machdep.c revision 1.88 1 /* $NetBSD: machdep.c,v 1.88 1997/09/19 22:00:34 mjacob Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.88 1997/09/19 22:00:34 mjacob Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <sys/sysctl.h>
57 #include <sys/core.h>
58 #include <sys/kcore.h>
59 #include <machine/kcore.h>
60 #ifdef SYSVMSG
61 #include <sys/msg.h>
62 #endif
63 #ifdef SYSVSEM
64 #include <sys/sem.h>
65 #endif
66 #ifdef SYSVSHM
67 #include <sys/shm.h>
68 #endif
69
70 #include <sys/mount.h>
71 #include <sys/syscallargs.h>
72
73 #include <vm/vm_kern.h>
74
75 #include <dev/cons.h>
76
77 #include <machine/autoconf.h>
78 #include <machine/cpu.h>
79 #include <machine/reg.h>
80 #include <machine/rpb.h>
81 #include <machine/prom.h>
82 #include <machine/conf.h>
83
84 #include <net/netisr.h>
85 #include <net/if.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/ip_var.h>
90 #include "arp.h"
91 #if NARP > 0
92 #include <netinet/if_inarp.h>
93 #endif
94 #endif
95 #ifdef NS
96 #include <netns/ns_var.h>
97 #endif
98 #ifdef ISO
99 #include <netiso/iso.h>
100 #include <netiso/clnp.h>
101 #endif
102 #ifdef CCITT
103 #include <netccitt/x25.h>
104 #include <netccitt/pk.h>
105 #include <netccitt/pk_extern.h>
106 #endif
107 #ifdef NATM
108 #include <netnatm/natm.h>
109 #endif
110 #ifdef NETATALK
111 #include <netatalk/at_extern.h>
112 #endif
113 #include "ppp.h"
114 #if NPPP > 0
115 #include <net/ppp_defs.h>
116 #include <net/if_ppp.h>
117 #endif
118
119 #ifdef DDB
120 #include <machine/db_machdep.h>
121 #include <ddb/db_access.h>
122 #include <ddb/db_sym.h>
123 #include <ddb/db_extern.h>
124 #include <ddb/db_interface.h>
125 #endif
126
127 #include "le_ioasic.h" /* for le_iomem creation */
128
129 vm_map_t buffer_map;
130
131 /*
132 * Declare these as initialized data so we can patch them.
133 */
134 int nswbuf = 0;
135 #ifdef NBUF
136 int nbuf = NBUF;
137 #else
138 int nbuf = 0;
139 #endif
140 #ifdef BUFPAGES
141 int bufpages = BUFPAGES;
142 #else
143 int bufpages = 0;
144 #endif
145 caddr_t msgbufaddr;
146
147 int maxmem; /* max memory per process */
148
149 int totalphysmem; /* total amount of physical memory in system */
150 int physmem; /* physical memory used by NetBSD + some rsvd */
151 int firstusablepage; /* first usable memory page */
152 int lastusablepage; /* last usable memory page */
153 int resvmem; /* amount of memory reserved for PROM */
154 int unusedmem; /* amount of memory for OS that we don't use */
155 int unknownmem; /* amount of memory with an unknown use */
156
157 int cputype; /* system type, from the RPB */
158
159 /*
160 * XXX We need an address to which we can assign things so that they
161 * won't be optimized away because we didn't use the value.
162 */
163 u_int32_t no_optimize;
164
165 /* the following is used externally (sysctl_hw) */
166 char machine[] = MACHINE; /* from <machine/param.h> */
167 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
168 char cpu_model[128];
169 const struct cpusw *cpu_fn_switch; /* function switch */
170
171 struct user *proc0paddr;
172
173 /* Number of machine cycles per microsecond */
174 u_int64_t cycles_per_usec;
175
176 /* some memory areas for device DMA. "ick." */
177 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
178
179 /* number of cpus in the box. really! */
180 int ncpus;
181
182 char boot_flags[64];
183 char booted_kernel[64];
184
185 int bootinfo_valid;
186 struct bootinfo bootinfo;
187
188 #ifdef DDB
189 /* start and end of kernel symbol table */
190 void *ksym_start, *ksym_end;
191 #endif
192
193 /* for cpu_sysctl() */
194 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
195 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
196 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
197
198 int cpu_dump __P((void));
199 int cpu_dumpsize __P((void));
200 void dumpsys __P((void));
201 void identifycpu __P((void));
202 void netintr __P((void));
203 void printregs __P((struct reg *));
204
205 void
206 alpha_init(pfn, ptb, bim, bip)
207 u_long pfn; /* first free PFN number */
208 u_long ptb; /* PFN of current level 1 page table */
209 u_long bim; /* bootinfo magic */
210 u_long bip; /* bootinfo pointer */
211 {
212 extern char _end[];
213 caddr_t start, v;
214 struct mddt *mddtp;
215 int i, mddtweird;
216 char *p;
217
218 /*
219 * Turn off interrupts (not mchecks) and floating point.
220 * Make sure the instruction and data streams are consistent.
221 */
222 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
223 alpha_pal_wrfen(0);
224 ALPHA_TBIA();
225 alpha_pal_imb();
226
227 /*
228 * get address of the restart block, while we the bootstrap
229 * mapping is still around.
230 */
231 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
232 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
233
234 /*
235 * Remember how many cycles there are per microsecond,
236 * so that we can use delay(). Round up, for safety.
237 */
238 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
239
240 /*
241 * Init the PROM interface, so we can use printf
242 * until PROM mappings go away in consinit.
243 */
244 init_prom_interface();
245
246 /*
247 * Check for a bootinfo from the boot program.
248 */
249 if (bim == BOOTINFO_MAGIC) {
250 /*
251 * Have boot info. Copy it to our own storage.
252 * We'll sanity-check it later.
253 */
254 bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
255 switch (bootinfo.version) {
256 case 1:
257 bootinfo_valid = 1;
258 break;
259
260 default:
261 printf("warning: unknown bootinfo version %d\n",
262 bootinfo.version);
263 }
264 } else
265 printf("warning: boot program did not pass bootinfo\n");
266
267 /*
268 * Point interrupt/exception vectors to our own.
269 */
270 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
271 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
272 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
273 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
274 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
275 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
276
277 /*
278 * Clear pending machine checks and error reports, and enable
279 * system- and processor-correctable error reporting.
280 */
281 alpha_pal_wrmces(alpha_pal_rdmces() &
282 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
283
284 /*
285 * Find out how much memory is available, by looking at
286 * the memory cluster descriptors. This also tries to do
287 * its best to detect things things that have never been seen
288 * before...
289 *
290 * XXX Assumes that the first "system" cluster is the
291 * only one we can use. Is the second (etc.) system cluster
292 * (if one happens to exist) guaranteed to be contiguous? or...?
293 */
294 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
295
296 /*
297 * BEGIN MDDT WEIRDNESS CHECKING
298 */
299 mddtweird = 0;
300
301 #define cnt mddtp->mddt_cluster_cnt
302 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
303 if (cnt != 2 && cnt != 3) {
304 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
305 mddtweird = 1;
306 } else if (usage(0) != MDDT_PALCODE ||
307 usage(1) != MDDT_SYSTEM ||
308 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
309 mddtweird = 1;
310 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
311 }
312
313 for (i = 0; i < cnt; i++) {
314 if ((usage(i) & MDDT_mbz) != 0) {
315 printf("WARNING: mem cluster %d has weird usage %lx\n",
316 i, usage(i));
317 mddtweird = 1;
318 }
319 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
320 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
321 mddtweird = 1;
322 }
323 /* XXX other things to check? */
324 }
325 #undef cnt
326 #undef usage
327
328 if (mddtweird) {
329 printf("\n");
330 printf("complete memory cluster information:\n");
331 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
332 printf("mddt %d:\n", i);
333 printf("\tpfn %lx\n",
334 mddtp->mddt_clusters[i].mddt_pfn);
335 printf("\tcnt %lx\n",
336 mddtp->mddt_clusters[i].mddt_pg_cnt);
337 printf("\ttest %lx\n",
338 mddtp->mddt_clusters[i].mddt_pg_test);
339 printf("\tbva %lx\n",
340 mddtp->mddt_clusters[i].mddt_v_bitaddr);
341 printf("\tbpa %lx\n",
342 mddtp->mddt_clusters[i].mddt_p_bitaddr);
343 printf("\tbcksum %lx\n",
344 mddtp->mddt_clusters[i].mddt_bit_cksum);
345 printf("\tusage %lx\n",
346 mddtp->mddt_clusters[i].mddt_usage);
347 }
348 printf("\n");
349 }
350 /*
351 * END MDDT WEIRDNESS CHECKING
352 */
353
354 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
355 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
356 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
357 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
358 if ((usage(i) & MDDT_mbz) != 0)
359 unknownmem += pgcnt(i);
360 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
361 resvmem += pgcnt(i);
362 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
363 /*
364 * assumes that the system cluster listed is
365 * one we're in...
366 */
367 if (physmem != resvmem) {
368 physmem += pgcnt(i);
369 firstusablepage =
370 mddtp->mddt_clusters[i].mddt_pfn;
371 lastusablepage = firstusablepage + pgcnt(i) - 1;
372 } else
373 unusedmem += pgcnt(i);
374 }
375 #undef usage
376 #undef pgcnt
377 }
378 if (totalphysmem == 0)
379 panic("can't happen: system seems to have no memory!");
380 #ifdef LIMITMEM
381 if (totalphysmem >= btoc(LIMITMEM << 20)) {
382 u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
383 printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
384 physmem = totalphysmem = btoc(LIMITMEM << 20);
385 unusedmem += ovf;
386 lastusablepage = firstusablepage + physmem - 1;
387 }
388 #endif
389 maxmem = physmem;
390
391 #if 0
392 printf("totalphysmem = %d\n", totalphysmem);
393 printf("physmem = %d\n", physmem);
394 printf("firstusablepage = %d\n", firstusablepage);
395 printf("lastusablepage = %d\n", lastusablepage);
396 printf("resvmem = %d\n", resvmem);
397 printf("unusedmem = %d\n", unusedmem);
398 printf("unknownmem = %d\n", unknownmem);
399 #endif
400
401 /*
402 * find out this CPU's page size
403 */
404 PAGE_SIZE = hwrpb->rpb_page_size;
405 if (PAGE_SIZE != 8192)
406 panic("page size %d != 8192?!", PAGE_SIZE);
407
408 /*
409 * Find the first free page.
410 */
411 #ifdef DDB
412 if (bootinfo_valid) {
413 /*
414 * Save the kernel symbol table.
415 */
416 switch (bootinfo.version) {
417 case 1:
418 ksym_start = (void *)bootinfo.un.v1.ssym;
419 ksym_end = (void *)bootinfo.un.v1.esym;
420 break;
421 }
422 v = (caddr_t)alpha_round_page(ksym_end);
423 } else
424 #endif
425 v = (caddr_t)alpha_round_page(_end);
426
427 /*
428 * Init mapping for u page(s) for proc 0
429 */
430 start = v;
431 curproc->p_addr = proc0paddr = (struct user *)v;
432 v += UPAGES * NBPG;
433
434 /*
435 * Find out what hardware we're on, and remember its type name.
436 */
437 cputype = hwrpb->rpb_type;
438 if (cputype < 0 || cputype > ncpusw) {
439 unknown_cputype:
440 printf("\n");
441 printf("Unknown system type %d.\n", cputype);
442 printf("\n");
443 panic("unknown system type");
444 }
445 cpu_fn_switch = &cpusw[cputype];
446 if (cpu_fn_switch->family == NULL)
447 goto unknown_cputype;
448 if (cpu_fn_switch->option == NULL) {
449 printf("\n");
450 printf("NetBSD does not currently support system type %d\n",
451 cputype);
452 printf("(%s family).\n", cpu_fn_switch->family);
453 printf("\n");
454 panic("unsupported system type");
455 }
456 if (!cpu_fn_switch->present) {
457 printf("\n");
458 printf("Support for system type %d (%s family) is\n", cputype,
459 cpu_fn_switch->family);
460 printf("not present in this kernel. Build a kernel with \"options %s\"\n",
461 cpu_fn_switch->option);
462 printf("to include support for this system type.\n");
463 printf("\n");
464 panic("support for system not present");
465 }
466
467 if ((*cpu_fn_switch->model_name)() != NULL)
468 strncpy(cpu_model, (*cpu_fn_switch->model_name)(),
469 sizeof cpu_model - 1);
470 else {
471 strncpy(cpu_model, cpu_fn_switch->family, sizeof cpu_model - 1);
472 strcat(cpu_model, " family"); /* XXX */
473 }
474 cpu_model[sizeof cpu_model - 1] = '\0';
475
476 /* XXX SANITY CHECKING. SHOULD GO AWAY */
477 /* XXX We should always be running on the the primary. */
478 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
479 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
480 if (cputype != ST_DEC_21000) /*XXX*/
481 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
482
483 #if NLE_IOASIC > 0
484 /*
485 * Grab 128K at the top of physical memory for the lance chip
486 * on machines where it does dma through the I/O ASIC.
487 * It must be physically contiguous and aligned on a 128K boundary.
488 *
489 * Note that since this is conditional on the presence of
490 * IOASIC-attached 'le' units in the kernel config, the
491 * message buffer may move on these systems. This shouldn't
492 * be a problem, because once people have a kernel config that
493 * they use, they're going to stick with it.
494 */
495 if (cputype == ST_DEC_3000_500 ||
496 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
497 lastusablepage -= btoc(128 * 1024);
498 le_iomem =
499 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
500 }
501 #endif /* NLE_IOASIC */
502
503 /*
504 * Initialize error message buffer (at end of core).
505 */
506 lastusablepage -= btoc(MSGBUFSIZE);
507 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
508 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
509
510
511 /*
512 * Allocate space for system data structures.
513 * The first available kernel virtual address is in "v".
514 * As pages of kernel virtual memory are allocated, "v" is incremented.
515 *
516 * These data structures are allocated here instead of cpu_startup()
517 * because physical memory is directly addressable. We don't have
518 * to map these into virtual address space.
519 */
520 #define valloc(name, type, num) \
521 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
522 #define valloclim(name, type, num, lim) \
523 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
524 #ifdef REAL_CLISTS
525 valloc(cfree, struct cblock, nclist);
526 #endif
527 valloc(callout, struct callout, ncallout);
528 #ifdef SYSVSHM
529 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
530 #endif
531 #ifdef SYSVSEM
532 valloc(sema, struct semid_ds, seminfo.semmni);
533 valloc(sem, struct sem, seminfo.semmns);
534 /* This is pretty disgusting! */
535 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
536 #endif
537 #ifdef SYSVMSG
538 valloc(msgpool, char, msginfo.msgmax);
539 valloc(msgmaps, struct msgmap, msginfo.msgseg);
540 valloc(msghdrs, struct msg, msginfo.msgtql);
541 valloc(msqids, struct msqid_ds, msginfo.msgmni);
542 #endif
543
544 /*
545 * Determine how many buffers to allocate.
546 * We allocate 10% of memory for buffer space. Insure a
547 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
548 * headers as file i/o buffers.
549 */
550 if (bufpages == 0)
551 bufpages = (physmem * 10) / (CLSIZE * 100);
552 if (nbuf == 0) {
553 nbuf = bufpages;
554 if (nbuf < 16)
555 nbuf = 16;
556 }
557 if (nswbuf == 0) {
558 nswbuf = (nbuf / 2) &~ 1; /* force even */
559 if (nswbuf > 256)
560 nswbuf = 256; /* sanity */
561 }
562 valloc(swbuf, struct buf, nswbuf);
563 valloc(buf, struct buf, nbuf);
564
565 /*
566 * Clear allocated memory.
567 */
568 bzero(start, v - start);
569
570 /*
571 * Initialize the virtual memory system, and set the
572 * page table base register in proc 0's PCB.
573 */
574 #ifndef NEW_PMAP
575 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
576 #else
577 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
578 hwrpb->rpb_max_asn);
579 #endif
580
581 /*
582 * Initialize the rest of proc 0's PCB, and cache its physical
583 * address.
584 */
585 proc0.p_md.md_pcbpaddr =
586 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
587
588 /*
589 * Set the kernel sp, reserving space for an (empty) trapframe,
590 * and make proc0's trapframe pointer point to it for sanity.
591 */
592 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
593 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
594 proc0.p_md.md_tf =
595 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
596
597 #ifdef NEW_PMAP
598 /*
599 * Set up the kernel address space in proc0's hwpcb.
600 */
601 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
602 #endif
603
604 /*
605 * Look at arguments passed to us and compute boothowto.
606 * Also, get kernel name so it can be used in user-land.
607 */
608 if (bootinfo_valid) {
609 switch (bootinfo.version) {
610 case 1:
611 bcopy(bootinfo.un.v1.boot_flags, boot_flags,
612 sizeof(boot_flags));
613 bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
614 sizeof(booted_kernel));
615 }
616 } else {
617 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
618 sizeof(boot_flags));
619 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
620 sizeof(booted_kernel));
621 }
622
623 #if 0
624 printf("boot flags = \"%s\"\n", boot_flags);
625 printf("booted kernel = \"%s\"\n", booted_kernel);
626 #endif
627
628 boothowto = RB_SINGLE;
629 #ifdef KADB
630 boothowto |= RB_KDB;
631 #endif
632 for (p = boot_flags; p && *p != '\0'; p++) {
633 /*
634 * Note that we'd really like to differentiate case here,
635 * but the Alpha AXP Architecture Reference Manual
636 * says that we shouldn't.
637 */
638 switch (*p) {
639 case 'a': /* autoboot */
640 case 'A':
641 boothowto &= ~RB_SINGLE;
642 break;
643
644 #ifdef DEBUG
645 case 'c': /* crash dump immediately after autoconfig */
646 case 'C':
647 boothowto |= RB_DUMP;
648 break;
649 #endif
650
651 #if defined(KGDB) || defined(DDB)
652 case 'd': /* break into the kernel debugger ASAP */
653 case 'D':
654 boothowto |= RB_KDB;
655 break;
656 #endif
657
658 case 'h': /* always halt, never reboot */
659 case 'H':
660 boothowto |= RB_HALT;
661 break;
662
663 #if 0
664 case 'm': /* mini root present in memory */
665 case 'M':
666 boothowto |= RB_MINIROOT;
667 break;
668 #endif
669
670 case 'n': /* askname */
671 case 'N':
672 boothowto |= RB_ASKNAME;
673 break;
674
675 case 's': /* single-user (default, supported for sanity) */
676 case 'S':
677 boothowto |= RB_SINGLE;
678 break;
679
680 default:
681 printf("Unrecognized boot flag '%c'.\n", *p);
682 break;
683 }
684 }
685
686 /*
687 * Figure out the number of cpus in the box, from RPB fields.
688 * Really. We mean it.
689 */
690 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
691 struct pcs *pcsp;
692
693 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
694 (i * hwrpb->rpb_pcs_size));
695 if ((pcsp->pcs_flags & PCS_PP) != 0)
696 ncpus++;
697 }
698 }
699
700 void
701 consinit()
702 {
703
704 (*cpu_fn_switch->cons_init)();
705 pmap_unmap_prom();
706
707 #ifdef DDB
708 db_machine_init();
709 ddb_init(ksym_start, ksym_end);
710 if (boothowto & RB_KDB)
711 Debugger();
712 #endif
713 #ifdef KGDB
714 if (boothowto & RB_KDB)
715 kgdb_connect(0);
716 #endif
717 }
718
719 void
720 cpu_startup()
721 {
722 register unsigned i;
723 int base, residual;
724 vm_offset_t minaddr, maxaddr;
725 vm_size_t size;
726 #if defined(DEBUG)
727 extern int pmapdebug;
728 int opmapdebug = pmapdebug;
729
730 pmapdebug = 0;
731 #endif
732
733 /*
734 * Good {morning,afternoon,evening,night}.
735 */
736 printf(version);
737 identifycpu();
738 printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
739 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
740 if (unusedmem)
741 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
742 if (unknownmem)
743 printf("WARNING: %d bytes of memory with unknown purpose\n",
744 ctob(unknownmem));
745
746 /*
747 * Allocate virtual address space for file I/O buffers.
748 * Note they are different than the array of headers, 'buf',
749 * and usually occupy more virtual memory than physical.
750 */
751 size = MAXBSIZE * nbuf;
752 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
753 &maxaddr, size, TRUE);
754 minaddr = (vm_offset_t)buffers;
755 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
756 &minaddr, size, FALSE) != KERN_SUCCESS)
757 panic("startup: cannot allocate buffers");
758 base = bufpages / nbuf;
759 residual = bufpages % nbuf;
760 for (i = 0; i < nbuf; i++) {
761 vm_size_t curbufsize;
762 vm_offset_t curbuf;
763
764 /*
765 * First <residual> buffers get (base+1) physical pages
766 * allocated for them. The rest get (base) physical pages.
767 *
768 * The rest of each buffer occupies virtual space,
769 * but has no physical memory allocated for it.
770 */
771 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
772 curbufsize = CLBYTES * (i < residual ? base+1 : base);
773 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
774 vm_map_simplify(buffer_map, curbuf);
775 }
776 /*
777 * Allocate a submap for exec arguments. This map effectively
778 * limits the number of processes exec'ing at any time.
779 */
780 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
781 16 * NCARGS, TRUE);
782
783 /*
784 * Allocate a submap for physio
785 */
786 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
787 VM_PHYS_SIZE, TRUE);
788
789 /*
790 * Finally, allocate mbuf cluster submap.
791 */
792 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
793 VM_MBUF_SIZE, FALSE);
794 /*
795 * Initialize callouts
796 */
797 callfree = callout;
798 for (i = 1; i < ncallout; i++)
799 callout[i-1].c_next = &callout[i];
800 callout[i-1].c_next = NULL;
801
802 #if defined(DEBUG)
803 pmapdebug = opmapdebug;
804 #endif
805 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
806 printf("using %ld buffers containing %ld bytes of memory\n",
807 (long)nbuf, (long)(bufpages * CLBYTES));
808
809 /*
810 * Set up buffers, so they can be used to read disk labels.
811 */
812 bufinit();
813
814 /*
815 * Configure the system.
816 */
817 configure();
818
819 /*
820 * Note that bootstrapping is finished, and set the HWRPB up
821 * to do restarts.
822 */
823 hwrpb_restart_setup();
824 }
825
826 void
827 identifycpu()
828 {
829
830 /*
831 * print out CPU identification information.
832 */
833 printf("%s, %ldMHz\n", cpu_model,
834 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
835 printf("%ld byte page size, %d processor%s.\n",
836 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
837 #if 0
838 /* this isn't defined for any systems that we run on? */
839 printf("serial number 0x%lx 0x%lx\n",
840 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
841
842 /* and these aren't particularly useful! */
843 printf("variation: 0x%lx, revision 0x%lx\n",
844 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
845 #endif
846 }
847
848 int waittime = -1;
849 struct pcb dumppcb;
850
851 void
852 cpu_reboot(howto, bootstr)
853 int howto;
854 char *bootstr;
855 {
856 extern int cold;
857
858 /* If system is cold, just halt. */
859 if (cold) {
860 howto |= RB_HALT;
861 goto haltsys;
862 }
863
864 /* If "always halt" was specified as a boot flag, obey. */
865 if ((boothowto & RB_HALT) != 0)
866 howto |= RB_HALT;
867
868 boothowto = howto;
869 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
870 waittime = 0;
871 vfs_shutdown();
872 /*
873 * If we've been adjusting the clock, the todr
874 * will be out of synch; adjust it now.
875 */
876 resettodr();
877 }
878
879 /* Disable interrupts. */
880 splhigh();
881
882 /* If rebooting and a dump is requested do it. */
883 #if 0
884 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
885 #else
886 if (howto & RB_DUMP)
887 #endif
888 dumpsys();
889
890 haltsys:
891
892 /* run any shutdown hooks */
893 doshutdownhooks();
894
895 #ifdef BOOTKEY
896 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
897 cngetc();
898 printf("\n");
899 #endif
900
901 /* Finally, halt/reboot the system. */
902 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
903 prom_halt(howto & RB_HALT);
904 /*NOTREACHED*/
905 }
906
907 /*
908 * These variables are needed by /sbin/savecore
909 */
910 u_long dumpmag = 0x8fca0101; /* magic number */
911 int dumpsize = 0; /* pages */
912 long dumplo = 0; /* blocks */
913
914 /*
915 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
916 */
917 int
918 cpu_dumpsize()
919 {
920 int size;
921
922 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
923 if (roundup(size, dbtob(1)) != dbtob(1))
924 return -1;
925
926 return (1);
927 }
928
929 /*
930 * cpu_dump: dump machine-dependent kernel core dump headers.
931 */
932 int
933 cpu_dump()
934 {
935 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
936 long buf[dbtob(1) / sizeof (long)];
937 kcore_seg_t *segp;
938 cpu_kcore_hdr_t *cpuhdrp;
939
940 dump = bdevsw[major(dumpdev)].d_dump;
941
942 segp = (kcore_seg_t *)buf;
943 cpuhdrp =
944 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
945
946 /*
947 * Generate a segment header.
948 */
949 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
950 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
951
952 /*
953 * Add the machine-dependent header info
954 */
955 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
956 cpuhdrp->page_size = PAGE_SIZE;
957 cpuhdrp->core_seg.start = ctob(firstusablepage);
958 cpuhdrp->core_seg.size = ctob(physmem);
959
960 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
961 }
962
963 /*
964 * This is called by main to set dumplo and dumpsize.
965 * Dumps always skip the first CLBYTES of disk space
966 * in case there might be a disk label stored there.
967 * If there is extra space, put dump at the end to
968 * reduce the chance that swapping trashes it.
969 */
970 void
971 cpu_dumpconf()
972 {
973 int nblks, dumpblks; /* size of dump area */
974 int maj;
975
976 if (dumpdev == NODEV)
977 goto bad;
978 maj = major(dumpdev);
979 if (maj < 0 || maj >= nblkdev)
980 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
981 if (bdevsw[maj].d_psize == NULL)
982 goto bad;
983 nblks = (*bdevsw[maj].d_psize)(dumpdev);
984 if (nblks <= ctod(1))
985 goto bad;
986
987 dumpblks = cpu_dumpsize();
988 if (dumpblks < 0)
989 goto bad;
990 dumpblks += ctod(physmem);
991
992 /* If dump won't fit (incl. room for possible label), punt. */
993 if (dumpblks > (nblks - ctod(1)))
994 goto bad;
995
996 /* Put dump at end of partition */
997 dumplo = nblks - dumpblks;
998
999 /* dumpsize is in page units, and doesn't include headers. */
1000 dumpsize = physmem;
1001 return;
1002
1003 bad:
1004 dumpsize = 0;
1005 return;
1006 }
1007
1008 /*
1009 * Dump the kernel's image to the swap partition.
1010 */
1011 #define BYTES_PER_DUMP NBPG
1012
1013 void
1014 dumpsys()
1015 {
1016 unsigned bytes, i, n;
1017 int maddr, psize;
1018 daddr_t blkno;
1019 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1020 int error;
1021
1022 /* Save registers. */
1023 savectx(&dumppcb);
1024
1025 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1026 if (dumpdev == NODEV)
1027 return;
1028
1029 /*
1030 * For dumps during autoconfiguration,
1031 * if dump device has already configured...
1032 */
1033 if (dumpsize == 0)
1034 cpu_dumpconf();
1035 if (dumplo <= 0) {
1036 printf("\ndump to dev %x not possible\n", dumpdev);
1037 return;
1038 }
1039 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
1040
1041 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1042 printf("dump ");
1043 if (psize == -1) {
1044 printf("area unavailable\n");
1045 return;
1046 }
1047
1048 /* XXX should purge all outstanding keystrokes. */
1049
1050 if ((error = cpu_dump()) != 0)
1051 goto err;
1052
1053 bytes = ctob(physmem);
1054 maddr = ctob(firstusablepage);
1055 blkno = dumplo + cpu_dumpsize();
1056 dump = bdevsw[major(dumpdev)].d_dump;
1057 error = 0;
1058 for (i = 0; i < bytes; i += n) {
1059
1060 /* Print out how many MBs we to go. */
1061 n = bytes - i;
1062 if (n && (n % (1024*1024)) == 0)
1063 printf("%d ", n / (1024 * 1024));
1064
1065 /* Limit size for next transfer. */
1066 if (n > BYTES_PER_DUMP)
1067 n = BYTES_PER_DUMP;
1068
1069 error = (*dump)(dumpdev, blkno,
1070 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1071 if (error)
1072 break;
1073 maddr += n;
1074 blkno += btodb(n); /* XXX? */
1075
1076 /* XXX should look for keystrokes, to cancel. */
1077 }
1078
1079 err:
1080 switch (error) {
1081
1082 case ENXIO:
1083 printf("device bad\n");
1084 break;
1085
1086 case EFAULT:
1087 printf("device not ready\n");
1088 break;
1089
1090 case EINVAL:
1091 printf("area improper\n");
1092 break;
1093
1094 case EIO:
1095 printf("i/o error\n");
1096 break;
1097
1098 case EINTR:
1099 printf("aborted from console\n");
1100 break;
1101
1102 case 0:
1103 printf("succeeded\n");
1104 break;
1105
1106 default:
1107 printf("error %d\n", error);
1108 break;
1109 }
1110 printf("\n\n");
1111 delay(1000);
1112 }
1113
1114 void
1115 frametoreg(framep, regp)
1116 struct trapframe *framep;
1117 struct reg *regp;
1118 {
1119
1120 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1121 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1122 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1123 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1124 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1125 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1126 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1127 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1128 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1129 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1130 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1131 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1132 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1133 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1134 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1135 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1136 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1137 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1138 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1139 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1140 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1141 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1142 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1143 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1144 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1145 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1146 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1147 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1148 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1149 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1150 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1151 regp->r_regs[R_ZERO] = 0;
1152 }
1153
1154 void
1155 regtoframe(regp, framep)
1156 struct reg *regp;
1157 struct trapframe *framep;
1158 {
1159
1160 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1161 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1162 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1163 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1164 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1165 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1166 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1167 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1168 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1169 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1170 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1171 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1172 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1173 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1174 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1175 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1176 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1177 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1178 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1179 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1180 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1181 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1182 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1183 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1184 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1185 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1186 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1187 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1188 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1189 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1190 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1191 /* ??? = regp->r_regs[R_ZERO]; */
1192 }
1193
1194 void
1195 printregs(regp)
1196 struct reg *regp;
1197 {
1198 int i;
1199
1200 for (i = 0; i < 32; i++)
1201 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1202 i & 1 ? "\n" : "\t");
1203 }
1204
1205 void
1206 regdump(framep)
1207 struct trapframe *framep;
1208 {
1209 struct reg reg;
1210
1211 frametoreg(framep, ®);
1212 reg.r_regs[R_SP] = alpha_pal_rdusp();
1213
1214 printf("REGISTERS:\n");
1215 printregs(®);
1216 }
1217
1218 #ifdef DEBUG
1219 int sigdebug = 0;
1220 int sigpid = 0;
1221 #define SDB_FOLLOW 0x01
1222 #define SDB_KSTACK 0x02
1223 #endif
1224
1225 /*
1226 * Send an interrupt to process.
1227 */
1228 void
1229 sendsig(catcher, sig, mask, code)
1230 sig_t catcher;
1231 int sig, mask;
1232 u_long code;
1233 {
1234 struct proc *p = curproc;
1235 struct sigcontext *scp, ksc;
1236 struct trapframe *frame;
1237 struct sigacts *psp = p->p_sigacts;
1238 int oonstack, fsize, rndfsize;
1239 extern char sigcode[], esigcode[];
1240 extern struct proc *fpcurproc;
1241
1242 frame = p->p_md.md_tf;
1243 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1244 fsize = sizeof ksc;
1245 rndfsize = ((fsize + 15) / 16) * 16;
1246 /*
1247 * Allocate and validate space for the signal handler
1248 * context. Note that if the stack is in P0 space, the
1249 * call to grow() is a nop, and the useracc() check
1250 * will fail if the process has not already allocated
1251 * the space with a `brk'.
1252 */
1253 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1254 (psp->ps_sigonstack & sigmask(sig))) {
1255 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1256 psp->ps_sigstk.ss_size - rndfsize);
1257 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1258 } else
1259 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1260 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1261 (void)grow(p, (u_long)scp);
1262 #ifdef DEBUG
1263 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1264 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1265 sig, &oonstack, scp);
1266 #endif
1267 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1268 #ifdef DEBUG
1269 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1270 printf("sendsig(%d): useracc failed on sig %d\n",
1271 p->p_pid, sig);
1272 #endif
1273 /*
1274 * Process has trashed its stack; give it an illegal
1275 * instruction to halt it in its tracks.
1276 */
1277 SIGACTION(p, SIGILL) = SIG_DFL;
1278 sig = sigmask(SIGILL);
1279 p->p_sigignore &= ~sig;
1280 p->p_sigcatch &= ~sig;
1281 p->p_sigmask &= ~sig;
1282 psignal(p, SIGILL);
1283 return;
1284 }
1285
1286 /*
1287 * Build the signal context to be used by sigreturn.
1288 */
1289 ksc.sc_onstack = oonstack;
1290 ksc.sc_mask = mask;
1291 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1292 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1293
1294 /* copy the registers. */
1295 frametoreg(frame, (struct reg *)ksc.sc_regs);
1296 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1297 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1298
1299 /* save the floating-point state, if necessary, then copy it. */
1300 if (p == fpcurproc) {
1301 alpha_pal_wrfen(1);
1302 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1303 alpha_pal_wrfen(0);
1304 fpcurproc = NULL;
1305 }
1306 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1307 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1308 sizeof(struct fpreg));
1309 ksc.sc_fp_control = 0; /* XXX ? */
1310 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1311 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1312
1313
1314 #ifdef COMPAT_OSF1
1315 /*
1316 * XXX Create an OSF/1-style sigcontext and associated goo.
1317 */
1318 #endif
1319
1320 /*
1321 * copy the frame out to userland.
1322 */
1323 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1324 #ifdef DEBUG
1325 if (sigdebug & SDB_FOLLOW)
1326 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1327 scp, code);
1328 #endif
1329
1330 /*
1331 * Set up the registers to return to sigcode.
1332 */
1333 frame->tf_regs[FRAME_PC] =
1334 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1335 frame->tf_regs[FRAME_A0] = sig;
1336 frame->tf_regs[FRAME_A1] = code;
1337 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1338 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1339 alpha_pal_wrusp((unsigned long)scp);
1340
1341 #ifdef DEBUG
1342 if (sigdebug & SDB_FOLLOW)
1343 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1344 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1345 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1346 printf("sendsig(%d): sig %d returns\n",
1347 p->p_pid, sig);
1348 #endif
1349 }
1350
1351 /*
1352 * System call to cleanup state after a signal
1353 * has been taken. Reset signal mask and
1354 * stack state from context left by sendsig (above).
1355 * Return to previous pc and psl as specified by
1356 * context left by sendsig. Check carefully to
1357 * make sure that the user has not modified the
1358 * psl to gain improper priviledges or to cause
1359 * a machine fault.
1360 */
1361 /* ARGSUSED */
1362 int
1363 sys_sigreturn(p, v, retval)
1364 struct proc *p;
1365 void *v;
1366 register_t *retval;
1367 {
1368 struct sys_sigreturn_args /* {
1369 syscallarg(struct sigcontext *) sigcntxp;
1370 } */ *uap = v;
1371 struct sigcontext *scp, ksc;
1372 extern struct proc *fpcurproc;
1373
1374 scp = SCARG(uap, sigcntxp);
1375 #ifdef DEBUG
1376 if (sigdebug & SDB_FOLLOW)
1377 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1378 #endif
1379
1380 if (ALIGN(scp) != (u_int64_t)scp)
1381 return (EINVAL);
1382
1383 /*
1384 * Test and fetch the context structure.
1385 * We grab it all at once for speed.
1386 */
1387 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1388 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1389 return (EINVAL);
1390
1391 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1392 return (EINVAL);
1393 /*
1394 * Restore the user-supplied information
1395 */
1396 if (ksc.sc_onstack)
1397 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1398 else
1399 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1400 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1401
1402 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1403 p->p_md.md_tf->tf_regs[FRAME_PS] =
1404 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1405
1406 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1407 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1408
1409 /* XXX ksc.sc_ownedfp ? */
1410 if (p == fpcurproc)
1411 fpcurproc = NULL;
1412 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1413 sizeof(struct fpreg));
1414 /* XXX ksc.sc_fp_control ? */
1415
1416 #ifdef DEBUG
1417 if (sigdebug & SDB_FOLLOW)
1418 printf("sigreturn(%d): returns\n", p->p_pid);
1419 #endif
1420 return (EJUSTRETURN);
1421 }
1422
1423 /*
1424 * machine dependent system variables.
1425 */
1426 int
1427 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1428 int *name;
1429 u_int namelen;
1430 void *oldp;
1431 size_t *oldlenp;
1432 void *newp;
1433 size_t newlen;
1434 struct proc *p;
1435 {
1436 dev_t consdev;
1437
1438 /* all sysctl names at this level are terminal */
1439 if (namelen != 1)
1440 return (ENOTDIR); /* overloaded */
1441
1442 switch (name[0]) {
1443 case CPU_CONSDEV:
1444 if (cn_tab != NULL)
1445 consdev = cn_tab->cn_dev;
1446 else
1447 consdev = NODEV;
1448 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1449 sizeof consdev));
1450
1451 case CPU_ROOT_DEVICE:
1452 return (sysctl_rdstring(oldp, oldlenp, newp,
1453 root_device->dv_xname));
1454
1455 case CPU_UNALIGNED_PRINT:
1456 return (sysctl_int(oldp, oldlenp, newp, newlen,
1457 &alpha_unaligned_print));
1458
1459 case CPU_UNALIGNED_FIX:
1460 return (sysctl_int(oldp, oldlenp, newp, newlen,
1461 &alpha_unaligned_fix));
1462
1463 case CPU_UNALIGNED_SIGBUS:
1464 return (sysctl_int(oldp, oldlenp, newp, newlen,
1465 &alpha_unaligned_sigbus));
1466
1467 case CPU_BOOTED_KERNEL:
1468 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1469
1470 default:
1471 return (EOPNOTSUPP);
1472 }
1473 /* NOTREACHED */
1474 }
1475
1476 /*
1477 * Set registers on exec.
1478 */
1479 void
1480 setregs(p, pack, stack)
1481 register struct proc *p;
1482 struct exec_package *pack;
1483 u_long stack;
1484 {
1485 struct trapframe *tfp = p->p_md.md_tf;
1486 extern struct proc *fpcurproc;
1487 #ifdef DEBUG
1488 int i;
1489 #endif
1490
1491 #ifdef DEBUG
1492 /*
1493 * Crash and dump, if the user requested it.
1494 */
1495 if (boothowto & RB_DUMP)
1496 panic("crash requested by boot flags");
1497 #endif
1498
1499 #ifdef DEBUG
1500 for (i = 0; i < FRAME_SIZE; i++)
1501 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1502 #else
1503 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1504 #endif
1505 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1506 #define FP_RN 2 /* XXX */
1507 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1508 alpha_pal_wrusp(stack);
1509 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1510 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1511
1512 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1513 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1514 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1515 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1516 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1517
1518 p->p_md.md_flags &= ~MDP_FPUSED;
1519 if (fpcurproc == p)
1520 fpcurproc = NULL;
1521 }
1522
1523 void
1524 netintr()
1525 {
1526 int n, s;
1527
1528 s = splhigh();
1529 n = netisr;
1530 netisr = 0;
1531 splx(s);
1532
1533 #define DONETISR(bit, fn) \
1534 do { \
1535 if (n & (1 << (bit))) \
1536 fn; \
1537 } while (0)
1538
1539 #ifdef INET
1540 #if NARP > 0
1541 DONETISR(NETISR_ARP, arpintr());
1542 #endif
1543 DONETISR(NETISR_IP, ipintr());
1544 #endif
1545 #ifdef NETATALK
1546 DONETISR(NETISR_ATALK, atintr());
1547 #endif
1548 #ifdef NS
1549 DONETISR(NETISR_NS, nsintr());
1550 #endif
1551 #ifdef ISO
1552 DONETISR(NETISR_ISO, clnlintr());
1553 #endif
1554 #ifdef CCITT
1555 DONETISR(NETISR_CCITT, ccittintr());
1556 #endif
1557 #ifdef NATM
1558 DONETISR(NETISR_NATM, natmintr());
1559 #endif
1560 #if NPPP > 1
1561 DONETISR(NETISR_PPP, pppintr());
1562 #endif
1563
1564 #undef DONETISR
1565 }
1566
1567 void
1568 do_sir()
1569 {
1570 u_int64_t n;
1571
1572 do {
1573 (void)splhigh();
1574 n = ssir;
1575 ssir = 0;
1576 splsoft(); /* don't recurse through spl0() */
1577
1578 #define DO_SIR(bit, fn) \
1579 do { \
1580 if (n & (bit)) { \
1581 cnt.v_soft++; \
1582 fn; \
1583 } \
1584 } while (0)
1585
1586 DO_SIR(SIR_NET, netintr());
1587 DO_SIR(SIR_CLOCK, softclock());
1588
1589 #undef DO_SIR
1590 } while (ssir != 0);
1591 }
1592
1593 int
1594 spl0()
1595 {
1596
1597 if (ssir)
1598 do_sir(); /* it lowers the IPL itself */
1599
1600 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1601 }
1602
1603 /*
1604 * The following primitives manipulate the run queues. _whichqs tells which
1605 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1606 * into queues, Remrunqueue removes them from queues. The running process is
1607 * on no queue, other processes are on a queue related to p->p_priority,
1608 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1609 * available queues.
1610 */
1611 /*
1612 * setrunqueue(p)
1613 * proc *p;
1614 *
1615 * Call should be made at splclock(), and p->p_stat should be SRUN.
1616 */
1617
1618 void
1619 setrunqueue(p)
1620 struct proc *p;
1621 {
1622 int bit;
1623
1624 /* firewall: p->p_back must be NULL */
1625 if (p->p_back != NULL)
1626 panic("setrunqueue");
1627
1628 bit = p->p_priority >> 2;
1629 whichqs |= (1 << bit);
1630 p->p_forw = (struct proc *)&qs[bit];
1631 p->p_back = qs[bit].ph_rlink;
1632 p->p_back->p_forw = p;
1633 qs[bit].ph_rlink = p;
1634 }
1635
1636 /*
1637 * remrunqueue(p)
1638 *
1639 * Call should be made at splclock().
1640 */
1641 void
1642 remrunqueue(p)
1643 struct proc *p;
1644 {
1645 int bit;
1646
1647 bit = p->p_priority >> 2;
1648 if ((whichqs & (1 << bit)) == 0)
1649 panic("remrunqueue");
1650
1651 p->p_back->p_forw = p->p_forw;
1652 p->p_forw->p_back = p->p_back;
1653 p->p_back = NULL; /* for firewall checking. */
1654
1655 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1656 whichqs &= ~(1 << bit);
1657 }
1658
1659 /*
1660 * Return the best possible estimate of the time in the timeval
1661 * to which tvp points. Unfortunately, we can't read the hardware registers.
1662 * We guarantee that the time will be greater than the value obtained by a
1663 * previous call.
1664 */
1665 void
1666 microtime(tvp)
1667 register struct timeval *tvp;
1668 {
1669 int s = splclock();
1670 static struct timeval lasttime;
1671
1672 *tvp = time;
1673 #ifdef notdef
1674 tvp->tv_usec += clkread();
1675 while (tvp->tv_usec > 1000000) {
1676 tvp->tv_sec++;
1677 tvp->tv_usec -= 1000000;
1678 }
1679 #endif
1680 if (tvp->tv_sec == lasttime.tv_sec &&
1681 tvp->tv_usec <= lasttime.tv_usec &&
1682 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1683 tvp->tv_sec++;
1684 tvp->tv_usec -= 1000000;
1685 }
1686 lasttime = *tvp;
1687 splx(s);
1688 }
1689
1690 /*
1691 * Wait "n" microseconds.
1692 */
1693 void
1694 delay(n)
1695 unsigned long n;
1696 {
1697 long N = cycles_per_usec * (n);
1698
1699 while (N > 0) /* XXX */
1700 N -= 3; /* XXX */
1701 }
1702
1703 #if defined(COMPAT_OSF1) || 1 /* XXX */
1704 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1705 u_long));
1706
1707 void
1708 cpu_exec_ecoff_setregs(p, epp, stack)
1709 struct proc *p;
1710 struct exec_package *epp;
1711 u_long stack;
1712 {
1713 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1714
1715 setregs(p, epp, stack);
1716 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1717 }
1718
1719 /*
1720 * cpu_exec_ecoff_hook():
1721 * cpu-dependent ECOFF format hook for execve().
1722 *
1723 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1724 *
1725 */
1726 int
1727 cpu_exec_ecoff_hook(p, epp)
1728 struct proc *p;
1729 struct exec_package *epp;
1730 {
1731 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1732 extern struct emul emul_netbsd;
1733 #ifdef COMPAT_OSF1
1734 extern struct emul emul_osf1;
1735 #endif
1736
1737 switch (execp->f.f_magic) {
1738 #ifdef COMPAT_OSF1
1739 case ECOFF_MAGIC_ALPHA:
1740 epp->ep_emul = &emul_osf1;
1741 break;
1742 #endif
1743
1744 case ECOFF_MAGIC_NETBSD_ALPHA:
1745 epp->ep_emul = &emul_netbsd;
1746 break;
1747
1748 default:
1749 return ENOEXEC;
1750 }
1751 return 0;
1752 }
1753 #endif
1754
1755 /* XXX XXX BEGIN XXX XXX */
1756 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1757 /* XXX */
1758 vm_offset_t /* XXX */
1759 alpha_XXX_dmamap(v) /* XXX */
1760 vm_offset_t v; /* XXX */
1761 { /* XXX */
1762 /* XXX */
1763 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1764 } /* XXX */
1765 /* XXX XXX END XXX XXX */
1766