep)
1056 struct reg *regp;
1057 struct trapframe *framep;
1058 {
1059
1060 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1061 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1062 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1063 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1064 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1065 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1066 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1067 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1068 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1069 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1070 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1071 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1072 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1073 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1074 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1075 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1076 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1077 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1078 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1079 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1080 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1081 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1082 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1083 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1084 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1085 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1086 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1087 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1088 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1089 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1090 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1091 /* ??? = regp->r_regs[R_ZERO]; */
1092 }
1093
1094 void
1095 printregs(regp)
1096 struct reg *regp;
1097 {
1098 int i;
1099
1100 for (i = 0; i < 32; i++)
1101 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1102 i & 1 ? "\n" : "\t");
1103 }
1104
1105 void
1106 regdump(framep)
1107 struct trapframe *framep;
1108 {
1109 struct reg reg;
1110
1111 frametoreg(framep, ®);
1112 reg.r_regs[R_SP] = alpha_pal_rdusp();
1113
1114 printf("REGISTERS:\n");
1115 printregs(®);
1116 }
1117
1118 #ifdef DEBUG
1119 int sigdebug = 0;
1120 int sigpid = 0;
1121 #define SDB_FOLLOW 0x01
1122 #define SDB_KSTACK 0x02
1123 #endif
1124
1125 /*
1126 * Send an interrupt to process.
1127 */
1128 void
1129 sendsig(catcher, sig, mask, code)
1130 sig_t catcher;
1131 int sig, mask;
1132 u_long code;
1133 {
1134 struct proc *p = curproc;
1135 struct sigcontext *scp, ksc;
1136 struct trapframe *frame;
1137 struct sigacts *psp = p->p_sigacts;
1138 int oonstack, fsize, rndfsize;
1139 extern char sigcode[], esigcode[];
1140 extern struct proc *fpcurproc;
1141
1142 frame = p->p_md.md_tf;
1143 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1144 fsize = sizeof ksc;
1145 rndfsize = ((fsize + 15) / 16) * 16;
1146 /*
1147 * Allocate and validate space for the signal handler
1148 * context. Note that if the stack is in P0 space, the
1149 * call to grow() is a nop, and the useracc() check
1150 * will fail if the process has not already allocated
1151 * the space with a `brk'.
1152 */
1153 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1154 (psp->ps_sigonstack & sigmask(sig))) {
1155 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1156 psp->ps_sigstk.ss_size - rndfsize);
1157 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1158 } else
1159 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1160 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1161 (void)grow(p, (u_long)scp);
1162 #ifdef DEBUG
1163 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1164 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1165 sig, &oonstack, scp);
1166 #endif
1167 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1168 #ifdef DEBUG
1169 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1170 printf("sendsig(%d): useracc failed on sig %d\n",
1171 p->p_pid, sig);
1172 #endif
1173 /*
1174 * Process has trashed its stack; give it an illegal
1175 * instruction to halt it in its tracks.
1176 */
1177 SIGACTION(p, SIGILL) = SIG_DFL;
1178 sig = sigmask(SIGILL);
1179 p->p_sigignore &= ~sig;
1180 p->p_sigcatch &= ~sig;
1181 p->p_sigmask &= ~sig;
1182 psignal(p, SIGILL);
1183 return;
1184 }
1185
1186 /*
1187 * Build the signal context to be used by sigreturn.
1188 */
1189 ksc.sc_onstack = oonstack;
1190 ksc.sc_mask = mask;
1191 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1192 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1193
1194 /* copy the registers. */
1195 frametoreg(frame, (struct reg *)ksc.sc_regs);
1196 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1197 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1198
1199 /* save the floating-point state, if necessary, then copy it. */
1200 if (p == fpcurproc) {
1201 alpha_pal_wrfen(1);
1202 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1203 alpha_pal_wrfen(0);
1204 fpcurproc = NULL;
1205 }
1206 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1207 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1208 sizeof(struct fpreg));
1209 ksc.sc_fp_control = 0; /* XXX ? */
1210 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1211 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1212
1213
1214 #ifdef COMPAT_OSF1
1215 /*
1216 * XXX Create an OSF/1-style sigcontext and associated goo.
1217 */
1218 #endif
1219
1220 /*
1221 * copy the frame out to userland.
1222 */
1223 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1224 #ifdef DEBUG
1225 if (sigdebug & SDB_FOLLOW)
1226 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1227 scp, code);
1228 #endif
1229
1230 /*
1231 * Set up the registers to return to sigcode.
1232 */
1233 frame->tf_regs[FRAME_PC] =
1234 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1235 frame->tf_regs[FRAME_A0] = sig;
1236 frame->tf_regs[FRAME_A1] = code;
1237 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1238 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1239 alpha_pal_wrusp((unsigned long)scp);
1240
1241 #ifdef DEBUG
1242 if (sigdebug & SDB_FOLLOW)
1243 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1244 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1245 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1246 printf("sendsig(%d): sig %d returns\n",
1247 p->p_pid, sig);
1248 #endif
1249 }
1250
1251 /*
1252 * System call to cleanup state after a signal
1253 * has been taken. Reset signal mask and
1254 * stack state from context left by sendsig (above).
1255 * Return to previous pc and psl as specified by
1256 * context left by sendsig. Check carefully to
1257 * make sure that the user has not modified the
1258 * psl to gain improper priviledges or to cause
1259 * a machine fault.
1260 */
1261 /* ARGSUSED */
1262 int
1263 sys_sigreturn(p, v, retval)
1264 struct proc *p;
1265 void *v;
1266 register_t *retval;
1267 {
1268 struct sys_sigreturn_args /* {
1269 syscallarg(struct sigcontext *) sigcntxp;
1270 } */ *uap = v;
1271 struct sigcontext *scp, ksc;
1272 extern struct proc *fpcurproc;
1273
1274 scp = SCARG(uap, sigcntxp);
1275 #ifdef DEBUG
1276 if (sigdebug & SDB_FOLLOW)
1277 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1278 #endif
1279
1280 if (ALIGN(scp) != (u_int64_t)scp)
1281 return (EINVAL);
1282
1283 /*
1284 * Test and fetch the context structure.
1285 * We grab it all at once for speed.
1286 */
1287 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1288 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1289 return (EINVAL);
1290
1291 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1292 return (EINVAL);
1293 /*
1294 * Restore the user-supplied information
1295 */
1296 if (ksc.sc_onstack)
1297 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1298 else
1299 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1300 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1301
1302 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1303 p->p_md.md_tf->tf_regs[FRAME_PS] =
1304 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1305
1306 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1307 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1308
1309 /* XXX ksc.sc_ownedfp ? */
1310 if (p == fpcurproc)
1311 fpcurproc = NULL;
1312 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1313 sizeof(struct fpreg));
1314 /* XXX ksc.sc_fp_control ? */
1315
1316 #ifdef DEBUG
1317 if (sigdebug & SDB_FOLLOW)
1318 printf("sigreturn(%d): returns\n", p->p_pid);
1319 #endif
1320 return (EJUSTRETURN);
1321 }
1322
1323 /*
1324 * machine dependent system variables.
1325 */
1326 int
1327 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1328 int *name;
1329 u_int namelen;
1330 void *oldp;
1331 size_t *oldlenp;
1332 void *newp;
1333 size_t newlen;
1334 struct proc *p;
1335 {
1336 dev_t consdev;
1337
1338 /* all sysctl names at this level are terminal */
1339 if (namelen != 1)
1340 return (ENOTDIR); /* overloaded */
1341
1342 switch (name[0]) {
1343 case CPU_CONSDEV:
1344 if (cn_tab != NULL)
1345 consdev = cn_tab->cn_dev;
1346 else
1347 consdev = NODEV;
1348 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1349 sizeof consdev));
1350
1351 case CPU_ROOT_DEVICE:
1352 return (sysctl_rdstring(oldp, oldlenp, newp,
1353 root_device->dv_xname));
1354
1355 case CPU_UNALIGNED_PRINT:
1356 return (sysctl_int(oldp, oldlenp, newp, newlen,
1357 &alpha_unaligned_print));
1358
1359 case CPU_UNALIGNED_FIX:
1360 return (sysctl_int(oldp, oldlenp, newp, newlen,
1361 &alpha_unaligned_fix));
1362
1363 case CPU_UNALIGNED_SIGBUS:
1364 return (sysctl_int(oldp, oldlenp, newp, newlen,
1365 &alpha_unaligned_sigbus));
1366
1367 case CPU_BOOTED_KERNEL:
1368 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1369
1370 default:
1371 return (EOPNOTSUPP);
1372 }
1373 /* NOTREACHED */
1374 }
1375
1376 /*
1377 * Set registers on exec.
1378 */
1379 void
1380 setregs(p, pack, stack, retval)
1381 register struct proc *p;
1382 struct exec_package *pack;
1383 u_long stack;
1384 register_t *retval;
1385 {
1386 struct trapframe *tfp = p->p_md.md_tf;
1387 extern struct proc *fpcurproc;
1388 #ifdef DEBUG
1389 int i;
1390 #endif
1391
1392 #ifdef DEBUG
1393 /*
1394 * Crash and dump, if the user requested it.
1395 */
1396 if (boothowto & RB_DUMP)
1397 panic("crash requested by boot flags");
1398 #endif
1399
1400 #ifdef DEBUG
1401 for (i = 0; i < FRAME_SIZE; i++)
1402 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1403 #else
1404 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1405 #endif
1406 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1407 #define FP_RN 2 /* XXX */
1408 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1409 alpha_pal_wrusp(stack);
1410 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1411 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1412
1413 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1414 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1415 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1416 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1417 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1418
1419 p->p_md.md_flags &= ~MDP_FPUSED;
1420 if (fpcurproc == p)
1421 fpcurproc = NULL;
1422
1423 retval[0] = retval[1] = 0;
1424 }
1425
1426 void
1427 netintr()
1428 {
1429 int n, s;
1430
1431 s = splhigh();
1432 n = netisr;
1433 netisr = 0;
1434 splx(s);
1435
1436 #define DONETISR(bit, fn) \
1437 do { \
1438 if (n & (1 << (bit))) \
1439 fn; \
1440 } while (0)
1441
1442 #ifdef INET
1443 #if NARP > 0
1444 DONETISR(NETISR_ARP, arpintr());
1445 #endif
1446 DONETISR(NETISR_IP, ipintr());
1447 #endif
1448 #ifdef NETATALK
1449 DONETISR(NETISR_ATALK, atintr());
1450 #endif
1451 #ifdef NS
1452 DONETISR(NETISR_NS, nsintr());
1453 #endif
1454 #ifdef ISO
1455 DONETISR(NETISR_ISO, clnlintr());
1456 #endif
1457 #ifdef CCITT
1458 DONETISR(NETISR_CCITT, ccittintr());
1459 #endif
1460 #ifdef NATM
1461 DONETISR(NETISR_NATM, natmintr());
1462 #endif
1463 #if NPPP > 1
1464 DONETISR(NETISR_PPP, pppintr());
1465 #endif
1466
1467 #undef DONETISR
1468 }
1469
1470 void
1471 do_sir()
1472 {
1473 u_int64_t n;
1474
1475 do {
1476 (void)splhigh();
1477 n = ssir;
1478 ssir = 0;
1479 splsoft(); /* don't recurse through spl0() */
1480
1481 #define DO_SIR(bit, fn) \
1482 do { \
1483 if (n & (bit)) { \
1484 cnt.v_soft++; \
1485 fn; \
1486 } \
1487 } while (0)
1488
1489 DO_SIR(SIR_NET, netintr());
1490 DO_SIR(SIR_CLOCK, softclock());
1491
1492 #undef DO_SIR
1493 } while (ssir != 0);
1494 }
1495
1496 int
1497 spl0()
1498 {
1499
1500 if (ssir)
1501 do_sir(); /* it lowers the IPL itself */
1502
1503 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1504 }
1505
1506 /*
1507 * The following primitives manipulate the run queues. _whichqs tells which
1508 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1509 * into queues, Remrunqueue removes them from queues. The running process is
1510 * on no queue, other processes are on a queue related to p->p_priority,
1511 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1512 * available queues.
1513 */
1514 /*
1515 * setrunqueue(p)
1516 * proc *p;
1517 *
1518 * Call should be made at splclock(), and p->p_stat should be SRUN.
1519 */
1520
1521 void
1522 setrunqueue(p)
1523 struct proc *p;
1524 {
1525 int bit;
1526
1527 /* firewall: p->p_back must be NULL */
1528 if (p->p_back != NULL)
1529 panic("setrunqueue");
1530
1531 bit = p->p_priority >> 2;
1532 whichqs |= (1 << bit);
1533 p->p_forw = (struct proc *)&qs[bit];
1534 p->p_back = qs[bit].ph_rlink;
1535 p->p_back->p_forw = p;
1536 qs[bit].ph_rlink = p;
1537 }
1538
1539 /*
1540 * remrunqueue(p)
1541 *
1542 * Call should be made at splclock().
1543 */
1544 void
1545 remrunqueue(p)
1546 struct proc *p;
1547 {
1548 int bit;
1549
1550 bit = p->p_priority >> 2;
1551 if ((whichqs & (1 << bit)) == 0)
1552 panic("remrunqueue");
1553
1554 p->p_back->p_forw = p->p_forw;
1555 p->p_forw->p_back = p->p_back;
1556 p->p_back = NULL; /* for firewall checking. */
1557
1558 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1559 whichqs &= ~(1 << bit);
1560 }
1561
1562 /*
1563 * Return the best possible estimate of the time in the timeval
1564 * to which tvp points. Unfortunately, we can't read the hardware registers.
1565 * We guarantee that the time will be greater than the value obtained by a
1566 * previous call.
1567 */
1568 void
1569 microtime(tvp)
1570 register struct timeval *tvp;
1571 {
1572 int s = splclock();
1573 static struct timeval lasttime;
1574
1575 *tvp = time;
1576 #ifdef notdef
1577 tvp->tv_usec += clkread();
1578 while (tvp->tv_usec > 1000000) {
1579 tvp->tv_sec++;
1580 tvp->tv_usec -= 1000000;
1581 }
1582 #endif
1583 if (tvp->tv_sec == lasttime.tv_sec &&
1584 tvp->tv_usec <= lasttime.tv_usec &&
1585 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1586 tvp->tv_sec++;
1587 tvp->tv_usec -= 1000000;
1588 }
1589 lasttime = *tvp;
1590 splx(s);
1591 }
1592
1593 /*
1594 * Wait "n" microseconds.
1595 */
1596 void
1597 delay(n)
1598 unsigned long n;
1599 {
1600 long N = cycles_per_usec * (n);
1601
1602 while (N > 0) /* XXX */
1603 N -= 3; /* XXX */
1604 }
1605
1606 #if defined(COMPAT_OSF1) || 1 /* XXX */
1607 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1608 u_long, register_t *));
1609
1610 void
1611 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1612 struct proc *p;
1613 struct exec_package *epp;
1614 u_long stack;
1615 register_t *retval;
1616 {
1617 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1618
1619 setregs(p, epp, stack, retval);
1620 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1621 }
1622
1623 /*
1624 * cpu_exec_ecoff_hook():
1625 * cpu-dependent ECOFF format hook for execve().
1626 *
1627 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1628 *
1629 */
1630 int
1631 cpu_exec_ecoff_hook(p, epp)
1632 struct proc *p;
1633 struct exec_package *epp;
1634 {
1635 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1636 extern struct emul emul_netbsd;
1637 #ifdef COMPAT_OSF1
1638 extern struct emul emul_osf1;
1639 #endif
1640
1641 switch (execp->f.f_magic) {
1642 #ifdef COMPAT_OSF1
1643 case ECOFF_MAGIC_ALPHA:
1644 epp->ep_emul = &emul_osf1;
1645 break;
1646 #endif
1647
1648 case ECOFF_MAGIC_NETBSD_ALPHA:
1649 epp->ep_emul = &emul_netbsd;
1650 break;
1651
1652 default:
1653 return ENOEXEC;
1654 }
1655 return 0;
1656 }
1657 #endif
1658
1659 /* XXX XXX BEGIN XXX XXX */
1660 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1661 /* XXX */
1662 vm_offset_t /* XXX */
1663 alpha_XXX_dmamap(v) /* XXX */
1664 vm_offset_t v; /* XXX */
1665 { /* XXX */
1666 /* XXX */
1667 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1668 } /* XXX */
1669 /* XXX XXX END XXX XXX */
1670