machdep.c revision 1.93 1 /* $NetBSD: machdep.c,v 1.93 1997/12/16 21:59:41 mjacob Exp $ */
2
3 /*
4 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 * All rights reserved.
6 *
7 * Author: Chris G. Demetriou
8 *
9 * Permission to use, copy, modify and distribute this software and
10 * its documentation is hereby granted, provided that both the copyright
11 * notice and this permission notice appear in all copies of the
12 * software, derivative works or modified versions, and any portions
13 * thereof, and that both notices appear in supporting documentation.
14 *
15 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 *
19 * Carnegie Mellon requests users of this software to return to
20 *
21 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 * School of Computer Science
23 * Carnegie Mellon University
24 * Pittsburgh PA 15213-3890
25 *
26 * any improvements or extensions that they make and grant Carnegie the
27 * rights to redistribute these changes.
28 */
29
30 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31
32 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.93 1997/12/16 21:59:41 mjacob Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/signalvar.h>
37 #include <sys/kernel.h>
38 #include <sys/map.h>
39 #include <sys/proc.h>
40 #include <sys/buf.h>
41 #include <sys/reboot.h>
42 #include <sys/device.h>
43 #include <sys/file.h>
44 #ifdef REAL_CLISTS
45 #include <sys/clist.h>
46 #endif
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/user.h>
54 #include <sys/exec.h>
55 #include <sys/exec_ecoff.h>
56 #include <vm/vm.h>
57 #include <sys/sysctl.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 #include <machine/kcore.h>
61 #ifdef SYSVMSG
62 #include <sys/msg.h>
63 #endif
64 #ifdef SYSVSEM
65 #include <sys/sem.h>
66 #endif
67 #ifdef SYSVSHM
68 #include <sys/shm.h>
69 #endif
70
71 #include <sys/mount.h>
72 #include <sys/syscallargs.h>
73
74 #include <vm/vm_kern.h>
75
76 #include <dev/cons.h>
77
78 #include <machine/autoconf.h>
79 #include <machine/cpu.h>
80 #include <machine/reg.h>
81 #include <machine/rpb.h>
82 #include <machine/prom.h>
83 #include <machine/conf.h>
84
85 #include <net/netisr.h>
86 #include <net/if.h>
87
88 #ifdef INET
89 #include <netinet/in.h>
90 #include <netinet/ip_var.h>
91 #include "arp.h"
92 #if NARP > 0
93 #include <netinet/if_inarp.h>
94 #endif
95 #endif
96 #ifdef NS
97 #include <netns/ns_var.h>
98 #endif
99 #ifdef ISO
100 #include <netiso/iso.h>
101 #include <netiso/clnp.h>
102 #endif
103 #ifdef CCITT
104 #include <netccitt/x25.h>
105 #include <netccitt/pk.h>
106 #include <netccitt/pk_extern.h>
107 #endif
108 #ifdef NATM
109 #include <netnatm/natm.h>
110 #endif
111 #ifdef NETATALK
112 #include <netatalk/at_extern.h>
113 #endif
114 #include "ppp.h"
115 #if NPPP > 0
116 #include <net/ppp_defs.h>
117 #include <net/if_ppp.h>
118 #endif
119
120 #ifdef DDB
121 #include <machine/db_machdep.h>
122 #include <ddb/db_access.h>
123 #include <ddb/db_sym.h>
124 #include <ddb/db_extern.h>
125 #include <ddb/db_interface.h>
126 #endif
127
128 #include "le_ioasic.h" /* for le_iomem creation */
129
130 vm_map_t buffer_map;
131
132 /*
133 * Declare these as initialized data so we can patch them.
134 */
135 int nswbuf = 0;
136 #ifdef NBUF
137 int nbuf = NBUF;
138 #else
139 int nbuf = 0;
140 #endif
141 #ifdef BUFPAGES
142 int bufpages = BUFPAGES;
143 #else
144 int bufpages = 0;
145 #endif
146 caddr_t msgbufaddr;
147
148 int maxmem; /* max memory per process */
149
150 int totalphysmem; /* total amount of physical memory in system */
151 int physmem; /* physical memory used by NetBSD + some rsvd */
152 int firstusablepage; /* first usable memory page */
153 int lastusablepage; /* last usable memory page */
154 int resvmem; /* amount of memory reserved for PROM */
155 int unusedmem; /* amount of memory for OS that we don't use */
156 int unknownmem; /* amount of memory with an unknown use */
157
158 int cputype; /* system type, from the RPB */
159
160 /*
161 * XXX We need an address to which we can assign things so that they
162 * won't be optimized away because we didn't use the value.
163 */
164 u_int32_t no_optimize;
165
166 /* the following is used externally (sysctl_hw) */
167 char machine[] = MACHINE; /* from <machine/param.h> */
168 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
169 char cpu_model[128];
170
171 struct user *proc0paddr;
172
173 /* Number of machine cycles per microsecond */
174 u_int64_t cycles_per_usec;
175
176 /* some memory areas for device DMA. "ick." */
177 caddr_t le_iomem; /* XXX iomem for LANCE DMA */
178
179 /* number of cpus in the box. really! */
180 int ncpus;
181
182 char boot_flags[64];
183 char booted_kernel[64];
184
185 int bootinfo_valid;
186 struct bootinfo bootinfo;
187
188 struct platform platform;
189
190 u_int32_t vm_mbuf_size = (NMBCLUSTERS*MCLBYTES);
191 u_int32_t vm_kmem_size = (NKMEMCLUSTERS*CLBYTES);
192 u_int32_t vm_phys_size = (USRIOSIZE*CLBYTES);
193
194 #ifdef DDB
195 /* start and end of kernel symbol table */
196 void *ksym_start, *ksym_end;
197 #endif
198
199 /* for cpu_sysctl() */
200 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
201 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
202 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
203
204 int cpu_dump __P((void));
205 int cpu_dumpsize __P((void));
206 void dumpsys __P((void));
207 void identifycpu __P((void));
208 void netintr __P((void));
209 void printregs __P((struct reg *));
210
211 void
212 alpha_init(pfn, ptb, bim, bip)
213 u_long pfn; /* first free PFN number */
214 u_long ptb; /* PFN of current level 1 page table */
215 u_long bim; /* bootinfo magic */
216 u_long bip; /* bootinfo pointer */
217 {
218 extern char _end[];
219 caddr_t start, v;
220 struct mddt *mddtp;
221 int i, mddtweird;
222 char *p;
223
224 /*
225 * Turn off interrupts (not mchecks) and floating point.
226 * Make sure the instruction and data streams are consistent.
227 */
228 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
229 alpha_pal_wrfen(0);
230 ALPHA_TBIA();
231 alpha_pal_imb();
232
233 /*
234 * get address of the restart block, while we the bootstrap
235 * mapping is still around.
236 */
237 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
238 (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
239
240 /*
241 * Remember how many cycles there are per microsecond,
242 * so that we can use delay(). Round up, for safety.
243 */
244 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
245
246 /*
247 * Init the PROM interface, so we can use printf
248 * until PROM mappings go away in consinit.
249 */
250 init_prom_interface();
251
252 /*
253 * Check for a bootinfo from the boot program.
254 */
255 if (bim == BOOTINFO_MAGIC) {
256 /*
257 * Have boot info. Copy it to our own storage.
258 * We'll sanity-check it later.
259 */
260 bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
261 switch (bootinfo.version) {
262 case 1:
263 bootinfo_valid = 1;
264 break;
265
266 default:
267 printf("warning: unknown bootinfo version %d\n",
268 bootinfo.version);
269 }
270 } else
271 printf("warning: boot program did not pass bootinfo\n");
272
273 /*
274 * Point interrupt/exception vectors to our own.
275 */
276 alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
277 alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
278 alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
279 alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
280 alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
281 alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
282
283 /*
284 * Clear pending machine checks and error reports, and enable
285 * system- and processor-correctable error reporting.
286 */
287 alpha_pal_wrmces(alpha_pal_rdmces() &
288 ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
289
290 /*
291 * Find out how much memory is available, by looking at
292 * the memory cluster descriptors. This also tries to do
293 * its best to detect things things that have never been seen
294 * before...
295 *
296 * XXX Assumes that the first "system" cluster is the
297 * only one we can use. Is the second (etc.) system cluster
298 * (if one happens to exist) guaranteed to be contiguous? or...?
299 */
300 mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
301
302 /*
303 * BEGIN MDDT WEIRDNESS CHECKING
304 */
305 mddtweird = 0;
306
307 #define cnt mddtp->mddt_cluster_cnt
308 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
309 if (cnt != 2 && cnt != 3) {
310 printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
311 mddtweird = 1;
312 } else if (usage(0) != MDDT_PALCODE ||
313 usage(1) != MDDT_SYSTEM ||
314 (cnt == 3 && usage(2) != MDDT_PALCODE)) {
315 mddtweird = 1;
316 printf("WARNING: %ld mem clusters, but weird config\n", cnt);
317 }
318
319 for (i = 0; i < cnt; i++) {
320 if ((usage(i) & MDDT_mbz) != 0) {
321 printf("WARNING: mem cluster %d has weird usage %lx\n",
322 i, usage(i));
323 mddtweird = 1;
324 }
325 if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
326 printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
327 mddtweird = 1;
328 }
329 /* XXX other things to check? */
330 }
331 #undef cnt
332 #undef usage
333
334 if (mddtweird) {
335 printf("\n");
336 printf("complete memory cluster information:\n");
337 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
338 printf("mddt %d:\n", i);
339 printf("\tpfn %lx\n",
340 mddtp->mddt_clusters[i].mddt_pfn);
341 printf("\tcnt %lx\n",
342 mddtp->mddt_clusters[i].mddt_pg_cnt);
343 printf("\ttest %lx\n",
344 mddtp->mddt_clusters[i].mddt_pg_test);
345 printf("\tbva %lx\n",
346 mddtp->mddt_clusters[i].mddt_v_bitaddr);
347 printf("\tbpa %lx\n",
348 mddtp->mddt_clusters[i].mddt_p_bitaddr);
349 printf("\tbcksum %lx\n",
350 mddtp->mddt_clusters[i].mddt_bit_cksum);
351 printf("\tusage %lx\n",
352 mddtp->mddt_clusters[i].mddt_usage);
353 }
354 printf("\n");
355 }
356 /*
357 * END MDDT WEIRDNESS CHECKING
358 */
359
360 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
361 totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
362 #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
363 #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
364 if ((usage(i) & MDDT_mbz) != 0)
365 unknownmem += pgcnt(i);
366 else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
367 resvmem += pgcnt(i);
368 else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
369 /*
370 * assumes that the system cluster listed is
371 * one we're in...
372 */
373 if (physmem != resvmem) {
374 physmem += pgcnt(i);
375 firstusablepage =
376 mddtp->mddt_clusters[i].mddt_pfn;
377 lastusablepage = firstusablepage + pgcnt(i) - 1;
378 } else
379 unusedmem += pgcnt(i);
380 }
381 #undef usage
382 #undef pgcnt
383 }
384 if (totalphysmem == 0)
385 panic("can't happen: system seems to have no memory!");
386 #ifdef LIMITMEM
387 if (totalphysmem >= btoc(LIMITMEM << 20)) {
388 u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
389 printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
390 physmem = totalphysmem = btoc(LIMITMEM << 20);
391 unusedmem += ovf;
392 lastusablepage = firstusablepage + physmem - 1;
393 }
394 #endif
395 maxmem = physmem;
396
397 #if 0
398 printf("totalphysmem = %d\n", totalphysmem);
399 printf("physmem = %d\n", physmem);
400 printf("firstusablepage = %d\n", firstusablepage);
401 printf("lastusablepage = %d\n", lastusablepage);
402 printf("resvmem = %d\n", resvmem);
403 printf("unusedmem = %d\n", unusedmem);
404 printf("unknownmem = %d\n", unknownmem);
405 #endif
406
407 /*
408 * Adjust some parameters if the amount of physmem
409 * available would cause us to croak. This is completely
410 * eyeballed and isn't meant to be the final answer.
411 * vm_phys_size is probably the only one to really worry
412 * about.
413 *
414 * It's for booting a GENERIC kernel on a large memory platform.
415 */
416 if (physmem >= btoc(128 << 20)) {
417 vm_mbuf_size <<= 1;
418 vm_kmem_size <<= 3;
419 vm_phys_size <<= 2;
420 }
421
422 /*
423 * find out this CPU's page size
424 */
425 PAGE_SIZE = hwrpb->rpb_page_size;
426 if (PAGE_SIZE != 8192)
427 panic("page size %d != 8192?!", PAGE_SIZE);
428
429 /*
430 * Find the first free page.
431 */
432 #ifdef DDB
433 if (bootinfo_valid) {
434 /*
435 * Save the kernel symbol table.
436 */
437 switch (bootinfo.version) {
438 case 1:
439 ksym_start = (void *)bootinfo.un.v1.ssym;
440 ksym_end = (void *)bootinfo.un.v1.esym;
441 break;
442 }
443 v = (caddr_t)alpha_round_page(ksym_end);
444 } else
445 #endif
446 v = (caddr_t)alpha_round_page(_end);
447
448 /*
449 * Init mapping for u page(s) for proc 0
450 */
451 start = v;
452 curproc->p_addr = proc0paddr = (struct user *)v;
453 v += UPAGES * NBPG;
454
455 /*
456 * Find out what hardware we're on, and remember its type name.
457 */
458 cputype = hwrpb->rpb_type;
459 if (cputype >= ncpuinit) {
460 platform_not_supported();
461 /* NOTREACHED */
462 }
463 (*cpuinit[cputype].init)();
464 strcpy(cpu_model, platform.model);
465
466 /* XXX SANITY CHECKING. SHOULD GO AWAY */
467 /* XXX We should always be running on the the primary. */
468 assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
469 /* XXX On single-CPU boxes, the primary should always be CPU 0. */
470 if (cputype != ST_DEC_21000) /*XXX*/
471 assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
472
473 #if NLE_IOASIC > 0
474 /*
475 * Grab 128K at the top of physical memory for the lance chip
476 * on machines where it does dma through the I/O ASIC.
477 * It must be physically contiguous and aligned on a 128K boundary.
478 *
479 * Note that since this is conditional on the presence of
480 * IOASIC-attached 'le' units in the kernel config, the
481 * message buffer may move on these systems. This shouldn't
482 * be a problem, because once people have a kernel config that
483 * they use, they're going to stick with it.
484 */
485 if (cputype == ST_DEC_3000_500 ||
486 cputype == ST_DEC_3000_300) { /* XXX possibly others? */
487 lastusablepage -= btoc(128 * 1024);
488 le_iomem =
489 (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
490 }
491 #endif /* NLE_IOASIC */
492
493 /*
494 * Initialize error message buffer (at end of core).
495 */
496 lastusablepage -= btoc(MSGBUFSIZE);
497 msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
498 initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
499
500
501 /*
502 * Allocate space for system data structures.
503 * The first available kernel virtual address is in "v".
504 * As pages of kernel virtual memory are allocated, "v" is incremented.
505 *
506 * These data structures are allocated here instead of cpu_startup()
507 * because physical memory is directly addressable. We don't have
508 * to map these into virtual address space.
509 */
510 #define valloc(name, type, num) \
511 (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
512 #define valloclim(name, type, num, lim) \
513 (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
514 #ifdef REAL_CLISTS
515 valloc(cfree, struct cblock, nclist);
516 #endif
517 valloc(callout, struct callout, ncallout);
518 #ifdef SYSVSHM
519 valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
520 #endif
521 #ifdef SYSVSEM
522 valloc(sema, struct semid_ds, seminfo.semmni);
523 valloc(sem, struct sem, seminfo.semmns);
524 /* This is pretty disgusting! */
525 valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
526 #endif
527 #ifdef SYSVMSG
528 valloc(msgpool, char, msginfo.msgmax);
529 valloc(msgmaps, struct msgmap, msginfo.msgseg);
530 valloc(msghdrs, struct msg, msginfo.msgtql);
531 valloc(msqids, struct msqid_ds, msginfo.msgmni);
532 #endif
533
534 /*
535 * Determine how many buffers to allocate.
536 * We allocate 10% of memory for buffer space. Insure a
537 * minimum of 16 buffers. We allocate 1/2 as many swap buffer
538 * headers as file i/o buffers.
539 */
540 if (bufpages == 0)
541 bufpages = (physmem * 10) / (CLSIZE * 100);
542 if (nbuf == 0) {
543 nbuf = bufpages;
544 if (nbuf < 16)
545 nbuf = 16;
546 }
547 if (nswbuf == 0) {
548 nswbuf = (nbuf / 2) &~ 1; /* force even */
549 if (nswbuf > 256)
550 nswbuf = 256; /* sanity */
551 }
552 valloc(swbuf, struct buf, nswbuf);
553 valloc(buf, struct buf, nbuf);
554
555 /*
556 * Clear allocated memory.
557 */
558 bzero(start, v - start);
559
560 /*
561 * Initialize the virtual memory system, and set the
562 * page table base register in proc 0's PCB.
563 */
564 #ifndef NEW_PMAP
565 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
566 #else
567 pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
568 hwrpb->rpb_max_asn);
569 #endif
570
571 /*
572 * Initialize the rest of proc 0's PCB, and cache its physical
573 * address.
574 */
575 proc0.p_md.md_pcbpaddr =
576 (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
577
578 /*
579 * Set the kernel sp, reserving space for an (empty) trapframe,
580 * and make proc0's trapframe pointer point to it for sanity.
581 */
582 proc0paddr->u_pcb.pcb_hw.apcb_ksp =
583 (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
584 proc0.p_md.md_tf =
585 (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
586
587 #ifdef NEW_PMAP
588 /*
589 * Set up the kernel address space in proc0's hwpcb.
590 */
591 PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
592 #endif
593
594 /*
595 * Look at arguments passed to us and compute boothowto.
596 * Also, get kernel name so it can be used in user-land.
597 */
598 if (bootinfo_valid) {
599 switch (bootinfo.version) {
600 case 1:
601 bcopy(bootinfo.un.v1.boot_flags, boot_flags,
602 sizeof(boot_flags));
603 bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
604 sizeof(booted_kernel));
605 }
606 } else {
607 prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
608 sizeof(boot_flags));
609 prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
610 sizeof(booted_kernel));
611 }
612
613 #if 0
614 printf("boot flags = \"%s\"\n", boot_flags);
615 printf("booted kernel = \"%s\"\n", booted_kernel);
616 #endif
617
618 boothowto = RB_SINGLE;
619 #ifdef KADB
620 boothowto |= RB_KDB;
621 #endif
622 for (p = boot_flags; p && *p != '\0'; p++) {
623 /*
624 * Note that we'd really like to differentiate case here,
625 * but the Alpha AXP Architecture Reference Manual
626 * says that we shouldn't.
627 */
628 switch (*p) {
629 case 'a': /* autoboot */
630 case 'A':
631 boothowto &= ~RB_SINGLE;
632 break;
633
634 #ifdef DEBUG
635 case 'c': /* crash dump immediately after autoconfig */
636 case 'C':
637 boothowto |= RB_DUMP;
638 break;
639 #endif
640
641 #if defined(KGDB) || defined(DDB)
642 case 'd': /* break into the kernel debugger ASAP */
643 case 'D':
644 boothowto |= RB_KDB;
645 break;
646 #endif
647
648 case 'h': /* always halt, never reboot */
649 case 'H':
650 boothowto |= RB_HALT;
651 break;
652
653 #if 0
654 case 'm': /* mini root present in memory */
655 case 'M':
656 boothowto |= RB_MINIROOT;
657 break;
658 #endif
659
660 case 'n': /* askname */
661 case 'N':
662 boothowto |= RB_ASKNAME;
663 break;
664
665 case 's': /* single-user (default, supported for sanity) */
666 case 'S':
667 boothowto |= RB_SINGLE;
668 break;
669
670 default:
671 printf("Unrecognized boot flag '%c'.\n", *p);
672 break;
673 }
674 }
675
676 /*
677 * Figure out the number of cpus in the box, from RPB fields.
678 * Really. We mean it.
679 */
680 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
681 struct pcs *pcsp;
682
683 pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
684 (i * hwrpb->rpb_pcs_size));
685 if ((pcsp->pcs_flags & PCS_PP) != 0)
686 ncpus++;
687 }
688 }
689
690 void
691 consinit()
692 {
693 if (platform.cons_init)
694 (*platform.cons_init)();
695 pmap_unmap_prom();
696
697 #ifdef DDB
698 db_machine_init();
699 ddb_init(ksym_start, ksym_end);
700 if (boothowto & RB_KDB)
701 Debugger();
702 #endif
703 #ifdef KGDB
704 if (boothowto & RB_KDB)
705 kgdb_connect(0);
706 #endif
707 }
708
709 void
710 cpu_startup()
711 {
712 register unsigned i;
713 int base, residual;
714 vm_offset_t minaddr, maxaddr;
715 vm_size_t size;
716 #if defined(DEBUG)
717 extern int pmapdebug;
718 int opmapdebug = pmapdebug;
719
720 pmapdebug = 0;
721 #endif
722
723 /*
724 * Good {morning,afternoon,evening,night}.
725 */
726 printf(version);
727 identifycpu();
728 printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
729 ctob(totalphysmem), ctob(resvmem), ctob(physmem));
730 if (unusedmem)
731 printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
732 if (unknownmem)
733 printf("WARNING: %d bytes of memory with unknown purpose\n",
734 ctob(unknownmem));
735
736 /*
737 * Allocate virtual address space for file I/O buffers.
738 * Note they are different than the array of headers, 'buf',
739 * and usually occupy more virtual memory than physical.
740 */
741 size = MAXBSIZE * nbuf;
742 buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
743 &maxaddr, size, TRUE);
744 minaddr = (vm_offset_t)buffers;
745 if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
746 &minaddr, size, FALSE) != KERN_SUCCESS)
747 panic("startup: cannot allocate buffers");
748 base = bufpages / nbuf;
749 residual = bufpages % nbuf;
750 for (i = 0; i < nbuf; i++) {
751 vm_size_t curbufsize;
752 vm_offset_t curbuf;
753
754 /*
755 * First <residual> buffers get (base+1) physical pages
756 * allocated for them. The rest get (base) physical pages.
757 *
758 * The rest of each buffer occupies virtual space,
759 * but has no physical memory allocated for it.
760 */
761 curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
762 curbufsize = CLBYTES * (i < residual ? base+1 : base);
763 vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
764 vm_map_simplify(buffer_map, curbuf);
765 }
766 /*
767 * Allocate a submap for exec arguments. This map effectively
768 * limits the number of processes exec'ing at any time.
769 */
770 exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
771 16 * NCARGS, TRUE);
772
773 /*
774 * Allocate a submap for physio
775 */
776 phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
777 VM_PHYS_SIZE, TRUE);
778
779 /*
780 * Finally, allocate mbuf cluster submap.
781 */
782 mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
783 VM_MBUF_SIZE, FALSE);
784 /*
785 * Initialize callouts
786 */
787 callfree = callout;
788 for (i = 1; i < ncallout; i++)
789 callout[i-1].c_next = &callout[i];
790 callout[i-1].c_next = NULL;
791
792 #if defined(DEBUG)
793 pmapdebug = opmapdebug;
794 #endif
795 printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
796 printf("using %ld buffers containing %ld bytes of memory\n",
797 (long)nbuf, (long)(bufpages * CLBYTES));
798
799 /*
800 * Set up buffers, so they can be used to read disk labels.
801 */
802 bufinit();
803
804 /*
805 * Configure the system.
806 */
807 configure();
808
809 /*
810 * Note that bootstrapping is finished, and set the HWRPB up
811 * to do restarts.
812 */
813 hwrpb_restart_setup();
814 }
815
816 void
817 identifycpu()
818 {
819
820 /*
821 * print out CPU identification information.
822 */
823 printf("%s, %ldMHz\n", cpu_model,
824 hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
825 printf("%ld byte page size, %d processor%s.\n",
826 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
827 #if 0
828 /* this isn't defined for any systems that we run on? */
829 printf("serial number 0x%lx 0x%lx\n",
830 ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
831
832 /* and these aren't particularly useful! */
833 printf("variation: 0x%lx, revision 0x%lx\n",
834 hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
835 #endif
836 }
837
838 int waittime = -1;
839 struct pcb dumppcb;
840
841 void
842 cpu_reboot(howto, bootstr)
843 int howto;
844 char *bootstr;
845 {
846 extern int cold;
847
848 /* If system is cold, just halt. */
849 if (cold) {
850 howto |= RB_HALT;
851 goto haltsys;
852 }
853
854 /* If "always halt" was specified as a boot flag, obey. */
855 if ((boothowto & RB_HALT) != 0)
856 howto |= RB_HALT;
857
858 boothowto = howto;
859 if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
860 waittime = 0;
861 vfs_shutdown();
862 /*
863 * If we've been adjusting the clock, the todr
864 * will be out of synch; adjust it now.
865 */
866 resettodr();
867 }
868
869 /* Disable interrupts. */
870 splhigh();
871
872 /* If rebooting and a dump is requested do it. */
873 #if 0
874 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
875 #else
876 if (howto & RB_DUMP)
877 #endif
878 dumpsys();
879
880 haltsys:
881
882 /* run any shutdown hooks */
883 doshutdownhooks();
884
885 #ifdef BOOTKEY
886 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
887 cngetc();
888 printf("\n");
889 #endif
890
891 /* Finally, halt/reboot the system. */
892 printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
893 prom_halt(howto & RB_HALT);
894 /*NOTREACHED*/
895 }
896
897 /*
898 * These variables are needed by /sbin/savecore
899 */
900 u_long dumpmag = 0x8fca0101; /* magic number */
901 int dumpsize = 0; /* pages */
902 long dumplo = 0; /* blocks */
903
904 /*
905 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
906 */
907 int
908 cpu_dumpsize()
909 {
910 int size;
911
912 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
913 if (roundup(size, dbtob(1)) != dbtob(1))
914 return -1;
915
916 return (1);
917 }
918
919 /*
920 * cpu_dump: dump machine-dependent kernel core dump headers.
921 */
922 int
923 cpu_dump()
924 {
925 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
926 long buf[dbtob(1) / sizeof (long)];
927 kcore_seg_t *segp;
928 cpu_kcore_hdr_t *cpuhdrp;
929
930 dump = bdevsw[major(dumpdev)].d_dump;
931
932 segp = (kcore_seg_t *)buf;
933 cpuhdrp =
934 (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
935
936 /*
937 * Generate a segment header.
938 */
939 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
940 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
941
942 /*
943 * Add the machine-dependent header info
944 */
945 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
946 cpuhdrp->page_size = PAGE_SIZE;
947 cpuhdrp->core_seg.start = ctob(firstusablepage);
948 cpuhdrp->core_seg.size = ctob(physmem);
949
950 return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
951 }
952
953 /*
954 * This is called by main to set dumplo and dumpsize.
955 * Dumps always skip the first CLBYTES of disk space
956 * in case there might be a disk label stored there.
957 * If there is extra space, put dump at the end to
958 * reduce the chance that swapping trashes it.
959 */
960 void
961 cpu_dumpconf()
962 {
963 int nblks, dumpblks; /* size of dump area */
964 int maj;
965
966 if (dumpdev == NODEV)
967 goto bad;
968 maj = major(dumpdev);
969 if (maj < 0 || maj >= nblkdev)
970 panic("dumpconf: bad dumpdev=0x%x", dumpdev);
971 if (bdevsw[maj].d_psize == NULL)
972 goto bad;
973 nblks = (*bdevsw[maj].d_psize)(dumpdev);
974 if (nblks <= ctod(1))
975 goto bad;
976
977 dumpblks = cpu_dumpsize();
978 if (dumpblks < 0)
979 goto bad;
980 dumpblks += ctod(physmem);
981
982 /* If dump won't fit (incl. room for possible label), punt. */
983 if (dumpblks > (nblks - ctod(1)))
984 goto bad;
985
986 /* Put dump at end of partition */
987 dumplo = nblks - dumpblks;
988
989 /* dumpsize is in page units, and doesn't include headers. */
990 dumpsize = physmem;
991 return;
992
993 bad:
994 dumpsize = 0;
995 return;
996 }
997
998 /*
999 * Dump the kernel's image to the swap partition.
1000 */
1001 #define BYTES_PER_DUMP NBPG
1002
1003 void
1004 dumpsys()
1005 {
1006 unsigned bytes, i, n;
1007 int maddr, psize;
1008 daddr_t blkno;
1009 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1010 int error;
1011
1012 /* Save registers. */
1013 savectx(&dumppcb);
1014
1015 msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1016 if (dumpdev == NODEV)
1017 return;
1018
1019 /*
1020 * For dumps during autoconfiguration,
1021 * if dump device has already configured...
1022 */
1023 if (dumpsize == 0)
1024 cpu_dumpconf();
1025 if (dumplo <= 0) {
1026 printf("\ndump to dev %x not possible\n", dumpdev);
1027 return;
1028 }
1029 printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
1030
1031 psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1032 printf("dump ");
1033 if (psize == -1) {
1034 printf("area unavailable\n");
1035 return;
1036 }
1037
1038 /* XXX should purge all outstanding keystrokes. */
1039
1040 if ((error = cpu_dump()) != 0)
1041 goto err;
1042
1043 bytes = ctob(physmem);
1044 maddr = ctob(firstusablepage);
1045 blkno = dumplo + cpu_dumpsize();
1046 dump = bdevsw[major(dumpdev)].d_dump;
1047 error = 0;
1048 for (i = 0; i < bytes; i += n) {
1049
1050 /* Print out how many MBs we to go. */
1051 n = bytes - i;
1052 if (n && (n % (1024*1024)) == 0)
1053 printf("%d ", n / (1024 * 1024));
1054
1055 /* Limit size for next transfer. */
1056 if (n > BYTES_PER_DUMP)
1057 n = BYTES_PER_DUMP;
1058
1059 error = (*dump)(dumpdev, blkno,
1060 (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1061 if (error)
1062 break;
1063 maddr += n;
1064 blkno += btodb(n); /* XXX? */
1065
1066 /* XXX should look for keystrokes, to cancel. */
1067 }
1068
1069 err:
1070 switch (error) {
1071
1072 case ENXIO:
1073 printf("device bad\n");
1074 break;
1075
1076 case EFAULT:
1077 printf("device not ready\n");
1078 break;
1079
1080 case EINVAL:
1081 printf("area improper\n");
1082 break;
1083
1084 case EIO:
1085 printf("i/o error\n");
1086 break;
1087
1088 case EINTR:
1089 printf("aborted from console\n");
1090 break;
1091
1092 case 0:
1093 printf("succeeded\n");
1094 break;
1095
1096 default:
1097 printf("error %d\n", error);
1098 break;
1099 }
1100 printf("\n\n");
1101 delay(1000);
1102 }
1103
1104 void
1105 frametoreg(framep, regp)
1106 struct trapframe *framep;
1107 struct reg *regp;
1108 {
1109
1110 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1111 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1112 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1113 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1114 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1115 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1116 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1117 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1118 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1119 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1120 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1121 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1122 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1123 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1124 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1125 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1126 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1127 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1128 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1129 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1130 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1131 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1132 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1133 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1134 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1135 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1136 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1137 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1138 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1139 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1140 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1141 regp->r_regs[R_ZERO] = 0;
1142 }
1143
1144 void
1145 regtoframe(regp, framep)
1146 struct reg *regp;
1147 struct trapframe *framep;
1148 {
1149
1150 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1151 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1152 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1153 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1154 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1155 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1156 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1157 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1158 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1159 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1160 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1161 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1162 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1163 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1164 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1165 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1166 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1167 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1168 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1169 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1170 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1171 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1172 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1173 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1174 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1175 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1176 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1177 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1178 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1179 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1180 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1181 /* ??? = regp->r_regs[R_ZERO]; */
1182 }
1183
1184 void
1185 printregs(regp)
1186 struct reg *regp;
1187 {
1188 int i;
1189
1190 for (i = 0; i < 32; i++)
1191 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1192 i & 1 ? "\n" : "\t");
1193 }
1194
1195 void
1196 regdump(framep)
1197 struct trapframe *framep;
1198 {
1199 struct reg reg;
1200
1201 frametoreg(framep, ®);
1202 reg.r_regs[R_SP] = alpha_pal_rdusp();
1203
1204 printf("REGISTERS:\n");
1205 printregs(®);
1206 }
1207
1208 #ifdef DEBUG
1209 int sigdebug = 0;
1210 int sigpid = 0;
1211 #define SDB_FOLLOW 0x01
1212 #define SDB_KSTACK 0x02
1213 #endif
1214
1215 /*
1216 * Send an interrupt to process.
1217 */
1218 void
1219 sendsig(catcher, sig, mask, code)
1220 sig_t catcher;
1221 int sig, mask;
1222 u_long code;
1223 {
1224 struct proc *p = curproc;
1225 struct sigcontext *scp, ksc;
1226 struct trapframe *frame;
1227 struct sigacts *psp = p->p_sigacts;
1228 int oonstack, fsize, rndfsize;
1229 extern char sigcode[], esigcode[];
1230 extern struct proc *fpcurproc;
1231
1232 frame = p->p_md.md_tf;
1233 oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1234 fsize = sizeof ksc;
1235 rndfsize = ((fsize + 15) / 16) * 16;
1236 /*
1237 * Allocate and validate space for the signal handler
1238 * context. Note that if the stack is in P0 space, the
1239 * call to grow() is a nop, and the useracc() check
1240 * will fail if the process has not already allocated
1241 * the space with a `brk'.
1242 */
1243 if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1244 (psp->ps_sigonstack & sigmask(sig))) {
1245 scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1246 psp->ps_sigstk.ss_size - rndfsize);
1247 psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1248 } else
1249 scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1250 if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1251 (void)grow(p, (u_long)scp);
1252 #ifdef DEBUG
1253 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1254 printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1255 sig, &oonstack, scp);
1256 #endif
1257 if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1258 #ifdef DEBUG
1259 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1260 printf("sendsig(%d): useracc failed on sig %d\n",
1261 p->p_pid, sig);
1262 #endif
1263 /*
1264 * Process has trashed its stack; give it an illegal
1265 * instruction to halt it in its tracks.
1266 */
1267 SIGACTION(p, SIGILL) = SIG_DFL;
1268 sig = sigmask(SIGILL);
1269 p->p_sigignore &= ~sig;
1270 p->p_sigcatch &= ~sig;
1271 p->p_sigmask &= ~sig;
1272 psignal(p, SIGILL);
1273 return;
1274 }
1275
1276 /*
1277 * Build the signal context to be used by sigreturn.
1278 */
1279 ksc.sc_onstack = oonstack;
1280 ksc.sc_mask = mask;
1281 ksc.sc_pc = frame->tf_regs[FRAME_PC];
1282 ksc.sc_ps = frame->tf_regs[FRAME_PS];
1283
1284 /* copy the registers. */
1285 frametoreg(frame, (struct reg *)ksc.sc_regs);
1286 ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1287 ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1288
1289 /* save the floating-point state, if necessary, then copy it. */
1290 if (p == fpcurproc) {
1291 alpha_pal_wrfen(1);
1292 savefpstate(&p->p_addr->u_pcb.pcb_fp);
1293 alpha_pal_wrfen(0);
1294 fpcurproc = NULL;
1295 }
1296 ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1297 bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1298 sizeof(struct fpreg));
1299 ksc.sc_fp_control = 0; /* XXX ? */
1300 bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1301 bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1302
1303
1304 #ifdef COMPAT_OSF1
1305 /*
1306 * XXX Create an OSF/1-style sigcontext and associated goo.
1307 */
1308 #endif
1309
1310 /*
1311 * copy the frame out to userland.
1312 */
1313 (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1314 #ifdef DEBUG
1315 if (sigdebug & SDB_FOLLOW)
1316 printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1317 scp, code);
1318 #endif
1319
1320 /*
1321 * Set up the registers to return to sigcode.
1322 */
1323 frame->tf_regs[FRAME_PC] =
1324 (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1325 frame->tf_regs[FRAME_A0] = sig;
1326 frame->tf_regs[FRAME_A1] = code;
1327 frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1328 frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1329 alpha_pal_wrusp((unsigned long)scp);
1330
1331 #ifdef DEBUG
1332 if (sigdebug & SDB_FOLLOW)
1333 printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1334 frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1335 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1336 printf("sendsig(%d): sig %d returns\n",
1337 p->p_pid, sig);
1338 #endif
1339 }
1340
1341 /*
1342 * System call to cleanup state after a signal
1343 * has been taken. Reset signal mask and
1344 * stack state from context left by sendsig (above).
1345 * Return to previous pc and psl as specified by
1346 * context left by sendsig. Check carefully to
1347 * make sure that the user has not modified the
1348 * psl to gain improper priviledges or to cause
1349 * a machine fault.
1350 */
1351 /* ARGSUSED */
1352 int
1353 sys_sigreturn(p, v, retval)
1354 struct proc *p;
1355 void *v;
1356 register_t *retval;
1357 {
1358 struct sys_sigreturn_args /* {
1359 syscallarg(struct sigcontext *) sigcntxp;
1360 } */ *uap = v;
1361 struct sigcontext *scp, ksc;
1362 extern struct proc *fpcurproc;
1363
1364 scp = SCARG(uap, sigcntxp);
1365 #ifdef DEBUG
1366 if (sigdebug & SDB_FOLLOW)
1367 printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1368 #endif
1369
1370 if (ALIGN(scp) != (u_int64_t)scp)
1371 return (EINVAL);
1372
1373 /*
1374 * Test and fetch the context structure.
1375 * We grab it all at once for speed.
1376 */
1377 if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1378 copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1379 return (EINVAL);
1380
1381 if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1382 return (EINVAL);
1383 /*
1384 * Restore the user-supplied information
1385 */
1386 if (ksc.sc_onstack)
1387 p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1388 else
1389 p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1390 p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1391
1392 p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1393 p->p_md.md_tf->tf_regs[FRAME_PS] =
1394 (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1395
1396 regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1397 alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1398
1399 /* XXX ksc.sc_ownedfp ? */
1400 if (p == fpcurproc)
1401 fpcurproc = NULL;
1402 bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1403 sizeof(struct fpreg));
1404 /* XXX ksc.sc_fp_control ? */
1405
1406 #ifdef DEBUG
1407 if (sigdebug & SDB_FOLLOW)
1408 printf("sigreturn(%d): returns\n", p->p_pid);
1409 #endif
1410 return (EJUSTRETURN);
1411 }
1412
1413 /*
1414 * machine dependent system variables.
1415 */
1416 int
1417 cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1418 int *name;
1419 u_int namelen;
1420 void *oldp;
1421 size_t *oldlenp;
1422 void *newp;
1423 size_t newlen;
1424 struct proc *p;
1425 {
1426 dev_t consdev;
1427
1428 /* all sysctl names at this level are terminal */
1429 if (namelen != 1)
1430 return (ENOTDIR); /* overloaded */
1431
1432 switch (name[0]) {
1433 case CPU_CONSDEV:
1434 if (cn_tab != NULL)
1435 consdev = cn_tab->cn_dev;
1436 else
1437 consdev = NODEV;
1438 return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1439 sizeof consdev));
1440
1441 case CPU_ROOT_DEVICE:
1442 return (sysctl_rdstring(oldp, oldlenp, newp,
1443 root_device->dv_xname));
1444
1445 case CPU_UNALIGNED_PRINT:
1446 return (sysctl_int(oldp, oldlenp, newp, newlen,
1447 &alpha_unaligned_print));
1448
1449 case CPU_UNALIGNED_FIX:
1450 return (sysctl_int(oldp, oldlenp, newp, newlen,
1451 &alpha_unaligned_fix));
1452
1453 case CPU_UNALIGNED_SIGBUS:
1454 return (sysctl_int(oldp, oldlenp, newp, newlen,
1455 &alpha_unaligned_sigbus));
1456
1457 case CPU_BOOTED_KERNEL:
1458 return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1459
1460 default:
1461 return (EOPNOTSUPP);
1462 }
1463 /* NOTREACHED */
1464 }
1465
1466 /*
1467 * Set registers on exec.
1468 */
1469 void
1470 setregs(p, pack, stack)
1471 register struct proc *p;
1472 struct exec_package *pack;
1473 u_long stack;
1474 {
1475 struct trapframe *tfp = p->p_md.md_tf;
1476 extern struct proc *fpcurproc;
1477 #ifdef DEBUG
1478 int i;
1479 #endif
1480
1481 #ifdef DEBUG
1482 /*
1483 * Crash and dump, if the user requested it.
1484 */
1485 if (boothowto & RB_DUMP)
1486 panic("crash requested by boot flags");
1487 #endif
1488
1489 #ifdef DEBUG
1490 for (i = 0; i < FRAME_SIZE; i++)
1491 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1492 #else
1493 bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1494 #endif
1495 bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1496 #define FP_RN 2 /* XXX */
1497 p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1498 alpha_pal_wrusp(stack);
1499 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1500 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1501
1502 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1503 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1504 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1505 tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1506 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1507
1508 p->p_md.md_flags &= ~MDP_FPUSED;
1509 if (fpcurproc == p)
1510 fpcurproc = NULL;
1511 }
1512
1513 void
1514 netintr()
1515 {
1516 int n, s;
1517
1518 s = splhigh();
1519 n = netisr;
1520 netisr = 0;
1521 splx(s);
1522
1523 #define DONETISR(bit, fn) \
1524 do { \
1525 if (n & (1 << (bit))) \
1526 fn; \
1527 } while (0)
1528
1529 #ifdef INET
1530 #if NARP > 0
1531 DONETISR(NETISR_ARP, arpintr());
1532 #endif
1533 DONETISR(NETISR_IP, ipintr());
1534 #endif
1535 #ifdef NETATALK
1536 DONETISR(NETISR_ATALK, atintr());
1537 #endif
1538 #ifdef NS
1539 DONETISR(NETISR_NS, nsintr());
1540 #endif
1541 #ifdef ISO
1542 DONETISR(NETISR_ISO, clnlintr());
1543 #endif
1544 #ifdef CCITT
1545 DONETISR(NETISR_CCITT, ccittintr());
1546 #endif
1547 #ifdef NATM
1548 DONETISR(NETISR_NATM, natmintr());
1549 #endif
1550 #if NPPP > 1
1551 DONETISR(NETISR_PPP, pppintr());
1552 #endif
1553
1554 #undef DONETISR
1555 }
1556
1557 void
1558 do_sir()
1559 {
1560 u_int64_t n;
1561
1562 do {
1563 (void)splhigh();
1564 n = ssir;
1565 ssir = 0;
1566 splsoft(); /* don't recurse through spl0() */
1567
1568 #define DO_SIR(bit, fn) \
1569 do { \
1570 if (n & (bit)) { \
1571 cnt.v_soft++; \
1572 fn; \
1573 } \
1574 } while (0)
1575
1576 DO_SIR(SIR_NET, netintr());
1577 DO_SIR(SIR_CLOCK, softclock());
1578
1579 #undef DO_SIR
1580 } while (ssir != 0);
1581 }
1582
1583 int
1584 spl0()
1585 {
1586
1587 if (ssir)
1588 do_sir(); /* it lowers the IPL itself */
1589
1590 return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1591 }
1592
1593 /*
1594 * The following primitives manipulate the run queues. _whichqs tells which
1595 * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1596 * into queues, Remrunqueue removes them from queues. The running process is
1597 * on no queue, other processes are on a queue related to p->p_priority,
1598 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1599 * available queues.
1600 */
1601 /*
1602 * setrunqueue(p)
1603 * proc *p;
1604 *
1605 * Call should be made at splclock(), and p->p_stat should be SRUN.
1606 */
1607
1608 void
1609 setrunqueue(p)
1610 struct proc *p;
1611 {
1612 int bit;
1613
1614 /* firewall: p->p_back must be NULL */
1615 if (p->p_back != NULL)
1616 panic("setrunqueue");
1617
1618 bit = p->p_priority >> 2;
1619 whichqs |= (1 << bit);
1620 p->p_forw = (struct proc *)&qs[bit];
1621 p->p_back = qs[bit].ph_rlink;
1622 p->p_back->p_forw = p;
1623 qs[bit].ph_rlink = p;
1624 }
1625
1626 /*
1627 * remrunqueue(p)
1628 *
1629 * Call should be made at splclock().
1630 */
1631 void
1632 remrunqueue(p)
1633 struct proc *p;
1634 {
1635 int bit;
1636
1637 bit = p->p_priority >> 2;
1638 if ((whichqs & (1 << bit)) == 0)
1639 panic("remrunqueue");
1640
1641 p->p_back->p_forw = p->p_forw;
1642 p->p_forw->p_back = p->p_back;
1643 p->p_back = NULL; /* for firewall checking. */
1644
1645 if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1646 whichqs &= ~(1 << bit);
1647 }
1648
1649 /*
1650 * Return the best possible estimate of the time in the timeval
1651 * to which tvp points. Unfortunately, we can't read the hardware registers.
1652 * We guarantee that the time will be greater than the value obtained by a
1653 * previous call.
1654 */
1655 void
1656 microtime(tvp)
1657 register struct timeval *tvp;
1658 {
1659 int s = splclock();
1660 static struct timeval lasttime;
1661
1662 *tvp = time;
1663 #ifdef notdef
1664 tvp->tv_usec += clkread();
1665 while (tvp->tv_usec > 1000000) {
1666 tvp->tv_sec++;
1667 tvp->tv_usec -= 1000000;
1668 }
1669 #endif
1670 if (tvp->tv_sec == lasttime.tv_sec &&
1671 tvp->tv_usec <= lasttime.tv_usec &&
1672 (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1673 tvp->tv_sec++;
1674 tvp->tv_usec -= 1000000;
1675 }
1676 lasttime = *tvp;
1677 splx(s);
1678 }
1679
1680 /*
1681 * Wait "n" microseconds.
1682 */
1683 void
1684 delay(n)
1685 unsigned long n;
1686 {
1687 long N = cycles_per_usec * (n);
1688
1689 while (N > 0) /* XXX */
1690 N -= 3; /* XXX */
1691 }
1692
1693 #if defined(COMPAT_OSF1) || 1 /* XXX */
1694 void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1695 u_long));
1696
1697 void
1698 cpu_exec_ecoff_setregs(p, epp, stack)
1699 struct proc *p;
1700 struct exec_package *epp;
1701 u_long stack;
1702 {
1703 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1704
1705 setregs(p, epp, stack);
1706 p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1707 }
1708
1709 /*
1710 * cpu_exec_ecoff_hook():
1711 * cpu-dependent ECOFF format hook for execve().
1712 *
1713 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1714 *
1715 */
1716 int
1717 cpu_exec_ecoff_hook(p, epp)
1718 struct proc *p;
1719 struct exec_package *epp;
1720 {
1721 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1722 extern struct emul emul_netbsd;
1723 #ifdef COMPAT_OSF1
1724 extern struct emul emul_osf1;
1725 #endif
1726
1727 switch (execp->f.f_magic) {
1728 #ifdef COMPAT_OSF1
1729 case ECOFF_MAGIC_ALPHA:
1730 epp->ep_emul = &emul_osf1;
1731 break;
1732 #endif
1733
1734 case ECOFF_MAGIC_NETBSD_ALPHA:
1735 epp->ep_emul = &emul_netbsd;
1736 break;
1737
1738 default:
1739 return ENOEXEC;
1740 }
1741 return 0;
1742 }
1743 #endif
1744
1745 /* XXX XXX BEGIN XXX XXX */
1746 vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1747 /* XXX */
1748 vm_offset_t /* XXX */
1749 alpha_XXX_dmamap(v) /* XXX */
1750 vm_offset_t v; /* XXX */
1751 { /* XXX */
1752 /* XXX */
1753 return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1754 } /* XXX */
1755 /* XXX XXX END XXX XXX */
1756