machdep.c revision 1.77 1 /* $NetBSD: machdep.c,v 1.77 1997/06/06 19:52:43 cgd Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <machine/options.h> /* Config options headers */
31 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
32
33 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.77 1997/06/06 19:52:43 cgd Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/signalvar.h>
38 #include <sys/kernel.h>
39 #include <sys/map.h>
40 #include <sys/proc.h>
41 #include <sys/buf.h>
42 #include <sys/reboot.h>
43 #include <sys/device.h>
44 #include <sys/file.h>
45 #ifdef REAL_CLISTS
46 #include <sys/clist.h>
47 #endif
48 #include <sys/callout.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/msgbuf.h>
52 #include <sys/ioctl.h>
53 #include <sys/tty.h>
54 #include <sys/user.h>
55 #include <sys/exec.h>
56 #include <sys/exec_ecoff.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/cpu.h>
79 #include <machine/reg.h>
80 #include <machine/rpb.h>
81 #include <machine/prom.h>
82 #include <machine/conf.h>
83
84 #include <net/netisr.h>
85 #include <net/if.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/ip_var.h>
90 #include "arp.h"
91 #if NARP > 0
92 #include <netinet/if_inarp.h>
93 #endif
94 #endif
95 #ifdef NS
96 #include <netns/ns_var.h>
97 #endif
98 #ifdef ISO
99 #include <netiso/iso.h>
100 #include <netiso/clnp.h>
101 #endif
102 #ifdef CCITT
103 #include <netccitt/x25.h>
104 #include <netccitt/pk.h>
105 #include <netccitt/pk_extern.h>
106 #endif
107 #ifdef NATM
108 #include <netnatm/natm.h>
109 #endif
110 #ifdef NETATALK
111 #include <netatalk/at_extern.h>
112 #endif
113 #include "ppp.h"
114 #if NPPP > 0
115 #include <net/ppp_defs.h>
116 #include <net/if_ppp.h>
117 #endif
118
119 #include "le_ioasic.h" /* for le_iomem creation */
120
121 vm_map_t buffer_map;
122
123 /*
124 * Declare these as initialized data so we can patch them.
125 */
126 int nswbuf = 0;
127 #ifdef NBUF
128 int nbuf = NBUF;
129 #else
130 int nbuf = 0;
131 #endif
132 #ifdef BUFPAGES
133 int bufpages = BUFPAGES;
134 #else
135 int bufpages = 0;
136 #endif
137 int msgbufmapped = 0; /* set when safe to use msgbuf */
138 int maxmem; /* max memory per process */
139
140 int totalphysmem; /* total amount of physical memory in system */
141 int physmem; /* physical memory used by NetBSD + some rsvd */
142 int firstusablepage; /* first usable memory page */
143 int lastusablepage; /* last usable memory page */
144 int resvmem; /* amount of memory reserved for PROM */
145 int unusedmem; /* amount of memory for OS that we don't use */
146 int unknownmem; /* amount of memory with an unknown use */
147
148 int cputype; /* system type, from the RPB */
149
150 /*
151 * XXX We need an address to which we can assign things so that they
152 * won't be optimized away because we didn't use the value.
153 */
154 u_int32_t no_optimize;
155
156 /* the following is used externally (sysctl_hw) */
157 char machine[] = "alpha";
158 char cpu_model[128];
159 const struct cpusw *cpu_fn_switch; /* function switch */
160
161 struct user *proc0paddr;
162
163 /* Number of machine cycles per microsecond */
164 u_int64_t cycles_per_usec;
165
166 /* some memory areas for device DMA. "ick." */
167 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
168
169 /* number of cpus in the box. really! */
170 int ncpus;
171
172 char boot_flags[64];
173 char booted_kernel[64];
174
175 /* for cpu_sysctl() */
176 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
177 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
178 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
179
180 int cpu_dump __P((void));
181 int cpu_dumpsize __P((void));
182 void dumpsys __P((void));
183 void identifycpu __P((void));
184 void netintr __P((void));
185 void printregs __P((struct reg *));
186
187 void
188 alpha_init(pfn, ptb)
189 u_long pfn; /* first free PFN number */
190 u_long ptb; /* PFN of current level 1 page table */
191 {
192 extern char _end[];
193 caddr_t start, v;
194 struct mddt *mddtp;
195 int i, mddtweird;
196 char *p;
197
198 /*
199 * Turn off interrupts (not mchecks) and floating point.
200 * Make sure the instruction and data streams are consistent.
201 */
202 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
203 alpha_pal_wrfen(0);
204 ALPHA_TBIA();
205 alpha_pal_imb();
206
207 /*
208 * get address of the restart block, while we the bootstrap
209 * mapping is still around.
210 */
211 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
212 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
213
214 /*
215 * Remember how many cycles there are per microsecond,
216 * so that we can use delay(). Round up, for safety.
217 */
218 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
219
220 /*
221 * Init the PROM interface, so we can use printf
222 * until PROM mappings go away in consinit.
223 */
224 init_prom_interface();
225
226 /*
227 * Point interrupt/exception vectors to our own.
228 */
229 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
230 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
231 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
232 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
233 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
234 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
235
236 /*
237 * Clear pending machine checks and error reports, and enable
238 * system- and processor-correctable error reporting.
239 */
240 alpha_pal_wrmces(alpha_pal_rdmces() &
241 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
242
243 /*
244 * Find out how much memory is available, by looking at
245 * the memory cluster descriptors. This also tries to do
246 * its best to detect things things that have never been seen
247 * before...
248 *
249 * XXX Assumes that the first "system" cluster is the
250 * only one we can use. Is the second (etc.) system cluster
251 * (if one happens to exist) guaranteed to be contiguous? or...?
252 */
253 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
254
255 /*
256 * BEGIN MDDT WEIRDNESS CHECKING
257 */
258 mddtweird = 0;
259
260 #define cnt mddtp->mddt_cluster_cnt
261 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
262 if (cnt != 2 && cnt != 3) {
263 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
264 mddtweird = 1;
265 } else if (usage(0) != MDDT_PALCODE ||
266 usage(1) != MDDT_SYSTEM ||
267 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
268 mddtweird = 1;
269 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
270 }
271
272 for (i = 0; i < cnt; i++) {
273 if ((usage(i) & MDDT_mbz) != 0) {
274 printf("WARNING: mem cluster %d has weird usage %lx\n",
275 i, usage(i));
276 mddtweird = 1;
277 }
278 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
279 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
280 mddtweird = 1;
281 }
282 /* XXX other things to check? */
283 }
284 #undef cnt
285 #undef usage
286
287 if (mddtweird) {
288 printf("\n");
289 printf("complete memory cluster information:\n");
290 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
291 printf("mddt %d:\n", i);
292 printf("\tpfn %lx\n",
293 mddtp->mddt_clusters[i].mddt_pfn);
294 printf("\tcnt %lx\n",
295 mddtp->mddt_clusters[i].mddt_pg_cnt);
296 printf("\ttest %lx\n",
297 mddtp->mddt_clusters[i].mddt_pg_test);
298 printf("\tbva %lx\n",
299 mddtp->mddt_clusters[i].mddt_v_bitaddr);
300 printf("\tbpa %lx\n",
301 mddtp->mddt_clusters[i].mddt_p_bitaddr);
302 printf("\tbcksum %lx\n",
303 mddtp->mddt_clusters[i].mddt_bit_cksum);
304 printf("\tusage %lx\n",
305 mddtp->mddt_clusters[i].mddt_usage);
306 }
307 printf("\n");
308 }
309 /*
310 * END MDDT WEIRDNESS CHECKING
311 */
312
313 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
314 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
315 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
316 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
317 if ((usage(i) & MDDT_mbz) != 0)
318 unknownmem += pgcnt(i);
319 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
320 resvmem += pgcnt(i);
321 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
322 /*
323 * assumes that the system cluster listed is
324 * one we're in...
325 */
326 if (physmem != resvmem) {
327 physmem += pgcnt(i);
328 firstusablepage =
329 mddtp->mddt_clusters[i].mddt_pfn;
330 lastusablepage = firstusablepage + pgcnt(i) - 1;
331 } else
332 unusedmem += pgcnt(i);
333 }
334 #undef usage
335 #undef pgcnt
336 }
337 if (totalphysmem == 0)
338 panic("can't happen: system seems to have no memory!");
339 maxmem = physmem;
340
341 #if 0
342 printf("totalphysmem = %d\n", totalphysmem);
343 printf("physmem = %d\n", physmem);
344 printf("firstusablepage = %d\n", firstusablepage);
345 printf("lastusablepage = %d\n", lastusablepage);
346 printf("resvmem = %d\n", resvmem);
347 printf("unusedmem = %d\n", unusedmem);
348 printf("unknownmem = %d\n", unknownmem);
349 #endif
350
351 /*
352 * find out this CPU's page size
353 */
354 PAGE_SIZE = hwrpb->rpb_page_size;
355 if (PAGE_SIZE != 8192)
356 panic("page size %d != 8192?!", PAGE_SIZE);
357
358 v = (caddr_t)alpha_round_page(_end);
359 /*
360 * Init mapping for u page(s) for proc 0
361 */
362 start = v;
363 curproc->p_addr = proc0paddr = (struct user *)v;
364 v += UPAGES * NBPG;
365
366 /*
367 * Find out what hardware we're on, and remember its type name.
368 */
369 cputype = hwrpb->rpb_type;
370 if (cputype < 0 || cputype > ncpusw) {
371 unknown_cputype:
372 printf("\n");
373 printf("Unknown system type %d.\n", cputype);
374 printf("\n");
375 panic("unknown system type");
376 }
377 cpu_fn_switch = &cpusw[cputype];
378 if (cpu_fn_switch->family == NULL)
379 goto unknown_cputype;
380 if (cpu_fn_switch->option == NULL) {
381 printf("\n");
382 printf("NetBSD does not currently support system type %d\n",
383 cputype);
384 printf("(%s family).\n", cpu_fn_switch->family);
385 printf("\n");
386 panic("unsupported system type");
387 }
388 if (!cpu_fn_switch->present) {
389 printf("\n");
390 printf("Support for system type %d (%s family) is\n", cputype,
391 cpu_fn_switch->family);
392 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
393 cpu_fn_switch->option);
394 printf("to include support for this system type.\n");
395 printf("\n");
396 panic("support for system not present");
397 }
398
399 if ((*cpu_fn_switch->model_name)() != NULL)
400 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
401 sizeof cpu_model - 1);
402 else {
403 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
404 strcat(cpu_model, " family"); /* XXX */
405 }
406 cpu_model[sizeof cpu_model - 1] = '\0';
407
408 /* XXX SANITY CHECKING. SHOULD GO AWAY */
409 /* XXX We should always be running on the the primary. */
410 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
411 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
412 if (cputype != ST_DEC_21000) /*XXX*/
413 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
414
415 #if NLE_IOASIC > 0
416 /*
417 * Grab 128K at the top of physical memory for the lance chip
418 * on machines where it does dma through the I/O ASIC.
419 * It must be physically contiguous and aligned on a 128K boundary.
420 *
421 * Note that since this is conditional on the presence of
422 * IOASIC-attached 'le' units in the kernel config, the
423 * message buffer may move on these systems. This shouldn't
424 * be a problem, because once people have a kernel config that
425 * they use, they're going to stick with it.
426 */
427 if (cputype == ST_DEC_3000_500 ||
428 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
429 lastusablepage -= btoc(128 * 1024);
430 le_iomem =
431 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
432 }
433 #endif /* NLE_IOASIC */
434
435 /*
436 * Initialize error message buffer (at end of core).
437 */
438 lastusablepage -= btoc(sizeof (struct msgbuf));
439 msgbufp =
440 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
441 msgbufmapped = 1;
442
443 /*
444 * Allocate space for system data structures.
445 * The first available kernel virtual address is in "v".
446 * As pages of kernel virtual memory are allocated, "v" is incremented.
447 *
448 * These data structures are allocated here instead of cpu_startup()
449 * because physical memory is directly addressable. We don't have
450 * to map these into virtual address space.
451 */
452 #define valloc(name, type, num) \
453 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
454 #define valloclim(name, type, num, lim) \
455 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
456 #ifdef REAL_CLISTS
457 valloc(cfree, struct cblock, nclist);
458 #endif
459 valloc(callout, struct callout, ncallout);
460 valloc(swapmap, struct map, nswapmap = maxproc * 2);
461 #ifdef SYSVSHM
462 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
463 #endif
464 #ifdef SYSVSEM
465 valloc(sema, struct semid_ds, seminfo.semmni);
466 valloc(sem, struct sem, seminfo.semmns);
467 /* This is pretty disgusting! */
468 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
469 #endif
470 #ifdef SYSVMSG
471 valloc(msgpool, char, msginfo.msgmax);
472 valloc(msgmaps, struct msgmap, msginfo.msgseg);
473 valloc(msghdrs, struct msg, msginfo.msgtql);
474 valloc(msqids, struct msqid_ds, msginfo.msgmni);
475 #endif
476
477 /*
478 * Determine how many buffers to allocate.
479 * We allocate 10% of memory for buffer space. Insure a
480 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
481 * headers as file i/o buffers.
482 */
483 if (bufpages == 0)
484 bufpages = (physmem * 10) / (CLSIZE * 100);
485 if (nbuf == 0) {
486 nbuf = bufpages;
487 if (nbuf < 16)
488 nbuf = 16;
489 }
490 if (nswbuf == 0) {
491 nswbuf = (nbuf / 2) &~ 1; /* force even */
492 if (nswbuf > 256)
493 nswbuf = 256; /* sanity */
494 }
495 valloc(swbuf, struct buf, nswbuf);
496 valloc(buf, struct buf, nbuf);
497
498 /*
499 * Clear allocated memory.
500 */
501 bzero(start, v - start);
502
503 /*
504 * Initialize the virtual memory system, and set the
505 * page table base register in proc 0's PCB.
506 */
507 #ifndef NEW_PMAP
508 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
509 #else
510 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
511 hwrpb->rpb_max_asn);
512 #endif
513
514 /*
515 * Initialize the rest of proc 0's PCB, and cache its physical
516 * address.
517 */
518 proc0.p_md.md_pcbpaddr =
519 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
520
521 /*
522 * Set the kernel sp, reserving space for an (empty) trapframe,
523 * and make proc0's trapframe pointer point to it for sanity.
524 */
525 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
526 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
527 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
528
529 #ifdef NEW_PMAP
530 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
531 #endif
532
533 /*
534 * Look at arguments passed to us and compute boothowto.
535 * Also, get kernel name so it can be used in user-land.
536 */
537 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
538 #if 0
539 printf("boot flags = \"%s\"\n", boot_flags);
540 #endif
541 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
542 sizeof(booted_kernel));
543 #if 0
544 printf("booted kernel = \"%s\"\n", booted_kernel);
545 #endif
546
547 boothowto = RB_SINGLE;
548 #ifdef KADB
549 boothowto |= RB_KDB;
550 #endif
551 for (p = boot_flags; p && *p != '\0'; p++) {
552 /*
553 * Note that we'd really like to differentiate case here,
554 * but the Alpha AXP Architecture Reference Manual
555 * says that we shouldn't.
556 */
557 switch (*p) {
558 case 'a': /* autoboot */
559 case 'A':
560 boothowto &= ~RB_SINGLE;
561 break;
562
563 #ifdef DEBUG
564 case 'c': /* crash dump immediately after autoconfig */
565 case 'C':
566 boothowto |= RB_DUMP;
567 break;
568 #endif
569
570 case 'h': /* always halt, never reboot */
571 case 'H':
572 boothowto |= RB_HALT;
573 break;
574
575 #if 0
576 case 'm': /* mini root present in memory */
577 case 'M':
578 boothowto |= RB_MINIROOT;
579 break;
580 #endif
581
582 case 'n': /* askname */
583 case 'N':
584 boothowto |= RB_ASKNAME;
585 break;
586
587 case 's': /* single-user (default, supported for sanity) */
588 case 'S':
589 boothowto |= RB_SINGLE;
590 break;
591
592 default:
593 printf("Unrecognized boot flag '%c'.\n", *p);
594 break;
595 }
596 }
597
598 /*
599 * Figure out the number of cpus in the box, from RPB fields.
600 * Really. We mean it.
601 */
602 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
603 struct pcs *pcsp;
604
605 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
606 (i * hwrpb->rpb_pcs_size));
607 if ((pcsp->pcs_flags & PCS_PP) != 0)
608 ncpus++;
609 }
610 }
611
612 void
613 consinit()
614 {
615
616 (*cpu_fn_switch->cons_init)();
617 pmap_unmap_prom();
618 }
619
620 void
621 cpu_startup()
622 {
623 register unsigned i;
624 int base, residual;
625 vm_offset_t minaddr, maxaddr;
626 vm_size_t size;
627 #if defined(DEBUG)
628 extern int pmapdebug;
629 int opmapdebug = pmapdebug;
630
631 pmapdebug = 0;
632 #endif
633
634 /*
635 * Good {morning,afternoon,evening,night}.
636 */
637 printf(version);
638 identifycpu();
639 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
640 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
641 if (unusedmem)
642 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
643 if (unknownmem)
644 printf("WARNING: %d bytes of memory with unknown purpose\n",
645 ctob(unknownmem));
646
647 /*
648 * Allocate virtual address space for file I/O buffers.
649 * Note they are different than the array of headers, 'buf',
650 * and usually occupy more virtual memory than physical.
651 */
652 size = MAXBSIZE * nbuf;
653 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
654 &maxaddr, size, TRUE);
655 minaddr = (vm_offset_t)buffers;
656 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
657 &minaddr, size, FALSE) != KERN_SUCCESS)
658 panic("startup: cannot allocate buffers");
659 base = bufpages / nbuf;
660 residual = bufpages % nbuf;
661 for (i = 0; i < nbuf; i++) {
662 vm_size_t curbufsize;
663 vm_offset_t curbuf;
664
665 /*
666 * First <residual> buffers get (base+1) physical pages
667 * allocated for them. The rest get (base) physical pages.
668 *
669 * The rest of each buffer occupies virtual space,
670 * but has no physical memory allocated for it.
671 */
672 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
673 curbufsize = CLBYTES * (i < residual ? base+1 : base);
674 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
675 vm_map_simplify(buffer_map, curbuf);
676 }
677 /*
678 * Allocate a submap for exec arguments. This map effectively
679 * limits the number of processes exec'ing at any time.
680 */
681 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
682 16 * NCARGS, TRUE);
683
684 /*
685 * Allocate a submap for physio
686 */
687 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
688 VM_PHYS_SIZE, TRUE);
689
690 /*
691 * Finally, allocate mbuf cluster submap.
692 */
693 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
694 VM_MBUF_SIZE, FALSE);
695 /*
696 * Initialize callouts
697 */
698 callfree = callout;
699 for (i = 1; i < ncallout; i++)
700 callout[i-1].c_next = &callout[i];
701 callout[i-1].c_next = NULL;
702
703 #if defined(DEBUG)
704 pmapdebug = opmapdebug;
705 #endif
706 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
707 printf("using %ld buffers containing %ld bytes of memory\n",
708 (long)nbuf, (long)(bufpages * CLBYTES));
709
710 /*
711 * Set up buffers, so they can be used to read disk labels.
712 */
713 bufinit();
714
715 /*
716 * Configure the system.
717 */
718 configure();
719
720 /*
721 * Note that bootstrapping is finished, and set the HWRPB up
722 * to do restarts.
723 */
724 hwrpb_restart_setup();
725 }
726
727 void
728 identifycpu()
729 {
730
731 /*
732 * print out CPU identification information.
733 */
734 printf("%s, %ldMHz\n", cpu_model,
735 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
736 printf("%ld byte page size, %d processor%s.\n",
737 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
738 #if 0
739 /* this isn't defined for any systems that we run on? */
740 printf("serial number 0x%lx 0x%lx\n",
741 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
742
743 /* and these aren't particularly useful! */
744 printf("variation: 0x%lx, revision 0x%lx\n",
745 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
746 #endif
747 }
748
749 int waittime = -1;
750 struct pcb dumppcb;
751
752 void
753 cpu_reboot(howto, bootstr)
754 int howto;
755 char *bootstr;
756 {
757 extern int cold;
758
759 /* If system is cold, just halt. */
760 if (cold) {
761 howto |= RB_HALT;
762 goto haltsys;
763 }
764
765 /* If "always halt" was specified as a boot flag, obey. */
766 if ((boothowto & RB_HALT) != 0)
767 howto |= RB_HALT;
768
769 boothowto = howto;
770 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
771 waittime = 0;
772 vfs_shutdown();
773 /*
774 * If we've been adjusting the clock, the todr
775 * will be out of synch; adjust it now.
776 */
777 resettodr();
778 }
779
780 /* Disable interrupts. */
781 splhigh();
782
783 /* If rebooting and a dump is requested do it. */
784 #if 0
785 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
786 #else
787 if (howto & RB_DUMP)
788 #endif
789 dumpsys();
790
791 haltsys:
792
793 /* run any shutdown hooks */
794 doshutdownhooks();
795
796 #ifdef BOOTKEY
797 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
798 cngetc();
799 printf("\n");
800 #endif
801
802 /* Finally, halt/reboot the system. */
803 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
804 prom_halt(howto & RB_HALT);
805 /*NOTREACHED*/
806 }
807
808 /*
809 * These variables are needed by /sbin/savecore
810 */
811 u_long dumpmag = 0x8fca0101; /* magic number */
812 int dumpsize = 0; /* pages */
813 long dumplo = 0; /* blocks */
814
815 /*
816 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
817 */
818 int
819 cpu_dumpsize()
820 {
821 int size;
822
823 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
824 if (roundup(size, dbtob(1)) != dbtob(1))
825 return -1;
826
827 return (1);
828 }
829
830 /*
831 * cpu_dump: dump machine-dependent kernel core dump headers.
832 */
833 int
834 cpu_dump()
835 {
836 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
837 long buf[dbtob(1) / sizeof (long)];
838 kcore_seg_t *segp;
839 cpu_kcore_hdr_t *cpuhdrp;
840
841 dump = bdevsw[major(dumpdev)].d_dump;
842
843 segp = (kcore_seg_t *)buf;
844 cpuhdrp =
845 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
846
847 /*
848 * Generate a segment header.
849 */
850 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
851 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
852
853 /*
854 * Add the machine-dependent header info
855 */
856 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
857 cpuhdrp->page_size = PAGE_SIZE;
858 cpuhdrp->core_seg.start = ctob(firstusablepage);
859 cpuhdrp->core_seg.size = ctob(physmem);
860
861 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
862 }
863
864 /*
865 * This is called by main to set dumplo and dumpsize.
866 * Dumps always skip the first CLBYTES of disk space
867 * in case there might be a disk label stored there.
868 * If there is extra space, put dump at the end to
869 * reduce the chance that swapping trashes it.
870 */
871 void
872 cpu_dumpconf()
873 {
874 int nblks, dumpblks; /* size of dump area */
875 int maj;
876
877 if (dumpdev == NODEV)
878 goto bad;
879 maj = major(dumpdev);
880 if (maj < 0 || maj >= nblkdev)
881 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
882 if (bdevsw[maj].d_psize == NULL)
883 goto bad;
884 nblks = (*bdevsw[maj].d_psize)(dumpdev);
885 if (nblks <= ctod(1))
886 goto bad;
887
888 dumpblks = cpu_dumpsize();
889 if (dumpblks < 0)
890 goto bad;
891 dumpblks += ctod(physmem);
892
893 /* If dump won't fit (incl. room for possible label), punt. */
894 if (dumpblks > (nblks - ctod(1)))
895 goto bad;
896
897 /* Put dump at end of partition */
898 dumplo = nblks - dumpblks;
899
900 /* dumpsize is in page units, and doesn't include headers. */
901 dumpsize = physmem;
902 return;
903
904 bad:
905 dumpsize = 0;
906 return;
907 }
908
909 /*
910 * Dump the kernel's image to the swap partition.
911 */
912 #define BYTES_PER_DUMP NBPG
913
914 void
915 dumpsys()
916 {
917 unsigned bytes, i, n;
918 int maddr, psize;
919 daddr_t blkno;
920 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
921 int error;
922
923 /* Save registers. */
924 savectx(&dumppcb);
925
926 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
927 if (dumpdev == NODEV)
928 return;
929
930 /*
931 * For dumps during autoconfiguration,
932 * if dump device has already configured...
933 */
934 if (dumpsize == 0)
935 cpu_dumpconf();
936 if (dumplo <= 0) {
937 printf("\ndump to dev %x not possible\n", dumpdev);
938 return;
939 }
940 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
941
942 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
943 printf("dump ");
944 if (psize == -1) {
945 printf("area unavailable\n");
946 return;
947 }
948
949 /* XXX should purge all outstanding keystrokes. */
950
951 if ((error = cpu_dump()) != 0)
952 goto err;
953
954 bytes = ctob(physmem);
955 maddr = ctob(firstusablepage);
956 blkno = dumplo + cpu_dumpsize();
957 dump = bdevsw[major(dumpdev)].d_dump;
958 error = 0;
959 for (i = 0; i < bytes; i += n) {
960
961 /* Print out how many MBs we to go. */
962 n = bytes - i;
963 if (n && (n % (1024*1024)) == 0)
964 printf("%d ", n / (1024 * 1024));
965
966 /* Limit size for next transfer. */
967 if (n > BYTES_PER_DUMP)
968 n = BYTES_PER_DUMP;
969
970 error = (*dump)(dumpdev, blkno,
971 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
972 if (error)
973 break;
974 maddr += n;
975 blkno += btodb(n); /* XXX? */
976
977 /* XXX should look for keystrokes, to cancel. */
978 }
979
980 err:
981 switch (error) {
982
983 case ENXIO:
984 printf("device bad\n");
985 break;
986
987 case EFAULT:
988 printf("device not ready\n");
989 break;
990
991 case EINVAL:
992 printf("area improper\n");
993 break;
994
995 case EIO:
996 printf("i/o error\n");
997 break;
998
999 case EINTR:
1000 printf("aborted from console\n");
1001 break;
1002
1003 case 0:
1004 printf("succeeded\n");
1005 break;
1006
1007 default:
1008 printf("error %d\n", error);
1009 break;
1010 }
1011 printf("\n\n");
1012 delay(1000);
1013 }
1014
1015 void
1016 frametoreg(framep, regp)
1017 struct trapframe *framep;
1018 struct reg *regp;
1019 {
1020
1021 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1022 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1023 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1024 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1025 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1026 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1027 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1028 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1029 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1030 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1031 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1032 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1033 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1034 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1035 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1036 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1037 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1038 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1039 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1040 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1041 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1042 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1043 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1044 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1045 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1046 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1047 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1048 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1049 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1050 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1051 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1052 regp->r_regs[R_ZERO] = 0;
1053 }
1054
1055 void
1056 regtoframe(regp, framep)
1057 struct reg *regp;
1058 struct trapframe *framep;
1059 {
1060
1061 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1062 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1063 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1064 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1065 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1066 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1067 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1068 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1069 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1070 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1071 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1072 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1073 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1074 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1075 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1076 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1077 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1078 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1079 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1080 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1081 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1082 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1083 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1084 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1085 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1086 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1087 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1088 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1089 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1090 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1091 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1092 /* ??? = regp->r_regs[R_ZERO]; */
1093 }
1094
1095 void
1096 printregs(regp)
1097 struct reg *regp;
1098 {
1099 int i;
1100
1101 for (i = 0; i < 32; i++)
1102 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1103 i & 1 ? "\n" : "\t");
1104 }
1105
1106 void
1107 regdump(framep)
1108 struct trapframe *framep;
1109 {
1110 struct reg reg;
1111
1112 frametoreg(framep, ®);
1113 reg.r_regs[R_SP] = alpha_pal_rdusp();
1114
1115 printf("REGISTERS:\n");
1116 printregs(®);
1117 }
1118
1119 #ifdef DEBUG
1120 int sigdebug = 0;
1121 int sigpid = 0;
1122 #define SDB_FOLLOW 0x01
1123 #define SDB_KSTACK 0x02
1124 #endif
1125
1126 /*
1127 * Send an interrupt to process.
1128 */
1129 void
1130 sendsig(catcher, sig, mask, code)
1131 sig_t catcher;
1132 int sig, mask;
1133 u_long code;
1134 {
1135 struct proc *p = curproc;
1136 struct sigcontext *scp, ksc;
1137 struct trapframe *frame;
1138 struct sigacts *psp = p->p_sigacts;
1139 int oonstack, fsize, rndfsize;
1140 extern char sigcode[], esigcode[];
1141 extern struct proc *fpcurproc;
1142
1143 frame = p->p_md.md_tf;
1144 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1145 fsize = sizeof ksc;
1146 rndfsize = ((fsize + 15) / 16) * 16;
1147 /*
1148 * Allocate and validate space for the signal handler
1149 * context. Note that if the stack is in P0 space, the
1150 * call to grow() is a nop, and the useracc() check
1151 * will fail if the process has not already allocated
1152 * the space with a `brk'.
1153 */
1154 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1155 (psp->ps_sigonstack & sigmask(sig))) {
1156 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1157 psp->ps_sigstk.ss_size - rndfsize);
1158 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1159 } else
1160 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1161 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1162 (void)grow(p, (u_long)scp);
1163 #ifdef DEBUG
1164 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1165 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1166 sig, &oonstack, scp);
1167 #endif
1168 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1169 #ifdef DEBUG
1170 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1171 printf("sendsig(%d): useracc failed on sig %d\n",
1172 p->p_pid, sig);
1173 #endif
1174 /*
1175 * Process has trashed its stack; give it an illegal
1176 * instruction to halt it in its tracks.
1177 */
1178 SIGACTION(p, SIGILL) = SIG_DFL;
1179 sig = sigmask(SIGILL);
1180 p->p_sigignore &= ~sig;
1181 p->p_sigcatch &= ~sig;
1182 p->p_sigmask &= ~sig;
1183 psignal(p, SIGILL);
1184 return;
1185 }
1186
1187 /*
1188 * Build the signal context to be used by sigreturn.
1189 */
1190 ksc.sc_onstack = oonstack;
1191 ksc.sc_mask = mask;
1192 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1193 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1194
1195 /* copy the registers. */
1196 frametoreg(frame, (struct reg *)ksc.sc_regs);
1197 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1198 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1199
1200 /* save the floating-point state, if necessary, then copy it. */
1201 if (p == fpcurproc) {
1202 alpha_pal_wrfen(1);
1203 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1204 alpha_pal_wrfen(0);
1205 fpcurproc = NULL;
1206 }
1207 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1208 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1209 sizeof(struct fpreg));
1210 ksc.sc_fp_control = 0; /* XXX ? */
1211 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1212 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1213
1214
1215 #ifdef COMPAT_OSF1
1216 /*
1217 * XXX Create an OSF/1-style sigcontext and associated goo.
1218 */
1219 #endif
1220
1221 /*
1222 * copy the frame out to userland.
1223 */
1224 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1225 #ifdef DEBUG
1226 if (sigdebug & SDB_FOLLOW)
1227 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1228 scp, code);
1229 #endif
1230
1231 /*
1232 * Set up the registers to return to sigcode.
1233 */
1234 frame->tf_regs[FRAME_PC] =
1235 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1236 frame->tf_regs[FRAME_A0] = sig;
1237 frame->tf_regs[FRAME_A1] = code;
1238 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1239 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1240 alpha_pal_wrusp((unsigned long)scp);
1241
1242 #ifdef DEBUG
1243 if (sigdebug & SDB_FOLLOW)
1244 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1245 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1246 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1247 printf("sendsig(%d): sig %d returns\n",
1248 p->p_pid, sig);
1249 #endif
1250 }
1251
1252 /*
1253 * System call to cleanup state after a signal
1254 * has been taken. Reset signal mask and
1255 * stack state from context left by sendsig (above).
1256 * Return to previous pc and psl as specified by
1257 * context left by sendsig. Check carefully to
1258 * make sure that the user has not modified the
1259 * psl to gain improper priviledges or to cause
1260 * a machine fault.
1261 */
1262 /* ARGSUSED */
1263 int
1264 sys_sigreturn(p, v, retval)
1265 struct proc *p;
1266 void *v;
1267 register_t *retval;
1268 {
1269 struct sys_sigreturn_args /* {
1270 syscallarg(struct sigcontext *) sigcntxp;
1271 } */ *uap = v;
1272 struct sigcontext *scp, ksc;
1273 extern struct proc *fpcurproc;
1274
1275 scp = SCARG(uap, sigcntxp);
1276 #ifdef DEBUG
1277 if (sigdebug & SDB_FOLLOW)
1278 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1279 #endif
1280
1281 if (ALIGN(scp) != (u_int64_t)scp)
1282 return (EINVAL);
1283
1284 /*
1285 * Test and fetch the context structure.
1286 * We grab it all at once for speed.
1287 */
1288 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1289 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1290 return (EINVAL);
1291
1292 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1293 return (EINVAL);
1294 /*
1295 * Restore the user-supplied information
1296 */
1297 if (ksc.sc_onstack)
1298 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1299 else
1300 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1301 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1302
1303 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1304 p->p_md.md_tf->tf_regs[FRAME_PS] =
1305 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1306
1307 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1308 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1309
1310 /* XXX ksc.sc_ownedfp ? */
1311 if (p == fpcurproc)
1312 fpcurproc = NULL;
1313 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1314 sizeof(struct fpreg));
1315 /* XXX ksc.sc_fp_control ? */
1316
1317 #ifdef DEBUG
1318 if (sigdebug & SDB_FOLLOW)
1319 printf("sigreturn(%d): returns\n", p->p_pid);
1320 #endif
1321 return (EJUSTRETURN);
1322 }
1323
1324 /*
1325 * machine dependent system variables.
1326 */
1327 int
1328 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1329 int *name;
1330 u_int namelen;
1331 void *oldp;
1332 size_t *oldlenp;
1333 void *newp;
1334 size_t newlen;
1335 struct proc *p;
1336 {
1337 dev_t consdev;
1338
1339 /* all sysctl names at this level are terminal */
1340 if (namelen != 1)
1341 return (ENOTDIR); /* overloaded */
1342
1343 switch (name[0]) {
1344 case CPU_CONSDEV:
1345 if (cn_tab != NULL)
1346 consdev = cn_tab->cn_dev;
1347 else
1348 consdev = NODEV;
1349 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1350 sizeof consdev));
1351
1352 case CPU_ROOT_DEVICE:
1353 return (sysctl_rdstring(oldp, oldlenp, newp,
1354 root_device->dv_xname));
1355
1356 case CPU_UNALIGNED_PRINT:
1357 return (sysctl_int(oldp, oldlenp, newp, newlen,
1358 &alpha_unaligned_print));
1359
1360 case CPU_UNALIGNED_FIX:
1361 return (sysctl_int(oldp, oldlenp, newp, newlen,
1362 &alpha_unaligned_fix));
1363
1364 case CPU_UNALIGNED_SIGBUS:
1365 return (sysctl_int(oldp, oldlenp, newp, newlen,
1366 &alpha_unaligned_sigbus));
1367
1368 case CPU_BOOTED_KERNEL:
1369 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1370
1371 default:
1372 return (EOPNOTSUPP);
1373 }
1374 /* NOTREACHED */
1375 }
1376
1377 /*
1378 * Set registers on exec.
1379 */
1380 void
1381 setregs(p, pack, stack, retval)
1382 register struct proc *p;
1383 struct exec_package *pack;
1384 u_long stack;
1385 register_t *retval;
1386 {
1387 struct trapframe *tfp = p->p_md.md_tf;
1388 extern struct proc *fpcurproc;
1389 #ifdef DEBUG
1390 int i;
1391 #endif
1392
1393 #ifdef DEBUG
1394 /*
1395 * Crash and dump, if the user requested it.
1396 */
1397 if (boothowto & RB_DUMP)
1398 panic("crash requested by boot flags");
1399 #endif
1400
1401 #ifdef DEBUG
1402 for (i = 0; i < FRAME_SIZE; i++)
1403 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1404 #else
1405 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1406 #endif
1407 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1408 #define FP_RN 2 /* XXX */
1409 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1410 alpha_pal_wrusp(stack);
1411 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1412 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1413
1414 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1415 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1416 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1417 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1418 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1419
1420 p->p_md.md_flags &= ~MDP_FPUSED;
1421 if (fpcurproc == p)
1422 fpcurproc = NULL;
1423
1424 retval[0] = retval[1] = 0;
1425 }
1426
1427 void
1428 netintr()
1429 {
1430 int n, s;
1431
1432 s = splhigh();
1433 n = netisr;
1434 netisr = 0;
1435 splx(s);
1436
1437 #define DONETISR(bit, fn) \
1438 do { \
1439 if (n & (1 << (bit))) \
1440 fn; \
1441 } while (0)
1442
1443 #ifdef INET
1444 #if NARP > 0
1445 DONETISR(NETISR_ARP, arpintr());
1446 #endif
1447 DONETISR(NETISR_IP, ipintr());
1448 #endif
1449 #ifdef NETATALK
1450 DONETISR(NETISR_ATALK, atintr());
1451 #endif
1452 #ifdef NS
1453 DONETISR(NETISR_NS, nsintr());
1454 #endif
1455 #ifdef ISO
1456 DONETISR(NETISR_ISO, clnlintr());
1457 #endif
1458 #ifdef CCITT
1459 DONETISR(NETISR_CCITT, ccittintr());
1460 #endif
1461 #ifdef NATM
1462 DONETISR(NETISR_NATM, natmintr());
1463 #endif
1464 #if NPPP > 1
1465 DONETISR(NETISR_PPP, pppintr());
1466 #endif
1467
1468 #undef DONETISR
1469 }
1470
1471 void
1472 do_sir()
1473 {
1474 u_int64_t n;
1475
1476 do {
1477 (void)splhigh();
1478 n = ssir;
1479 ssir = 0;
1480 splsoft(); /* don't recurse through spl0() */
1481
1482 #define DO_SIR(bit, fn) \
1483 do { \
1484 if (n & (bit)) { \
1485 cnt.v_soft++; \
1486 fn; \
1487 } \
1488 } while (0)
1489
1490 DO_SIR(SIR_NET, netintr());
1491 DO_SIR(SIR_CLOCK, softclock());
1492
1493 #undef DO_SIR
1494 } while (ssir != 0);
1495 }
1496
1497 int
1498 spl0()
1499 {
1500
1501 if (ssir)
1502 do_sir(); /* it lowers the IPL itself */
1503
1504 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1505 }
1506
1507 /*
1508 * The following primitives manipulate the run queues. _whichqs tells which
1509 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1510 * into queues, Remrunqueue removes them from queues. The running process is
1511 * on no queue, other processes are on a queue related to p->p_priority,
1512 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1513 * available queues.
1514 */
1515 /*
1516 * setrunqueue(p)
1517 * proc *p;
1518 *
1519 * Call should be made at splclock(), and p->p_stat should be SRUN.
1520 */
1521
1522 void
1523 setrunqueue(p)
1524 struct proc *p;
1525 {
1526 int bit;
1527
1528 /* firewall: p->p_back must be NULL */
1529 if (p->p_back != NULL)
1530 panic("setrunqueue");
1531
1532 bit = p->p_priority >> 2;
1533 whichqs |= (1 << bit);
1534 p->p_forw = (struct proc *)&qs[bit];
1535 p->p_back = qs[bit].ph_rlink;
1536 p->p_back->p_forw = p;
1537 qs[bit].ph_rlink = p;
1538 }
1539
1540 /*
1541 * remrunqueue(p)
1542 *
1543 * Call should be made at splclock().
1544 */
1545 void
1546 remrunqueue(p)
1547 struct proc *p;
1548 {
1549 int bit;
1550
1551 bit = p->p_priority >> 2;
1552 if ((whichqs & (1 << bit)) == 0)
1553 panic("remrunqueue");
1554
1555 p->p_back->p_forw = p->p_forw;
1556 p->p_forw->p_back = p->p_back;
1557 p->p_back = NULL; /* for firewall checking. */
1558
1559 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1560 whichqs &= ~(1 << bit);
1561 }
1562
1563 /*
1564 * Return the best possible estimate of the time in the timeval
1565 * to which tvp points. Unfortunately, we can't read the hardware registers.
1566 * We guarantee that the time will be greater than the value obtained by a
1567 * previous call.
1568 */
1569 void
1570 microtime(tvp)
1571 register struct timeval *tvp;
1572 {
1573 int s = splclock();
1574 static struct timeval lasttime;
1575
1576 *tvp = time;
1577 #ifdef notdef
1578 tvp->tv_usec += clkread();
1579 while (tvp->tv_usec > 1000000) {
1580 tvp->tv_sec++;
1581 tvp->tv_usec -= 1000000;
1582 }
1583 #endif
1584 if (tvp->tv_sec == lasttime.tv_sec &&
1585 tvp->tv_usec <= lasttime.tv_usec &&
1586 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1587 tvp->tv_sec++;
1588 tvp->tv_usec -= 1000000;
1589 }
1590 lasttime = *tvp;
1591 splx(s);
1592 }
1593
1594 /*
1595 * Wait "n" microseconds.
1596 */
1597 void
1598 delay(n)
1599 unsigned long n;
1600 {
1601 long N = cycles_per_usec * (n);
1602
1603 while (N > 0) /* XXX */
1604 N -= 3; /* XXX */
1605 }
1606
1607 #if defined(COMPAT_OSF1) || 1 /* XXX */
1608 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1609 u_long, register_t *));
1610
1611 void
1612 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1613 struct proc *p;
1614 struct exec_package *epp;
1615 u_long stack;
1616 register_t *retval;
1617 {
1618 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1619
1620 setregs(p, epp, stack, retval);
1621 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1622 }
1623
1624 /*
1625 * cpu_exec_ecoff_hook():
1626 * cpu-dependent ECOFF format hook for execve().
1627 *
1628 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1629 *
1630 */
1631 int
1632 cpu_exec_ecoff_hook(p, epp)
1633 struct proc *p;
1634 struct exec_package *epp;
1635 {
1636 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1637 extern struct emul emul_netbsd;
1638 #ifdef COMPAT_OSF1
1639 extern struct emul emul_osf1;
1640 #endif
1641
1642 switch (execp->f.f_magic) {
1643 #ifdef COMPAT_OSF1
1644 case ECOFF_MAGIC_ALPHA:
1645 epp->ep_emul = &emul_osf1;
1646 break;
1647 #endif
1648
1649 case ECOFF_MAGIC_NETBSD_ALPHA:
1650 epp->ep_emul = &emul_netbsd;
1651 break;
1652
1653 default:
1654 return ENOEXEC;
1655 }
1656 return 0;
1657 }
1658 #endif
1659
1660 /* XXX XXX BEGIN XXX XXX */
1661 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1662 /* XXX */
1663 vm_offset_t /* XXX */
1664 alpha_XXX_dmamap(v) /* XXX */
1665 vm_offset_t v; /* XXX */
1666 { /* XXX */
1667 /* XXX */
1668 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1669 } /* XXX */
1670 /* XXX XXX END XXX XXX */
1671