machdep.c revision 1.92 1 /* $NetBSD: machdep.c,v 1.92 1997/11/06 00:41:51 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.92 1997/11/06 00:41:51 thorpej Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <vm/vm.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/autoconf.h>
79 #include <machine/cpu.h>
80 #include <machine/reg.h>
81 #include <machine/rpb.h>
82 #include <machine/prom.h>
83 #include <machine/conf.h>
84
85 #include <net/netisr.h>
86 #include <net/if.h>
87
88 #ifdef INET
89 #include <netinet/in.h>
90 #include <netinet/ip_var.h>
91 #include "arp.h"
92 #if NARP > 0
93 #include <netinet/if_inarp.h>
94 #endif
95 #endif
96 #ifdef NS
97 #include <netns/ns_var.h>
98 #endif
99 #ifdef ISO
100 #include <netiso/iso.h>
101 #include <netiso/clnp.h>
102 #endif
103 #ifdef CCITT
104 #include <netccitt/x25.h>
105 #include <netccitt/pk.h>
106 #include <netccitt/pk_extern.h>
107 #endif
108 #ifdef NATM
109 #include <netnatm/natm.h>
110 #endif
111 #ifdef NETATALK
112 #include <netatalk/at_extern.h>
113 #endif
114 #include "ppp.h"
115 #if NPPP > 0
116 #include <net/ppp_defs.h>
117 #include <net/if_ppp.h>
118 #endif
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 #include "le_ioasic.h" /* for le_iomem creation */
129
130 vm_map_t buffer_map;
131
132 /*
133 * Declare these as initialized data so we can patch them.
134 */
135 int nswbuf = 0;
136 #ifdef NBUF
137 int nbuf = NBUF;
138 #else
139 int nbuf = 0;
140 #endif
141 #ifdef BUFPAGES
142 int bufpages = BUFPAGES;
143 #else
144 int bufpages = 0;
145 #endif
146 caddr_t msgbufaddr;
147
148 int maxmem; /* max memory per process */
149
150 int totalphysmem; /* total amount of physical memory in system */
151 int physmem; /* physical memory used by NetBSD + some rsvd */
152 int firstusablepage; /* first usable memory page */
153 int lastusablepage; /* last usable memory page */
154 int resvmem; /* amount of memory reserved for PROM */
155 int unusedmem; /* amount of memory for OS that we don't use */
156 int unknownmem; /* amount of memory with an unknown use */
157
158 int cputype; /* system type, from the RPB */
159
160 /*
161 * XXX We need an address to which we can assign things so that they
162 * won't be optimized away because we didn't use the value.
163 */
164 u_int32_t no_optimize;
165
166 /* the following is used externally (sysctl_hw) */
167 char machine[] = MACHINE; /* from <machine/param.h> */
168 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
169 char cpu_model[128];
170
171 struct user *proc0paddr;
172
173 /* Number of machine cycles per microsecond */
174 u_int64_t cycles_per_usec;
175
176 /* some memory areas for device DMA. "ick." */
177 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
178
179 /* number of cpus in the box. really! */
180 int ncpus;
181
182 char boot_flags[64];
183 char booted_kernel[64];
184
185 int bootinfo_valid;
186 struct bootinfo bootinfo;
187
188 struct platform platform;
189
190 u_int32_t vm_mbuf_size = (NMBCLUSTERS*MCLBYTES);
191 u_int32_t vm_kmem_size = (NKMEMCLUSTERS*CLBYTES);
192 u_int32_t vm_phys_size = (USRIOSIZE*CLBYTES);
193
194 #ifdef DDB
195 /* start and end of kernel symbol table */
196 void *ksym_start, *ksym_end;
197 #endif
198
199 /* for cpu_sysctl() */
200 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
201 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
202 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
203
204 int cpu_dump __P((void));
205 int cpu_dumpsize __P((void));
206 void dumpsys __P((void));
207 void identifycpu __P((void));
208 void netintr __P((void));
209 void printregs __P((struct reg *));
210
211 void
212 alpha_init(pfn, ptb, bim, bip)
213 u_long pfn; /* first free PFN number */
214 u_long ptb; /* PFN of current level 1 page table */
215 u_long bim; /* bootinfo magic */
216 u_long bip; /* bootinfo pointer */
217 {
218 extern char _end[];
219 caddr_t start, v;
220 struct mddt *mddtp;
221 int i, mddtweird;
222 char *p;
223
224 /*
225 * Turn off interrupts (not mchecks) and floating point.
226 * Make sure the instruction and data streams are consistent.
227 */
228 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
229 alpha_pal_wrfen(0);
230 ALPHA_TBIA();
231 alpha_pal_imb();
232
233 /*
234 * get address of the restart block, while we the bootstrap
235 * mapping is still around.
236 */
237 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
238 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
239
240 /*
241 * Remember how many cycles there are per microsecond,
242 * so that we can use delay(). Round up, for safety.
243 */
244 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
245
246 /*
247 * Init the PROM interface, so we can use printf
248 * until PROM mappings go away in consinit.
249 */
250 init_prom_interface();
251
252 /*
253 * Check for a bootinfo from the boot program.
254 */
255 if (bim == BOOTINFO_MAGIC) {
256 /*
257 * Have boot info. Copy it to our own storage.
258 * We'll sanity-check it later.
259 */
260 bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
261 switch (bootinfo.version) {
262 case 1:
263 bootinfo_valid = 1;
264 break;
265
266 default:
267 printf("warning: unknown bootinfo version %d\n",
268 bootinfo.version);
269 }
270 } else
271 printf("warning: boot program did not pass bootinfo\n");
272
273 /*
274 * Point interrupt/exception vectors to our own.
275 */
276 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
277 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
278 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
279 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
280 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
281 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
282
283 /*
284 * Clear pending machine checks and error reports, and enable
285 * system- and processor-correctable error reporting.
286 */
287 alpha_pal_wrmces(alpha_pal_rdmces() &
288 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
289
290 /*
291 * Find out how much memory is available, by looking at
292 * the memory cluster descriptors. This also tries to do
293 * its best to detect things things that have never been seen
294 * before...
295 *
296 * XXX Assumes that the first "system" cluster is the
297 * only one we can use. Is the second (etc.) system cluster
298 * (if one happens to exist) guaranteed to be contiguous? or...?
299 */
300 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
301
302 /*
303 * BEGIN MDDT WEIRDNESS CHECKING
304 */
305 mddtweird = 0;
306
307 #define cnt mddtp->mddt_cluster_cnt
308 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
309 if (cnt != 2 && cnt != 3) {
310 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
311 mddtweird = 1;
312 } else if (usage(0) != MDDT_PALCODE ||
313 usage(1) != MDDT_SYSTEM ||
314 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
315 mddtweird = 1;
316 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
317 }
318
319 for (i = 0; i < cnt; i++) {
320 if ((usage(i) & MDDT_mbz) != 0) {
321 printf("WARNING: mem cluster %d has weird usage %lx\n",
322 i, usage(i));
323 mddtweird = 1;
324 }
325 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
326 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
327 mddtweird = 1;
328 }
329 /* XXX other things to check? */
330 }
331 #undef cnt
332 #undef usage
333
334 if (mddtweird) {
335 printf("\n");
336 printf("complete memory cluster information:\n");
337 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
338 printf("mddt %d:\n", i);
339 printf("\tpfn %lx\n",
340 mddtp->mddt_clusters[i].mddt_pfn);
341 printf("\tcnt %lx\n",
342 mddtp->mddt_clusters[i].mddt_pg_cnt);
343 printf("\ttest %lx\n",
344 mddtp->mddt_clusters[i].mddt_pg_test);
345 printf("\tbva %lx\n",
346 mddtp->mddt_clusters[i].mddt_v_bitaddr);
347 printf("\tbpa %lx\n",
348 mddtp->mddt_clusters[i].mddt_p_bitaddr);
349 printf("\tbcksum %lx\n",
350 mddtp->mddt_clusters[i].mddt_bit_cksum);
351 printf("\tusage %lx\n",
352 mddtp->mddt_clusters[i].mddt_usage);
353 }
354 printf("\n");
355 }
356 /*
357 * END MDDT WEIRDNESS CHECKING
358 */
359
360 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
361 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
362 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
363 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
364 if ((usage(i) & MDDT_mbz) != 0)
365 unknownmem += pgcnt(i);
366 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
367 resvmem += pgcnt(i);
368 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
369 /*
370 * assumes that the system cluster listed is
371 * one we're in...
372 */
373 if (physmem != resvmem) {
374 physmem += pgcnt(i);
375 firstusablepage =
376 mddtp->mddt_clusters[i].mddt_pfn;
377 lastusablepage = firstusablepage + pgcnt(i) - 1;
378 } else
379 unusedmem += pgcnt(i);
380 }
381 #undef usage
382 #undef pgcnt
383 }
384 if (totalphysmem == 0)
385 panic("can't happen: system seems to have no memory!");
386 #ifdef LIMITMEM
387 if (totalphysmem >= btoc(LIMITMEM << 20)) {
388 u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
389 printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
390 physmem = totalphysmem = btoc(LIMITMEM << 20);
391 unusedmem += ovf;
392 lastusablepage = firstusablepage + physmem - 1;
393 }
394 #endif
395 maxmem = physmem;
396
397 #if 0
398 printf("totalphysmem = %d\n", totalphysmem);
399 printf("physmem = %d\n", physmem);
400 printf("firstusablepage = %d\n", firstusablepage);
401 printf("lastusablepage = %d\n", lastusablepage);
402 printf("resvmem = %d\n", resvmem);
403 printf("unusedmem = %d\n", unusedmem);
404 printf("unknownmem = %d\n", unknownmem);
405 #endif
406
407 /*
408 * Adjust some parameters if the amount of physmem
409 * available would cause us to croak. This is completely
410 * eyeballed and isn't meant to be the final answer.
411 * vm_phys_size is probably the only one to really worry
412 * about.
413 *
414 * It's for booting a GENERIC kernel on a large memory platform.
415 */
416 if (physmem >= btoc(128 << 20)) {
417 vm_mbuf_size <<= 1;
418 if (physmem >= btoc(1024 << 20)) {
419 vm_kmem_size <<= 4;
420 vm_phys_size <<= 5;
421 } else {
422 vm_kmem_size <<= 3;
423 vm_phys_size <<= 2;
424 }
425 }
426
427 /*
428 * find out this CPU's page size
429 */
430 PAGE_SIZE = hwrpb->rpb_page_size;
431 if (PAGE_SIZE != 8192)
432 panic("page size %d != 8192?!", PAGE_SIZE);
433
434 /*
435 * Find the first free page.
436 */
437 #ifdef DDB
438 if (bootinfo_valid) {
439 /*
440 * Save the kernel symbol table.
441 */
442 switch (bootinfo.version) {
443 case 1:
444 ksym_start = (void *)bootinfo.un.v1.ssym;
445 ksym_end = (void *)bootinfo.un.v1.esym;
446 break;
447 }
448 v = (caddr_t)alpha_round_page(ksym_end);
449 } else
450 #endif
451 v = (caddr_t)alpha_round_page(_end);
452
453 /*
454 * Init mapping for u page(s) for proc 0
455 */
456 start = v;
457 curproc->p_addr = proc0paddr = (struct user *)v;
458 v += UPAGES * NBPG;
459
460 /*
461 * Find out what hardware we're on, and remember its type name.
462 */
463 cputype = hwrpb->rpb_type;
464 if (cputype >= ncpuinit) {
465 platform_not_supported();
466 /* NOTREACHED */
467 }
468 (*cpuinit[cputype].init)();
469 strcpy(cpu_model, platform.model);
470
471 /* XXX SANITY CHECKING. SHOULD GO AWAY */
472 /* XXX We should always be running on the the primary. */
473 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
474 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
475 if (cputype != ST_DEC_21000) /*XXX*/
476 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
477
478 #if NLE_IOASIC > 0
479 /*
480 * Grab 128K at the top of physical memory for the lance chip
481 * on machines where it does dma through the I/O ASIC.
482 * It must be physically contiguous and aligned on a 128K boundary.
483 *
484 * Note that since this is conditional on the presence of
485 * IOASIC-attached 'le' units in the kernel config, the
486 * message buffer may move on these systems. This shouldn't
487 * be a problem, because once people have a kernel config that
488 * they use, they're going to stick with it.
489 */
490 if (cputype == ST_DEC_3000_500 ||
491 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
492 lastusablepage -= btoc(128 * 1024);
493 le_iomem =
494 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
495 }
496 #endif /* NLE_IOASIC */
497
498 /*
499 * Initialize error message buffer (at end of core).
500 */
501 lastusablepage -= btoc(MSGBUFSIZE);
502 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
503 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
504
505
506 /*
507 * Allocate space for system data structures.
508 * The first available kernel virtual address is in "v".
509 * As pages of kernel virtual memory are allocated, "v" is incremented.
510 *
511 * These data structures are allocated here instead of cpu_startup()
512 * because physical memory is directly addressable. We don't have
513 * to map these into virtual address space.
514 */
515 #define valloc(name, type, num) \
516 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
517 #define valloclim(name, type, num, lim) \
518 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
519 #ifdef REAL_CLISTS
520 valloc(cfree, struct cblock, nclist);
521 #endif
522 valloc(callout, struct callout, ncallout);
523 #ifdef SYSVSHM
524 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
525 #endif
526 #ifdef SYSVSEM
527 valloc(sema, struct semid_ds, seminfo.semmni);
528 valloc(sem, struct sem, seminfo.semmns);
529 /* This is pretty disgusting! */
530 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
531 #endif
532 #ifdef SYSVMSG
533 valloc(msgpool, char, msginfo.msgmax);
534 valloc(msgmaps, struct msgmap, msginfo.msgseg);
535 valloc(msghdrs, struct msg, msginfo.msgtql);
536 valloc(msqids, struct msqid_ds, msginfo.msgmni);
537 #endif
538
539 /*
540 * Determine how many buffers to allocate.
541 * We allocate 10% of memory for buffer space. Insure a
542 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
543 * headers as file i/o buffers.
544 */
545 if (bufpages == 0)
546 bufpages = (physmem * 10) / (CLSIZE * 100);
547 if (nbuf == 0) {
548 nbuf = bufpages;
549 if (nbuf < 16)
550 nbuf = 16;
551 }
552 if (nswbuf == 0) {
553 nswbuf = (nbuf / 2) &~ 1; /* force even */
554 if (nswbuf > 256)
555 nswbuf = 256; /* sanity */
556 }
557 valloc(swbuf, struct buf, nswbuf);
558 valloc(buf, struct buf, nbuf);
559
560 /*
561 * Clear allocated memory.
562 */
563 bzero(start, v - start);
564
565 /*
566 * Initialize the virtual memory system, and set the
567 * page table base register in proc 0's PCB.
568 */
569 #ifndef NEW_PMAP
570 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
571 #else
572 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
573 hwrpb->rpb_max_asn);
574 #endif
575
576 /*
577 * Initialize the rest of proc 0's PCB, and cache its physical
578 * address.
579 */
580 proc0.p_md.md_pcbpaddr =
581 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
582
583 /*
584 * Set the kernel sp, reserving space for an (empty) trapframe,
585 * and make proc0's trapframe pointer point to it for sanity.
586 */
587 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
588 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
589 proc0.p_md.md_tf =
590 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
591
592 #ifdef NEW_PMAP
593 /*
594 * Set up the kernel address space in proc0's hwpcb.
595 */
596 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
597 #endif
598
599 /*
600 * Look at arguments passed to us and compute boothowto.
601 * Also, get kernel name so it can be used in user-land.
602 */
603 if (bootinfo_valid) {
604 switch (bootinfo.version) {
605 case 1:
606 bcopy(bootinfo.un.v1.boot_flags, boot_flags,
607 sizeof(boot_flags));
608 bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
609 sizeof(booted_kernel));
610 }
611 } else {
612 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
613 sizeof(boot_flags));
614 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
615 sizeof(booted_kernel));
616 }
617
618 #if 0
619 printf("boot flags = \"%s\"\n", boot_flags);
620 printf("booted kernel = \"%s\"\n", booted_kernel);
621 #endif
622
623 boothowto = RB_SINGLE;
624 #ifdef KADB
625 boothowto |= RB_KDB;
626 #endif
627 for (p = boot_flags; p && *p != '\0'; p++) {
628 /*
629 * Note that we'd really like to differentiate case here,
630 * but the Alpha AXP Architecture Reference Manual
631 * says that we shouldn't.
632 */
633 switch (*p) {
634 case 'a': /* autoboot */
635 case 'A':
636 boothowto &= ~RB_SINGLE;
637 break;
638
639 #ifdef DEBUG
640 case 'c': /* crash dump immediately after autoconfig */
641 case 'C':
642 boothowto |= RB_DUMP;
643 break;
644 #endif
645
646 #if defined(KGDB) || defined(DDB)
647 case 'd': /* break into the kernel debugger ASAP */
648 case 'D':
649 boothowto |= RB_KDB;
650 break;
651 #endif
652
653 case 'h': /* always halt, never reboot */
654 case 'H':
655 boothowto |= RB_HALT;
656 break;
657
658 #if 0
659 case 'm': /* mini root present in memory */
660 case 'M':
661 boothowto |= RB_MINIROOT;
662 break;
663 #endif
664
665 case 'n': /* askname */
666 case 'N':
667 boothowto |= RB_ASKNAME;
668 break;
669
670 case 's': /* single-user (default, supported for sanity) */
671 case 'S':
672 boothowto |= RB_SINGLE;
673 break;
674
675 default:
676 printf("Unrecognized boot flag '%c'.\n", *p);
677 break;
678 }
679 }
680
681 /*
682 * Figure out the number of cpus in the box, from RPB fields.
683 * Really. We mean it.
684 */
685 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
686 struct pcs *pcsp;
687
688 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
689 (i * hwrpb->rpb_pcs_size));
690 if ((pcsp->pcs_flags & PCS_PP) != 0)
691 ncpus++;
692 }
693 }
694
695 void
696 consinit()
697 {
698 if (platform.cons_init)
699 (*platform.cons_init)();
700 pmap_unmap_prom();
701
702 #ifdef DDB
703 db_machine_init();
704 ddb_init(ksym_start, ksym_end);
705 if (boothowto & RB_KDB)
706 Debugger();
707 #endif
708 #ifdef KGDB
709 if (boothowto & RB_KDB)
710 kgdb_connect(0);
711 #endif
712 }
713
714 void
715 cpu_startup()
716 {
717 register unsigned i;
718 int base, residual;
719 vm_offset_t minaddr, maxaddr;
720 vm_size_t size;
721 #if defined(DEBUG)
722 extern int pmapdebug;
723 int opmapdebug = pmapdebug;
724
725 pmapdebug = 0;
726 #endif
727
728 /*
729 * Good {morning,afternoon,evening,night}.
730 */
731 printf(version);
732 identifycpu();
733 printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
734 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
735 if (unusedmem)
736 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
737 if (unknownmem)
738 printf("WARNING: %d bytes of memory with unknown purpose\n",
739 ctob(unknownmem));
740
741 /*
742 * Allocate virtual address space for file I/O buffers.
743 * Note they are different than the array of headers, 'buf',
744 * and usually occupy more virtual memory than physical.
745 */
746 size = MAXBSIZE * nbuf;
747 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
748 &maxaddr, size, TRUE);
749 minaddr = (vm_offset_t)buffers;
750 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
751 &minaddr, size, FALSE) != KERN_SUCCESS)
752 panic("startup: cannot allocate buffers");
753 base = bufpages / nbuf;
754 residual = bufpages % nbuf;
755 for (i = 0; i < nbuf; i++) {
756 vm_size_t curbufsize;
757 vm_offset_t curbuf;
758
759 /*
760 * First <residual> buffers get (base+1) physical pages
761 * allocated for them. The rest get (base) physical pages.
762 *
763 * The rest of each buffer occupies virtual space,
764 * but has no physical memory allocated for it.
765 */
766 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
767 curbufsize = CLBYTES * (i < residual ? base+1 : base);
768 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
769 vm_map_simplify(buffer_map, curbuf);
770 }
771 /*
772 * Allocate a submap for exec arguments. This map effectively
773 * limits the number of processes exec'ing at any time.
774 */
775 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
776 16 * NCARGS, TRUE);
777
778 /*
779 * Allocate a submap for physio
780 */
781 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
782 VM_PHYS_SIZE, TRUE);
783
784 /*
785 * Finally, allocate mbuf cluster submap.
786 */
787 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
788 VM_MBUF_SIZE, FALSE);
789 /*
790 * Initialize callouts
791 */
792 callfree = callout;
793 for (i = 1; i < ncallout; i++)
794 callout[i-1].c_next = &callout[i];
795 callout[i-1].c_next = NULL;
796
797 #if defined(DEBUG)
798 pmapdebug = opmapdebug;
799 #endif
800 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
801 printf("using %ld buffers containing %ld bytes of memory\n",
802 (long)nbuf, (long)(bufpages * CLBYTES));
803
804 /*
805 * Set up buffers, so they can be used to read disk labels.
806 */
807 bufinit();
808
809 /*
810 * Configure the system.
811 */
812 configure();
813
814 /*
815 * Note that bootstrapping is finished, and set the HWRPB up
816 * to do restarts.
817 */
818 hwrpb_restart_setup();
819 }
820
821 void
822 identifycpu()
823 {
824
825 /*
826 * print out CPU identification information.
827 */
828 printf("%s, %ldMHz\n", cpu_model,
829 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
830 printf("%ld byte page size, %d processor%s.\n",
831 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
832 #if 0
833 /* this isn't defined for any systems that we run on? */
834 printf("serial number 0x%lx 0x%lx\n",
835 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
836
837 /* and these aren't particularly useful! */
838 printf("variation: 0x%lx, revision 0x%lx\n",
839 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
840 #endif
841 }
842
843 int waittime = -1;
844 struct pcb dumppcb;
845
846 void
847 cpu_reboot(howto, bootstr)
848 int howto;
849 char *bootstr;
850 {
851 extern int cold;
852
853 /* If system is cold, just halt. */
854 if (cold) {
855 howto |= RB_HALT;
856 goto haltsys;
857 }
858
859 /* If "always halt" was specified as a boot flag, obey. */
860 if ((boothowto & RB_HALT) != 0)
861 howto |= RB_HALT;
862
863 boothowto = howto;
864 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
865 waittime = 0;
866 vfs_shutdown();
867 /*
868 * If we've been adjusting the clock, the todr
869 * will be out of synch; adjust it now.
870 */
871 resettodr();
872 }
873
874 /* Disable interrupts. */
875 splhigh();
876
877 /* If rebooting and a dump is requested do it. */
878 #if 0
879 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
880 #else
881 if (howto & RB_DUMP)
882 #endif
883 dumpsys();
884
885 haltsys:
886
887 /* run any shutdown hooks */
888 doshutdownhooks();
889
890 #ifdef BOOTKEY
891 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
892 cngetc();
893 printf("\n");
894 #endif
895
896 /* Finally, halt/reboot the system. */
897 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
898 prom_halt(howto & RB_HALT);
899 /*NOTREACHED*/
900 }
901
902 /*
903 * These variables are needed by /sbin/savecore
904 */
905 u_long dumpmag = 0x8fca0101; /* magic number */
906 int dumpsize = 0; /* pages */
907 long dumplo = 0; /* blocks */
908
909 /*
910 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
911 */
912 int
913 cpu_dumpsize()
914 {
915 int size;
916
917 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
918 if (roundup(size, dbtob(1)) != dbtob(1))
919 return -1;
920
921 return (1);
922 }
923
924 /*
925 * cpu_dump: dump machine-dependent kernel core dump headers.
926 */
927 int
928 cpu_dump()
929 {
930 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
931 long buf[dbtob(1) / sizeof (long)];
932 kcore_seg_t *segp;
933 cpu_kcore_hdr_t *cpuhdrp;
934
935 dump = bdevsw[major(dumpdev)].d_dump;
936
937 segp = (kcore_seg_t *)buf;
938 cpuhdrp =
939 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
940
941 /*
942 * Generate a segment header.
943 */
944 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
945 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
946
947 /*
948 * Add the machine-dependent header info
949 */
950 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
951 cpuhdrp->page_size = PAGE_SIZE;
952 cpuhdrp->core_seg.start = ctob(firstusablepage);
953 cpuhdrp->core_seg.size = ctob(physmem);
954
955 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
956 }
957
958 /*
959 * This is called by main to set dumplo and dumpsize.
960 * Dumps always skip the first CLBYTES of disk space
961 * in case there might be a disk label stored there.
962 * If there is extra space, put dump at the end to
963 * reduce the chance that swapping trashes it.
964 */
965 void
966 cpu_dumpconf()
967 {
968 int nblks, dumpblks; /* size of dump area */
969 int maj;
970
971 if (dumpdev == NODEV)
972 goto bad;
973 maj = major(dumpdev);
974 if (maj < 0 || maj >= nblkdev)
975 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
976 if (bdevsw[maj].d_psize == NULL)
977 goto bad;
978 nblks = (*bdevsw[maj].d_psize)(dumpdev);
979 if (nblks <= ctod(1))
980 goto bad;
981
982 dumpblks = cpu_dumpsize();
983 if (dumpblks < 0)
984 goto bad;
985 dumpblks += ctod(physmem);
986
987 /* If dump won't fit (incl. room for possible label), punt. */
988 if (dumpblks > (nblks - ctod(1)))
989 goto bad;
990
991 /* Put dump at end of partition */
992 dumplo = nblks - dumpblks;
993
994 /* dumpsize is in page units, and doesn't include headers. */
995 dumpsize = physmem;
996 return;
997
998 bad:
999 dumpsize = 0;
1000 return;
1001 }
1002
1003 /*
1004 * Dump the kernel's image to the swap partition.
1005 */
1006 #define BYTES_PER_DUMP NBPG
1007
1008 void
1009 dumpsys()
1010 {
1011 unsigned bytes, i, n;
1012 int maddr, psize;
1013 daddr_t blkno;
1014 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1015 int error;
1016
1017 /* Save registers. */
1018 savectx(&dumppcb);
1019
1020 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1021 if (dumpdev == NODEV)
1022 return;
1023
1024 /*
1025 * For dumps during autoconfiguration,
1026 * if dump device has already configured...
1027 */
1028 if (dumpsize == 0)
1029 cpu_dumpconf();
1030 if (dumplo <= 0) {
1031 printf("\ndump to dev %x not possible\n", dumpdev);
1032 return;
1033 }
1034 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
1035
1036 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1037 printf("dump ");
1038 if (psize == -1) {
1039 printf("area unavailable\n");
1040 return;
1041 }
1042
1043 /* XXX should purge all outstanding keystrokes. */
1044
1045 if ((error = cpu_dump()) != 0)
1046 goto err;
1047
1048 bytes = ctob(physmem);
1049 maddr = ctob(firstusablepage);
1050 blkno = dumplo + cpu_dumpsize();
1051 dump = bdevsw[major(dumpdev)].d_dump;
1052 error = 0;
1053 for (i = 0; i < bytes; i += n) {
1054
1055 /* Print out how many MBs we to go. */
1056 n = bytes - i;
1057 if (n && (n % (1024*1024)) == 0)
1058 printf("%d ", n / (1024 * 1024));
1059
1060 /* Limit size for next transfer. */
1061 if (n > BYTES_PER_DUMP)
1062 n = BYTES_PER_DUMP;
1063
1064 error = (*dump)(dumpdev, blkno,
1065 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1066 if (error)
1067 break;
1068 maddr += n;
1069 blkno += btodb(n); /* XXX? */
1070
1071 /* XXX should look for keystrokes, to cancel. */
1072 }
1073
1074 err:
1075 switch (error) {
1076
1077 case ENXIO:
1078 printf("device bad\n");
1079 break;
1080
1081 case EFAULT:
1082 printf("device not ready\n");
1083 break;
1084
1085 case EINVAL:
1086 printf("area improper\n");
1087 break;
1088
1089 case EIO:
1090 printf("i/o error\n");
1091 break;
1092
1093 case EINTR:
1094 printf("aborted from console\n");
1095 break;
1096
1097 case 0:
1098 printf("succeeded\n");
1099 break;
1100
1101 default:
1102 printf("error %d\n", error);
1103 break;
1104 }
1105 printf("\n\n");
1106 delay(1000);
1107 }
1108
1109 void
1110 frametoreg(framep, regp)
1111 struct trapframe *framep;
1112 struct reg *regp;
1113 {
1114
1115 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1116 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1117 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1118 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1119 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1120 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1121 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1122 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1123 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1124 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1125 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1126 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1127 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1128 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1129 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1130 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1131 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1132 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1133 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1134 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1135 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1136 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1137 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1138 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1139 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1140 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1141 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1142 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1143 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1144 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1145 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1146 regp->r_regs[R_ZERO] = 0;
1147 }
1148
1149 void
1150 regtoframe(regp, framep)
1151 struct reg *regp;
1152 struct trapframe *framep;
1153 {
1154
1155 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1156 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1157 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1158 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1159 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1160 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1161 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1162 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1163 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1164 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1165 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1166 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1167 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1168 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1169 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1170 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1171 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1172 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1173 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1174 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1175 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1176 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1177 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1178 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1179 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1180 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1181 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1182 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1183 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1184 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1185 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1186 /* ??? = regp->r_regs[R_ZERO]; */
1187 }
1188
1189 void
1190 printregs(regp)
1191 struct reg *regp;
1192 {
1193 int i;
1194
1195 for (i = 0; i < 32; i++)
1196 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1197 i & 1 ? "\n" : "\t");
1198 }
1199
1200 void
1201 regdump(framep)
1202 struct trapframe *framep;
1203 {
1204 struct reg reg;
1205
1206 frametoreg(framep, ®);
1207 reg.r_regs[R_SP] = alpha_pal_rdusp();
1208
1209 printf("REGISTERS:\n");
1210 printregs(®);
1211 }
1212
1213 #ifdef DEBUG
1214 int sigdebug = 0;
1215 int sigpid = 0;
1216 #define SDB_FOLLOW 0x01
1217 #define SDB_KSTACK 0x02
1218 #endif
1219
1220 /*
1221 * Send an interrupt to process.
1222 */
1223 void
1224 sendsig(catcher, sig, mask, code)
1225 sig_t catcher;
1226 int sig, mask;
1227 u_long code;
1228 {
1229 struct proc *p = curproc;
1230 struct sigcontext *scp, ksc;
1231 struct trapframe *frame;
1232 struct sigacts *psp = p->p_sigacts;
1233 int oonstack, fsize, rndfsize;
1234 extern char sigcode[], esigcode[];
1235 extern struct proc *fpcurproc;
1236
1237 frame = p->p_md.md_tf;
1238 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1239 fsize = sizeof ksc;
1240 rndfsize = ((fsize + 15) / 16) * 16;
1241 /*
1242 * Allocate and validate space for the signal handler
1243 * context. Note that if the stack is in P0 space, the
1244 * call to grow() is a nop, and the useracc() check
1245 * will fail if the process has not already allocated
1246 * the space with a `brk'.
1247 */
1248 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1249 (psp->ps_sigonstack & sigmask(sig))) {
1250 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1251 psp->ps_sigstk.ss_size - rndfsize);
1252 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1253 } else
1254 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1255 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1256 (void)grow(p, (u_long)scp);
1257 #ifdef DEBUG
1258 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1259 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1260 sig, &oonstack, scp);
1261 #endif
1262 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1263 #ifdef DEBUG
1264 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1265 printf("sendsig(%d): useracc failed on sig %d\n",
1266 p->p_pid, sig);
1267 #endif
1268 /*
1269 * Process has trashed its stack; give it an illegal
1270 * instruction to halt it in its tracks.
1271 */
1272 SIGACTION(p, SIGILL) = SIG_DFL;
1273 sig = sigmask(SIGILL);
1274 p->p_sigignore &= ~sig;
1275 p->p_sigcatch &= ~sig;
1276 p->p_sigmask &= ~sig;
1277 psignal(p, SIGILL);
1278 return;
1279 }
1280
1281 /*
1282 * Build the signal context to be used by sigreturn.
1283 */
1284 ksc.sc_onstack = oonstack;
1285 ksc.sc_mask = mask;
1286 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1287 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1288
1289 /* copy the registers. */
1290 frametoreg(frame, (struct reg *)ksc.sc_regs);
1291 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1292 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1293
1294 /* save the floating-point state, if necessary, then copy it. */
1295 if (p == fpcurproc) {
1296 alpha_pal_wrfen(1);
1297 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1298 alpha_pal_wrfen(0);
1299 fpcurproc = NULL;
1300 }
1301 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1302 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1303 sizeof(struct fpreg));
1304 ksc.sc_fp_control = 0; /* XXX ? */
1305 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1306 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1307
1308
1309 #ifdef COMPAT_OSF1
1310 /*
1311 * XXX Create an OSF/1-style sigcontext and associated goo.
1312 */
1313 #endif
1314
1315 /*
1316 * copy the frame out to userland.
1317 */
1318 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1319 #ifdef DEBUG
1320 if (sigdebug & SDB_FOLLOW)
1321 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1322 scp, code);
1323 #endif
1324
1325 /*
1326 * Set up the registers to return to sigcode.
1327 */
1328 frame->tf_regs[FRAME_PC] =
1329 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1330 frame->tf_regs[FRAME_A0] = sig;
1331 frame->tf_regs[FRAME_A1] = code;
1332 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1333 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1334 alpha_pal_wrusp((unsigned long)scp);
1335
1336 #ifdef DEBUG
1337 if (sigdebug & SDB_FOLLOW)
1338 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1339 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1340 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1341 printf("sendsig(%d): sig %d returns\n",
1342 p->p_pid, sig);
1343 #endif
1344 }
1345
1346 /*
1347 * System call to cleanup state after a signal
1348 * has been taken. Reset signal mask and
1349 * stack state from context left by sendsig (above).
1350 * Return to previous pc and psl as specified by
1351 * context left by sendsig. Check carefully to
1352 * make sure that the user has not modified the
1353 * psl to gain improper priviledges or to cause
1354 * a machine fault.
1355 */
1356 /* ARGSUSED */
1357 int
1358 sys_sigreturn(p, v, retval)
1359 struct proc *p;
1360 void *v;
1361 register_t *retval;
1362 {
1363 struct sys_sigreturn_args /* {
1364 syscallarg(struct sigcontext *) sigcntxp;
1365 } */ *uap = v;
1366 struct sigcontext *scp, ksc;
1367 extern struct proc *fpcurproc;
1368
1369 scp = SCARG(uap, sigcntxp);
1370 #ifdef DEBUG
1371 if (sigdebug & SDB_FOLLOW)
1372 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1373 #endif
1374
1375 if (ALIGN(scp) != (u_int64_t)scp)
1376 return (EINVAL);
1377
1378 /*
1379 * Test and fetch the context structure.
1380 * We grab it all at once for speed.
1381 */
1382 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1383 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1384 return (EINVAL);
1385
1386 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1387 return (EINVAL);
1388 /*
1389 * Restore the user-supplied information
1390 */
1391 if (ksc.sc_onstack)
1392 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1393 else
1394 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1395 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1396
1397 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1398 p->p_md.md_tf->tf_regs[FRAME_PS] =
1399 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1400
1401 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1402 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1403
1404 /* XXX ksc.sc_ownedfp ? */
1405 if (p == fpcurproc)
1406 fpcurproc = NULL;
1407 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1408 sizeof(struct fpreg));
1409 /* XXX ksc.sc_fp_control ? */
1410
1411 #ifdef DEBUG
1412 if (sigdebug & SDB_FOLLOW)
1413 printf("sigreturn(%d): returns\n", p->p_pid);
1414 #endif
1415 return (EJUSTRETURN);
1416 }
1417
1418 /*
1419 * machine dependent system variables.
1420 */
1421 int
1422 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1423 int *name;
1424 u_int namelen;
1425 void *oldp;
1426 size_t *oldlenp;
1427 void *newp;
1428 size_t newlen;
1429 struct proc *p;
1430 {
1431 dev_t consdev;
1432
1433 /* all sysctl names at this level are terminal */
1434 if (namelen != 1)
1435 return (ENOTDIR); /* overloaded */
1436
1437 switch (name[0]) {
1438 case CPU_CONSDEV:
1439 if (cn_tab != NULL)
1440 consdev = cn_tab->cn_dev;
1441 else
1442 consdev = NODEV;
1443 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1444 sizeof consdev));
1445
1446 case CPU_ROOT_DEVICE:
1447 return (sysctl_rdstring(oldp, oldlenp, newp,
1448 root_device->dv_xname));
1449
1450 case CPU_UNALIGNED_PRINT:
1451 return (sysctl_int(oldp, oldlenp, newp, newlen,
1452 &alpha_unaligned_print));
1453
1454 case CPU_UNALIGNED_FIX:
1455 return (sysctl_int(oldp, oldlenp, newp, newlen,
1456 &alpha_unaligned_fix));
1457
1458 case CPU_UNALIGNED_SIGBUS:
1459 return (sysctl_int(oldp, oldlenp, newp, newlen,
1460 &alpha_unaligned_sigbus));
1461
1462 case CPU_BOOTED_KERNEL:
1463 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1464
1465 default:
1466 return (EOPNOTSUPP);
1467 }
1468 /* NOTREACHED */
1469 }
1470
1471 /*
1472 * Set registers on exec.
1473 */
1474 void
1475 setregs(p, pack, stack)
1476 register struct proc *p;
1477 struct exec_package *pack;
1478 u_long stack;
1479 {
1480 struct trapframe *tfp = p->p_md.md_tf;
1481 extern struct proc *fpcurproc;
1482 #ifdef DEBUG
1483 int i;
1484 #endif
1485
1486 #ifdef DEBUG
1487 /*
1488 * Crash and dump, if the user requested it.
1489 */
1490 if (boothowto & RB_DUMP)
1491 panic("crash requested by boot flags");
1492 #endif
1493
1494 #ifdef DEBUG
1495 for (i = 0; i < FRAME_SIZE; i++)
1496 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1497 #else
1498 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1499 #endif
1500 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1501 #define FP_RN 2 /* XXX */
1502 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1503 alpha_pal_wrusp(stack);
1504 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1505 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1506
1507 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1508 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1509 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1510 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1511 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1512
1513 p->p_md.md_flags &= ~MDP_FPUSED;
1514 if (fpcurproc == p)
1515 fpcurproc = NULL;
1516 }
1517
1518 void
1519 netintr()
1520 {
1521 int n, s;
1522
1523 s = splhigh();
1524 n = netisr;
1525 netisr = 0;
1526 splx(s);
1527
1528 #define DONETISR(bit, fn) \
1529 do { \
1530 if (n & (1 << (bit))) \
1531 fn; \
1532 } while (0)
1533
1534 #ifdef INET
1535 #if NARP > 0
1536 DONETISR(NETISR_ARP, arpintr());
1537 #endif
1538 DONETISR(NETISR_IP, ipintr());
1539 #endif
1540 #ifdef NETATALK
1541 DONETISR(NETISR_ATALK, atintr());
1542 #endif
1543 #ifdef NS
1544 DONETISR(NETISR_NS, nsintr());
1545 #endif
1546 #ifdef ISO
1547 DONETISR(NETISR_ISO, clnlintr());
1548 #endif
1549 #ifdef CCITT
1550 DONETISR(NETISR_CCITT, ccittintr());
1551 #endif
1552 #ifdef NATM
1553 DONETISR(NETISR_NATM, natmintr());
1554 #endif
1555 #if NPPP > 1
1556 DONETISR(NETISR_PPP, pppintr());
1557 #endif
1558
1559 #undef DONETISR
1560 }
1561
1562 void
1563 do_sir()
1564 {
1565 u_int64_t n;
1566
1567 do {
1568 (void)splhigh();
1569 n = ssir;
1570 ssir = 0;
1571 splsoft(); /* don't recurse through spl0() */
1572
1573 #define DO_SIR(bit, fn) \
1574 do { \
1575 if (n & (bit)) { \
1576 cnt.v_soft++; \
1577 fn; \
1578 } \
1579 } while (0)
1580
1581 DO_SIR(SIR_NET, netintr());
1582 DO_SIR(SIR_CLOCK, softclock());
1583
1584 #undef DO_SIR
1585 } while (ssir != 0);
1586 }
1587
1588 int
1589 spl0()
1590 {
1591
1592 if (ssir)
1593 do_sir(); /* it lowers the IPL itself */
1594
1595 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1596 }
1597
1598 /*
1599 * The following primitives manipulate the run queues. _whichqs tells which
1600 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1601 * into queues, Remrunqueue removes them from queues. The running process is
1602 * on no queue, other processes are on a queue related to p->p_priority,
1603 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1604 * available queues.
1605 */
1606 /*
1607 * setrunqueue(p)
1608 * proc *p;
1609 *
1610 * Call should be made at splclock(), and p->p_stat should be SRUN.
1611 */
1612
1613 void
1614 setrunqueue(p)
1615 struct proc *p;
1616 {
1617 int bit;
1618
1619 /* firewall: p->p_back must be NULL */
1620 if (p->p_back != NULL)
1621 panic("setrunqueue");
1622
1623 bit = p->p_priority >> 2;
1624 whichqs |= (1 << bit);
1625 p->p_forw = (struct proc *)&qs[bit];
1626 p->p_back = qs[bit].ph_rlink;
1627 p->p_back->p_forw = p;
1628 qs[bit].ph_rlink = p;
1629 }
1630
1631 /*
1632 * remrunqueue(p)
1633 *
1634 * Call should be made at splclock().
1635 */
1636 void
1637 remrunqueue(p)
1638 struct proc *p;
1639 {
1640 int bit;
1641
1642 bit = p->p_priority >> 2;
1643 if ((whichqs & (1 << bit)) == 0)
1644 panic("remrunqueue");
1645
1646 p->p_back->p_forw = p->p_forw;
1647 p->p_forw->p_back = p->p_back;
1648 p->p_back = NULL; /* for firewall checking. */
1649
1650 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1651 whichqs &= ~(1 << bit);
1652 }
1653
1654 /*
1655 * Return the best possible estimate of the time in the timeval
1656 * to which tvp points. Unfortunately, we can't read the hardware registers.
1657 * We guarantee that the time will be greater than the value obtained by a
1658 * previous call.
1659 */
1660 void
1661 microtime(tvp)
1662 register struct timeval *tvp;
1663 {
1664 int s = splclock();
1665 static struct timeval lasttime;
1666
1667 *tvp = time;
1668 #ifdef notdef
1669 tvp->tv_usec += clkread();
1670 while (tvp->tv_usec > 1000000) {
1671 tvp->tv_sec++;
1672 tvp->tv_usec -= 1000000;
1673 }
1674 #endif
1675 if (tvp->tv_sec == lasttime.tv_sec &&
1676 tvp->tv_usec <= lasttime.tv_usec &&
1677 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1678 tvp->tv_sec++;
1679 tvp->tv_usec -= 1000000;
1680 }
1681 lasttime = *tvp;
1682 splx(s);
1683 }
1684
1685 /*
1686 * Wait "n" microseconds.
1687 */
1688 void
1689 delay(n)
1690 unsigned long n;
1691 {
1692 long N = cycles_per_usec * (n);
1693
1694 while (N > 0) /* XXX */
1695 N -= 3; /* XXX */
1696 }
1697
1698 #if defined(COMPAT_OSF1) || 1 /* XXX */
1699 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1700 u_long));
1701
1702 void
1703 cpu_exec_ecoff_setregs(p, epp, stack)
1704 struct proc *p;
1705 struct exec_package *epp;
1706 u_long stack;
1707 {
1708 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1709
1710 setregs(p, epp, stack);
1711 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1712 }
1713
1714 /*
1715 * cpu_exec_ecoff_hook():
1716 * cpu-dependent ECOFF format hook for execve().
1717 *
1718 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1719 *
1720 */
1721 int
1722 cpu_exec_ecoff_hook(p, epp)
1723 struct proc *p;
1724 struct exec_package *epp;
1725 {
1726 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1727 extern struct emul emul_netbsd;
1728 #ifdef COMPAT_OSF1
1729 extern struct emul emul_osf1;
1730 #endif
1731
1732 switch (execp->f.f_magic) {
1733 #ifdef COMPAT_OSF1
1734 case ECOFF_MAGIC_ALPHA:
1735 epp->ep_emul = &emul_osf1;
1736 break;
1737 #endif
1738
1739 case ECOFF_MAGIC_NETBSD_ALPHA:
1740 epp->ep_emul = &emul_netbsd;
1741 break;
1742
1743 default:
1744 return ENOEXEC;
1745 }
1746 return 0;
1747 }
1748 #endif
1749
1750 /* XXX XXX BEGIN XXX XXX */
1751 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1752 /* XXX */
1753 vm_offset_t /* XXX */
1754 alpha_XXX_dmamap(v) /* XXX */
1755 vm_offset_t v; /* XXX */
1756 { /* XXX */
1757 /* XXX */
1758 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1759 } /* XXX */
1760 /* XXX XXX END XXX XXX */
1761