machdep.c revision 1.87 1 /* $NetBSD: machdep.c,v 1.87 1997/09/19 14:47:33 mjacob Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.87 1997/09/19 14:47:33 mjacob Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <sys/sysctl.h>
57 #include <sys/core.h>
58 #include <sys/kcore.h>
59 #include <machine/kcore.h>
60 #ifdef SYSVMSG
61 #include <sys/msg.h>
62 #endif
63 #ifdef SYSVSEM
64 #include <sys/sem.h>
65 #endif
66 #ifdef SYSVSHM
67 #include <sys/shm.h>
68 #endif
69
70 #include <sys/mount.h>
71 #include <sys/syscallargs.h>
72
73 #include <vm/vm_kern.h>
74
75 #include <dev/cons.h>
76
77 #include <machine/autoconf.h>
78 #include <machine/cpu.h>
79 #include <machine/reg.h>
80 #include <machine/rpb.h>
81 #include <machine/prom.h>
82 #include <machine/conf.h>
83
84 #include <net/netisr.h>
85 #include <net/if.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/ip_var.h>
90 #include "arp.h"
91 #if NARP > 0
92 #include <netinet/if_inarp.h>
93 #endif
94 #endif
95 #ifdef NS
96 #include <netns/ns_var.h>
97 #endif
98 #ifdef ISO
99 #include <netiso/iso.h>
100 #include <netiso/clnp.h>
101 #endif
102 #ifdef CCITT
103 #include <netccitt/x25.h>
104 #include <netccitt/pk.h>
105 #include <netccitt/pk_extern.h>
106 #endif
107 #ifdef NATM
108 #include <netnatm/natm.h>
109 #endif
110 #ifdef NETATALK
111 #include <netatalk/at_extern.h>
112 #endif
113 #include "ppp.h"
114 #if NPPP > 0
115 #include <net/ppp_defs.h>
116 #include <net/if_ppp.h>
117 #endif
118
119 #ifdef DDB
120 #include <machine/db_machdep.h>
121 #include <ddb/db_access.h>
122 #include <ddb/db_sym.h>
123 #include <ddb/db_extern.h>
124 #include <ddb/db_interface.h>
125 #endif
126
127 #include "le_ioasic.h" /* for le_iomem creation */
128
129 vm_map_t buffer_map;
130
131 /*
132 * Declare these as initialized data so we can patch them.
133 */
134 int nswbuf = 0;
135 #ifdef NBUF
136 int nbuf = NBUF;
137 #else
138 int nbuf = 0;
139 #endif
140 #ifdef BUFPAGES
141 int bufpages = BUFPAGES;
142 #else
143 int bufpages = 0;
144 #endif
145 caddr_t msgbufaddr;
146
147 int maxmem; /* max memory per process */
148
149 int totalphysmem; /* total amount of physical memory in system */
150 int physmem; /* physical memory used by NetBSD + some rsvd */
151 int firstusablepage; /* first usable memory page */
152 int lastusablepage; /* last usable memory page */
153 int resvmem; /* amount of memory reserved for PROM */
154 int unusedmem; /* amount of memory for OS that we don't use */
155 int unknownmem; /* amount of memory with an unknown use */
156
157 int cputype; /* system type, from the RPB */
158
159 /*
160 * XXX We need an address to which we can assign things so that they
161 * won't be optimized away because we didn't use the value.
162 */
163 u_int32_t no_optimize;
164
165 /* the following is used externally (sysctl_hw) */
166 char machine[] = MACHINE; /* from <machine/param.h> */
167 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
168 char cpu_model[128];
169 const struct cpusw *cpu_fn_switch; /* function switch */
170
171 struct user *proc0paddr;
172
173 /* Number of machine cycles per microsecond */
174 u_int64_t cycles_per_usec;
175
176 /* some memory areas for device DMA. "ick." */
177 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
178
179 /* number of cpus in the box. really! */
180 int ncpus;
181
182 char boot_flags[64];
183 char booted_kernel[64];
184
185 int bootinfo_valid;
186 struct bootinfo bootinfo;
187
188 #ifdef DDB
189 /* start and end of kernel symbol table */
190 void *ksym_start, *ksym_end;
191 #endif
192
193 /* for cpu_sysctl() */
194 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
195 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
196 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
197
198 int cpu_dump __P((void));
199 int cpu_dumpsize __P((void));
200 void dumpsys __P((void));
201 void identifycpu __P((void));
202 void netintr __P((void));
203 void printregs __P((struct reg *));
204
205 void
206 alpha_init(pfn, ptb, bim, bip)
207 u_long pfn; /* first free PFN number */
208 u_long ptb; /* PFN of current level 1 page table */
209 u_long bim; /* bootinfo magic */
210 u_long bip; /* bootinfo pointer */
211 {
212 extern char _end[];
213 caddr_t start, v;
214 struct mddt *mddtp;
215 int i, mddtweird;
216 char *p;
217
218 /*
219 * Turn off interrupts (not mchecks) and floating point.
220 * Make sure the instruction and data streams are consistent.
221 */
222 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
223 alpha_pal_wrfen(0);
224 ALPHA_TBIA();
225 alpha_pal_imb();
226
227 /*
228 * get address of the restart block, while we the bootstrap
229 * mapping is still around.
230 */
231 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
232 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
233
234 /*
235 * Remember how many cycles there are per microsecond,
236 * so that we can use delay(). Round up, for safety.
237 */
238 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
239
240 /*
241 * Init the PROM interface, so we can use printf
242 * until PROM mappings go away in consinit.
243 */
244 init_prom_interface();
245
246 /*
247 * Check for a bootinfo from the boot program.
248 */
249 if (bim == BOOTINFO_MAGIC) {
250 /*
251 * Have boot info. Copy it to our own storage.
252 * We'll sanity-check it later.
253 */
254 bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
255 switch (bootinfo.version) {
256 case 1:
257 bootinfo_valid = 1;
258 break;
259
260 default:
261 printf("warning: unknown bootinfo version %d\n",
262 bootinfo.version);
263 }
264 } else
265 printf("warning: boot program did not pass bootinfo\n");
266
267 /*
268 * Point interrupt/exception vectors to our own.
269 */
270 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
271 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
272 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
273 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
274 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
275 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
276
277 /*
278 * Clear pending machine checks and error reports, and enable
279 * system- and processor-correctable error reporting.
280 */
281 alpha_pal_wrmces(alpha_pal_rdmces() &
282 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
283
284 /*
285 * Find out how much memory is available, by looking at
286 * the memory cluster descriptors. This also tries to do
287 * its best to detect things things that have never been seen
288 * before...
289 *
290 * XXX Assumes that the first "system" cluster is the
291 * only one we can use. Is the second (etc.) system cluster
292 * (if one happens to exist) guaranteed to be contiguous? or...?
293 */
294 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
295
296 /*
297 * BEGIN MDDT WEIRDNESS CHECKING
298 */
299 mddtweird = 0;
300
301 #define cnt mddtp->mddt_cluster_cnt
302 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
303 if (cnt != 2 && cnt != 3) {
304 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
305 mddtweird = 1;
306 } else if (usage(0) != MDDT_PALCODE ||
307 usage(1) != MDDT_SYSTEM ||
308 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
309 mddtweird = 1;
310 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
311 }
312
313 for (i = 0; i < cnt; i++) {
314 if ((usage(i) & MDDT_mbz) != 0) {
315 printf("WARNING: mem cluster %d has weird usage %lx\n",
316 i, usage(i));
317 mddtweird = 1;
318 }
319 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
320 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
321 mddtweird = 1;
322 }
323 /* XXX other things to check? */
324 }
325 #undef cnt
326 #undef usage
327
328 if (mddtweird) {
329 printf("\n");
330 printf("complete memory cluster information:\n");
331 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
332 printf("mddt %d:\n", i);
333 printf("\tpfn %lx\n",
334 mddtp->mddt_clusters[i].mddt_pfn);
335 printf("\tcnt %lx\n",
336 mddtp->mddt_clusters[i].mddt_pg_cnt);
337 printf("\ttest %lx\n",
338 mddtp->mddt_clusters[i].mddt_pg_test);
339 printf("\tbva %lx\n",
340 mddtp->mddt_clusters[i].mddt_v_bitaddr);
341 printf("\tbpa %lx\n",
342 mddtp->mddt_clusters[i].mddt_p_bitaddr);
343 printf("\tbcksum %lx\n",
344 mddtp->mddt_clusters[i].mddt_bit_cksum);
345 printf("\tusage %lx\n",
346 mddtp->mddt_clusters[i].mddt_usage);
347 }
348 printf("\n");
349 }
350 /*
351 * END MDDT WEIRDNESS CHECKING
352 */
353
354 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
355 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
356 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
357 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
358 if ((usage(i) & MDDT_mbz) != 0)
359 unknownmem += pgcnt(i);
360 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
361 resvmem += pgcnt(i);
362 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
363 /*
364 * assumes that the system cluster listed is
365 * one we're in...
366 */
367 if (physmem != resvmem) {
368 physmem += pgcnt(i);
369 firstusablepage =
370 mddtp->mddt_clusters[i].mddt_pfn;
371 lastusablepage = firstusablepage + pgcnt(i) - 1;
372 } else
373 unusedmem += pgcnt(i);
374 }
375 #undef usage
376 #undef pgcnt
377 }
378 if (totalphysmem == 0)
379 panic("can't happen: system seems to have no memory!");
380 maxmem = physmem;
381
382 #if 0
383 printf("totalphysmem = %d\n", totalphysmem);
384 printf("physmem = %d\n", physmem);
385 printf("firstusablepage = %d\n", firstusablepage);
386 printf("lastusablepage = %d\n", lastusablepage);
387 printf("resvmem = %d\n", resvmem);
388 printf("unusedmem = %d\n", unusedmem);
389 printf("unknownmem = %d\n", unknownmem);
390 #endif
391
392 /*
393 * find out this CPU's page size
394 */
395 PAGE_SIZE = hwrpb->rpb_page_size;
396 if (PAGE_SIZE != 8192)
397 panic("page size %d != 8192?!", PAGE_SIZE);
398
399 /*
400 * Find the first free page.
401 */
402 #ifdef DDB
403 if (bootinfo_valid) {
404 /*
405 * Save the kernel symbol table.
406 */
407 switch (bootinfo.version) {
408 case 1:
409 ksym_start = (void *)bootinfo.un.v1.ssym;
410 ksym_end = (void *)bootinfo.un.v1.esym;
411 break;
412 }
413 v = (caddr_t)alpha_round_page(ksym_end);
414 } else
415 #endif
416 v = (caddr_t)alpha_round_page(_end);
417
418 /*
419 * Init mapping for u page(s) for proc 0
420 */
421 start = v;
422 curproc->p_addr = proc0paddr = (struct user *)v;
423 v += UPAGES * NBPG;
424
425 /*
426 * Find out what hardware we're on, and remember its type name.
427 */
428 cputype = hwrpb->rpb_type;
429 if (cputype < 0 || cputype > ncpusw) {
430 unknown_cputype:
431 printf("\n");
432 printf("Unknown system type %d.\n", cputype);
433 printf("\n");
434 panic("unknown system type");
435 }
436 cpu_fn_switch = &cpusw[cputype];
437 if (cpu_fn_switch->family == NULL)
438 goto unknown_cputype;
439 if (cpu_fn_switch->option == NULL) {
440 printf("\n");
441 printf("NetBSD does not currently support system type %d\n",
442 cputype);
443 printf("(%s family).\n", cpu_fn_switch->family);
444 printf("\n");
445 panic("unsupported system type");
446 }
447 if (!cpu_fn_switch->present) {
448 printf("\n");
449 printf("Support for system type %d (%s family) is\n", cputype,
450 cpu_fn_switch->family);
451 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
452 cpu_fn_switch->option);
453 printf("to include support for this system type.\n");
454 printf("\n");
455 panic("support for system not present");
456 }
457
458 if ((*cpu_fn_switch->model_name)() != NULL)
459 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
460 sizeof cpu_model - 1);
461 else {
462 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
463 strcat(cpu_model, " family"); /* XXX */
464 }
465 cpu_model[sizeof cpu_model - 1] = '\0';
466
467 /* XXX SANITY CHECKING. SHOULD GO AWAY */
468 /* XXX We should always be running on the the primary. */
469 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
470 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
471 if (cputype != ST_DEC_21000) /*XXX*/
472 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
473
474 #if NLE_IOASIC > 0
475 /*
476 * Grab 128K at the top of physical memory for the lance chip
477 * on machines where it does dma through the I/O ASIC.
478 * It must be physically contiguous and aligned on a 128K boundary.
479 *
480 * Note that since this is conditional on the presence of
481 * IOASIC-attached 'le' units in the kernel config, the
482 * message buffer may move on these systems. This shouldn't
483 * be a problem, because once people have a kernel config that
484 * they use, they're going to stick with it.
485 */
486 if (cputype == ST_DEC_3000_500 ||
487 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
488 lastusablepage -= btoc(128 * 1024);
489 le_iomem =
490 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
491 }
492 #endif /* NLE_IOASIC */
493
494 /*
495 * Initialize error message buffer (at end of core).
496 */
497 lastusablepage -= btoc(MSGBUFSIZE);
498 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
499 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
500
501
502 /*
503 * Allocate space for system data structures.
504 * The first available kernel virtual address is in "v".
505 * As pages of kernel virtual memory are allocated, "v" is incremented.
506 *
507 * These data structures are allocated here instead of cpu_startup()
508 * because physical memory is directly addressable. We don't have
509 * to map these into virtual address space.
510 */
511 #define valloc(name, type, num) \
512 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
513 #define valloclim(name, type, num, lim) \
514 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
515 #ifdef REAL_CLISTS
516 valloc(cfree, struct cblock, nclist);
517 #endif
518 valloc(callout, struct callout, ncallout);
519 #ifdef SYSVSHM
520 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
521 #endif
522 #ifdef SYSVSEM
523 valloc(sema, struct semid_ds, seminfo.semmni);
524 valloc(sem, struct sem, seminfo.semmns);
525 /* This is pretty disgusting! */
526 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
527 #endif
528 #ifdef SYSVMSG
529 valloc(msgpool, char, msginfo.msgmax);
530 valloc(msgmaps, struct msgmap, msginfo.msgseg);
531 valloc(msghdrs, struct msg, msginfo.msgtql);
532 valloc(msqids, struct msqid_ds, msginfo.msgmni);
533 #endif
534
535 /*
536 * Determine how many buffers to allocate.
537 * We allocate 10% of memory for buffer space. Insure a
538 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
539 * headers as file i/o buffers.
540 */
541 if (bufpages == 0)
542 bufpages = (physmem * 10) / (CLSIZE * 100);
543 if (nbuf == 0) {
544 nbuf = bufpages;
545 if (nbuf < 16)
546 nbuf = 16;
547 }
548 if (nswbuf == 0) {
549 nswbuf = (nbuf / 2) &~ 1; /* force even */
550 if (nswbuf > 256)
551 nswbuf = 256; /* sanity */
552 }
553 valloc(swbuf, struct buf, nswbuf);
554 valloc(buf, struct buf, nbuf);
555
556 /*
557 * Clear allocated memory.
558 */
559 bzero(start, v - start);
560
561 /*
562 * Initialize the virtual memory system, and set the
563 * page table base register in proc 0's PCB.
564 */
565 #ifndef NEW_PMAP
566 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
567 #else
568 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
569 hwrpb->rpb_max_asn);
570 #endif
571
572 /*
573 * Initialize the rest of proc 0's PCB, and cache its physical
574 * address.
575 */
576 proc0.p_md.md_pcbpaddr =
577 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
578
579 /*
580 * Set the kernel sp, reserving space for an (empty) trapframe,
581 * and make proc0's trapframe pointer point to it for sanity.
582 */
583 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
584 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
585 proc0.p_md.md_tf =
586 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
587
588 #ifdef NEW_PMAP
589 /*
590 * Set up the kernel address space in proc0's hwpcb.
591 */
592 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
593 #endif
594
595 /*
596 * Look at arguments passed to us and compute boothowto.
597 * Also, get kernel name so it can be used in user-land.
598 */
599 if (bootinfo_valid) {
600 switch (bootinfo.version) {
601 case 1:
602 bcopy(bootinfo.un.v1.boot_flags, boot_flags,
603 sizeof(boot_flags));
604 bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
605 sizeof(booted_kernel));
606 }
607 } else {
608 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
609 sizeof(boot_flags));
610 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
611 sizeof(booted_kernel));
612 }
613
614 #if 0
615 printf("boot flags = \"%s\"\n", boot_flags);
616 printf("booted kernel = \"%s\"\n", booted_kernel);
617 #endif
618
619 boothowto = RB_SINGLE;
620 #ifdef KADB
621 boothowto |= RB_KDB;
622 #endif
623 for (p = boot_flags; p && *p != '\0'; p++) {
624 /*
625 * Note that we'd really like to differentiate case here,
626 * but the Alpha AXP Architecture Reference Manual
627 * says that we shouldn't.
628 */
629 switch (*p) {
630 case 'a': /* autoboot */
631 case 'A':
632 boothowto &= ~RB_SINGLE;
633 break;
634
635 #ifdef DEBUG
636 case 'c': /* crash dump immediately after autoconfig */
637 case 'C':
638 boothowto |= RB_DUMP;
639 break;
640 #endif
641
642 #if defined(KGDB) || defined(DDB)
643 case 'd': /* break into the kernel debugger ASAP */
644 case 'D':
645 boothowto |= RB_KDB;
646 break;
647 #endif
648
649 case 'h': /* always halt, never reboot */
650 case 'H':
651 boothowto |= RB_HALT;
652 break;
653
654 #if 0
655 case 'm': /* mini root present in memory */
656 case 'M':
657 boothowto |= RB_MINIROOT;
658 break;
659 #endif
660
661 case 'n': /* askname */
662 case 'N':
663 boothowto |= RB_ASKNAME;
664 break;
665
666 case 's': /* single-user (default, supported for sanity) */
667 case 'S':
668 boothowto |= RB_SINGLE;
669 break;
670
671 default:
672 printf("Unrecognized boot flag '%c'.\n", *p);
673 break;
674 }
675 }
676
677 /*
678 * Figure out the number of cpus in the box, from RPB fields.
679 * Really. We mean it.
680 */
681 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
682 struct pcs *pcsp;
683
684 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
685 (i * hwrpb->rpb_pcs_size));
686 if ((pcsp->pcs_flags & PCS_PP) != 0)
687 ncpus++;
688 }
689 }
690
691 void
692 consinit()
693 {
694
695 (*cpu_fn_switch->cons_init)();
696 pmap_unmap_prom();
697
698 #ifdef DDB
699 db_machine_init();
700 ddb_init(ksym_start, ksym_end);
701 if (boothowto & RB_KDB)
702 Debugger();
703 #endif
704 #ifdef KGDB
705 if (boothowto & RB_KDB)
706 kgdb_connect(0);
707 #endif
708 }
709
710 void
711 cpu_startup()
712 {
713 register unsigned i;
714 int base, residual;
715 vm_offset_t minaddr, maxaddr;
716 vm_size_t size;
717 #if defined(DEBUG)
718 extern int pmapdebug;
719 int opmapdebug = pmapdebug;
720
721 pmapdebug = 0;
722 #endif
723
724 /*
725 * Good {morning,afternoon,evening,night}.
726 */
727 printf(version);
728 identifycpu();
729 printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
730 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
731 if (unusedmem)
732 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
733 if (unknownmem)
734 printf("WARNING: %d bytes of memory with unknown purpose\n",
735 ctob(unknownmem));
736
737 /*
738 * Allocate virtual address space for file I/O buffers.
739 * Note they are different than the array of headers, 'buf',
740 * and usually occupy more virtual memory than physical.
741 */
742 size = MAXBSIZE * nbuf;
743 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
744 &maxaddr, size, TRUE);
745 minaddr = (vm_offset_t)buffers;
746 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
747 &minaddr, size, FALSE) != KERN_SUCCESS)
748 panic("startup: cannot allocate buffers");
749 base = bufpages / nbuf;
750 residual = bufpages % nbuf;
751 for (i = 0; i < nbuf; i++) {
752 vm_size_t curbufsize;
753 vm_offset_t curbuf;
754
755 /*
756 * First <residual> buffers get (base+1) physical pages
757 * allocated for them. The rest get (base) physical pages.
758 *
759 * The rest of each buffer occupies virtual space,
760 * but has no physical memory allocated for it.
761 */
762 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
763 curbufsize = CLBYTES * (i < residual ? base+1 : base);
764 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
765 vm_map_simplify(buffer_map, curbuf);
766 }
767 /*
768 * Allocate a submap for exec arguments. This map effectively
769 * limits the number of processes exec'ing at any time.
770 */
771 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
772 16 * NCARGS, TRUE);
773
774 /*
775 * Allocate a submap for physio
776 */
777 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
778 VM_PHYS_SIZE, TRUE);
779
780 /*
781 * Finally, allocate mbuf cluster submap.
782 */
783 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
784 VM_MBUF_SIZE, FALSE);
785 /*
786 * Initialize callouts
787 */
788 callfree = callout;
789 for (i = 1; i < ncallout; i++)
790 callout[i-1].c_next = &callout[i];
791 callout[i-1].c_next = NULL;
792
793 #if defined(DEBUG)
794 pmapdebug = opmapdebug;
795 #endif
796 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
797 printf("using %ld buffers containing %ld bytes of memory\n",
798 (long)nbuf, (long)(bufpages * CLBYTES));
799
800 /*
801 * Set up buffers, so they can be used to read disk labels.
802 */
803 bufinit();
804
805 /*
806 * Configure the system.
807 */
808 configure();
809
810 /*
811 * Note that bootstrapping is finished, and set the HWRPB up
812 * to do restarts.
813 */
814 hwrpb_restart_setup();
815 }
816
817 void
818 identifycpu()
819 {
820
821 /*
822 * print out CPU identification information.
823 */
824 printf("%s, %ldMHz\n", cpu_model,
825 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
826 printf("%ld byte page size, %d processor%s.\n",
827 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
828 #if 0
829 /* this isn't defined for any systems that we run on? */
830 printf("serial number 0x%lx 0x%lx\n",
831 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
832
833 /* and these aren't particularly useful! */
834 printf("variation: 0x%lx, revision 0x%lx\n",
835 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
836 #endif
837 }
838
839 int waittime = -1;
840 struct pcb dumppcb;
841
842 void
843 cpu_reboot(howto, bootstr)
844 int howto;
845 char *bootstr;
846 {
847 extern int cold;
848
849 /* If system is cold, just halt. */
850 if (cold) {
851 howto |= RB_HALT;
852 goto haltsys;
853 }
854
855 /* If "always halt" was specified as a boot flag, obey. */
856 if ((boothowto & RB_HALT) != 0)
857 howto |= RB_HALT;
858
859 boothowto = howto;
860 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
861 waittime = 0;
862 vfs_shutdown();
863 /*
864 * If we've been adjusting the clock, the todr
865 * will be out of synch; adjust it now.
866 */
867 resettodr();
868 }
869
870 /* Disable interrupts. */
871 splhigh();
872
873 /* If rebooting and a dump is requested do it. */
874 #if 0
875 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
876 #else
877 if (howto & RB_DUMP)
878 #endif
879 dumpsys();
880
881 haltsys:
882
883 /* run any shutdown hooks */
884 doshutdownhooks();
885
886 #ifdef BOOTKEY
887 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
888 cngetc();
889 printf("\n");
890 #endif
891
892 /* Finally, halt/reboot the system. */
893 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
894 prom_halt(howto & RB_HALT);
895 /*NOTREACHED*/
896 }
897
898 /*
899 * These variables are needed by /sbin/savecore
900 */
901 u_long dumpmag = 0x8fca0101; /* magic number */
902 int dumpsize = 0; /* pages */
903 long dumplo = 0; /* blocks */
904
905 /*
906 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
907 */
908 int
909 cpu_dumpsize()
910 {
911 int size;
912
913 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
914 if (roundup(size, dbtob(1)) != dbtob(1))
915 return -1;
916
917 return (1);
918 }
919
920 /*
921 * cpu_dump: dump machine-dependent kernel core dump headers.
922 */
923 int
924 cpu_dump()
925 {
926 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
927 long buf[dbtob(1) / sizeof (long)];
928 kcore_seg_t *segp;
929 cpu_kcore_hdr_t *cpuhdrp;
930
931 dump = bdevsw[major(dumpdev)].d_dump;
932
933 segp = (kcore_seg_t *)buf;
934 cpuhdrp =
935 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
936
937 /*
938 * Generate a segment header.
939 */
940 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
941 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
942
943 /*
944 * Add the machine-dependent header info
945 */
946 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
947 cpuhdrp->page_size = PAGE_SIZE;
948 cpuhdrp->core_seg.start = ctob(firstusablepage);
949 cpuhdrp->core_seg.size = ctob(physmem);
950
951 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
952 }
953
954 /*
955 * This is called by main to set dumplo and dumpsize.
956 * Dumps always skip the first CLBYTES of disk space
957 * in case there might be a disk label stored there.
958 * If there is extra space, put dump at the end to
959 * reduce the chance that swapping trashes it.
960 */
961 void
962 cpu_dumpconf()
963 {
964 int nblks, dumpblks; /* size of dump area */
965 int maj;
966
967 if (dumpdev == NODEV)
968 goto bad;
969 maj = major(dumpdev);
970 if (maj < 0 || maj >= nblkdev)
971 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
972 if (bdevsw[maj].d_psize == NULL)
973 goto bad;
974 nblks = (*bdevsw[maj].d_psize)(dumpdev);
975 if (nblks <= ctod(1))
976 goto bad;
977
978 dumpblks = cpu_dumpsize();
979 if (dumpblks < 0)
980 goto bad;
981 dumpblks += ctod(physmem);
982
983 /* If dump won't fit (incl. room for possible label), punt. */
984 if (dumpblks > (nblks - ctod(1)))
985 goto bad;
986
987 /* Put dump at end of partition */
988 dumplo = nblks - dumpblks;
989
990 /* dumpsize is in page units, and doesn't include headers. */
991 dumpsize = physmem;
992 return;
993
994 bad:
995 dumpsize = 0;
996 return;
997 }
998
999 /*
1000 * Dump the kernel's image to the swap partition.
1001 */
1002 #define BYTES_PER_DUMP NBPG
1003
1004 void
1005 dumpsys()
1006 {
1007 unsigned bytes, i, n;
1008 int maddr, psize;
1009 daddr_t blkno;
1010 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1011 int error;
1012
1013 /* Save registers. */
1014 savectx(&dumppcb);
1015
1016 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1017 if (dumpdev == NODEV)
1018 return;
1019
1020 /*
1021 * For dumps during autoconfiguration,
1022 * if dump device has already configured...
1023 */
1024 if (dumpsize == 0)
1025 cpu_dumpconf();
1026 if (dumplo <= 0) {
1027 printf("\ndump to dev %x not possible\n", dumpdev);
1028 return;
1029 }
1030 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
1031
1032 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1033 printf("dump ");
1034 if (psize == -1) {
1035 printf("area unavailable\n");
1036 return;
1037 }
1038
1039 /* XXX should purge all outstanding keystrokes. */
1040
1041 if ((error = cpu_dump()) != 0)
1042 goto err;
1043
1044 bytes = ctob(physmem);
1045 maddr = ctob(firstusablepage);
1046 blkno = dumplo + cpu_dumpsize();
1047 dump = bdevsw[major(dumpdev)].d_dump;
1048 error = 0;
1049 for (i = 0; i < bytes; i += n) {
1050
1051 /* Print out how many MBs we to go. */
1052 n = bytes - i;
1053 if (n && (n % (1024*1024)) == 0)
1054 printf("%d ", n / (1024 * 1024));
1055
1056 /* Limit size for next transfer. */
1057 if (n > BYTES_PER_DUMP)
1058 n = BYTES_PER_DUMP;
1059
1060 error = (*dump)(dumpdev, blkno,
1061 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1062 if (error)
1063 break;
1064 maddr += n;
1065 blkno += btodb(n); /* XXX? */
1066
1067 /* XXX should look for keystrokes, to cancel. */
1068 }
1069
1070 err:
1071 switch (error) {
1072
1073 case ENXIO:
1074 printf("device bad\n");
1075 break;
1076
1077 case EFAULT:
1078 printf("device not ready\n");
1079 break;
1080
1081 case EINVAL:
1082 printf("area improper\n");
1083 break;
1084
1085 case EIO:
1086 printf("i/o error\n");
1087 break;
1088
1089 case EINTR:
1090 printf("aborted from console\n");
1091 break;
1092
1093 case 0:
1094 printf("succeeded\n");
1095 break;
1096
1097 default:
1098 printf("error %d\n", error);
1099 break;
1100 }
1101 printf("\n\n");
1102 delay(1000);
1103 }
1104
1105 void
1106 frametoreg(framep, regp)
1107 struct trapframe *framep;
1108 struct reg *regp;
1109 {
1110
1111 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1112 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1113 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1114 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1115 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1116 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1117 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1118 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1119 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1120 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1121 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1122 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1123 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1124 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1125 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1126 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1127 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1128 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1129 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1130 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1131 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1132 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1133 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1134 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1135 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1136 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1137 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1138 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1139 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1140 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1141 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1142 regp->r_regs[R_ZERO] = 0;
1143 }
1144
1145 void
1146 regtoframe(regp, framep)
1147 struct reg *regp;
1148 struct trapframe *framep;
1149 {
1150
1151 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1152 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1153 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1154 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1155 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1156 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1157 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1158 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1159 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1160 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1161 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1162 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1163 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1164 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1165 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1166 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1167 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1168 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1169 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1170 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1171 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1172 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1173 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1174 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1175 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1176 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1177 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1178 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1179 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1180 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1181 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1182 /* ??? = regp->r_regs[R_ZERO]; */
1183 }
1184
1185 void
1186 printregs(regp)
1187 struct reg *regp;
1188 {
1189 int i;
1190
1191 for (i = 0; i < 32; i++)
1192 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1193 i & 1 ? "\n" : "\t");
1194 }
1195
1196 void
1197 regdump(framep)
1198 struct trapframe *framep;
1199 {
1200 struct reg reg;
1201
1202 frametoreg(framep, ®);
1203 reg.r_regs[R_SP] = alpha_pal_rdusp();
1204
1205 printf("REGISTERS:\n");
1206 printregs(®);
1207 }
1208
1209 #ifdef DEBUG
1210 int sigdebug = 0;
1211 int sigpid = 0;
1212 #define SDB_FOLLOW 0x01
1213 #define SDB_KSTACK 0x02
1214 #endif
1215
1216 /*
1217 * Send an interrupt to process.
1218 */
1219 void
1220 sendsig(catcher, sig, mask, code)
1221 sig_t catcher;
1222 int sig, mask;
1223 u_long code;
1224 {
1225 struct proc *p = curproc;
1226 struct sigcontext *scp, ksc;
1227 struct trapframe *frame;
1228 struct sigacts *psp = p->p_sigacts;
1229 int oonstack, fsize, rndfsize;
1230 extern char sigcode[], esigcode[];
1231 extern struct proc *fpcurproc;
1232
1233 frame = p->p_md.md_tf;
1234 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1235 fsize = sizeof ksc;
1236 rndfsize = ((fsize + 15) / 16) * 16;
1237 /*
1238 * Allocate and validate space for the signal handler
1239 * context. Note that if the stack is in P0 space, the
1240 * call to grow() is a nop, and the useracc() check
1241 * will fail if the process has not already allocated
1242 * the space with a `brk'.
1243 */
1244 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1245 (psp->ps_sigonstack & sigmask(sig))) {
1246 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1247 psp->ps_sigstk.ss_size - rndfsize);
1248 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1249 } else
1250 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1251 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1252 (void)grow(p, (u_long)scp);
1253 #ifdef DEBUG
1254 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1255 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1256 sig, &oonstack, scp);
1257 #endif
1258 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1259 #ifdef DEBUG
1260 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1261 printf("sendsig(%d): useracc failed on sig %d\n",
1262 p->p_pid, sig);
1263 #endif
1264 /*
1265 * Process has trashed its stack; give it an illegal
1266 * instruction to halt it in its tracks.
1267 */
1268 SIGACTION(p, SIGILL) = SIG_DFL;
1269 sig = sigmask(SIGILL);
1270 p->p_sigignore &= ~sig;
1271 p->p_sigcatch &= ~sig;
1272 p->p_sigmask &= ~sig;
1273 psignal(p, SIGILL);
1274 return;
1275 }
1276
1277 /*
1278 * Build the signal context to be used by sigreturn.
1279 */
1280 ksc.sc_onstack = oonstack;
1281 ksc.sc_mask = mask;
1282 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1283 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1284
1285 /* copy the registers. */
1286 frametoreg(frame, (struct reg *)ksc.sc_regs);
1287 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1288 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1289
1290 /* save the floating-point state, if necessary, then copy it. */
1291 if (p == fpcurproc) {
1292 alpha_pal_wrfen(1);
1293 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1294 alpha_pal_wrfen(0);
1295 fpcurproc = NULL;
1296 }
1297 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1298 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1299 sizeof(struct fpreg));
1300 ksc.sc_fp_control = 0; /* XXX ? */
1301 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1302 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1303
1304
1305 #ifdef COMPAT_OSF1
1306 /*
1307 * XXX Create an OSF/1-style sigcontext and associated goo.
1308 */
1309 #endif
1310
1311 /*
1312 * copy the frame out to userland.
1313 */
1314 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1315 #ifdef DEBUG
1316 if (sigdebug & SDB_FOLLOW)
1317 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1318 scp, code);
1319 #endif
1320
1321 /*
1322 * Set up the registers to return to sigcode.
1323 */
1324 frame->tf_regs[FRAME_PC] =
1325 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1326 frame->tf_regs[FRAME_A0] = sig;
1327 frame->tf_regs[FRAME_A1] = code;
1328 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1329 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1330 alpha_pal_wrusp((unsigned long)scp);
1331
1332 #ifdef DEBUG
1333 if (sigdebug & SDB_FOLLOW)
1334 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1335 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1336 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1337 printf("sendsig(%d): sig %d returns\n",
1338 p->p_pid, sig);
1339 #endif
1340 }
1341
1342 /*
1343 * System call to cleanup state after a signal
1344 * has been taken. Reset signal mask and
1345 * stack state from context left by sendsig (above).
1346 * Return to previous pc and psl as specified by
1347 * context left by sendsig. Check carefully to
1348 * make sure that the user has not modified the
1349 * psl to gain improper priviledges or to cause
1350 * a machine fault.
1351 */
1352 /* ARGSUSED */
1353 int
1354 sys_sigreturn(p, v, retval)
1355 struct proc *p;
1356 void *v;
1357 register_t *retval;
1358 {
1359 struct sys_sigreturn_args /* {
1360 syscallarg(struct sigcontext *) sigcntxp;
1361 } */ *uap = v;
1362 struct sigcontext *scp, ksc;
1363 extern struct proc *fpcurproc;
1364
1365 scp = SCARG(uap, sigcntxp);
1366 #ifdef DEBUG
1367 if (sigdebug & SDB_FOLLOW)
1368 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1369 #endif
1370
1371 if (ALIGN(scp) != (u_int64_t)scp)
1372 return (EINVAL);
1373
1374 /*
1375 * Test and fetch the context structure.
1376 * We grab it all at once for speed.
1377 */
1378 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1379 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1380 return (EINVAL);
1381
1382 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1383 return (EINVAL);
1384 /*
1385 * Restore the user-supplied information
1386 */
1387 if (ksc.sc_onstack)
1388 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1389 else
1390 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1391 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1392
1393 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1394 p->p_md.md_tf->tf_regs[FRAME_PS] =
1395 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1396
1397 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1398 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1399
1400 /* XXX ksc.sc_ownedfp ? */
1401 if (p == fpcurproc)
1402 fpcurproc = NULL;
1403 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1404 sizeof(struct fpreg));
1405 /* XXX ksc.sc_fp_control ? */
1406
1407 #ifdef DEBUG
1408 if (sigdebug & SDB_FOLLOW)
1409 printf("sigreturn(%d): returns\n", p->p_pid);
1410 #endif
1411 return (EJUSTRETURN);
1412 }
1413
1414 /*
1415 * machine dependent system variables.
1416 */
1417 int
1418 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1419 int *name;
1420 u_int namelen;
1421 void *oldp;
1422 size_t *oldlenp;
1423 void *newp;
1424 size_t newlen;
1425 struct proc *p;
1426 {
1427 dev_t consdev;
1428
1429 /* all sysctl names at this level are terminal */
1430 if (namelen != 1)
1431 return (ENOTDIR); /* overloaded */
1432
1433 switch (name[0]) {
1434 case CPU_CONSDEV:
1435 if (cn_tab != NULL)
1436 consdev = cn_tab->cn_dev;
1437 else
1438 consdev = NODEV;
1439 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1440 sizeof consdev));
1441
1442 case CPU_ROOT_DEVICE:
1443 return (sysctl_rdstring(oldp, oldlenp, newp,
1444 root_device->dv_xname));
1445
1446 case CPU_UNALIGNED_PRINT:
1447 return (sysctl_int(oldp, oldlenp, newp, newlen,
1448 &alpha_unaligned_print));
1449
1450 case CPU_UNALIGNED_FIX:
1451 return (sysctl_int(oldp, oldlenp, newp, newlen,
1452 &alpha_unaligned_fix));
1453
1454 case CPU_UNALIGNED_SIGBUS:
1455 return (sysctl_int(oldp, oldlenp, newp, newlen,
1456 &alpha_unaligned_sigbus));
1457
1458 case CPU_BOOTED_KERNEL:
1459 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1460
1461 default:
1462 return (EOPNOTSUPP);
1463 }
1464 /* NOTREACHED */
1465 }
1466
1467 /*
1468 * Set registers on exec.
1469 */
1470 void
1471 setregs(p, pack, stack)
1472 register struct proc *p;
1473 struct exec_package *pack;
1474 u_long stack;
1475 {
1476 struct trapframe *tfp = p->p_md.md_tf;
1477 extern struct proc *fpcurproc;
1478 #ifdef DEBUG
1479 int i;
1480 #endif
1481
1482 #ifdef DEBUG
1483 /*
1484 * Crash and dump, if the user requested it.
1485 */
1486 if (boothowto & RB_DUMP)
1487 panic("crash requested by boot flags");
1488 #endif
1489
1490 #ifdef DEBUG
1491 for (i = 0; i < FRAME_SIZE; i++)
1492 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1493 #else
1494 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1495 #endif
1496 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1497 #define FP_RN 2 /* XXX */
1498 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1499 alpha_pal_wrusp(stack);
1500 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1501 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1502
1503 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1504 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1505 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1506 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1507 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1508
1509 p->p_md.md_flags &= ~MDP_FPUSED;
1510 if (fpcurproc == p)
1511 fpcurproc = NULL;
1512 }
1513
1514 void
1515 netintr()
1516 {
1517 int n, s;
1518
1519 s = splhigh();
1520 n = netisr;
1521 netisr = 0;
1522 splx(s);
1523
1524 #define DONETISR(bit, fn) \
1525 do { \
1526 if (n & (1 << (bit))) \
1527 fn; \
1528 } while (0)
1529
1530 #ifdef INET
1531 #if NARP > 0
1532 DONETISR(NETISR_ARP, arpintr());
1533 #endif
1534 DONETISR(NETISR_IP, ipintr());
1535 #endif
1536 #ifdef NETATALK
1537 DONETISR(NETISR_ATALK, atintr());
1538 #endif
1539 #ifdef NS
1540 DONETISR(NETISR_NS, nsintr());
1541 #endif
1542 #ifdef ISO
1543 DONETISR(NETISR_ISO, clnlintr());
1544 #endif
1545 #ifdef CCITT
1546 DONETISR(NETISR_CCITT, ccittintr());
1547 #endif
1548 #ifdef NATM
1549 DONETISR(NETISR_NATM, natmintr());
1550 #endif
1551 #if NPPP > 1
1552 DONETISR(NETISR_PPP, pppintr());
1553 #endif
1554
1555 #undef DONETISR
1556 }
1557
1558 void
1559 do_sir()
1560 {
1561 u_int64_t n;
1562
1563 do {
1564 (void)splhigh();
1565 n = ssir;
1566 ssir = 0;
1567 splsoft(); /* don't recurse through spl0() */
1568
1569 #define DO_SIR(bit, fn) \
1570 do { \
1571 if (n & (bit)) { \
1572 cnt.v_soft++; \
1573 fn; \
1574 } \
1575 } while (0)
1576
1577 DO_SIR(SIR_NET, netintr());
1578 DO_SIR(SIR_CLOCK, softclock());
1579
1580 #undef DO_SIR
1581 } while (ssir != 0);
1582 }
1583
1584 int
1585 spl0()
1586 {
1587
1588 if (ssir)
1589 do_sir(); /* it lowers the IPL itself */
1590
1591 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1592 }
1593
1594 /*
1595 * The following primitives manipulate the run queues. _whichqs tells which
1596 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1597 * into queues, Remrunqueue removes them from queues. The running process is
1598 * on no queue, other processes are on a queue related to p->p_priority,
1599 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1600 * available queues.
1601 */
1602 /*
1603 * setrunqueue(p)
1604 * proc *p;
1605 *
1606 * Call should be made at splclock(), and p->p_stat should be SRUN.
1607 */
1608
1609 void
1610 setrunqueue(p)
1611 struct proc *p;
1612 {
1613 int bit;
1614
1615 /* firewall: p->p_back must be NULL */
1616 if (p->p_back != NULL)
1617 panic("setrunqueue");
1618
1619 bit = p->p_priority >> 2;
1620 whichqs |= (1 << bit);
1621 p->p_forw = (struct proc *)&qs[bit];
1622 p->p_back = qs[bit].ph_rlink;
1623 p->p_back->p_forw = p;
1624 qs[bit].ph_rlink = p;
1625 }
1626
1627 /*
1628 * remrunqueue(p)
1629 *
1630 * Call should be made at splclock().
1631 */
1632 void
1633 remrunqueue(p)
1634 struct proc *p;
1635 {
1636 int bit;
1637
1638 bit = p->p_priority >> 2;
1639 if ((whichqs & (1 << bit)) == 0)
1640 panic("remrunqueue");
1641
1642 p->p_back->p_forw = p->p_forw;
1643 p->p_forw->p_back = p->p_back;
1644 p->p_back = NULL; /* for firewall checking. */
1645
1646 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1647 whichqs &= ~(1 << bit);
1648 }
1649
1650 /*
1651 * Return the best possible estimate of the time in the timeval
1652 * to which tvp points. Unfortunately, we can't read the hardware registers.
1653 * We guarantee that the time will be greater than the value obtained by a
1654 * previous call.
1655 */
1656 void
1657 microtime(tvp)
1658 register struct timeval *tvp;
1659 {
1660 int s = splclock();
1661 static struct timeval lasttime;
1662
1663 *tvp = time;
1664 #ifdef notdef
1665 tvp->tv_usec += clkread();
1666 while (tvp->tv_usec > 1000000) {
1667 tvp->tv_sec++;
1668 tvp->tv_usec -= 1000000;
1669 }
1670 #endif
1671 if (tvp->tv_sec == lasttime.tv_sec &&
1672 tvp->tv_usec <= lasttime.tv_usec &&
1673 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1674 tvp->tv_sec++;
1675 tvp->tv_usec -= 1000000;
1676 }
1677 lasttime = *tvp;
1678 splx(s);
1679 }
1680
1681 /*
1682 * Wait "n" microseconds.
1683 */
1684 void
1685 delay(n)
1686 unsigned long n;
1687 {
1688 long N = cycles_per_usec * (n);
1689
1690 while (N > 0) /* XXX */
1691 N -= 3; /* XXX */
1692 }
1693
1694 #if defined(COMPAT_OSF1) || 1 /* XXX */
1695 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1696 u_long));
1697
1698 void
1699 cpu_exec_ecoff_setregs(p, epp, stack)
1700 struct proc *p;
1701 struct exec_package *epp;
1702 u_long stack;
1703 {
1704 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1705
1706 setregs(p, epp, stack);
1707 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1708 }
1709
1710 /*
1711 * cpu_exec_ecoff_hook():
1712 * cpu-dependent ECOFF format hook for execve().
1713 *
1714 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1715 *
1716 */
1717 int
1718 cpu_exec_ecoff_hook(p, epp)
1719 struct proc *p;
1720 struct exec_package *epp;
1721 {
1722 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1723 extern struct emul emul_netbsd;
1724 #ifdef COMPAT_OSF1
1725 extern struct emul emul_osf1;
1726 #endif
1727
1728 switch (execp->f.f_magic) {
1729 #ifdef COMPAT_OSF1
1730 case ECOFF_MAGIC_ALPHA:
1731 epp->ep_emul = &emul_osf1;
1732 break;
1733 #endif
1734
1735 case ECOFF_MAGIC_NETBSD_ALPHA:
1736 epp->ep_emul = &emul_netbsd;
1737 break;
1738
1739 default:
1740 return ENOEXEC;
1741 }
1742 return 0;
1743 }
1744 #endif
1745
1746 /* XXX XXX BEGIN XXX XXX */
1747 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1748 /* XXX */
1749 vm_offset_t /* XXX */
1750 alpha_XXX_dmamap(v) /* XXX */
1751 vm_offset_t v; /* XXX */
1752 { /* XXX */
1753 /* XXX */
1754 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1755 } /* XXX */
1756 /* XXX XXX END XXX XXX */
1757