machdep.c revision 1.89 1 /* $NetBSD: machdep.c,v 1.89 1997/09/23 23:15:51 mjacob Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.89 1997/09/23 23:15:51 mjacob Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <sys/sysctl.h>
57 #include <sys/core.h>
58 #include <sys/kcore.h>
59 #include <machine/kcore.h>
60 #ifdef SYSVMSG
61 #include <sys/msg.h>
62 #endif
63 #ifdef SYSVSEM
64 #include <sys/sem.h>
65 #endif
66 #ifdef SYSVSHM
67 #include <sys/shm.h>
68 #endif
69
70 #include <sys/mount.h>
71 #include <sys/syscallargs.h>
72
73 #include <vm/vm_kern.h>
74
75 #include <dev/cons.h>
76
77 #include <machine/autoconf.h>
78 #include <machine/cpu.h>
79 #include <machine/reg.h>
80 #include <machine/rpb.h>
81 #include <machine/prom.h>
82 #include <machine/conf.h>
83
84 #include <net/netisr.h>
85 #include <net/if.h>
86
87 #ifdef INET
88 #include <netinet/in.h>
89 #include <netinet/ip_var.h>
90 #include "arp.h"
91 #if NARP > 0
92 #include <netinet/if_inarp.h>
93 #endif
94 #endif
95 #ifdef NS
96 #include <netns/ns_var.h>
97 #endif
98 #ifdef ISO
99 #include <netiso/iso.h>
100 #include <netiso/clnp.h>
101 #endif
102 #ifdef CCITT
103 #include <netccitt/x25.h>
104 #include <netccitt/pk.h>
105 #include <netccitt/pk_extern.h>
106 #endif
107 #ifdef NATM
108 #include <netnatm/natm.h>
109 #endif
110 #ifdef NETATALK
111 #include <netatalk/at_extern.h>
112 #endif
113 #include "ppp.h"
114 #if NPPP > 0
115 #include <net/ppp_defs.h>
116 #include <net/if_ppp.h>
117 #endif
118
119 #ifdef DDB
120 #include <machine/db_machdep.h>
121 #include <ddb/db_access.h>
122 #include <ddb/db_sym.h>
123 #include <ddb/db_extern.h>
124 #include <ddb/db_interface.h>
125 #endif
126
127 #include "le_ioasic.h" /* for le_iomem creation */
128
129 vm_map_t buffer_map;
130
131 /*
132 * Declare these as initialized data so we can patch them.
133 */
134 int nswbuf = 0;
135 #ifdef NBUF
136 int nbuf = NBUF;
137 #else
138 int nbuf = 0;
139 #endif
140 #ifdef BUFPAGES
141 int bufpages = BUFPAGES;
142 #else
143 int bufpages = 0;
144 #endif
145 caddr_t msgbufaddr;
146
147 int maxmem; /* max memory per process */
148
149 int totalphysmem; /* total amount of physical memory in system */
150 int physmem; /* physical memory used by NetBSD + some rsvd */
151 int firstusablepage; /* first usable memory page */
152 int lastusablepage; /* last usable memory page */
153 int resvmem; /* amount of memory reserved for PROM */
154 int unusedmem; /* amount of memory for OS that we don't use */
155 int unknownmem; /* amount of memory with an unknown use */
156
157 int cputype; /* system type, from the RPB */
158
159 /*
160 * XXX We need an address to which we can assign things so that they
161 * won't be optimized away because we didn't use the value.
162 */
163 u_int32_t no_optimize;
164
165 /* the following is used externally (sysctl_hw) */
166 char machine[] = MACHINE; /* from <machine/param.h> */
167 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
168 char cpu_model[128];
169
170 struct user *proc0paddr;
171
172 /* Number of machine cycles per microsecond */
173 u_int64_t cycles_per_usec;
174
175 /* some memory areas for device DMA. "ick." */
176 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
177
178 /* number of cpus in the box. really! */
179 int ncpus;
180
181 char boot_flags[64];
182 char booted_kernel[64];
183
184 int bootinfo_valid;
185 struct bootinfo bootinfo;
186
187 struct platform platform;
188
189 #ifdef DDB
190 /* start and end of kernel symbol table */
191 void *ksym_start, *ksym_end;
192 #endif
193
194 /* for cpu_sysctl() */
195 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
196 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
197 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
198
199 int cpu_dump __P((void));
200 int cpu_dumpsize __P((void));
201 void dumpsys __P((void));
202 void identifycpu __P((void));
203 void netintr __P((void));
204 void printregs __P((struct reg *));
205
206 void
207 alpha_init(pfn, ptb, bim, bip)
208 u_long pfn; /* first free PFN number */
209 u_long ptb; /* PFN of current level 1 page table */
210 u_long bim; /* bootinfo magic */
211 u_long bip; /* bootinfo pointer */
212 {
213 extern char _end[];
214 caddr_t start, v;
215 struct mddt *mddtp;
216 int i, mddtweird;
217 char *p;
218
219 /*
220 * Turn off interrupts (not mchecks) and floating point.
221 * Make sure the instruction and data streams are consistent.
222 */
223 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
224 alpha_pal_wrfen(0);
225 ALPHA_TBIA();
226 alpha_pal_imb();
227
228 /*
229 * get address of the restart block, while we the bootstrap
230 * mapping is still around.
231 */
232 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
233 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
234
235 /*
236 * Remember how many cycles there are per microsecond,
237 * so that we can use delay(). Round up, for safety.
238 */
239 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
240
241 /*
242 * Init the PROM interface, so we can use printf
243 * until PROM mappings go away in consinit.
244 */
245 init_prom_interface();
246
247 /*
248 * Check for a bootinfo from the boot program.
249 */
250 if (bim == BOOTINFO_MAGIC) {
251 /*
252 * Have boot info. Copy it to our own storage.
253 * We'll sanity-check it later.
254 */
255 bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
256 switch (bootinfo.version) {
257 case 1:
258 bootinfo_valid = 1;
259 break;
260
261 default:
262 printf("warning: unknown bootinfo version %d\n",
263 bootinfo.version);
264 }
265 } else
266 printf("warning: boot program did not pass bootinfo\n");
267
268 /*
269 * Point interrupt/exception vectors to our own.
270 */
271 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
272 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
273 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
274 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
275 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
276 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
277
278 /*
279 * Clear pending machine checks and error reports, and enable
280 * system- and processor-correctable error reporting.
281 */
282 alpha_pal_wrmces(alpha_pal_rdmces() &
283 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
284
285 /*
286 * Find out how much memory is available, by looking at
287 * the memory cluster descriptors. This also tries to do
288 * its best to detect things things that have never been seen
289 * before...
290 *
291 * XXX Assumes that the first "system" cluster is the
292 * only one we can use. Is the second (etc.) system cluster
293 * (if one happens to exist) guaranteed to be contiguous? or...?
294 */
295 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
296
297 /*
298 * BEGIN MDDT WEIRDNESS CHECKING
299 */
300 mddtweird = 0;
301
302 #define cnt mddtp->mddt_cluster_cnt
303 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
304 if (cnt != 2 && cnt != 3) {
305 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
306 mddtweird = 1;
307 } else if (usage(0) != MDDT_PALCODE ||
308 usage(1) != MDDT_SYSTEM ||
309 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
310 mddtweird = 1;
311 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
312 }
313
314 for (i = 0; i < cnt; i++) {
315 if ((usage(i) & MDDT_mbz) != 0) {
316 printf("WARNING: mem cluster %d has weird usage %lx\n",
317 i, usage(i));
318 mddtweird = 1;
319 }
320 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
321 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
322 mddtweird = 1;
323 }
324 /* XXX other things to check? */
325 }
326 #undef cnt
327 #undef usage
328
329 if (mddtweird) {
330 printf("\n");
331 printf("complete memory cluster information:\n");
332 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
333 printf("mddt %d:\n", i);
334 printf("\tpfn %lx\n",
335 mddtp->mddt_clusters[i].mddt_pfn);
336 printf("\tcnt %lx\n",
337 mddtp->mddt_clusters[i].mddt_pg_cnt);
338 printf("\ttest %lx\n",
339 mddtp->mddt_clusters[i].mddt_pg_test);
340 printf("\tbva %lx\n",
341 mddtp->mddt_clusters[i].mddt_v_bitaddr);
342 printf("\tbpa %lx\n",
343 mddtp->mddt_clusters[i].mddt_p_bitaddr);
344 printf("\tbcksum %lx\n",
345 mddtp->mddt_clusters[i].mddt_bit_cksum);
346 printf("\tusage %lx\n",
347 mddtp->mddt_clusters[i].mddt_usage);
348 }
349 printf("\n");
350 }
351 /*
352 * END MDDT WEIRDNESS CHECKING
353 */
354
355 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
356 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
357 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
358 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
359 if ((usage(i) & MDDT_mbz) != 0)
360 unknownmem += pgcnt(i);
361 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
362 resvmem += pgcnt(i);
363 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
364 /*
365 * assumes that the system cluster listed is
366 * one we're in...
367 */
368 if (physmem != resvmem) {
369 physmem += pgcnt(i);
370 firstusablepage =
371 mddtp->mddt_clusters[i].mddt_pfn;
372 lastusablepage = firstusablepage + pgcnt(i) - 1;
373 } else
374 unusedmem += pgcnt(i);
375 }
376 #undef usage
377 #undef pgcnt
378 }
379 if (totalphysmem == 0)
380 panic("can't happen: system seems to have no memory!");
381 #ifdef LIMITMEM
382 if (totalphysmem >= btoc(LIMITMEM << 20)) {
383 u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
384 printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
385 physmem = totalphysmem = btoc(LIMITMEM << 20);
386 unusedmem += ovf;
387 lastusablepage = firstusablepage + physmem - 1;
388 }
389 #endif
390 maxmem = physmem;
391
392 #if 0
393 printf("totalphysmem = %d\n", totalphysmem);
394 printf("physmem = %d\n", physmem);
395 printf("firstusablepage = %d\n", firstusablepage);
396 printf("lastusablepage = %d\n", lastusablepage);
397 printf("resvmem = %d\n", resvmem);
398 printf("unusedmem = %d\n", unusedmem);
399 printf("unknownmem = %d\n", unknownmem);
400 #endif
401
402 /*
403 * find out this CPU's page size
404 */
405 PAGE_SIZE = hwrpb->rpb_page_size;
406 if (PAGE_SIZE != 8192)
407 panic("page size %d != 8192?!", PAGE_SIZE);
408
409 /*
410 * Find the first free page.
411 */
412 #ifdef DDB
413 if (bootinfo_valid) {
414 /*
415 * Save the kernel symbol table.
416 */
417 switch (bootinfo.version) {
418 case 1:
419 ksym_start = (void *)bootinfo.un.v1.ssym;
420 ksym_end = (void *)bootinfo.un.v1.esym;
421 break;
422 }
423 v = (caddr_t)alpha_round_page(ksym_end);
424 } else
425 #endif
426 v = (caddr_t)alpha_round_page(_end);
427
428 /*
429 * Init mapping for u page(s) for proc 0
430 */
431 start = v;
432 curproc->p_addr = proc0paddr = (struct user *)v;
433 v += UPAGES * NBPG;
434
435 /*
436 * Find out what hardware we're on, and remember its type name.
437 */
438 cputype = hwrpb->rpb_type;
439 if (unknown_cpu(cputype)) {
440 nocpu();
441 /* NOTREACHED */
442 }
443 cpuinit[cputype]();
444 strcpy(cpu_model, platform.model);
445
446 /* XXX SANITY CHECKING. SHOULD GO AWAY */
447 /* XXX We should always be running on the the primary. */
448 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
449 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
450 if (cputype != ST_DEC_21000) /*XXX*/
451 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
452
453 #if NLE_IOASIC > 0
454 /*
455 * Grab 128K at the top of physical memory for the lance chip
456 * on machines where it does dma through the I/O ASIC.
457 * It must be physically contiguous and aligned on a 128K boundary.
458 *
459 * Note that since this is conditional on the presence of
460 * IOASIC-attached 'le' units in the kernel config, the
461 * message buffer may move on these systems. This shouldn't
462 * be a problem, because once people have a kernel config that
463 * they use, they're going to stick with it.
464 */
465 if (cputype == ST_DEC_3000_500 ||
466 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
467 lastusablepage -= btoc(128 * 1024);
468 le_iomem =
469 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
470 }
471 #endif /* NLE_IOASIC */
472
473 /*
474 * Initialize error message buffer (at end of core).
475 */
476 lastusablepage -= btoc(MSGBUFSIZE);
477 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
478 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
479
480
481 /*
482 * Allocate space for system data structures.
483 * The first available kernel virtual address is in "v".
484 * As pages of kernel virtual memory are allocated, "v" is incremented.
485 *
486 * These data structures are allocated here instead of cpu_startup()
487 * because physical memory is directly addressable. We don't have
488 * to map these into virtual address space.
489 */
490 #define valloc(name, type, num) \
491 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
492 #define valloclim(name, type, num, lim) \
493 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
494 #ifdef REAL_CLISTS
495 valloc(cfree, struct cblock, nclist);
496 #endif
497 valloc(callout, struct callout, ncallout);
498 #ifdef SYSVSHM
499 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
500 #endif
501 #ifdef SYSVSEM
502 valloc(sema, struct semid_ds, seminfo.semmni);
503 valloc(sem, struct sem, seminfo.semmns);
504 /* This is pretty disgusting! */
505 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
506 #endif
507 #ifdef SYSVMSG
508 valloc(msgpool, char, msginfo.msgmax);
509 valloc(msgmaps, struct msgmap, msginfo.msgseg);
510 valloc(msghdrs, struct msg, msginfo.msgtql);
511 valloc(msqids, struct msqid_ds, msginfo.msgmni);
512 #endif
513
514 /*
515 * Determine how many buffers to allocate.
516 * We allocate 10% of memory for buffer space. Insure a
517 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
518 * headers as file i/o buffers.
519 */
520 if (bufpages == 0)
521 bufpages = (physmem * 10) / (CLSIZE * 100);
522 if (nbuf == 0) {
523 nbuf = bufpages;
524 if (nbuf < 16)
525 nbuf = 16;
526 }
527 if (nswbuf == 0) {
528 nswbuf = (nbuf / 2) &~ 1; /* force even */
529 if (nswbuf > 256)
530 nswbuf = 256; /* sanity */
531 }
532 valloc(swbuf, struct buf, nswbuf);
533 valloc(buf, struct buf, nbuf);
534
535 /*
536 * Clear allocated memory.
537 */
538 bzero(start, v - start);
539
540 /*
541 * Initialize the virtual memory system, and set the
542 * page table base register in proc 0's PCB.
543 */
544 #ifndef NEW_PMAP
545 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
546 #else
547 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
548 hwrpb->rpb_max_asn);
549 #endif
550
551 /*
552 * Initialize the rest of proc 0's PCB, and cache its physical
553 * address.
554 */
555 proc0.p_md.md_pcbpaddr =
556 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
557
558 /*
559 * Set the kernel sp, reserving space for an (empty) trapframe,
560 * and make proc0's trapframe pointer point to it for sanity.
561 */
562 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
563 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
564 proc0.p_md.md_tf =
565 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
566
567 #ifdef NEW_PMAP
568 /*
569 * Set up the kernel address space in proc0's hwpcb.
570 */
571 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
572 #endif
573
574 /*
575 * Look at arguments passed to us and compute boothowto.
576 * Also, get kernel name so it can be used in user-land.
577 */
578 if (bootinfo_valid) {
579 switch (bootinfo.version) {
580 case 1:
581 bcopy(bootinfo.un.v1.boot_flags, boot_flags,
582 sizeof(boot_flags));
583 bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
584 sizeof(booted_kernel));
585 }
586 } else {
587 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
588 sizeof(boot_flags));
589 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
590 sizeof(booted_kernel));
591 }
592
593 #if 0
594 printf("boot flags = \"%s\"\n", boot_flags);
595 printf("booted kernel = \"%s\"\n", booted_kernel);
596 #endif
597
598 boothowto = RB_SINGLE;
599 #ifdef KADB
600 boothowto |= RB_KDB;
601 #endif
602 for (p = boot_flags; p && *p != '\0'; p++) {
603 /*
604 * Note that we'd really like to differentiate case here,
605 * but the Alpha AXP Architecture Reference Manual
606 * says that we shouldn't.
607 */
608 switch (*p) {
609 case 'a': /* autoboot */
610 case 'A':
611 boothowto &= ~RB_SINGLE;
612 break;
613
614 #ifdef DEBUG
615 case 'c': /* crash dump immediately after autoconfig */
616 case 'C':
617 boothowto |= RB_DUMP;
618 break;
619 #endif
620
621 #if defined(KGDB) || defined(DDB)
622 case 'd': /* break into the kernel debugger ASAP */
623 case 'D':
624 boothowto |= RB_KDB;
625 break;
626 #endif
627
628 case 'h': /* always halt, never reboot */
629 case 'H':
630 boothowto |= RB_HALT;
631 break;
632
633 #if 0
634 case 'm': /* mini root present in memory */
635 case 'M':
636 boothowto |= RB_MINIROOT;
637 break;
638 #endif
639
640 case 'n': /* askname */
641 case 'N':
642 boothowto |= RB_ASKNAME;
643 break;
644
645 case 's': /* single-user (default, supported for sanity) */
646 case 'S':
647 boothowto |= RB_SINGLE;
648 break;
649
650 default:
651 printf("Unrecognized boot flag '%c'.\n", *p);
652 break;
653 }
654 }
655
656 /*
657 * Figure out the number of cpus in the box, from RPB fields.
658 * Really. We mean it.
659 */
660 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
661 struct pcs *pcsp;
662
663 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
664 (i * hwrpb->rpb_pcs_size));
665 if ((pcsp->pcs_flags & PCS_PP) != 0)
666 ncpus++;
667 }
668 }
669
670 void
671 consinit()
672 {
673 if (platform.cons_init)
674 (*platform.cons_init)();
675 pmap_unmap_prom();
676
677 #ifdef DDB
678 db_machine_init();
679 ddb_init(ksym_start, ksym_end);
680 if (boothowto & RB_KDB)
681 Debugger();
682 #endif
683 #ifdef KGDB
684 if (boothowto & RB_KDB)
685 kgdb_connect(0);
686 #endif
687 }
688
689 void
690 cpu_startup()
691 {
692 register unsigned i;
693 int base, residual;
694 vm_offset_t minaddr, maxaddr;
695 vm_size_t size;
696 #if defined(DEBUG)
697 extern int pmapdebug;
698 int opmapdebug = pmapdebug;
699
700 pmapdebug = 0;
701 #endif
702
703 /*
704 * Good {morning,afternoon,evening,night}.
705 */
706 printf(version);
707 identifycpu();
708 printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
709 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
710 if (unusedmem)
711 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
712 if (unknownmem)
713 printf("WARNING: %d bytes of memory with unknown purpose\n",
714 ctob(unknownmem));
715
716 /*
717 * Allocate virtual address space for file I/O buffers.
718 * Note they are different than the array of headers, 'buf',
719 * and usually occupy more virtual memory than physical.
720 */
721 size = MAXBSIZE * nbuf;
722 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
723 &maxaddr, size, TRUE);
724 minaddr = (vm_offset_t)buffers;
725 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
726 &minaddr, size, FALSE) != KERN_SUCCESS)
727 panic("startup: cannot allocate buffers");
728 base = bufpages / nbuf;
729 residual = bufpages % nbuf;
730 for (i = 0; i < nbuf; i++) {
731 vm_size_t curbufsize;
732 vm_offset_t curbuf;
733
734 /*
735 * First <residual> buffers get (base+1) physical pages
736 * allocated for them. The rest get (base) physical pages.
737 *
738 * The rest of each buffer occupies virtual space,
739 * but has no physical memory allocated for it.
740 */
741 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
742 curbufsize = CLBYTES * (i < residual ? base+1 : base);
743 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
744 vm_map_simplify(buffer_map, curbuf);
745 }
746 /*
747 * Allocate a submap for exec arguments. This map effectively
748 * limits the number of processes exec'ing at any time.
749 */
750 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
751 16 * NCARGS, TRUE);
752
753 /*
754 * Allocate a submap for physio
755 */
756 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
757 VM_PHYS_SIZE, TRUE);
758
759 /*
760 * Finally, allocate mbuf cluster submap.
761 */
762 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
763 VM_MBUF_SIZE, FALSE);
764 /*
765 * Initialize callouts
766 */
767 callfree = callout;
768 for (i = 1; i < ncallout; i++)
769 callout[i-1].c_next = &callout[i];
770 callout[i-1].c_next = NULL;
771
772 #if defined(DEBUG)
773 pmapdebug = opmapdebug;
774 #endif
775 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
776 printf("using %ld buffers containing %ld bytes of memory\n",
777 (long)nbuf, (long)(bufpages * CLBYTES));
778
779 /*
780 * Set up buffers, so they can be used to read disk labels.
781 */
782 bufinit();
783
784 /*
785 * Configure the system.
786 */
787 configure();
788
789 /*
790 * Note that bootstrapping is finished, and set the HWRPB up
791 * to do restarts.
792 */
793 hwrpb_restart_setup();
794 }
795
796 void
797 identifycpu()
798 {
799
800 /*
801 * print out CPU identification information.
802 */
803 printf("%s, %ldMHz\n", cpu_model,
804 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
805 printf("%ld byte page size, %d processor%s.\n",
806 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
807 #if 0
808 /* this isn't defined for any systems that we run on? */
809 printf("serial number 0x%lx 0x%lx\n",
810 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
811
812 /* and these aren't particularly useful! */
813 printf("variation: 0x%lx, revision 0x%lx\n",
814 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
815 #endif
816 }
817
818 int waittime = -1;
819 struct pcb dumppcb;
820
821 void
822 cpu_reboot(howto, bootstr)
823 int howto;
824 char *bootstr;
825 {
826 extern int cold;
827
828 /* If system is cold, just halt. */
829 if (cold) {
830 howto |= RB_HALT;
831 goto haltsys;
832 }
833
834 /* If "always halt" was specified as a boot flag, obey. */
835 if ((boothowto & RB_HALT) != 0)
836 howto |= RB_HALT;
837
838 boothowto = howto;
839 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
840 waittime = 0;
841 vfs_shutdown();
842 /*
843 * If we've been adjusting the clock, the todr
844 * will be out of synch; adjust it now.
845 */
846 resettodr();
847 }
848
849 /* Disable interrupts. */
850 splhigh();
851
852 /* If rebooting and a dump is requested do it. */
853 #if 0
854 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
855 #else
856 if (howto & RB_DUMP)
857 #endif
858 dumpsys();
859
860 haltsys:
861
862 /* run any shutdown hooks */
863 doshutdownhooks();
864
865 #ifdef BOOTKEY
866 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
867 cngetc();
868 printf("\n");
869 #endif
870
871 /* Finally, halt/reboot the system. */
872 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
873 prom_halt(howto & RB_HALT);
874 /*NOTREACHED*/
875 }
876
877 /*
878 * These variables are needed by /sbin/savecore
879 */
880 u_long dumpmag = 0x8fca0101; /* magic number */
881 int dumpsize = 0; /* pages */
882 long dumplo = 0; /* blocks */
883
884 /*
885 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
886 */
887 int
888 cpu_dumpsize()
889 {
890 int size;
891
892 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
893 if (roundup(size, dbtob(1)) != dbtob(1))
894 return -1;
895
896 return (1);
897 }
898
899 /*
900 * cpu_dump: dump machine-dependent kernel core dump headers.
901 */
902 int
903 cpu_dump()
904 {
905 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
906 long buf[dbtob(1) / sizeof (long)];
907 kcore_seg_t *segp;
908 cpu_kcore_hdr_t *cpuhdrp;
909
910 dump = bdevsw[major(dumpdev)].d_dump;
911
912 segp = (kcore_seg_t *)buf;
913 cpuhdrp =
914 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
915
916 /*
917 * Generate a segment header.
918 */
919 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
920 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
921
922 /*
923 * Add the machine-dependent header info
924 */
925 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
926 cpuhdrp->page_size = PAGE_SIZE;
927 cpuhdrp->core_seg.start = ctob(firstusablepage);
928 cpuhdrp->core_seg.size = ctob(physmem);
929
930 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
931 }
932
933 /*
934 * This is called by main to set dumplo and dumpsize.
935 * Dumps always skip the first CLBYTES of disk space
936 * in case there might be a disk label stored there.
937 * If there is extra space, put dump at the end to
938 * reduce the chance that swapping trashes it.
939 */
940 void
941 cpu_dumpconf()
942 {
943 int nblks, dumpblks; /* size of dump area */
944 int maj;
945
946 if (dumpdev == NODEV)
947 goto bad;
948 maj = major(dumpdev);
949 if (maj < 0 || maj >= nblkdev)
950 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
951 if (bdevsw[maj].d_psize == NULL)
952 goto bad;
953 nblks = (*bdevsw[maj].d_psize)(dumpdev);
954 if (nblks <= ctod(1))
955 goto bad;
956
957 dumpblks = cpu_dumpsize();
958 if (dumpblks < 0)
959 goto bad;
960 dumpblks += ctod(physmem);
961
962 /* If dump won't fit (incl. room for possible label), punt. */
963 if (dumpblks > (nblks - ctod(1)))
964 goto bad;
965
966 /* Put dump at end of partition */
967 dumplo = nblks - dumpblks;
968
969 /* dumpsize is in page units, and doesn't include headers. */
970 dumpsize = physmem;
971 return;
972
973 bad:
974 dumpsize = 0;
975 return;
976 }
977
978 /*
979 * Dump the kernel's image to the swap partition.
980 */
981 #define BYTES_PER_DUMP NBPG
982
983 void
984 dumpsys()
985 {
986 unsigned bytes, i, n;
987 int maddr, psize;
988 daddr_t blkno;
989 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
990 int error;
991
992 /* Save registers. */
993 savectx(&dumppcb);
994
995 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
996 if (dumpdev == NODEV)
997 return;
998
999 /*
1000 * For dumps during autoconfiguration,
1001 * if dump device has already configured...
1002 */
1003 if (dumpsize == 0)
1004 cpu_dumpconf();
1005 if (dumplo <= 0) {
1006 printf("\ndump to dev %x not possible\n", dumpdev);
1007 return;
1008 }
1009 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
1010
1011 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1012 printf("dump ");
1013 if (psize == -1) {
1014 printf("area unavailable\n");
1015 return;
1016 }
1017
1018 /* XXX should purge all outstanding keystrokes. */
1019
1020 if ((error = cpu_dump()) != 0)
1021 goto err;
1022
1023 bytes = ctob(physmem);
1024 maddr = ctob(firstusablepage);
1025 blkno = dumplo + cpu_dumpsize();
1026 dump = bdevsw[major(dumpdev)].d_dump;
1027 error = 0;
1028 for (i = 0; i < bytes; i += n) {
1029
1030 /* Print out how many MBs we to go. */
1031 n = bytes - i;
1032 if (n && (n % (1024*1024)) == 0)
1033 printf("%d ", n / (1024 * 1024));
1034
1035 /* Limit size for next transfer. */
1036 if (n > BYTES_PER_DUMP)
1037 n = BYTES_PER_DUMP;
1038
1039 error = (*dump)(dumpdev, blkno,
1040 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1041 if (error)
1042 break;
1043 maddr += n;
1044 blkno += btodb(n); /* XXX? */
1045
1046 /* XXX should look for keystrokes, to cancel. */
1047 }
1048
1049 err:
1050 switch (error) {
1051
1052 case ENXIO:
1053 printf("device bad\n");
1054 break;
1055
1056 case EFAULT:
1057 printf("device not ready\n");
1058 break;
1059
1060 case EINVAL:
1061 printf("area improper\n");
1062 break;
1063
1064 case EIO:
1065 printf("i/o error\n");
1066 break;
1067
1068 case EINTR:
1069 printf("aborted from console\n");
1070 break;
1071
1072 case 0:
1073 printf("succeeded\n");
1074 break;
1075
1076 default:
1077 printf("error %d\n", error);
1078 break;
1079 }
1080 printf("\n\n");
1081 delay(1000);
1082 }
1083
1084 void
1085 frametoreg(framep, regp)
1086 struct trapframe *framep;
1087 struct reg *regp;
1088 {
1089
1090 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1091 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1092 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1093 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1094 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1095 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1096 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1097 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1098 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1099 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1100 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1101 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1102 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1103 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1104 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1105 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1106 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1107 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1108 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1109 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1110 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1111 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1112 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1113 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1114 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1115 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1116 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1117 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1118 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1119 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1120 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1121 regp->r_regs[R_ZERO] = 0;
1122 }
1123
1124 void
1125 regtoframe(regp, framep)
1126 struct reg *regp;
1127 struct trapframe *framep;
1128 {
1129
1130 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1131 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1132 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1133 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1134 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1135 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1136 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1137 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1138 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1139 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1140 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1141 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1142 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1143 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1144 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1145 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1146 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1147 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1148 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1149 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1150 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1151 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1152 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1153 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1154 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1155 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1156 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1157 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1158 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1159 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1160 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1161 /* ??? = regp->r_regs[R_ZERO]; */
1162 }
1163
1164 void
1165 printregs(regp)
1166 struct reg *regp;
1167 {
1168 int i;
1169
1170 for (i = 0; i < 32; i++)
1171 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1172 i & 1 ? "\n" : "\t");
1173 }
1174
1175 void
1176 regdump(framep)
1177 struct trapframe *framep;
1178 {
1179 struct reg reg;
1180
1181 frametoreg(framep, ®);
1182 reg.r_regs[R_SP] = alpha_pal_rdusp();
1183
1184 printf("REGISTERS:\n");
1185 printregs(®);
1186 }
1187
1188 #ifdef DEBUG
1189 int sigdebug = 0;
1190 int sigpid = 0;
1191 #define SDB_FOLLOW 0x01
1192 #define SDB_KSTACK 0x02
1193 #endif
1194
1195 /*
1196 * Send an interrupt to process.
1197 */
1198 void
1199 sendsig(catcher, sig, mask, code)
1200 sig_t catcher;
1201 int sig, mask;
1202 u_long code;
1203 {
1204 struct proc *p = curproc;
1205 struct sigcontext *scp, ksc;
1206 struct trapframe *frame;
1207 struct sigacts *psp = p->p_sigacts;
1208 int oonstack, fsize, rndfsize;
1209 extern char sigcode[], esigcode[];
1210 extern struct proc *fpcurproc;
1211
1212 frame = p->p_md.md_tf;
1213 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1214 fsize = sizeof ksc;
1215 rndfsize = ((fsize + 15) / 16) * 16;
1216 /*
1217 * Allocate and validate space for the signal handler
1218 * context. Note that if the stack is in P0 space, the
1219 * call to grow() is a nop, and the useracc() check
1220 * will fail if the process has not already allocated
1221 * the space with a `brk'.
1222 */
1223 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1224 (psp->ps_sigonstack & sigmask(sig))) {
1225 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1226 psp->ps_sigstk.ss_size - rndfsize);
1227 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1228 } else
1229 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1230 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1231 (void)grow(p, (u_long)scp);
1232 #ifdef DEBUG
1233 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1234 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1235 sig, &oonstack, scp);
1236 #endif
1237 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1238 #ifdef DEBUG
1239 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1240 printf("sendsig(%d): useracc failed on sig %d\n",
1241 p->p_pid, sig);
1242 #endif
1243 /*
1244 * Process has trashed its stack; give it an illegal
1245 * instruction to halt it in its tracks.
1246 */
1247 SIGACTION(p, SIGILL) = SIG_DFL;
1248 sig = sigmask(SIGILL);
1249 p->p_sigignore &= ~sig;
1250 p->p_sigcatch &= ~sig;
1251 p->p_sigmask &= ~sig;
1252 psignal(p, SIGILL);
1253 return;
1254 }
1255
1256 /*
1257 * Build the signal context to be used by sigreturn.
1258 */
1259 ksc.sc_onstack = oonstack;
1260 ksc.sc_mask = mask;
1261 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1262 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1263
1264 /* copy the registers. */
1265 frametoreg(frame, (struct reg *)ksc.sc_regs);
1266 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1267 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1268
1269 /* save the floating-point state, if necessary, then copy it. */
1270 if (p == fpcurproc) {
1271 alpha_pal_wrfen(1);
1272 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1273 alpha_pal_wrfen(0);
1274 fpcurproc = NULL;
1275 }
1276 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1277 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1278 sizeof(struct fpreg));
1279 ksc.sc_fp_control = 0; /* XXX ? */
1280 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1281 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1282
1283
1284 #ifdef COMPAT_OSF1
1285 /*
1286 * XXX Create an OSF/1-style sigcontext and associated goo.
1287 */
1288 #endif
1289
1290 /*
1291 * copy the frame out to userland.
1292 */
1293 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1294 #ifdef DEBUG
1295 if (sigdebug & SDB_FOLLOW)
1296 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1297 scp, code);
1298 #endif
1299
1300 /*
1301 * Set up the registers to return to sigcode.
1302 */
1303 frame->tf_regs[FRAME_PC] =
1304 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1305 frame->tf_regs[FRAME_A0] = sig;
1306 frame->tf_regs[FRAME_A1] = code;
1307 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1308 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1309 alpha_pal_wrusp((unsigned long)scp);
1310
1311 #ifdef DEBUG
1312 if (sigdebug & SDB_FOLLOW)
1313 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1314 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1315 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1316 printf("sendsig(%d): sig %d returns\n",
1317 p->p_pid, sig);
1318 #endif
1319 }
1320
1321 /*
1322 * System call to cleanup state after a signal
1323 * has been taken. Reset signal mask and
1324 * stack state from context left by sendsig (above).
1325 * Return to previous pc and psl as specified by
1326 * context left by sendsig. Check carefully to
1327 * make sure that the user has not modified the
1328 * psl to gain improper priviledges or to cause
1329 * a machine fault.
1330 */
1331 /* ARGSUSED */
1332 int
1333 sys_sigreturn(p, v, retval)
1334 struct proc *p;
1335 void *v;
1336 register_t *retval;
1337 {
1338 struct sys_sigreturn_args /* {
1339 syscallarg(struct sigcontext *) sigcntxp;
1340 } */ *uap = v;
1341 struct sigcontext *scp, ksc;
1342 extern struct proc *fpcurproc;
1343
1344 scp = SCARG(uap, sigcntxp);
1345 #ifdef DEBUG
1346 if (sigdebug & SDB_FOLLOW)
1347 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1348 #endif
1349
1350 if (ALIGN(scp) != (u_int64_t)scp)
1351 return (EINVAL);
1352
1353 /*
1354 * Test and fetch the context structure.
1355 * We grab it all at once for speed.
1356 */
1357 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1358 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1359 return (EINVAL);
1360
1361 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1362 return (EINVAL);
1363 /*
1364 * Restore the user-supplied information
1365 */
1366 if (ksc.sc_onstack)
1367 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1368 else
1369 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1370 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1371
1372 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1373 p->p_md.md_tf->tf_regs[FRAME_PS] =
1374 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1375
1376 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1377 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1378
1379 /* XXX ksc.sc_ownedfp ? */
1380 if (p == fpcurproc)
1381 fpcurproc = NULL;
1382 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1383 sizeof(struct fpreg));
1384 /* XXX ksc.sc_fp_control ? */
1385
1386 #ifdef DEBUG
1387 if (sigdebug & SDB_FOLLOW)
1388 printf("sigreturn(%d): returns\n", p->p_pid);
1389 #endif
1390 return (EJUSTRETURN);
1391 }
1392
1393 /*
1394 * machine dependent system variables.
1395 */
1396 int
1397 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1398 int *name;
1399 u_int namelen;
1400 void *oldp;
1401 size_t *oldlenp;
1402 void *newp;
1403 size_t newlen;
1404 struct proc *p;
1405 {
1406 dev_t consdev;
1407
1408 /* all sysctl names at this level are terminal */
1409 if (namelen != 1)
1410 return (ENOTDIR); /* overloaded */
1411
1412 switch (name[0]) {
1413 case CPU_CONSDEV:
1414 if (cn_tab != NULL)
1415 consdev = cn_tab->cn_dev;
1416 else
1417 consdev = NODEV;
1418 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1419 sizeof consdev));
1420
1421 case CPU_ROOT_DEVICE:
1422 return (sysctl_rdstring(oldp, oldlenp, newp,
1423 root_device->dv_xname));
1424
1425 case CPU_UNALIGNED_PRINT:
1426 return (sysctl_int(oldp, oldlenp, newp, newlen,
1427 &alpha_unaligned_print));
1428
1429 case CPU_UNALIGNED_FIX:
1430 return (sysctl_int(oldp, oldlenp, newp, newlen,
1431 &alpha_unaligned_fix));
1432
1433 case CPU_UNALIGNED_SIGBUS:
1434 return (sysctl_int(oldp, oldlenp, newp, newlen,
1435 &alpha_unaligned_sigbus));
1436
1437 case CPU_BOOTED_KERNEL:
1438 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1439
1440 default:
1441 return (EOPNOTSUPP);
1442 }
1443 /* NOTREACHED */
1444 }
1445
1446 /*
1447 * Set registers on exec.
1448 */
1449 void
1450 setregs(p, pack, stack)
1451 register struct proc *p;
1452 struct exec_package *pack;
1453 u_long stack;
1454 {
1455 struct trapframe *tfp = p->p_md.md_tf;
1456 extern struct proc *fpcurproc;
1457 #ifdef DEBUG
1458 int i;
1459 #endif
1460
1461 #ifdef DEBUG
1462 /*
1463 * Crash and dump, if the user requested it.
1464 */
1465 if (boothowto & RB_DUMP)
1466 panic("crash requested by boot flags");
1467 #endif
1468
1469 #ifdef DEBUG
1470 for (i = 0; i < FRAME_SIZE; i++)
1471 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1472 #else
1473 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1474 #endif
1475 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1476 #define FP_RN 2 /* XXX */
1477 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1478 alpha_pal_wrusp(stack);
1479 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1480 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1481
1482 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1483 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1484 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1485 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1486 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1487
1488 p->p_md.md_flags &= ~MDP_FPUSED;
1489 if (fpcurproc == p)
1490 fpcurproc = NULL;
1491 }
1492
1493 void
1494 netintr()
1495 {
1496 int n, s;
1497
1498 s = splhigh();
1499 n = netisr;
1500 netisr = 0;
1501 splx(s);
1502
1503 #define DONETISR(bit, fn) \
1504 do { \
1505 if (n & (1 << (bit))) \
1506 fn; \
1507 } while (0)
1508
1509 #ifdef INET
1510 #if NARP > 0
1511 DONETISR(NETISR_ARP, arpintr());
1512 #endif
1513 DONETISR(NETISR_IP, ipintr());
1514 #endif
1515 #ifdef NETATALK
1516 DONETISR(NETISR_ATALK, atintr());
1517 #endif
1518 #ifdef NS
1519 DONETISR(NETISR_NS, nsintr());
1520 #endif
1521 #ifdef ISO
1522 DONETISR(NETISR_ISO, clnlintr());
1523 #endif
1524 #ifdef CCITT
1525 DONETISR(NETISR_CCITT, ccittintr());
1526 #endif
1527 #ifdef NATM
1528 DONETISR(NETISR_NATM, natmintr());
1529 #endif
1530 #if NPPP > 1
1531 DONETISR(NETISR_PPP, pppintr());
1532 #endif
1533
1534 #undef DONETISR
1535 }
1536
1537 void
1538 do_sir()
1539 {
1540 u_int64_t n;
1541
1542 do {
1543 (void)splhigh();
1544 n = ssir;
1545 ssir = 0;
1546 splsoft(); /* don't recurse through spl0() */
1547
1548 #define DO_SIR(bit, fn) \
1549 do { \
1550 if (n & (bit)) { \
1551 cnt.v_soft++; \
1552 fn; \
1553 } \
1554 } while (0)
1555
1556 DO_SIR(SIR_NET, netintr());
1557 DO_SIR(SIR_CLOCK, softclock());
1558
1559 #undef DO_SIR
1560 } while (ssir != 0);
1561 }
1562
1563 int
1564 spl0()
1565 {
1566
1567 if (ssir)
1568 do_sir(); /* it lowers the IPL itself */
1569
1570 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1571 }
1572
1573 /*
1574 * The following primitives manipulate the run queues. _whichqs tells which
1575 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1576 * into queues, Remrunqueue removes them from queues. The running process is
1577 * on no queue, other processes are on a queue related to p->p_priority,
1578 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1579 * available queues.
1580 */
1581 /*
1582 * setrunqueue(p)
1583 * proc *p;
1584 *
1585 * Call should be made at splclock(), and p->p_stat should be SRUN.
1586 */
1587
1588 void
1589 setrunqueue(p)
1590 struct proc *p;
1591 {
1592 int bit;
1593
1594 /* firewall: p->p_back must be NULL */
1595 if (p->p_back != NULL)
1596 panic("setrunqueue");
1597
1598 bit = p->p_priority >> 2;
1599 whichqs |= (1 << bit);
1600 p->p_forw = (struct proc *)&qs[bit];
1601 p->p_back = qs[bit].ph_rlink;
1602 p->p_back->p_forw = p;
1603 qs[bit].ph_rlink = p;
1604 }
1605
1606 /*
1607 * remrunqueue(p)
1608 *
1609 * Call should be made at splclock().
1610 */
1611 void
1612 remrunqueue(p)
1613 struct proc *p;
1614 {
1615 int bit;
1616
1617 bit = p->p_priority >> 2;
1618 if ((whichqs & (1 << bit)) == 0)
1619 panic("remrunqueue");
1620
1621 p->p_back->p_forw = p->p_forw;
1622 p->p_forw->p_back = p->p_back;
1623 p->p_back = NULL; /* for firewall checking. */
1624
1625 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1626 whichqs &= ~(1 << bit);
1627 }
1628
1629 /*
1630 * Return the best possible estimate of the time in the timeval
1631 * to which tvp points. Unfortunately, we can't read the hardware registers.
1632 * We guarantee that the time will be greater than the value obtained by a
1633 * previous call.
1634 */
1635 void
1636 microtime(tvp)
1637 register struct timeval *tvp;
1638 {
1639 int s = splclock();
1640 static struct timeval lasttime;
1641
1642 *tvp = time;
1643 #ifdef notdef
1644 tvp->tv_usec += clkread();
1645 while (tvp->tv_usec > 1000000) {
1646 tvp->tv_sec++;
1647 tvp->tv_usec -= 1000000;
1648 }
1649 #endif
1650 if (tvp->tv_sec == lasttime.tv_sec &&
1651 tvp->tv_usec <= lasttime.tv_usec &&
1652 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1653 tvp->tv_sec++;
1654 tvp->tv_usec -= 1000000;
1655 }
1656 lasttime = *tvp;
1657 splx(s);
1658 }
1659
1660 /*
1661 * Wait "n" microseconds.
1662 */
1663 void
1664 delay(n)
1665 unsigned long n;
1666 {
1667 long N = cycles_per_usec * (n);
1668
1669 while (N > 0) /* XXX */
1670 N -= 3; /* XXX */
1671 }
1672
1673 #if defined(COMPAT_OSF1) || 1 /* XXX */
1674 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1675 u_long));
1676
1677 void
1678 cpu_exec_ecoff_setregs(p, epp, stack)
1679 struct proc *p;
1680 struct exec_package *epp;
1681 u_long stack;
1682 {
1683 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1684
1685 setregs(p, epp, stack);
1686 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1687 }
1688
1689 /*
1690 * cpu_exec_ecoff_hook():
1691 * cpu-dependent ECOFF format hook for execve().
1692 *
1693 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1694 *
1695 */
1696 int
1697 cpu_exec_ecoff_hook(p, epp)
1698 struct proc *p;
1699 struct exec_package *epp;
1700 {
1701 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1702 extern struct emul emul_netbsd;
1703 #ifdef COMPAT_OSF1
1704 extern struct emul emul_osf1;
1705 #endif
1706
1707 switch (execp->f.f_magic) {
1708 #ifdef COMPAT_OSF1
1709 case ECOFF_MAGIC_ALPHA:
1710 epp->ep_emul = &emul_osf1;
1711 break;
1712 #endif
1713
1714 case ECOFF_MAGIC_NETBSD_ALPHA:
1715 epp->ep_emul = &emul_netbsd;
1716 break;
1717
1718 default:
1719 return ENOEXEC;
1720 }
1721 return 0;
1722 }
1723 #endif
1724
1725 /* XXX XXX BEGIN XXX XXX */
1726 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1727 /* XXX */
1728 vm_offset_t /* XXX */
1729 alpha_XXX_dmamap(v) /* XXX */
1730 vm_offset_t v; /* XXX */
1731 { /* XXX */
1732 /* XXX */
1733 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1734 } /* XXX */
1735 /* XXX XXX END XXX XXX */
1736