machdep.c revision 1.79 1 /* $NetBSD: machdep.c,v 1.79 1997/06/08 23:59:57 veego Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <machine/options.h> /* Config options headers */
31 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
32
33 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.79 1997/06/08 23:59:57 veego Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/signalvar.h>
38 #include <sys/kernel.h>
39 #include <sys/map.h>
40 #include <sys/proc.h>
41 #include <sys/buf.h>
42 #include <sys/reboot.h>
43 #include <sys/device.h>
44 #include <sys/file.h>
45 #ifdef REAL_CLISTS
46 #include <sys/clist.h>
47 #endif
48 #include <sys/callout.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/msgbuf.h>
52 #include <sys/ioctl.h>
53 #include <sys/tty.h>
54 #include <sys/user.h>
55 #include <sys/exec.h>
56 #include <sys/exec_ecoff.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/cpu.h>
79 #include <machine/reg.h>
80 #include <machine/rpb.h>
81 #include <machine/prom.h>
82 #include <machine/conf.h>
83
84 #include <net/netisr.h>
85 #include <net/if.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/ip_var.h>
90 #include "arp.h"
91 #if NARP > 0
92 #include <netinet/if_inarp.h>
93 #endif
94 #endif
95 #ifdef NS
96 #include <netns/ns_var.h>
97 #endif
98 #ifdef ISO
99 #include <netiso/iso.h>
100 #include <netiso/clnp.h>
101 #endif
102 #ifdef CCITT
103 #include <netccitt/x25.h>
104 #include <netccitt/pk.h>
105 #include <netccitt/pk_extern.h>
106 #endif
107 #ifdef NATM
108 #include <netnatm/natm.h>
109 #endif
110 #ifdef NETATALK
111 #include <netatalk/at_extern.h>
112 #endif
113 #include "ppp.h"
114 #if NPPP > 0
115 #include <net/ppp_defs.h>
116 #include <net/if_ppp.h>
117 #endif
118
119 #include "le_ioasic.h" /* for le_iomem creation */
120
121 vm_map_t buffer_map;
122
123 /*
124 * Declare these as initialized data so we can patch them.
125 */
126 int nswbuf = 0;
127 #ifdef NBUF
128 int nbuf = NBUF;
129 #else
130 int nbuf = 0;
131 #endif
132 #ifdef BUFPAGES
133 int bufpages = BUFPAGES;
134 #else
135 int bufpages = 0;
136 #endif
137 int msgbufmapped = 0; /* set when safe to use msgbuf */
138 int maxmem; /* max memory per process */
139
140 int totalphysmem; /* total amount of physical memory in system */
141 int physmem; /* physical memory used by NetBSD + some rsvd */
142 int firstusablepage; /* first usable memory page */
143 int lastusablepage; /* last usable memory page */
144 int resvmem; /* amount of memory reserved for PROM */
145 int unusedmem; /* amount of memory for OS that we don't use */
146 int unknownmem; /* amount of memory with an unknown use */
147
148 int cputype; /* system type, from the RPB */
149
150 /*
151 * XXX We need an address to which we can assign things so that they
152 * won't be optimized away because we didn't use the value.
153 */
154 u_int32_t no_optimize;
155
156 /* the following is used externally (sysctl_hw) */
157 char machine[] = MACHINE; /* from <machine/param.h> */
158 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
159 char cpu_model[128];
160 const struct cpusw *cpu_fn_switch; /* function switch */
161
162 struct user *proc0paddr;
163
164 /* Number of machine cycles per microsecond */
165 u_int64_t cycles_per_usec;
166
167 /* some memory areas for device DMA. "ick." */
168 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
169
170 /* number of cpus in the box. really! */
171 int ncpus;
172
173 char boot_flags[64];
174 char booted_kernel[64];
175
176 /* for cpu_sysctl() */
177 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
178 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
179 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
180
181 int cpu_dump __P((void));
182 int cpu_dumpsize __P((void));
183 void dumpsys __P((void));
184 void identifycpu __P((void));
185 void netintr __P((void));
186 void printregs __P((struct reg *));
187
188 void
189 alpha_init(pfn, ptb)
190 u_long pfn; /* first free PFN number */
191 u_long ptb; /* PFN of current level 1 page table */
192 {
193 extern char _end[];
194 caddr_t start, v;
195 struct mddt *mddtp;
196 int i, mddtweird;
197 char *p;
198
199 /*
200 * Turn off interrupts (not mchecks) and floating point.
201 * Make sure the instruction and data streams are consistent.
202 */
203 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
204 alpha_pal_wrfen(0);
205 ALPHA_TBIA();
206 alpha_pal_imb();
207
208 /*
209 * get address of the restart block, while we the bootstrap
210 * mapping is still around.
211 */
212 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
213 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
214
215 /*
216 * Remember how many cycles there are per microsecond,
217 * so that we can use delay(). Round up, for safety.
218 */
219 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
220
221 /*
222 * Init the PROM interface, so we can use printf
223 * until PROM mappings go away in consinit.
224 */
225 init_prom_interface();
226
227 /*
228 * Point interrupt/exception vectors to our own.
229 */
230 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
231 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
232 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
233 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
234 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
235 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
236
237 /*
238 * Clear pending machine checks and error reports, and enable
239 * system- and processor-correctable error reporting.
240 */
241 alpha_pal_wrmces(alpha_pal_rdmces() &
242 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
243
244 /*
245 * Find out how much memory is available, by looking at
246 * the memory cluster descriptors. This also tries to do
247 * its best to detect things things that have never been seen
248 * before...
249 *
250 * XXX Assumes that the first "system" cluster is the
251 * only one we can use. Is the second (etc.) system cluster
252 * (if one happens to exist) guaranteed to be contiguous? or...?
253 */
254 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
255
256 /*
257 * BEGIN MDDT WEIRDNESS CHECKING
258 */
259 mddtweird = 0;
260
261 #define cnt mddtp->mddt_cluster_cnt
262 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
263 if (cnt != 2 && cnt != 3) {
264 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
265 mddtweird = 1;
266 } else if (usage(0) != MDDT_PALCODE ||
267 usage(1) != MDDT_SYSTEM ||
268 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
269 mddtweird = 1;
270 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
271 }
272
273 for (i = 0; i < cnt; i++) {
274 if ((usage(i) & MDDT_mbz) != 0) {
275 printf("WARNING: mem cluster %d has weird usage %lx\n",
276 i, usage(i));
277 mddtweird = 1;
278 }
279 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
280 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
281 mddtweird = 1;
282 }
283 /* XXX other things to check? */
284 }
285 #undef cnt
286 #undef usage
287
288 if (mddtweird) {
289 printf("\n");
290 printf("complete memory cluster information:\n");
291 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
292 printf("mddt %d:\n", i);
293 printf("\tpfn %lx\n",
294 mddtp->mddt_clusters[i].mddt_pfn);
295 printf("\tcnt %lx\n",
296 mddtp->mddt_clusters[i].mddt_pg_cnt);
297 printf("\ttest %lx\n",
298 mddtp->mddt_clusters[i].mddt_pg_test);
299 printf("\tbva %lx\n",
300 mddtp->mddt_clusters[i].mddt_v_bitaddr);
301 printf("\tbpa %lx\n",
302 mddtp->mddt_clusters[i].mddt_p_bitaddr);
303 printf("\tbcksum %lx\n",
304 mddtp->mddt_clusters[i].mddt_bit_cksum);
305 printf("\tusage %lx\n",
306 mddtp->mddt_clusters[i].mddt_usage);
307 }
308 printf("\n");
309 }
310 /*
311 * END MDDT WEIRDNESS CHECKING
312 */
313
314 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
315 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
316 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
317 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
318 if ((usage(i) & MDDT_mbz) != 0)
319 unknownmem += pgcnt(i);
320 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
321 resvmem += pgcnt(i);
322 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
323 /*
324 * assumes that the system cluster listed is
325 * one we're in...
326 */
327 if (physmem != resvmem) {
328 physmem += pgcnt(i);
329 firstusablepage =
330 mddtp->mddt_clusters[i].mddt_pfn;
331 lastusablepage = firstusablepage + pgcnt(i) - 1;
332 } else
333 unusedmem += pgcnt(i);
334 }
335 #undef usage
336 #undef pgcnt
337 }
338 if (totalphysmem == 0)
339 panic("can't happen: system seems to have no memory!");
340 maxmem = physmem;
341
342 #if 0
343 printf("totalphysmem = %d\n", totalphysmem);
344 printf("physmem = %d\n", physmem);
345 printf("firstusablepage = %d\n", firstusablepage);
346 printf("lastusablepage = %d\n", lastusablepage);
347 printf("resvmem = %d\n", resvmem);
348 printf("unusedmem = %d\n", unusedmem);
349 printf("unknownmem = %d\n", unknownmem);
350 #endif
351
352 /*
353 * find out this CPU's page size
354 */
355 PAGE_SIZE = hwrpb->rpb_page_size;
356 if (PAGE_SIZE != 8192)
357 panic("page size %d != 8192?!", PAGE_SIZE);
358
359 v = (caddr_t)alpha_round_page(_end);
360 /*
361 * Init mapping for u page(s) for proc 0
362 */
363 start = v;
364 curproc->p_addr = proc0paddr = (struct user *)v;
365 v += UPAGES * NBPG;
366
367 /*
368 * Find out what hardware we're on, and remember its type name.
369 */
370 cputype = hwrpb->rpb_type;
371 if (cputype < 0 || cputype > ncpusw) {
372 unknown_cputype:
373 printf("\n");
374 printf("Unknown system type %d.\n", cputype);
375 printf("\n");
376 panic("unknown system type");
377 }
378 cpu_fn_switch = &cpusw[cputype];
379 if (cpu_fn_switch->family == NULL)
380 goto unknown_cputype;
381 if (cpu_fn_switch->option == NULL) {
382 printf("\n");
383 printf("NetBSD does not currently support system type %d\n",
384 cputype);
385 printf("(%s family).\n", cpu_fn_switch->family);
386 printf("\n");
387 panic("unsupported system type");
388 }
389 if (!cpu_fn_switch->present) {
390 printf("\n");
391 printf("Support for system type %d (%s family) is\n", cputype,
392 cpu_fn_switch->family);
393 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
394 cpu_fn_switch->option);
395 printf("to include support for this system type.\n");
396 printf("\n");
397 panic("support for system not present");
398 }
399
400 if ((*cpu_fn_switch->model_name)() != NULL)
401 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
402 sizeof cpu_model - 1);
403 else {
404 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
405 strcat(cpu_model, " family"); /* XXX */
406 }
407 cpu_model[sizeof cpu_model - 1] = '\0';
408
409 /* XXX SANITY CHECKING. SHOULD GO AWAY */
410 /* XXX We should always be running on the the primary. */
411 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
412 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
413 if (cputype != ST_DEC_21000) /*XXX*/
414 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
415
416 #if NLE_IOASIC > 0
417 /*
418 * Grab 128K at the top of physical memory for the lance chip
419 * on machines where it does dma through the I/O ASIC.
420 * It must be physically contiguous and aligned on a 128K boundary.
421 *
422 * Note that since this is conditional on the presence of
423 * IOASIC-attached 'le' units in the kernel config, the
424 * message buffer may move on these systems. This shouldn't
425 * be a problem, because once people have a kernel config that
426 * they use, they're going to stick with it.
427 */
428 if (cputype == ST_DEC_3000_500 ||
429 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
430 lastusablepage -= btoc(128 * 1024);
431 le_iomem =
432 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
433 }
434 #endif /* NLE_IOASIC */
435
436 /*
437 * Initialize error message buffer (at end of core).
438 */
439 lastusablepage -= btoc(sizeof (struct msgbuf));
440 msgbufp =
441 (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
442 msgbufmapped = 1;
443
444 /*
445 * Allocate space for system data structures.
446 * The first available kernel virtual address is in "v".
447 * As pages of kernel virtual memory are allocated, "v" is incremented.
448 *
449 * These data structures are allocated here instead of cpu_startup()
450 * because physical memory is directly addressable. We don't have
451 * to map these into virtual address space.
452 */
453 #define valloc(name, type, num) \
454 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
455 #define valloclim(name, type, num, lim) \
456 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
457 #ifdef REAL_CLISTS
458 valloc(cfree, struct cblock, nclist);
459 #endif
460 valloc(callout, struct callout, ncallout);
461 valloc(swapmap, struct map, nswapmap = maxproc * 2);
462 #ifdef SYSVSHM
463 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
464 #endif
465 #ifdef SYSVSEM
466 valloc(sema, struct semid_ds, seminfo.semmni);
467 valloc(sem, struct sem, seminfo.semmns);
468 /* This is pretty disgusting! */
469 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
470 #endif
471 #ifdef SYSVMSG
472 valloc(msgpool, char, msginfo.msgmax);
473 valloc(msgmaps, struct msgmap, msginfo.msgseg);
474 valloc(msghdrs, struct msg, msginfo.msgtql);
475 valloc(msqids, struct msqid_ds, msginfo.msgmni);
476 #endif
477
478 /*
479 * Determine how many buffers to allocate.
480 * We allocate 10% of memory for buffer space. Insure a
481 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
482 * headers as file i/o buffers.
483 */
484 if (bufpages == 0)
485 bufpages = (physmem * 10) / (CLSIZE * 100);
486 if (nbuf == 0) {
487 nbuf = bufpages;
488 if (nbuf < 16)
489 nbuf = 16;
490 }
491 if (nswbuf == 0) {
492 nswbuf = (nbuf / 2) &~ 1; /* force even */
493 if (nswbuf > 256)
494 nswbuf = 256; /* sanity */
495 }
496 valloc(swbuf, struct buf, nswbuf);
497 valloc(buf, struct buf, nbuf);
498
499 /*
500 * Clear allocated memory.
501 */
502 bzero(start, v - start);
503
504 /*
505 * Initialize the virtual memory system, and set the
506 * page table base register in proc 0's PCB.
507 */
508 #ifndef NEW_PMAP
509 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
510 #else
511 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
512 hwrpb->rpb_max_asn);
513 #endif
514
515 /*
516 * Initialize the rest of proc 0's PCB, and cache its physical
517 * address.
518 */
519 proc0.p_md.md_pcbpaddr =
520 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
521
522 /*
523 * Set the kernel sp, reserving space for an (empty) trapframe,
524 * and make proc0's trapframe pointer point to it for sanity.
525 */
526 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
527 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
528 proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
529
530 #ifdef NEW_PMAP
531 pmap_activate(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
532 #endif
533
534 /*
535 * Look at arguments passed to us and compute boothowto.
536 * Also, get kernel name so it can be used in user-land.
537 */
538 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
539 #if 0
540 printf("boot flags = \"%s\"\n", boot_flags);
541 #endif
542 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
543 sizeof(booted_kernel));
544 #if 0
545 printf("booted kernel = \"%s\"\n", booted_kernel);
546 #endif
547
548 boothowto = RB_SINGLE;
549 #ifdef KADB
550 boothowto |= RB_KDB;
551 #endif
552 for (p = boot_flags; p && *p != '\0'; p++) {
553 /*
554 * Note that we'd really like to differentiate case here,
555 * but the Alpha AXP Architecture Reference Manual
556 * says that we shouldn't.
557 */
558 switch (*p) {
559 case 'a': /* autoboot */
560 case 'A':
561 boothowto &= ~RB_SINGLE;
562 break;
563
564 #ifdef DEBUG
565 case 'c': /* crash dump immediately after autoconfig */
566 case 'C':
567 boothowto |= RB_DUMP;
568 break;
569 #endif
570
571 case 'h': /* always halt, never reboot */
572 case 'H':
573 boothowto |= RB_HALT;
574 break;
575
576 #if 0
577 case 'm': /* mini root present in memory */
578 case 'M':
579 boothowto |= RB_MINIROOT;
580 break;
581 #endif
582
583 case 'n': /* askname */
584 case 'N':
585 boothowto |= RB_ASKNAME;
586 break;
587
588 case 's': /* single-user (default, supported for sanity) */
589 case 'S':
590 boothowto |= RB_SINGLE;
591 break;
592
593 default:
594 printf("Unrecognized boot flag '%c'.\n", *p);
595 break;
596 }
597 }
598
599 /*
600 * Figure out the number of cpus in the box, from RPB fields.
601 * Really. We mean it.
602 */
603 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
604 struct pcs *pcsp;
605
606 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
607 (i * hwrpb->rpb_pcs_size));
608 if ((pcsp->pcs_flags & PCS_PP) != 0)
609 ncpus++;
610 }
611 }
612
613 void
614 consinit()
615 {
616
617 (*cpu_fn_switch->cons_init)();
618 pmap_unmap_prom();
619 }
620
621 void
622 cpu_startup()
623 {
624 register unsigned i;
625 int base, residual;
626 vm_offset_t minaddr, maxaddr;
627 vm_size_t size;
628 #if defined(DEBUG)
629 extern int pmapdebug;
630 int opmapdebug = pmapdebug;
631
632 pmapdebug = 0;
633 #endif
634
635 /*
636 * Good {morning,afternoon,evening,night}.
637 */
638 printf(version);
639 identifycpu();
640 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
641 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
642 if (unusedmem)
643 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
644 if (unknownmem)
645 printf("WARNING: %d bytes of memory with unknown purpose\n",
646 ctob(unknownmem));
647
648 /*
649 * Allocate virtual address space for file I/O buffers.
650 * Note they are different than the array of headers, 'buf',
651 * and usually occupy more virtual memory than physical.
652 */
653 size = MAXBSIZE * nbuf;
654 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
655 &maxaddr, size, TRUE);
656 minaddr = (vm_offset_t)buffers;
657 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
658 &minaddr, size, FALSE) != KERN_SUCCESS)
659 panic("startup: cannot allocate buffers");
660 base = bufpages / nbuf;
661 residual = bufpages % nbuf;
662 for (i = 0; i < nbuf; i++) {
663 vm_size_t curbufsize;
664 vm_offset_t curbuf;
665
666 /*
667 * First <residual> buffers get (base+1) physical pages
668 * allocated for them. The rest get (base) physical pages.
669 *
670 * The rest of each buffer occupies virtual space,
671 * but has no physical memory allocated for it.
672 */
673 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
674 curbufsize = CLBYTES * (i < residual ? base+1 : base);
675 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
676 vm_map_simplify(buffer_map, curbuf);
677 }
678 /*
679 * Allocate a submap for exec arguments. This map effectively
680 * limits the number of processes exec'ing at any time.
681 */
682 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
683 16 * NCARGS, TRUE);
684
685 /*
686 * Allocate a submap for physio
687 */
688 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
689 VM_PHYS_SIZE, TRUE);
690
691 /*
692 * Finally, allocate mbuf cluster submap.
693 */
694 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
695 VM_MBUF_SIZE, FALSE);
696 /*
697 * Initialize callouts
698 */
699 callfree = callout;
700 for (i = 1; i < ncallout; i++)
701 callout[i-1].c_next = &callout[i];
702 callout[i-1].c_next = NULL;
703
704 #if defined(DEBUG)
705 pmapdebug = opmapdebug;
706 #endif
707 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
708 printf("using %ld buffers containing %ld bytes of memory\n",
709 (long)nbuf, (long)(bufpages * CLBYTES));
710
711 /*
712 * Set up buffers, so they can be used to read disk labels.
713 */
714 bufinit();
715
716 /*
717 * Configure the system.
718 */
719 configure();
720
721 /*
722 * Note that bootstrapping is finished, and set the HWRPB up
723 * to do restarts.
724 */
725 hwrpb_restart_setup();
726 }
727
728 void
729 identifycpu()
730 {
731
732 /*
733 * print out CPU identification information.
734 */
735 printf("%s, %ldMHz\n", cpu_model,
736 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
737 printf("%ld byte page size, %d processor%s.\n",
738 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
739 #if 0
740 /* this isn't defined for any systems that we run on? */
741 printf("serial number 0x%lx 0x%lx\n",
742 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
743
744 /* and these aren't particularly useful! */
745 printf("variation: 0x%lx, revision 0x%lx\n",
746 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
747 #endif
748 }
749
750 int waittime = -1;
751 struct pcb dumppcb;
752
753 void
754 cpu_reboot(howto, bootstr)
755 int howto;
756 char *bootstr;
757 {
758 extern int cold;
759
760 /* If system is cold, just halt. */
761 if (cold) {
762 howto |= RB_HALT;
763 goto haltsys;
764 }
765
766 /* If "always halt" was specified as a boot flag, obey. */
767 if ((boothowto & RB_HALT) != 0)
768 howto |= RB_HALT;
769
770 boothowto = howto;
771 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
772 waittime = 0;
773 vfs_shutdown();
774 /*
775 * If we've been adjusting the clock, the todr
776 * will be out of synch; adjust it now.
777 */
778 resettodr();
779 }
780
781 /* Disable interrupts. */
782 splhigh();
783
784 /* If rebooting and a dump is requested do it. */
785 #if 0
786 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
787 #else
788 if (howto & RB_DUMP)
789 #endif
790 dumpsys();
791
792 haltsys:
793
794 /* run any shutdown hooks */
795 doshutdownhooks();
796
797 #ifdef BOOTKEY
798 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
799 cngetc();
800 printf("\n");
801 #endif
802
803 /* Finally, halt/reboot the system. */
804 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
805 prom_halt(howto & RB_HALT);
806 /*NOTREACHED*/
807 }
808
809 /*
810 * These variables are needed by /sbin/savecore
811 */
812 u_long dumpmag = 0x8fca0101; /* magic number */
813 int dumpsize = 0; /* pages */
814 long dumplo = 0; /* blocks */
815
816 /*
817 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
818 */
819 int
820 cpu_dumpsize()
821 {
822 int size;
823
824 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
825 if (roundup(size, dbtob(1)) != dbtob(1))
826 return -1;
827
828 return (1);
829 }
830
831 /*
832 * cpu_dump: dump machine-dependent kernel core dump headers.
833 */
834 int
835 cpu_dump()
836 {
837 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
838 long buf[dbtob(1) / sizeof (long)];
839 kcore_seg_t *segp;
840 cpu_kcore_hdr_t *cpuhdrp;
841
842 dump = bdevsw[major(dumpdev)].d_dump;
843
844 segp = (kcore_seg_t *)buf;
845 cpuhdrp =
846 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
847
848 /*
849 * Generate a segment header.
850 */
851 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
852 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
853
854 /*
855 * Add the machine-dependent header info
856 */
857 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
858 cpuhdrp->page_size = PAGE_SIZE;
859 cpuhdrp->core_seg.start = ctob(firstusablepage);
860 cpuhdrp->core_seg.size = ctob(physmem);
861
862 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
863 }
864
865 /*
866 * This is called by main to set dumplo and dumpsize.
867 * Dumps always skip the first CLBYTES of disk space
868 * in case there might be a disk label stored there.
869 * If there is extra space, put dump at the end to
870 * reduce the chance that swapping trashes it.
871 */
872 void
873 cpu_dumpconf()
874 {
875 int nblks, dumpblks; /* size of dump area */
876 int maj;
877
878 if (dumpdev == NODEV)
879 goto bad;
880 maj = major(dumpdev);
881 if (maj < 0 || maj >= nblkdev)
882 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
883 if (bdevsw[maj].d_psize == NULL)
884 goto bad;
885 nblks = (*bdevsw[maj].d_psize)(dumpdev);
886 if (nblks <= ctod(1))
887 goto bad;
888
889 dumpblks = cpu_dumpsize();
890 if (dumpblks < 0)
891 goto bad;
892 dumpblks += ctod(physmem);
893
894 /* If dump won't fit (incl. room for possible label), punt. */
895 if (dumpblks > (nblks - ctod(1)))
896 goto bad;
897
898 /* Put dump at end of partition */
899 dumplo = nblks - dumpblks;
900
901 /* dumpsize is in page units, and doesn't include headers. */
902 dumpsize = physmem;
903 return;
904
905 bad:
906 dumpsize = 0;
907 return;
908 }
909
910 /*
911 * Dump the kernel's image to the swap partition.
912 */
913 #define BYTES_PER_DUMP NBPG
914
915 void
916 dumpsys()
917 {
918 unsigned bytes, i, n;
919 int maddr, psize;
920 daddr_t blkno;
921 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
922 int error;
923
924 /* Save registers. */
925 savectx(&dumppcb);
926
927 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
928 if (dumpdev == NODEV)
929 return;
930
931 /*
932 * For dumps during autoconfiguration,
933 * if dump device has already configured...
934 */
935 if (dumpsize == 0)
936 cpu_dumpconf();
937 if (dumplo <= 0) {
938 printf("\ndump to dev %x not possible\n", dumpdev);
939 return;
940 }
941 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
942
943 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
944 printf("dump ");
945 if (psize == -1) {
946 printf("area unavailable\n");
947 return;
948 }
949
950 /* XXX should purge all outstanding keystrokes. */
951
952 if ((error = cpu_dump()) != 0)
953 goto err;
954
955 bytes = ctob(physmem);
956 maddr = ctob(firstusablepage);
957 blkno = dumplo + cpu_dumpsize();
958 dump = bdevsw[major(dumpdev)].d_dump;
959 error = 0;
960 for (i = 0; i < bytes; i += n) {
961
962 /* Print out how many MBs we to go. */
963 n = bytes - i;
964 if (n && (n % (1024*1024)) == 0)
965 printf("%d ", n / (1024 * 1024));
966
967 /* Limit size for next transfer. */
968 if (n > BYTES_PER_DUMP)
969 n = BYTES_PER_DUMP;
970
971 error = (*dump)(dumpdev, blkno,
972 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
973 if (error)
974 break;
975 maddr += n;
976 blkno += btodb(n); /* XXX? */
977
978 /* XXX should look for keystrokes, to cancel. */
979 }
980
981 err:
982 switch (error) {
983
984 case ENXIO:
985 printf("device bad\n");
986 break;
987
988 case EFAULT:
989 printf("device not ready\n");
990 break;
991
992 case EINVAL:
993 printf("area improper\n");
994 break;
995
996 case EIO:
997 printf("i/o error\n");
998 break;
999
1000 case EINTR:
1001 printf("aborted from console\n");
1002 break;
1003
1004 case 0:
1005 printf("succeeded\n");
1006 break;
1007
1008 default:
1009 printf("error %d\n", error);
1010 break;
1011 }
1012 printf("\n\n");
1013 delay(1000);
1014 }
1015
1016 void
1017 frametoreg(framep, regp)
1018 struct trapframe *framep;
1019 struct reg *regp;
1020 {
1021
1022 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1023 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1024 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1025 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1026 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1027 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1028 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1029 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1030 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1031 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1032 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1033 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1034 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1035 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1036 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1037 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1038 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1039 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1040 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1041 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1042 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1043 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1044 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1045 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1046 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1047 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1048 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1049 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1050 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1051 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1052 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1053 regp->r_regs[R_ZERO] = 0;
1054 }
1055
1056 void
1057 regtoframe(regp, framep)
1058 struct reg *regp;
1059 struct trapframe *framep;
1060 {
1061
1062 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1063 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1064 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1065 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1066 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1067 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1068 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1069 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1070 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1071 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1072 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1073 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1074 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1075 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1076 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1077 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1078 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1079 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1080 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1081 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1082 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1083 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1084 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1085 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1086 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1087 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1088 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1089 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1090 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1091 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1092 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1093 /* ??? = regp->r_regs[R_ZERO]; */
1094 }
1095
1096 void
1097 printregs(regp)
1098 struct reg *regp;
1099 {
1100 int i;
1101
1102 for (i = 0; i < 32; i++)
1103 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1104 i & 1 ? "\n" : "\t");
1105 }
1106
1107 void
1108 regdump(framep)
1109 struct trapframe *framep;
1110 {
1111 struct reg reg;
1112
1113 frametoreg(framep, ®);
1114 reg.r_regs[R_SP] = alpha_pal_rdusp();
1115
1116 printf("REGISTERS:\n");
1117 printregs(®);
1118 }
1119
1120 #ifdef DEBUG
1121 int sigdebug = 0;
1122 int sigpid = 0;
1123 #define SDB_FOLLOW 0x01
1124 #define SDB_KSTACK 0x02
1125 #endif
1126
1127 /*
1128 * Send an interrupt to process.
1129 */
1130 void
1131 sendsig(catcher, sig, mask, code)
1132 sig_t catcher;
1133 int sig, mask;
1134 u_long code;
1135 {
1136 struct proc *p = curproc;
1137 struct sigcontext *scp, ksc;
1138 struct trapframe *frame;
1139 struct sigacts *psp = p->p_sigacts;
1140 int oonstack, fsize, rndfsize;
1141 extern char sigcode[], esigcode[];
1142 extern struct proc *fpcurproc;
1143
1144 frame = p->p_md.md_tf;
1145 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1146 fsize = sizeof ksc;
1147 rndfsize = ((fsize + 15) / 16) * 16;
1148 /*
1149 * Allocate and validate space for the signal handler
1150 * context. Note that if the stack is in P0 space, the
1151 * call to grow() is a nop, and the useracc() check
1152 * will fail if the process has not already allocated
1153 * the space with a `brk'.
1154 */
1155 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1156 (psp->ps_sigonstack & sigmask(sig))) {
1157 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1158 psp->ps_sigstk.ss_size - rndfsize);
1159 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1160 } else
1161 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1162 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1163 (void)grow(p, (u_long)scp);
1164 #ifdef DEBUG
1165 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1166 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1167 sig, &oonstack, scp);
1168 #endif
1169 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1170 #ifdef DEBUG
1171 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1172 printf("sendsig(%d): useracc failed on sig %d\n",
1173 p->p_pid, sig);
1174 #endif
1175 /*
1176 * Process has trashed its stack; give it an illegal
1177 * instruction to halt it in its tracks.
1178 */
1179 SIGACTION(p, SIGILL) = SIG_DFL;
1180 sig = sigmask(SIGILL);
1181 p->p_sigignore &= ~sig;
1182 p->p_sigcatch &= ~sig;
1183 p->p_sigmask &= ~sig;
1184 psignal(p, SIGILL);
1185 return;
1186 }
1187
1188 /*
1189 * Build the signal context to be used by sigreturn.
1190 */
1191 ksc.sc_onstack = oonstack;
1192 ksc.sc_mask = mask;
1193 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1194 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1195
1196 /* copy the registers. */
1197 frametoreg(frame, (struct reg *)ksc.sc_regs);
1198 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1199 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1200
1201 /* save the floating-point state, if necessary, then copy it. */
1202 if (p == fpcurproc) {
1203 alpha_pal_wrfen(1);
1204 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1205 alpha_pal_wrfen(0);
1206 fpcurproc = NULL;
1207 }
1208 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1209 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1210 sizeof(struct fpreg));
1211 ksc.sc_fp_control = 0; /* XXX ? */
1212 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1213 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1214
1215
1216 #ifdef COMPAT_OSF1
1217 /*
1218 * XXX Create an OSF/1-style sigcontext and associated goo.
1219 */
1220 #endif
1221
1222 /*
1223 * copy the frame out to userland.
1224 */
1225 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1226 #ifdef DEBUG
1227 if (sigdebug & SDB_FOLLOW)
1228 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1229 scp, code);
1230 #endif
1231
1232 /*
1233 * Set up the registers to return to sigcode.
1234 */
1235 frame->tf_regs[FRAME_PC] =
1236 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1237 frame->tf_regs[FRAME_A0] = sig;
1238 frame->tf_regs[FRAME_A1] = code;
1239 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1240 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1241 alpha_pal_wrusp((unsigned long)scp);
1242
1243 #ifdef DEBUG
1244 if (sigdebug & SDB_FOLLOW)
1245 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1246 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1247 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1248 printf("sendsig(%d): sig %d returns\n",
1249 p->p_pid, sig);
1250 #endif
1251 }
1252
1253 /*
1254 * System call to cleanup state after a signal
1255 * has been taken. Reset signal mask and
1256 * stack state from context left by sendsig (above).
1257 * Return to previous pc and psl as specified by
1258 * context left by sendsig. Check carefully to
1259 * make sure that the user has not modified the
1260 * psl to gain improper priviledges or to cause
1261 * a machine fault.
1262 */
1263 /* ARGSUSED */
1264 int
1265 sys_sigreturn(p, v, retval)
1266 struct proc *p;
1267 void *v;
1268 register_t *retval;
1269 {
1270 struct sys_sigreturn_args /* {
1271 syscallarg(struct sigcontext *) sigcntxp;
1272 } */ *uap = v;
1273 struct sigcontext *scp, ksc;
1274 extern struct proc *fpcurproc;
1275
1276 scp = SCARG(uap, sigcntxp);
1277 #ifdef DEBUG
1278 if (sigdebug & SDB_FOLLOW)
1279 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1280 #endif
1281
1282 if (ALIGN(scp) != (u_int64_t)scp)
1283 return (EINVAL);
1284
1285 /*
1286 * Test and fetch the context structure.
1287 * We grab it all at once for speed.
1288 */
1289 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1290 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1291 return (EINVAL);
1292
1293 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1294 return (EINVAL);
1295 /*
1296 * Restore the user-supplied information
1297 */
1298 if (ksc.sc_onstack)
1299 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1300 else
1301 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1302 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1303
1304 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1305 p->p_md.md_tf->tf_regs[FRAME_PS] =
1306 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1307
1308 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1309 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1310
1311 /* XXX ksc.sc_ownedfp ? */
1312 if (p == fpcurproc)
1313 fpcurproc = NULL;
1314 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1315 sizeof(struct fpreg));
1316 /* XXX ksc.sc_fp_control ? */
1317
1318 #ifdef DEBUG
1319 if (sigdebug & SDB_FOLLOW)
1320 printf("sigreturn(%d): returns\n", p->p_pid);
1321 #endif
1322 return (EJUSTRETURN);
1323 }
1324
1325 /*
1326 * machine dependent system variables.
1327 */
1328 int
1329 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1330 int *name;
1331 u_int namelen;
1332 void *oldp;
1333 size_t *oldlenp;
1334 void *newp;
1335 size_t newlen;
1336 struct proc *p;
1337 {
1338 dev_t consdev;
1339
1340 /* all sysctl names at this level are terminal */
1341 if (namelen != 1)
1342 return (ENOTDIR); /* overloaded */
1343
1344 switch (name[0]) {
1345 case CPU_CONSDEV:
1346 if (cn_tab != NULL)
1347 consdev = cn_tab->cn_dev;
1348 else
1349 consdev = NODEV;
1350 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1351 sizeof consdev));
1352
1353 case CPU_ROOT_DEVICE:
1354 return (sysctl_rdstring(oldp, oldlenp, newp,
1355 root_device->dv_xname));
1356
1357 case CPU_UNALIGNED_PRINT:
1358 return (sysctl_int(oldp, oldlenp, newp, newlen,
1359 &alpha_unaligned_print));
1360
1361 case CPU_UNALIGNED_FIX:
1362 return (sysctl_int(oldp, oldlenp, newp, newlen,
1363 &alpha_unaligned_fix));
1364
1365 case CPU_UNALIGNED_SIGBUS:
1366 return (sysctl_int(oldp, oldlenp, newp, newlen,
1367 &alpha_unaligned_sigbus));
1368
1369 case CPU_BOOTED_KERNEL:
1370 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1371
1372 default:
1373 return (EOPNOTSUPP);
1374 }
1375 /* NOTREACHED */
1376 }
1377
1378 /*
1379 * Set registers on exec.
1380 */
1381 void
1382 setregs(p, pack, stack, retval)
1383 register struct proc *p;
1384 struct exec_package *pack;
1385 u_long stack;
1386 register_t *retval;
1387 {
1388 struct trapframe *tfp = p->p_md.md_tf;
1389 extern struct proc *fpcurproc;
1390 #ifdef DEBUG
1391 int i;
1392 #endif
1393
1394 #ifdef DEBUG
1395 /*
1396 * Crash and dump, if the user requested it.
1397 */
1398 if (boothowto & RB_DUMP)
1399 panic("crash requested by boot flags");
1400 #endif
1401
1402 #ifdef DEBUG
1403 for (i = 0; i < FRAME_SIZE; i++)
1404 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1405 #else
1406 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1407 #endif
1408 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1409 #define FP_RN 2 /* XXX */
1410 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1411 alpha_pal_wrusp(stack);
1412 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1413 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1414
1415 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1416 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1417 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1418 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1419 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1420
1421 p->p_md.md_flags &= ~MDP_FPUSED;
1422 if (fpcurproc == p)
1423 fpcurproc = NULL;
1424
1425 retval[0] = retval[1] = 0;
1426 }
1427
1428 void
1429 netintr()
1430 {
1431 int n, s;
1432
1433 s = splhigh();
1434 n = netisr;
1435 netisr = 0;
1436 splx(s);
1437
1438 #define DONETISR(bit, fn) \
1439 do { \
1440 if (n & (1 << (bit))) \
1441 fn; \
1442 } while (0)
1443
1444 #ifdef INET
1445 #if NARP > 0
1446 DONETISR(NETISR_ARP, arpintr());
1447 #endif
1448 DONETISR(NETISR_IP, ipintr());
1449 #endif
1450 #ifdef NETATALK
1451 DONETISR(NETISR_ATALK, atintr());
1452 #endif
1453 #ifdef NS
1454 DONETISR(NETISR_NS, nsintr());
1455 #endif
1456 #ifdef ISO
1457 DONETISR(NETISR_ISO, clnlintr());
1458 #endif
1459 #ifdef CCITT
1460 DONETISR(NETISR_CCITT, ccittintr());
1461 #endif
1462 #ifdef NATM
1463 DONETISR(NETISR_NATM, natmintr());
1464 #endif
1465 #if NPPP > 1
1466 DONETISR(NETISR_PPP, pppintr());
1467 #endif
1468
1469 #undef DONETISR
1470 }
1471
1472 void
1473 do_sir()
1474 {
1475 u_int64_t n;
1476
1477 do {
1478 (void)splhigh();
1479 n = ssir;
1480 ssir = 0;
1481 splsoft(); /* don't recurse through spl0() */
1482
1483 #define DO_SIR(bit, fn) \
1484 do { \
1485 if (n & (bit)) { \
1486 cnt.v_soft++; \
1487 fn; \
1488 } \
1489 } while (0)
1490
1491 DO_SIR(SIR_NET, netintr());
1492 DO_SIR(SIR_CLOCK, softclock());
1493
1494 #undef DO_SIR
1495 } while (ssir != 0);
1496 }
1497
1498 int
1499 spl0()
1500 {
1501
1502 if (ssir)
1503 do_sir(); /* it lowers the IPL itself */
1504
1505 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1506 }
1507
1508 /*
1509 * The following primitives manipulate the run queues. _whichqs tells which
1510 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1511 * into queues, Remrunqueue removes them from queues. The running process is
1512 * on no queue, other processes are on a queue related to p->p_priority,
1513 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1514 * available queues.
1515 */
1516 /*
1517 * setrunqueue(p)
1518 * proc *p;
1519 *
1520 * Call should be made at splclock(), and p->p_stat should be SRUN.
1521 */
1522
1523 void
1524 setrunqueue(p)
1525 struct proc *p;
1526 {
1527 int bit;
1528
1529 /* firewall: p->p_back must be NULL */
1530 if (p->p_back != NULL)
1531 panic("setrunqueue");
1532
1533 bit = p->p_priority >> 2;
1534 whichqs |= (1 << bit);
1535 p->p_forw = (struct proc *)&qs[bit];
1536 p->p_back = qs[bit].ph_rlink;
1537 p->p_back->p_forw = p;
1538 qs[bit].ph_rlink = p;
1539 }
1540
1541 /*
1542 * remrunqueue(p)
1543 *
1544 * Call should be made at splclock().
1545 */
1546 void
1547 remrunqueue(p)
1548 struct proc *p;
1549 {
1550 int bit;
1551
1552 bit = p->p_priority >> 2;
1553 if ((whichqs & (1 << bit)) == 0)
1554 panic("remrunqueue");
1555
1556 p->p_back->p_forw = p->p_forw;
1557 p->p_forw->p_back = p->p_back;
1558 p->p_back = NULL; /* for firewall checking. */
1559
1560 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1561 whichqs &= ~(1 << bit);
1562 }
1563
1564 /*
1565 * Return the best possible estimate of the time in the timeval
1566 * to which tvp points. Unfortunately, we can't read the hardware registers.
1567 * We guarantee that the time will be greater than the value obtained by a
1568 * previous call.
1569 */
1570 void
1571 microtime(tvp)
1572 register struct timeval *tvp;
1573 {
1574 int s = splclock();
1575 static struct timeval lasttime;
1576
1577 *tvp = time;
1578 #ifdef notdef
1579 tvp->tv_usec += clkread();
1580 while (tvp->tv_usec > 1000000) {
1581 tvp->tv_sec++;
1582 tvp->tv_usec -= 1000000;
1583 }
1584 #endif
1585 if (tvp->tv_sec == lasttime.tv_sec &&
1586 tvp->tv_usec <= lasttime.tv_usec &&
1587 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1588 tvp->tv_sec++;
1589 tvp->tv_usec -= 1000000;
1590 }
1591 lasttime = *tvp;
1592 splx(s);
1593 }
1594
1595 /*
1596 * Wait "n" microseconds.
1597 */
1598 void
1599 delay(n)
1600 unsigned long n;
1601 {
1602 long N = cycles_per_usec * (n);
1603
1604 while (N > 0) /* XXX */
1605 N -= 3; /* XXX */
1606 }
1607
1608 #if defined(COMPAT_OSF1) || 1 /* XXX */
1609 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1610 u_long, register_t *));
1611
1612 void
1613 cpu_exec_ecoff_setregs(p, epp, stack, retval)
1614 struct proc *p;
1615 struct exec_package *epp;
1616 u_long stack;
1617 register_t *retval;
1618 {
1619 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1620
1621 setregs(p, epp, stack, retval);
1622 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1623 }
1624
1625 /*
1626 * cpu_exec_ecoff_hook():
1627 * cpu-dependent ECOFF format hook for execve().
1628 *
1629 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1630 *
1631 */
1632 int
1633 cpu_exec_ecoff_hook(p, epp)
1634 struct proc *p;
1635 struct exec_package *epp;
1636 {
1637 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1638 extern struct emul emul_netbsd;
1639 #ifdef COMPAT_OSF1
1640 extern struct emul emul_osf1;
1641 #endif
1642
1643 switch (execp->f.f_magic) {
1644 #ifdef COMPAT_OSF1
1645 case ECOFF_MAGIC_ALPHA:
1646 epp->ep_emul = &emul_osf1;
1647 break;
1648 #endif
1649
1650 case ECOFF_MAGIC_NETBSD_ALPHA:
1651 epp->ep_emul = &emul_netbsd;
1652 break;
1653
1654 default:
1655 return ENOEXEC;
1656 }
1657 return 0;
1658 }
1659 #endif
1660
1661 /* XXX XXX BEGIN XXX XXX */
1662 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1663 /* XXX */
1664 vm_offset_t /* XXX */
1665 alpha_XXX_dmamap(v) /* XXX */
1666 vm_offset_t v; /* XXX */
1667 { /* XXX */
1668 /* XXX */
1669 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1670 } /* XXX */
1671 /* XXX XXX END XXX XXX */
1672